JPS6124950A - Two-element refrigerator - Google Patents
Two-element refrigeratorInfo
- Publication number
- JPS6124950A JPS6124950A JP14514484A JP14514484A JPS6124950A JP S6124950 A JPS6124950 A JP S6124950A JP 14514484 A JP14514484 A JP 14514484A JP 14514484 A JP14514484 A JP 14514484A JP S6124950 A JPS6124950 A JP S6124950A
- Authority
- JP
- Japan
- Prior art keywords
- temperature side
- refrigerant circuit
- side refrigerant
- cooled
- cooler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野) 、
本発明は、二元冷凍装置に係り、特に常温の被冷却媒体
を一度に低温まで冷却するのに好適な二元冷凍装置に関
するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a binary refrigeration system, and particularly to a binary refrigeration system suitable for cooling a medium to be cooled at room temperature to a low temperature at once. be.
ように、高温側冷媒回路Aの蒸発器4と低温側冷媒回路
Bの凝縮器6を熱交換せしめてカスケードコンデンサ9
を形成し、低温側冷媒回路Bの冷却器8だけで低温を得
る構成となっている。このため被冷却媒体を低温に冷却
保持する場合はよいが、被冷却媒体が常温のものを所定
の低温まで冷やし込むような場合には、被冷却媒体の入
口温度が高いにもかかわらず蒸発温度は被冷却媒体の出
口温度に対応した低い温度に設定し々ければならず、非
常に効率の悪い運転となる。As shown in FIG.
The configuration is such that only the cooler 8 of the low-temperature side refrigerant circuit B obtains a low temperature. For this reason, it is good to keep the medium to be cooled at a low temperature, but when the medium to be cooled is room temperature and is to be cooled down to a predetermined low temperature, the evaporation temperature may change even though the inlet temperature of the medium to be cooled is high. must be set at a low temperature corresponding to the outlet temperature of the medium to be cooled, resulting in very inefficient operation.
(発明の目的)
本発明は、上記の点に鑑みてなされたもので、目的とす
るところは運転効率を向上するとともに冷却効果を高め
ることができる二元冷凍装置を提供することにある。(Object of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to provide a dual refrigeration system that can improve operating efficiency and enhance the cooling effect.
(発明の構成)
本発明は、従来一般的には二元冷凍装置における低温側
冷媒回路の冷却器だけに冷却作用を行わせていたものを
、蒸発温度の高い高温側冷媒回路にも別途冷却器を設け
、これに補助的々冷却作用を行わせて前記の問題点を解
消しようとするものである。(Structure of the Invention) In the present invention, conventionally, cooling was performed only in the cooler of the low-temperature side refrigerant circuit in a binary refrigeration system, but the high-temperature side refrigerant circuit with a high evaporation temperature is also separately cooled. This method attempts to solve the above-mentioned problems by providing a cooling device and having the device perform an auxiliary cooling action.
(実施例) 以下、本発明の一実施例を第2図で説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.
高温側冷媒回路Aは、圧縮機11、凝縮器12、膨張装
置としての膨張弁13、蒸発器14、及び補助冷却器2
0を順次配管で接続して構成している。一方、低温側冷
媒回路Bは圧縮機15、凝縮器16、膨張弁17、及び
冷却器18を順次配管で接続して構成するとともに、前
記高温側冷媒回路Aの蒸発器14と低温側冷媒回路Bの
凝縮器16を熱交換せしめてカスケードコンデンサ19
を形成している。而して、被冷却媒体21は、第4図ま
たは第5図の具体的構成の如く、高温側冷媒回路Aの補
助冷却器20て冷媒RAによりまず冷却され、つづいて
低温側冷媒回路Bの冷却器18で冷媒RBによりさらに
冷却され所望する温度となる。The high temperature side refrigerant circuit A includes a compressor 11, a condenser 12, an expansion valve 13 as an expansion device, an evaporator 14, and an auxiliary cooler 2.
0 are sequentially connected through piping. On the other hand, the low temperature side refrigerant circuit B is configured by sequentially connecting a compressor 15, a condenser 16, an expansion valve 17, and a cooler 18 with piping, and also connects the evaporator 14 of the high temperature side refrigerant circuit A with the low temperature side refrigerant circuit. A cascade condenser 19 is formed by exchanging heat with the condenser 16 of B.
is formed. The medium 21 to be cooled is first cooled by the refrigerant RA in the auxiliary cooler 20 of the high temperature side refrigerant circuit A, and then cooled by the refrigerant RA in the low temperature side refrigerant circuit B. It is further cooled by the refrigerant RB in the cooler 18 to reach a desired temperature.
