JPS62225860A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS62225860A
JPS62225860A JP61067290A JP6729086A JPS62225860A JP S62225860 A JPS62225860 A JP S62225860A JP 61067290 A JP61067290 A JP 61067290A JP 6729086 A JP6729086 A JP 6729086A JP S62225860 A JPS62225860 A JP S62225860A
Authority
JP
Japan
Prior art keywords
heat
heat pump
boiling point
evaporator
point refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067290A
Other languages
Japanese (ja)
Other versions
JPH076707B2 (en
Inventor
晋 小島
土屋 行孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Churyo Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Churyo Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Churyo Engineering Co Ltd
Priority to JP61067290A priority Critical patent/JPH076707B2/en
Publication of JPS62225860A publication Critical patent/JPS62225860A/en
Publication of JPH076707B2 publication Critical patent/JPH076707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヒートポンプ装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a heat pump device.

(従来の技術) 従来のヒートポンプ装置の1例が第2図に示され、R1
14等の高沸点冷媒を圧縮機l、凝縮器2、絞り装置3
、蒸発器4の順にWl環させることにより、蒸発器4で
温廃水や廃ガス等の廃熱5が保有する熱を汲み上げ、凝
縮器2からむ取り出して負荷6に供給する。
(Prior Art) An example of a conventional heat pump device is shown in FIG.
A high boiling point refrigerant such as No. 14 is transferred to a compressor 1, condenser 2, and expansion device
, evaporator 4 in this order, the evaporator 4 pumps up the heat held by waste heat 5 such as hot waste water or waste gas, takes it out from the condenser 2, and supplies it to the load 6.

このヒートポンプ装置では熱源となる廃熱量が不足する
場合にはヒートポンプの能力、成績係数が低下するので
負荷6に熱を安定して供給できない。
In this heat pump device, if the amount of waste heat that serves as a heat source is insufficient, the capacity and coefficient of performance of the heat pump will decrease, making it impossible to stably supply heat to the load 6.

そこで、第3図に示すように、R114等の高沸点冷媒
を用いた高温ヒートポンプ20とR12、R22等の低
沸点冷媒を用いた低温ヒートポンプ30を組み合わせた
カスケード型ヒートポンプ装置が提案された。このカス
ケード型ヒートポンプ装置においては、高沸点冷媒を圧
縮機21、凝縮器22、絞り装置23、蒸発器24の順
に循環させると同時に低沸点冷媒を圧縮機31、蒸発器
24を兼ねる凝縮器32、絞り装置33、蒸発器34の
順に循環させる。そして、1発器34で空気から熱を汲
み上げ、蒸発器24を兼ねる凝縮器32で低沸点冷媒か
ら高沸点冷媒に熱を伝達することによって低沸点冷媒を
凝縮させると同時に高沸点冷媒を蒸発させ、凝縮器22
から熱を取り出して負荷35に供給する。このカスケー
ド型ヒートポンプ装置は空気を熱源としているので安定
した運転が可能であるが総合成績系数が低くなリ、経済
的な運転ができないという問題があった。
Therefore, as shown in FIG. 3, a cascade type heat pump device has been proposed in which a high temperature heat pump 20 using a high boiling point refrigerant such as R114 is combined with a low temperature heat pump 30 using a low boiling point refrigerant such as R12 or R22. In this cascade type heat pump device, high boiling point refrigerant is circulated in the order of compressor 21, condenser 22, expansion device 23, and evaporator 24, while low boiling point refrigerant is circulated through compressor 31, condenser 32 which also serves as evaporator 24, It is circulated through the expansion device 33 and the evaporator 34 in this order. Then, the heat is pumped up from the air in the single generator 34, and the heat is transferred from the low boiling point refrigerant to the high boiling point refrigerant in the condenser 32, which also serves as the evaporator 24, thereby condensing the low boiling point refrigerant and evaporating the high boiling point refrigerant at the same time. , condenser 22
Heat is extracted from the load 35 and supplied to the load 35. Since this cascade type heat pump device uses air as a heat source, it can be operated stably, but it has a problem that the overall performance coefficient is low and that it cannot be operated economically.

(問題点を解決するための手段) 点冷媒を用いた廃熱源式高温ヒートポンプの廃熱を熱源
とする蒸発器と直列に補助蒸発器を設けるとともにこの
補助蒸発器の熱源となる低沸点冷媒を用いた空気熱源式
低温ヒートポンプを設け、前記廃熱量に応じて前記空気
熱源式低温ヒートポンプを運転するようにしたことを特
徴とするヒートポンプ装置にある。
(Means for solving the problem) An auxiliary evaporator is installed in series with the evaporator whose heat source is the waste heat of a waste heat source type high temperature heat pump using a point refrigerant, and a low boiling point refrigerant is used as the heat source of the auxiliary evaporator. The heat pump apparatus is characterized in that an air heat source type low temperature heat pump is provided, and the air heat source type low temperature heat pump is operated according to the amount of waste heat.

