JPH0124521Y2 - - Google Patents

Info

Publication number
JPH0124521Y2
JPH0124521Y2 JP4744582U JP4744582U JPH0124521Y2 JP H0124521 Y2 JPH0124521 Y2 JP H0124521Y2 JP 4744582 U JP4744582 U JP 4744582U JP 4744582 U JP4744582 U JP 4744582U JP H0124521 Y2 JPH0124521 Y2 JP H0124521Y2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
compressor
suction pressure
pressure
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4744582U
Other languages
Japanese (ja)
Other versions
JPS58148572U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4744582U priority Critical patent/JPS58148572U/en
Publication of JPS58148572U publication Critical patent/JPS58148572U/en
Application granted granted Critical
Publication of JPH0124521Y2 publication Critical patent/JPH0124521Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、互いに独立した第1、第2の冷凍
サイクルを有し、利用側蒸発器を有する第1の冷
凍サイクルにて凝縮した冷媒を第2の冷凍サイク
ルにて更に冷却し、この冷却分をも第1の冷凍サ
イクルの利用側蒸発器にて吸熱させることにより
高効率運転を行う冷凍装置の改良に関するもので
ある。
[Detailed description of the invention] This invention has first and second refrigeration cycles independent of each other, and the refrigerant condensed in the first refrigeration cycle having a user-side evaporator is transferred to the second refrigeration cycle. The present invention relates to an improvement of a refrigeration system that performs highly efficient operation by further cooling and absorbing heat by the user-side evaporator of the first refrigeration cycle.

一般にこの種の冷凍装置の定常冷却運転中にお
いては、利用側蒸発器を有する第1の冷凍サイク
ルの凝縮液冷媒の温度は比較的高く、これを熱源
とする第2の冷凍サイクルの吸入圧力は、第1の
冷凍サイクルの吸入圧力よりも高くなる。一方、
圧縮機の体積効率は吸入圧力が高い程大きくな
り、これに伴い成積係数が大きく、高効率運転と
なる。従つて、1つの冷凍サイクルだけで冷却運
転を行うよりも、補助的に第2の冷凍サイクルを
設け、第2の冷凍サイクルを第1の冷凍サイクル
よりも高い吸入圧力で運転させることにより、高
効率運転が行え、第1の冷凍サイクルの運転率が
低下して省エネルギとなる。ところで、従来で
は、第1の冷凍サイクルに常に連動して第2の冷
凍サイクルを運転させていたため、例えば、冬期
第1の冷凍サイクルの利用側蒸発器の除霜後の冷
却運転開始時に、第1の冷凍サイクルの吸入圧力
よりも第2の冷凍サイクルの吸入圧力が低下して
も第2の冷凍サイクルが運転され、低効率運転と
なつた。即ち、第1の冷凍サイクルの冷媒を空冷
式凝縮器にて凝縮させる場合、冬期凝縮温度が低
下し、例えば5〜10℃程度となる。一方、利用側
蒸発器を除霜した後の冷却運転直後は、第1の冷
凍サイクルの吸入圧力が比較的高く、例えば5℃
相当程度の圧力となつている。これに対し、第2
の冷凍サイクルの吸入圧力は、第1の冷凍サイク
ルの凝縮液冷媒温度が低いために0℃相当程度の
圧力となり、このため、第2の冷凍サイクルは第
1の冷凍サイクルよりも低効率運転となり、第2
の冷凍サイクルを運転させる必要がなくなる。
Generally, during steady cooling operation of this type of refrigeration system, the temperature of the condensate refrigerant in the first refrigeration cycle having the user-side evaporator is relatively high, and the suction pressure of the second refrigeration cycle using this as a heat source is , becomes higher than the suction pressure of the first refrigeration cycle. on the other hand,
The volumetric efficiency of the compressor increases as the suction pressure increases, and accordingly, the volumetric coefficient increases, resulting in highly efficient operation. Therefore, rather than performing cooling operation with only one refrigeration cycle, by providing an auxiliary second refrigeration cycle and operating the second refrigeration cycle at a higher suction pressure than the first refrigeration cycle, high Efficient operation can be performed, and the operation rate of the first refrigeration cycle is reduced, resulting in energy savings. By the way, conventionally, since the second refrigeration cycle was always operated in conjunction with the first refrigeration cycle, for example, when starting the cooling operation after defrosting the user side evaporator of the first refrigeration cycle in winter, the second refrigeration cycle Even if the suction pressure of the second refrigeration cycle was lower than the suction pressure of the first refrigeration cycle, the second refrigeration cycle was operated, resulting in low efficiency operation. That is, when the refrigerant of the first refrigeration cycle is condensed in the air-cooled condenser, the condensation temperature in winter is lowered, for example, to about 5 to 10 degrees Celsius. On the other hand, immediately after the cooling operation after defrosting the user-side evaporator, the suction pressure of the first refrigeration cycle is relatively high, for example, 5°C.
There is considerable pressure. On the other hand, the second
Because the condensate refrigerant temperature in the first refrigeration cycle is low, the suction pressure of the refrigeration cycle becomes a pressure equivalent to 0°C, and therefore the second refrigeration cycle operates at a lower efficiency than the first refrigeration cycle. , second
There is no need to operate the refrigeration cycle.

