JPS60173083A - Operating medium for heat pump - Google Patents

Operating medium for heat pump

Info

Publication number
JPS60173083A
JPS60173083A JP59026949A JP2694984A JPS60173083A JP S60173083 A JPS60173083 A JP S60173083A JP 59026949 A JP59026949 A JP 59026949A JP 2694984 A JP2694984 A JP 2694984A JP S60173083 A JPS60173083 A JP S60173083A
Authority
JP
Japan
Prior art keywords
heat pump
working medium
heating
compressor
operating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59026949A
Other languages
Japanese (ja)
Inventor
Masato Fukushima
正人 福島
Makoto Segami
瀬上 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59026949A priority Critical patent/JPS60173083A/en
Publication of JPS60173083A publication Critical patent/JPS60173083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide an operating medium for a heat pump contg. specified compds. as essential constituents, which improves operating efficiency of the heat pump as compared with those employing conventional heating media and markedly increases heating and cooling capacity per suction air flow of a compressor. CONSTITUTION:The operating medium contains dichloromonofluoromethane and monochloropentafluoroethane as essential constituents. It improves heating capacity and operating efficiency of a heat pump without excessive increase in pressure of condensation. It also increases heating and cooling capacity per suction air flow of a compressor to a marked extent and is of great practical use.

Description

【発明の詳細な説明】 本発明はヒートポンプ等に使用しうる新規な作動媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel working medium that can be used in heat pumps and the like.

本発明において「ヒートポンプ」とは高温流体を製造す
る狭義のヒートポンプのみならず冷流体を製造する冷凍
機等を含めた広義のヒートポンプを意味するものである
In the present invention, the term "heat pump" refers not only to heat pumps in a narrow sense that produce high-temperature fluids, but also to heat pumps in a broad sense, including refrigerators and the like that produce cold fluids.

ヒートポンプの応用は冷凍庫、冷蔵庫、冷房機器、暖房
機器、給湯機器および排熱回収な目的とした機器等多岐
に及んでいる。省エネルギーの立場から新しい作動媒体
の開発によるヒートポンプの効率改善が期待されている
。すなわち、熱利用をするに際しその加熱、冷却能力と
その運転に必要な電気エネルギーとの比である成績係数
を向上せしめかつ作動媒体の圧縮機吸入容積当りの能力
(加熱、冷却能力)を向上させる断作動媒体の開発が望
まれている。またヒートポンプを熱利用機器に応用する
場合、コストが他の方式に比べ安価であるという条件が
あり作動媒体としても稀少かつ高価では使用する利点が
なく、安価で容易に入手できるものに限られる。
Heat pumps have a wide range of applications, including freezers, refrigerators, air conditioning equipment, heating equipment, hot water supply equipment, and equipment for waste heat recovery. From the standpoint of energy conservation, it is expected that the efficiency of heat pumps will be improved through the development of new working media. In other words, when utilizing heat, it improves the coefficient of performance, which is the ratio between the heating and cooling capacity and the electrical energy required for its operation, and also improves the capacity (heating and cooling capacity) per compressor suction volume of working medium. The development of a cutting-off working medium is desired. Furthermore, when heat pumps are applied to heat utilization equipment, there is a condition that the cost is lower than other methods, and as a working medium, there is no advantage to using it if it is rare and expensive, and it is limited to those that are cheap and easily available.