(作用) 本発明においては上記構成を具えているため、廃熱が十
分ある場合には廃熱源式高温ヒートポンプのみを運転し
、廃熱が不足する場合には廃熱源式高温ヒートポンプと
同時に空気熱源式低温ヒートポンプを運転する。
(Function) Since the present invention has the above configuration, when there is sufficient waste heat, only the waste heat source type high temperature heat pump is operated, and when the waste heat is insufficient, the air heat source is operated at the same time as the waste heat source type high temperature heat pump. Operates a low-temperature heat pump.

(実施例) 本発明の1実施例が第1図に示されている。(Example) One embodiment of the invention is shown in FIG.

第1図において、40はR114等の高沸点冷媒を用い
た廃熱源式高温ヒートポンプで、圧縮機41、器44、
補助蒸発器45からなる。50はR12、R22等の低
沸点冷媒を用いた空気熱源式低温ヒートポンプで、圧縮
機51、補助蒸発器45を兼ねる凝縮器52、絞り装置
53、空気を熱源とする蒸発器54、凝縮器52の前後
に配置された開閉弁55.56からなる。
In FIG. 1, 40 is a waste heat source type high temperature heat pump using a high boiling point refrigerant such as R114, which includes a compressor 41, a vessel 44,
It consists of an auxiliary evaporator 45. 50 is an air source type low temperature heat pump using a low boiling point refrigerant such as R12 or R22, which includes a compressor 51, a condenser 52 which also serves as an auxiliary evaporator 45, a throttle device 53, an evaporator 54 using air as a heat source, and a condenser 52. It consists of on-off valves 55 and 56 placed before and after the.

廃熱量が十分にあるときは開閉弁55.56を閉とし圧
縮機51を停止することによって空気熱源式低温ヒート
ポンプ50の運転を止め、圧縮機41を駆動することに
よって廃熱源式高温ヒートポンプ40を運転する。
When there is a sufficient amount of waste heat, the operation of the air heat source type low temperature heat pump 50 is stopped by closing the on-off valves 55 and 56 and stopping the compressor 51, and by driving the compressor 41, the operation of the waste heat source type high temperature heat pump 40 is stopped. drive.

すると、圧縮機41から吐出された高沸点冷媒ガスは凝
縮器42で負荷47に熱を放出することによって凝縮し
た後、絞り装置43で断熱膨張し、補助蒸発器45を流
過して蒸発器44に入り、ここで廃熱46から吸熱する
ことにより蒸発気化して圧縮8141に戻る。
Then, the high boiling point refrigerant gas discharged from the compressor 41 is condensed in the condenser 42 by releasing heat to the load 47, and then expanded adiabatically in the throttling device 43, and flows through the auxiliary evaporator 45 to the evaporator. 44, where it is evaporated by absorbing heat from the waste heat 46 and returns to compression 8141.

廃熱46の量が十分でない場合には、開閉弁55.56
を開とし圧縮機51を駆動して空気熱源式低温ヒートポ
ンプ50を運転すると同時に圧縮機41を駆動縮器42
、絞り装置43を経て補助蒸発器45に入り、ここで低
沸点冷媒と熱交換して低沸点冷媒から熱を奪った後蒸発
器44に入り、ここで廃熱46から吸熱することによっ
て蒸発気化して、圧縮機41に戻る。一方、低沸点冷媒
は圧縮機51から開閉弁55を経て補助蒸発器45を兼
ねる凝縮器52に入り、ここで高沸点冷媒と熱交換して
凝縮した後開閉弁56を経て絞り装置53で断熱膨張し
、次いで、蒸発器54で空気から吸熱することにより蒸
発気化した後、圧縮機41に戻る。
If the amount of waste heat 46 is not sufficient, the on-off valve 55.56
The air source type low temperature heat pump 50 is operated by opening the compressor 51, and at the same time, the compressor 41 is driven.
, enters the auxiliary evaporator 45 via the throttle device 43, where it exchanges heat with the low boiling point refrigerant to remove heat from the low boiling point refrigerant, and then enters the evaporator 44, where it absorbs heat from the waste heat 46 to produce evaporated vapor. and returns to the compressor 41. On the other hand, the low boiling point refrigerant passes through the on-off valve 55 from the compressor 51 and enters the condenser 52 which also serves as the auxiliary evaporator 45, where it exchanges heat with the high boiling point refrigerant and condenses. The air is expanded, then evaporated by absorbing heat from the air in the evaporator 54, and then returned to the compressor 41.