々お第4.5図において、22は被冷却媒体21の通路
を形成する風洞であり、23は送風ファンである。4.5, 22 is a wind tunnel forming a passage for the medium 21 to be cooled, and 23 is a blower fan.
上記第2図の構成において、高温側圧縮機11と低温側
圧縮機15を同時に運転すると、高温側冷媒回路Aでは
圧縮機11より吐出された高温高圧の冷媒ガスは、寸ず
凝縮器12で凝縮液化する。In the configuration shown in FIG. 2 above, when the high temperature side compressor 11 and the low temperature side compressor 15 are operated simultaneously, the high temperature and high pressure refrigerant gas discharged from the compressor 11 in the high temperature side refrigerant circuit A is passed through the condenser 12. Condenses and liquefies.
この液冷媒は、膨張弁13で減圧後、カスケードコンデ
ンサ19に導かれる。ここでは低温側冷媒回路Bの圧縮
機15からの吐出冷媒を冷却液化し、自らは一部分蒸発
し気化する。つづいて補助冷却器20では残りの液冷媒
も気化し、吸入管より圧縮機11に戻り高温側冷媒サイ
クルを形成する。This liquid refrigerant is led to a cascade condenser 19 after being depressurized by an expansion valve 13 . Here, the refrigerant discharged from the compressor 15 of the low temperature side refrigerant circuit B is cooled and liquefied, and the refrigerant itself is partially evaporated and vaporized. Subsequently, the remaining liquid refrigerant is also vaporized in the auxiliary cooler 20 and returns to the compressor 11 through the suction pipe to form a high temperature side refrigerant cycle.
一方、低温側冷媒回路Bにおいては、圧縮機15より吐
出された高温高圧の冷媒ガスは、カスケードコンデンサ
19で高温側冷媒回路Aの冷媒で冷却されて凝縮液化し
、つづいて膨張弁17で減圧された冷媒は冷却器18に
導かれ、蒸発気化した後、圧縮機15に戻って低温側冷
媒サイクルを形成する。ここで、被冷却媒体21は、ま
ず高温側冷媒回路Aの補助冷却器20で冷却され、つづ
いて低温側冷媒回路Bの冷却器18により更に低温回路
A中のカスケードコンデンサ19と圧縮機11の間に設
けたが、第6図の20で示す如く膨張弁13とカスケー
ドコンデンサ19の間に設けてもよく、さらに別の実施
例としてはカスケードコンデンサ19と一体化してもよ
い。On the other hand, in the low-temperature side refrigerant circuit B, the high-temperature and high-pressure refrigerant gas discharged from the compressor 15 is cooled by the refrigerant of the high-temperature side refrigerant circuit A in the cascade condenser 19, condenses and liquefies, and then is depressurized in the expansion valve 17. The refrigerant is led to the cooler 18, where it is evaporated and vaporized, and then returned to the compressor 15 to form a low-temperature side refrigerant cycle. Here, the medium 21 to be cooled is first cooled by the auxiliary cooler 20 of the high temperature side refrigerant circuit A, and then further cooled by the cooler 18 of the low temperature side refrigerant circuit B and the cascade condenser 19 and compressor 11 in the low temperature circuit A. However, it may be provided between the expansion valve 13 and the cascade capacitor 19 as shown by 20 in FIG. 6, or may be integrated with the cascade capacitor 19 as another embodiment.
被冷却媒体の冷却過程は、第3図に示すように、高い蒸
発温度thの補助冷却器20で温度ta1から冷却段階
がある。As shown in FIG. 3, the cooling process of the medium to be cooled includes a cooling stage from a temperature ta1 in the auxiliary cooler 20 having a high evaporation temperature th.
前述説明は実施例であり、膨張弁13.17はキャピラ
リチューブであってもよいなど、各構成の均等物との置
換もこの発明の技術範囲に含まれることはもちろんであ
る。The above description is only an example, and it goes without saying that the expansion valves 13, 17 may be capillary tubes, etc., and replacement of each structure with equivalents is also included within the technical scope of the present invention.