この考案は、このような欠点を解消すべくなさ
れたものであり、以下図に基いて説明する。
This invention was made to eliminate such drawbacks, and will be explained below based on the drawings.

図において、1は第1の冷凍サイクルで、第1
の圧縮機2から吐出された高温高圧のガス冷媒は
第1の送風機3を有する第1の凝縮器4にて凝縮
液化した後、第1の絞り装置5にて減圧され、第
1の利用側蒸発器6で蒸発し、庫内(図示せず)
の空気を冷却したのち、再び第1の圧縮機2に吸
入される。11は第2の冷凍サイクルであり、第
2の圧縮機12から吐出された高温高圧のガス冷
媒は第2の送風機13を有する第2の凝縮器14
にて凝縮液化した後、第2の絞り装置15にて減
圧され、上記第1の凝縮器14にて凝縮した冷媒
が流通する液配管7と熱交換関係に配置された第
2の蒸発器16にて蒸発し、上記液配管7内の液
冷媒を冷却したのち、再び第2の圧縮機12に吸
入される。21は第1の圧縮機2及び第2の圧縮
機12の吸入圧力をそれぞれ検知する圧力検知器
であり、第2の圧縮機12の吸入圧力が第1の圧
縮機2の吸入圧力よりも低下したとき第2の圧縮
機12を含む第2の冷凍サイクル11全体を停止
させるためのものである。
In the figure, 1 is the first refrigeration cycle;
The high-temperature, high-pressure gas refrigerant discharged from the compressor 2 is condensed and liquefied in the first condenser 4 having the first blower 3, and then depressurized in the first expansion device 5 and transferred to the first usage side. It is evaporated in the evaporator 6 and then inside the refrigerator (not shown).
After the air is cooled, it is sucked into the first compressor 2 again. 11 is a second refrigeration cycle, and the high-temperature, high-pressure gas refrigerant discharged from the second compressor 12 is passed through a second condenser 14 having a second blower 13.
A second evaporator 16 is disposed in a heat exchange relationship with a liquid pipe 7 through which the refrigerant is condensed and liquefied, then depressurized by a second expansion device 15 and condensed by the first condenser 14. After being evaporated and cooling the liquid refrigerant in the liquid pipe 7, it is sucked into the second compressor 12 again. 21 is a pressure detector that detects the suction pressure of the first compressor 2 and the second compressor 12, and when the suction pressure of the second compressor 12 is lower than the suction pressure of the first compressor 2, When this occurs, the entire second refrigeration cycle 11 including the second compressor 12 is stopped.