しかして、廃熱46の量が十分ある場合には空気熱源式
低温ヒートポンプ50を運転せず、廃熱源式高温ヒート
ポンプ40のみを運転することによって、成績係数が高
い効率的な運転を行い、負荷47を十分に加熱できる。
Therefore, when there is a sufficient amount of waste heat 46, the air heat source type low temperature heat pump 50 is not operated, and only the waste heat source type high temperature heat pump 40 is operated, thereby achieving efficient operation with a high coefficient of performance and reducing the load. 47 can be heated sufficiently.

廃熱46の量が不足する場合には空気熱源式低温ヒート
ポンプ50及び廃熱源式高温ヒートポンプ40の双方を
運転することによって廃熱46の発生時間や量が不安定
であっても負荷47に安定して熱を供給し負荷を十分に
加熱できる。
When the amount of waste heat 46 is insufficient, by operating both the air heat source type low temperature heat pump 50 and the waste heat source type high temperature heat pump 40, the load 47 can be stabilized even if the generation time or amount of waste heat 46 is unstable. can supply heat and heat the load sufficiently.

(発明の効果) 本発明においては、高沸点冷媒を用いた廃熱源式高温ヒ
ートポンプの廃熱を熱源とする蒸発器と直列に補助蒸発
器を設けるとともにこの補助蒸発器の熱源となる低沸点
冷媒を用いた空気熱源式低温ヒートポンプを設け、前記
廃熱量に応じて前記空気熱源式低温ヒートポンプを運転
するようにしたため、廃熱が十分ある場合には廃熱源式
高温ヒートポンプのみを運転することによって成績係数
の高い経済的な運転ができ、廃熱が不足する場合にも空
気熱源式低温ヒートポンプを併せ運転することによって
熱源の不足を補って、所要の加熱性能を確保することが
できる。
(Effects of the Invention) In the present invention, an auxiliary evaporator is provided in series with an evaporator whose heat source is waste heat of a waste heat source type high temperature heat pump using a high boiling point refrigerant, and a low boiling point refrigerant is used as a heat source for this auxiliary evaporator. We installed an air-source low-temperature heat pump using a heat pump, and operated the air-source low-temperature heat pump according to the amount of waste heat.If there is sufficient waste heat, only the waste heat-source high-temperature heat pump can be operated to improve performance. Economical operation with a high coefficient is possible, and even when there is a shortage of waste heat, by operating the air heat source type low temperature heat pump in combination, the shortage of heat source can be compensated for and the required heating performance can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す系統図、第2図及び第
3図はそれぞれ従来のヒートポンプ装置の系統図である
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are system diagrams of conventional heat pump devices, respectively.

Claims (1)

【特許請求の範囲】[Claims] 高沸点冷媒を用いた廃熱源式高温ヒートポンプの廃熱を
熱源とする蒸発器と直列に補助蒸発器を設けるとともに
この補助蒸発器の熱源となる低沸点冷媒を用いた空気熱
源式低温ヒートポンプを設け、前記廃熱量に応じて前記
空気熱源式低温ヒートポンプを運転するようにしたこと
を特徴とするヒートポンプ装置。
An auxiliary evaporator is installed in series with the evaporator that uses waste heat as a heat source of the waste heat source type high temperature heat pump using a high boiling point refrigerant, and an air source type low temperature heat pump using a low boiling point refrigerant is installed to serve as the heat source for this auxiliary evaporator. . A heat pump device, characterized in that the air heat source type low temperature heat pump is operated according to the amount of waste heat.
JP61067290A 1986-03-27 1986-03-27 Heat pump device Expired - Lifetime JPH076707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067290A JPH076707B2 (en) 1986-03-27 1986-03-27 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067290A JPH076707B2 (en) 1986-03-27 1986-03-27 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62225860A true JPS62225860A (en) 1987-10-03
JPH076707B2 JPH076707B2 (en) 1995-01-30

Family

ID=13340700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067290A Expired - Lifetime JPH076707B2 (en) 1986-03-27 1986-03-27 Heat pump device

Country Status (1)