本発明者らはそのような要望に応えるべく種々研究を重
ねた結果、ジクロロモノフルオロメタン(フロン−21
)とモノクロロペンタフルオロエタン(フロン−115
)を混合した混合系は混合前の単−物質に比べて優れた
特性をもつことを見出した。特にフロン−115のモル
分率が0.03〜0.30であるフロン〜21との混合
物がヒートポンブ用作動媒体としてすぐれた特性をもっ
ことを見出した。
The present inventors have conducted various studies to meet such demands, and as a result, dichloromonofluoromethane (Freon-21
) and monochloropentafluoroethane (Freon-115
) was found to have superior properties compared to the single substance before mixing. In particular, we have found that a mixture of Freon-115 and Freon-21 having a molar fraction of 0.03 to 0.30 has excellent properties as a working medium for heat pumps.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の作動媒体を用いたヒートポンプのフロ
ーシートを示しており、符合lは圧縮機、2は凝縮器、
3.3′は負荷流体用配管。
FIG. 1 shows a flow sheet of a heat pump using the working medium of the present invention, where 1 is a compressor, 2 is a condenser,
3.3' is the load fluid piping.

4は減圧装置、5は蒸発器、e、e′は熱源流体用配管
を示す。
4 is a pressure reducing device, 5 is an evaporator, and e and e' are piping for heat source fluid.

第1図に示すヒートポンプシステムにおいて作動媒体は
圧縮機1で圧縮された後凝縮器2に導かれ、該凝縮器2
中で管3より導入される負荷流体により冷却されて凝縮
する。一方、負荷流体は凝縮器2中で逆に加熱され管3
′を経て負荷加熱に供される。つぎに凝縮した作動媒体
は減圧装置4により減圧された後蒸発器5に導かれ、該
蒸発器中で管6より導入され管6′から排出される熱源
流体により加熱蒸発された後再び圧縮@1に吸引され上
記のサイクルを繰り返す。
In the heat pump system shown in FIG. 1, the working medium is compressed by a compressor 1 and then led to a condenser 2.
Inside, it is cooled and condensed by the load fluid introduced from the pipe 3. Meanwhile, the load fluid is heated inversely in the condenser 2 and the tube 3
' and then subjected to load heating. Next, the condensed working medium is depressurized by the pressure reducing device 4, and then led to the evaporator 5, where it is heated and evaporated by the heat source fluid introduced from the pipe 6 and discharged from the pipe 6', and then compressed again. 1 and repeat the above cycle.

第2図及び第3図は第1図に示すヒートポンプシステム
における作動媒体のサイクルを圧力−エンタルピー線図
上に記入したものである。
FIGS. 2 and 3 show the cycles of the working medium in the heat pump system shown in FIG. 1 on pressure-enthalpy diagrams.

作動媒体の飽和蒸気を断熱圧縮した場合、湿り状態にな
るものを第2図に、乾き状態になるものを第3図に示す
When saturated vapor as a working medium is adiabatically compressed, a wet state is shown in Fig. 2, and a dry state is shown in Fig. 3.

第1図の圧縮機による作動媒体の変化は、第2図及び第
3図の符合8から9あるいは13から1′4の変化に、
凝縮器による作動媒体の変化は9から11あるいは14
から17の変化に、減圧装置による作動媒体の変化は1
1から12あるいは17から18の変化に、蒸発器によ
る作動媒体の変化は12から8あるいは18から13の
変化にそれぞれ対応する。
The change in the working medium due to the compressor in FIG. 1 is the change from 8 to 9 or from 13 to 1'4 in FIGS. 2 and 3.
The change in working medium due to the condenser is from 9 to 11 or 14
17, the change in working medium due to the pressure reducing device is 1
For a change from 1 to 12 or from 17 to 18, a change in the working medium by the evaporator corresponds to a change from 12 to 8 or from 18 to 13, respectively.

本発明の作動媒体を用いた第1図のヒートポンプシステ
ムの運転条件として圧縮機の吸入温度(符合8あるいは
13の温度)を5°Cに、凝縮器における作動媒体の凝
縮始めの温度(符合9あるいは15の温度)を40℃、
70℃に設定した。
The operating conditions for the heat pump system shown in FIG. 1 using the working medium of the present invention are that the suction temperature of the compressor (temperature numbered 8 or 13) is 5°C, and the temperature at the start of condensation of the working medium in the condenser (temperature numbered 9 or 13) is set at 5°C. or temperature of 15) to 40℃,
The temperature was set at 70°C.