次に作用について説明する。通常の冷却運転中
は、第1の凝縮器4で凝縮した冷媒の温度は比較
的高く、これと熱交換する第2の蒸発器16での
蒸発温度(第2の圧縮機12の吸入圧力とほぼ同
一)は第1の利用側蒸発器6での蒸発温度(第1
の圧縮機2の吸入圧力とほぼ同一)よりも高くな
る。従つて、圧力検知器21は作動せず、第1、
第2の冷凍サイクル1,11ともに運転される。
次に、第1の利用側蒸発器6を除霜した場合、第
1の利用側蒸発器6を収納する庫内(図示せず)
の温度や第1の冷凍サイクル1の低圧側圧力が上
昇する。このような状態で冷却運転を再開すると
特に冬期においては第1の冷凍サイクル1での凝
縮温度が低いため、第2の冷凍サイクル2の蒸発
温度も低下し、第2の圧縮機12の吸入圧力が第
1の圧縮機2の吸入圧力よりも低下することがあ
る。このような場合、これを圧力検知器により検
知し、第2の圧縮機12を含む第2の冷凍サイク
ル11全体を停止させ、低効率運転を防止する。
Next, the effect will be explained. During normal cooling operation, the temperature of the refrigerant condensed in the first condenser 4 is relatively high, and the evaporation temperature in the second evaporator 16 that exchanges heat with the refrigerant (the suction pressure of the second compressor 12) is relatively high. (almost the same) is the evaporation temperature in the first user evaporator 6 (the first
(almost the same as the suction pressure of compressor 2). Therefore, the pressure sensor 21 is not activated and the first,
Both second refrigeration cycles 1 and 11 are operated.
Next, when the first user-side evaporator 6 is defrosted, the inside of the refrigerator (not shown) that houses the first user-side evaporator 6 is
temperature and the pressure on the low pressure side of the first refrigeration cycle 1 rise. When the cooling operation is restarted in such a state, especially in winter, the condensing temperature in the first refrigeration cycle 1 is low, so the evaporation temperature in the second refrigeration cycle 2 also decreases, and the suction pressure of the second compressor 12 decreases. may be lower than the suction pressure of the first compressor 2. In such a case, this is detected by a pressure detector and the entire second refrigeration cycle 11 including the second compressor 12 is stopped to prevent low efficiency operation.