Country Link
JP (1) JPH076707B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229554A (en) * 1987-04-28 1990-01-31 Central Res Inst Of Electric Power Ind Heating water-heating cycle and cooling-heating water-heating cycle
JPH04306461A (en) * 1991-04-02 1992-10-29 Hitachi Air Conditioning & Refrig Co Ltd Freezer
WO2010098005A1 (en) * 2009-02-25 2010-09-02 株式会社岩谷冷凍機製作所 Binary heat pump and refrigerator
JP2011506819A (en) * 2007-12-17 2011-03-03 ボルター,クラウス Method and apparatus for providing energy to a medium
WO2013136606A1 (en) * 2012-03-15 2013-09-19 ヤンマー株式会社 Steam generating system
WO2014045612A1 (en) * 2012-09-24 2014-03-27 三浦工業株式会社 Heat pump system and cooling system using same
JP2015129633A (en) * 2008-10-16 2015-07-16 アルケマ フランス heat transfer method
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10618861B2 (en) 2015-03-18 2020-04-14 Arkema France Stabilization of 1-chloro-3,3,3-trifluoropropene
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene
US11053420B2 (en) 2017-09-12 2021-07-06 Arkema France Composition on the basis of hydrochlorofluoroolefin and mineral oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178160A (en) * 1982-04-12 1983-10-19 トヨタ自動車株式会社 Method of controlling capacity of refrigerant in two-dimensional refrigerator
JPS6117865A (en) * 1984-07-02 1986-01-25 三洋電機株式会社 Heat pump device
JPS6124950A (en) * 1984-07-11 1986-02-03 新明和工業株式会社 Two-element refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178160A (en) * 1982-04-12 1983-10-19 トヨタ自動車株式会社 Method of controlling capacity of refrigerant in two-dimensional refrigerator
JPS6117865A (en) * 1984-07-02 1986-01-25 三洋電機株式会社 Heat pump device
JPS6124950A (en) * 1984-07-11 1986-02-03 新明和工業株式会社 Two-element refrigerator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229554A (en) * 1987-04-28 1990-01-31 Central Res Inst Of Electric Power Ind Heating water-heating cycle and cooling-heating water-heating cycle
JPH04306461A (en) * 1991-04-02 1992-10-29 Hitachi Air Conditioning & Refrig Co Ltd Freezer
JP2011506819A (en) * 2007-12-17 2011-03-03 ボルター,クラウス Method and apparatus for providing energy to a medium
JP2015129633A (en) * 2008-10-16 2015-07-16 アルケマ フランス heat transfer method
US10858561B2 (en) 2008-10-16 2020-12-08 Arkema France Heat transfer method
WO2010098005A1 (en) * 2009-02-25 2010-09-02 株式会社岩谷冷凍機製作所 Binary heat pump and refrigerator
WO2013136606A1 (en) * 2012-03-15 2013-09-19 ヤンマー株式会社 Steam generating system
WO2014045612A1 (en) * 2012-09-24 2014-03-27 三浦工業株式会社 Heat pump system and cooling system using same
US10077221B2 (en) 2013-03-20 2018-09-18 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10343963B2 (en) 2013-03-20 2019-07-09 Arkema France Composition comprising HF and E-3,3,3-trifluoro-1-chloropropene
US10618861B2 (en) 2015-03-18 2020-04-14 Arkema France Stabilization of 1-chloro-3,3,3-trifluoropropene
US10669465B2 (en) 2016-09-19 2020-06-02 Arkema France Composition comprising 1-chloro-3,3,3-trifluoropropene
US11053420B2 (en) 2017-09-12 2021-07-06 Arkema France Composition on the basis of hydrochlorofluoroolefin and mineral oil

Also Published As

Publication number Publication date
JPH076707B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
WO1996034236A1 (en) Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
JPS62225860A (en) Heat pump device
JPH0652139B2 (en) Heat pump device
US5456086A (en) Valving arrangement and solution flow control for generator absorber heat exchanger (GAX) heat pump
JP2004340081A (en) Rankine cycle
JPS62261865A (en) Heat pump device
JP2772868B2 (en) Absorption refrigerator
JPH05272837A (en) Compression absorption composite heat pump
JPS62218773A (en) Cold and heat accumulator
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
US5911746A (en) Gax absorption cycle with secondary refrigerant
GB2305235A (en) An ejector device for use in a heat pump
JPS5866771A (en) Heat recovery type heat pump device
JPS59167663A (en) Recovery device for waste heat from heat pump
KR100473712B1 (en) Refrigeration cycle
JPS61276662A (en) Heat pump type water heater
JPS5886370A (en) Refrigerator
JPS6341775A (en) Absorption refrigerator
JPS6149968A (en) Heat pump system
JPS5913666B2 (en) heat pump system
JPS5843365A (en) Multiple effect absorption refrigerator
JP2002333228A (en) Heat pump apparatus for highly efficient air conditioning
JPH04103570U (en) Air conditioner control circuit
JPS58102070A (en) Air conditioner