第1表に本発明の作動媒体を用いた上記のヒートポンプ
システムにおける成績係数、圧縮機吸引容積当りの加熱
能力(以下加熱能力)、および凝縮器内での作動媒体の
圧力を比較例とともに記す。
Table 1 shows the coefficient of performance, heating capacity per compressor suction volume (hereinafter referred to as heating capacity), and pressure of the working medium in the condenser in the heat pump system using the working medium of the present invention, along with comparative examples.

第1表から理解されるようにフロン−115のモル分率
0.03〜0.30を含む本発明の作動媒体を用いたヒ
ートポンプの成績係数は、フロン−21およびフロン−
115を単独で用いた場合に比べ改善されている。特に
フロン−115のモル分率が0.10の本発明の作動媒
体を用いた場合、凝縮開始温度が40℃の運転条件にお
いては、フロン−21を単独で用いた場合に比べ成績係
数が6.0%、フロン−115を単独で用いた場合に比
べ成績係数が52%も改善されている。さらに凝縮開始
温度が70″Cの運転条件においてはフロン−115を
単独で用いると、フロン−115の臨界温度 (80℃
)近くで使用することになり、成績係数も極端に下がる
ため、フロン−115の単独での使用は実用的でない。
As understood from Table 1, the coefficient of performance of a heat pump using the working medium of the present invention containing a mole fraction of Freon-115 of 0.03 to 0.30 is
This is an improvement over the case where 115 is used alone. In particular, when using the working fluid of the present invention in which the mole fraction of Freon-115 is 0.10, under operating conditions where the condensation start temperature is 40°C, the coefficient of performance is 6 compared to when Freon-21 is used alone. The coefficient of performance was improved by 52% compared to when Freon-115 was used alone. Furthermore, under operating conditions where the condensation start temperature is 70"C, if Freon-115 is used alone, the critical temperature of Freon-115 (80℃
) It is not practical to use Freon-115 alone because it will be used nearby and the coefficient of performance will be extremely low.

さらに凝縮開始温度が40℃、70°Cのいずれの温度
でもフロン−21を単独で用いた場合に比べ、本発明の
作動媒体を用いた場合の方が加熱能力が改善されている
ことが第1表から理解される。
Furthermore, the heating ability is improved when the working fluid of the present invention is used, compared to when Freon-21 is used alone, regardless of the condensation start temperature of 40°C or 70°C. This can be understood from Table 1.

すなわち本発明の作動媒体は、それを用いたヒートポン
プにおいて凝縮圧力を極端に高くすることなく圧縮機の
吸入容積当りの加熱能力を改善するとともに成績係数も
改善することができる特性を有しているといえる。さら
に従来から冷暖房および中温域ヒートポンプ用作動媒体
として使用されているジクロロジフルオロメタンを第1
表が得られた場合と同一運転条件で運転する場合、凝縮
開始温度が70゛Cにおいて凝縮圧力が19.3kg/
 cyAで成績係数が3.77であり、本発明の作動媒
体を用いた場合の方が凝縮圧力は低くかつ成績係数の最
高値では23%も改善されることが見出された。
In other words, the working medium of the present invention has characteristics that can improve the heating capacity per suction volume of the compressor and also improve the coefficient of performance in a heat pump using the working medium without extremely increasing the condensing pressure. It can be said. Furthermore, dichlorodifluoromethane, which has traditionally been used as a working medium for air conditioning and medium-temperature heat pumps, is the first
When operating under the same operating conditions as when the table was obtained, the condensation start temperature was 70°C and the condensation pressure was 19.3kg/
The coefficient of performance for cyA was 3.77, and it was found that when the working medium of the present invention was used, the condensation pressure was lower and improved by 23% at the highest value of the coefficient of performance.