以上のように、この考案によれば、互いに独立
した第1、第2の冷凍サイクルを有し、利用側蒸
発器を有する第1の冷凍サイクルにて凝縮した冷
媒を第2の冷凍サイクルにて更に冷却し、この冷
却分をも第1の冷凍サイクルの利用側蒸発器にて
吸熱作用させる冷凍装置において、第2の冷凍サ
イクルの吸入圧力が第1の冷凍サイクルの吸入圧
力よりも低下したとき、これを圧力検知器により
検知し、第2の冷凍サイクルの運転を停止させる
ようにしているため、常に高効率運転が行われ、
運転効率が向上する等実用的効果は大である。
As described above, according to this invention, the first and second refrigeration cycles are independent of each other, and the refrigerant condensed in the first refrigeration cycle having the user-side evaporator is transferred to the second refrigeration cycle. When the suction pressure of the second refrigeration cycle is lower than the suction pressure of the first refrigeration cycle in a refrigeration system that further cools and causes the evaporator on the user side of the first refrigeration cycle to absorb heat from this cooling amount, , this is detected by a pressure detector and the operation of the second refrigeration cycle is stopped, so highly efficient operation is always performed.
The practical effects are great, such as improved operating efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの考案の一実施例を示す冷凍サイクル図
である。 図中、1は第1の冷凍サイクル、2は第1の圧
縮機、4は第1の凝縮器、5は第1の絞り装置、
6は第1の利用側蒸発器、11は第2の冷凍サイ
クル、12は第2の圧縮機、14は第2の凝縮
器、15は第2の絞り装置、16は第2の蒸発
器、21は圧力検知器である。
The figure is a refrigeration cycle diagram showing one embodiment of this invention. In the figure, 1 is a first refrigeration cycle, 2 is a first compressor, 4 is a first condenser, 5 is a first expansion device,
6 is a first utilization side evaporator, 11 is a second refrigeration cycle, 12 is a second compressor, 14 is a second condenser, 15 is a second throttle device, 16 is a second evaporator, 21 is a pressure sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1の圧縮機、第1の凝縮器、第1の絞り装
置、第1の利用側蒸発器を順次連結してなる第1
の冷媒サイクルと、第2の圧縮機、第2の凝縮
器、第2の絞り装置、上記第1の凝縮器にて凝縮
した冷媒を更に冷却するための第2の蒸発器を順
次連結してなる第2の冷凍サイクルとからなる冷
凍装置において、上記第1の圧縮機の吸入圧力と
上記第2の圧縮機の吸入圧力とを検知し上記第1
の圧縮機の吸入圧力が上記第2の圧縮機の吸入圧
力より高いか或いは同一のときのみ上記第2の冷
凍サイクルを運転させる圧力検知器を設けたこと
を特徴とする冷凍装置。
A first compressor, a first condenser, a first throttle device, and a first user-side evaporator connected in sequence.
A refrigerant cycle, a second compressor, a second condenser, a second throttle device, and a second evaporator for further cooling the refrigerant condensed in the first condenser are connected in sequence. In the refrigeration system, the suction pressure of the first compressor and the suction pressure of the second compressor are detected, and the suction pressure of the first compressor is detected.
A refrigeration system comprising a pressure detector that operates the second refrigeration cycle only when the suction pressure of the compressor is higher than or the same as the suction pressure of the second compressor.
JP4744582U 1982-03-30 1982-03-30 Refrigeration equipment Granted JPS58148572U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4744582U JPS58148572U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4744582U JPS58148572U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS58148572U JPS58148572U (en) 1983-10-05
JPH0124521Y2 true JPH0124521Y2 (en) 1989-07-25

Family

ID=30058403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4744582U Granted JPS58148572U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS58148572U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096984B2 (en) * 2006-06-30 2008-06-04 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JPS58148572U (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JP2003075009A (en) Heat pump system
CN100562697C (en) Low-temperature heat pump air conditioner and automatic defrosting method thereof
CN206577568U (en) A kind of high-efficiency and energy-saving type frequency conversion freezing type drier
JPH03125863A (en) Refrigerating cycle unit with two stage compression
JPH0124521Y2 (en)
JPS62225860A (en) Heat pump device
JPH0953864A (en) Engine type cooling device
JP2772868B2 (en) Absorption refrigerator
CN216481668U (en) Outdoor air-cooled fin heat supply pump unit
CN217715211U (en) High-efficient dehumidifier suitable for under low humidity operating mode
CN218379966U (en) Refrigeration system assembly based on cold and warm air blower
CN209147492U (en) Idle total heat recovery heating system
CN206176810U (en) It supplies refrigerating system to stabilize heat recovery trigeminy
JPS5865Y2 (en) Refrigeration equipment
JPH0113969Y2 (en)
KR19980061881A (en) Air conditioner
JPS5810937Y2 (en) Reito Souchino Jiyosou Kikou
JPS5866771A (en) Heat recovery type heat pump device
KR100467524B1 (en) A heat promotion of a combined circuit for a liquid separator
JP2615853B2 (en) Air conditioner
KR100534212B1 (en) A heating and cooling system for bypass of a combined circuit
JPH04203856A (en) Absorption refrigerating machine
JPS6225644Y2 (en)
KR200179671Y1 (en) A chiller with an air-cooler for the burner
JPS61231366A (en) Cryogenic composite cycle