以上説明したように本発明の作動媒体を冷暖房等を含め
た広義のヒートポンプに応用する場合、従来の作動媒体
を用いたヒートポンプに比べて成績係数が改善され、し
かも圧縮機の同−吸込風量当りの加熱および冷却能力が
著しく増大することができ実用上きわめて有用な効果を
もたらす。
As explained above, when the working medium of the present invention is applied to heat pumps in a broad sense, including heating and cooling, etc., the coefficient of performance is improved compared to heat pumps using conventional working medium, and moreover, the working medium of the present invention is improved per the same suction air volume of the compressor. The heating and cooling capacity of the system can be significantly increased, resulting in extremely useful effects in practice.

第1表 凝縮開始温度40℃ 凝縮開始温度70’CTable 1 Condensation start temperature 40℃ Condensation start temperature 70’C

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのヒートポン
プのフローシート、第2図および第3図はフロン−21
/フロン−115混合系を作動媒体として用いたサイク
ルを圧力−エンタルピー線図に記入した図である。 代理人内 1) 明 代理人萩原亮− 茅 / 罠 茅2 )′g!1 子3閲 工〉71にビ エンタンレヒ′
Fig. 1 is a flow sheet of a heat pump for explaining one embodiment of the present invention, and Figs. 2 and 3 are fluorocarbon-21
FIG. 2 is a pressure-enthalpy diagram showing a cycle using a CFC-115 mixture system as a working medium. Among the agents 1) Akira's agent Ryo Hagiwara - Kaya / Trap Kaya 2)'g! 1 child 3 review〉71 bi entanlehi'

Claims (1)

【特許請求の範囲】 t、シクoロモノフルオロメタンとモノクロロペンタフ
ルオロエタンとを必須成分とすることを特゛徴とするヒ
ートポンプ用作動媒体。 2、モノクロロペンタフルオロエタンのモル分率が0.
03〜0.30である特許請求の範囲第1項記載の作動
媒体。
[Scope of Claims] A working medium for a heat pump, characterized in that it contains cyclomonofluoromethane and monochloropentafluoroethane as essential components. 2. The mole fraction of monochloropentafluoroethane is 0.
03 to 0.30.
JP59026949A 1984-02-17 1984-02-17 Operating medium for heat pump Pending JPS60173083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026949A JPS60173083A (en) 1984-02-17 1984-02-17 Operating medium for heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026949A JPS60173083A (en) 1984-02-17 1984-02-17 Operating medium for heat pump

Publications (1)

Publication Number Publication Date
JPS60173083A true JPS60173083A (en) 1985-09-06

Family

ID=12207400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026949A Pending JPS60173083A (en) 1984-02-17 1984-02-17 Operating medium for heat pump

Country Status (1)

Country Link
JP (1) JPS60173083A (en)

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
Åhlby et al. NH3/H2O LiBr as working fluid for the compression/absorption cycle
JPS63308084A (en) Operation medium mixture
JPS5824764A (en) Heat pump device
JPS60173083A (en) Operating medium for heat pump
JPH075881B2 (en) Working medium mixture
JPS60173082A (en) Operating medium for heat pump
JPS60173080A (en) Operating medium for heat pump
JPS6353456B2 (en)
JPH0655940B2 (en) Mixed refrigerant
JPS60173081A (en) Operating medium for heat pump
JPS6246781B2 (en)
JPS63101474A (en) Refrigeration medium mixture
JPS63238367A (en) Refrigeration cycle device
JPS60226668A (en) Heat pump
JPS6225644Y2 (en)
JPH01141982A (en) Working medium mixture
JPS60166374A (en) Working medium and heat pump using said working medium
JPH0124521Y2 (en)
JPH01139683A (en) Working medium mixture
JPS5818061A (en) Refrigerator
KR830003703A (en) Apparatus, method and control for satisfying heating and cooling demand
JPS60166373A (en) Working medium and heat pump using said working medium
JPS60175980A (en) Cooling method
JPS58129164A (en) Hot-water supply device for heat pump