(発明の効果)
本発明によれば、低温側冷却器のみで冷却される従来の
二元冷凍システムに比べて、冷却効果の一部分をより高
い蒸発温度のthで補充できるため、総合的々運転効率
を向上させることができる。同時に、2つの圧縮機の吐
出量の和に対する冷却能力の割合を増強させることがで
きる。さらに起動時の冷却速度を向上させることもでき
るなど種々の効果がある。(Effects of the Invention) According to the present invention, compared to a conventional binary refrigeration system that is cooled only by the low-temperature side cooler, a part of the cooling effect can be supplemented with the higher evaporation temperature th, which improves overall operation. Efficiency can be improved. At the same time, the ratio of the cooling capacity to the sum of the discharge amounts of the two compressors can be increased. Furthermore, there are various effects such as being able to improve the cooling rate at startup.
第1図は、従来の冷凍サイクル図、第2図は本発明の一
実施例を示す冷凍サイクル図、第3図は本発明の被冷却
媒体の冷却過程を示す説明図、第4図は被冷却媒体が気
体の場合の補助冷却器、冷却器の具体的設置例、第5図
は、被冷却媒体が液体(または気体)の場合の補助冷却
器、冷却器の具体的設置例である。第6図は本発明の別
の実施例を示す冷凍サイクル図である。
A・・・高温側冷媒回路、B・・・低温側冷媒回路、1
・・高温側圧縮機、13・・・膨張装置、14・・・蒸
発器、16・・・凝縮器、18・・・冷却器、19・・
・カスケードコンデンサ、20・・補助冷却器、21・
・・被冷却媒体。FIG. 1 is a conventional refrigeration cycle diagram, FIG. 2 is a refrigeration cycle diagram showing an embodiment of the present invention, FIG. 3 is an explanatory diagram showing the cooling process of the medium to be cooled according to the present invention, and FIG. FIG. 5 shows a specific installation example of an auxiliary cooler and a cooler when the cooling medium is a liquid (or gas). FIG. 6 is a refrigeration cycle diagram showing another embodiment of the present invention. A...High temperature side refrigerant circuit, B...Low temperature side refrigerant circuit, 1
...High temperature side compressor, 13... Expansion device, 14... Evaporator, 16... Condenser, 18... Cooler, 19...
・Cascade condenser, 20・・Auxiliary cooler, 21・
...Medium to be cooled.
Claims (3)
器を熱交換関係に配設してカスケードコンデンサを形成
するとともに、前記高温側冷媒回路の前記カスケードコ
ンデンサを含む膨張装置と高温側圧縮機間の低圧圧力側
管路に補助冷却器を設け、被冷却媒体に対して該補助冷
却器を上流側に、前記低温側冷媒回路の冷却器を下流側
に配し、被冷却媒体を二段階で冷却するようにしたこと
を特徴とする二元冷凍装置。(1) The evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit are arranged in a heat exchange relationship to form a cascade condenser, and the expansion device including the cascade condenser of the high temperature side refrigerant circuit and the high temperature side An auxiliary cooler is provided in the low-pressure side pipe line between the compressors, and the auxiliary cooler is placed on the upstream side with respect to the medium to be cooled, and the cooler of the low temperature side refrigerant circuit is placed on the downstream side with respect to the medium to be cooled. A binary refrigeration device characterized by cooling in two stages.
前記カスケードコンデンサよりも下流側に設けられてな
る、特許請求の範囲第1項記載の二元冷凍装置。(2) The binary refrigeration system according to claim 1, wherein the auxiliary cooler is provided downstream of the cascade condenser in the high temperature side refrigerant circuit.
前記カスケードコンデンサよりも上流側に設けられてな
る、特許請求の範囲第1項記載の二元冷凍装置。(3) The binary refrigeration system according to claim 1, wherein the auxiliary cooler is provided upstream of the cascade condenser in the high temperature side refrigerant circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14514484A JPS6124950A (en) | 1984-07-11 | 1984-07-11 | Two-element refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14514484A JPS6124950A (en) | 1984-07-11 | 1984-07-11 | Two-element refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6124950A true JPS6124950A (en) | 1986-02-03 |
Family
ID=15378430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14514484A Pending JPS6124950A (en) | 1984-07-11 | 1984-07-11 | Two-element refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6124950A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61259059A (en) * | 1985-05-13 | 1986-11-17 | オリオン機械株式会社 | Two-diemensional type refrigerator |
JPS62225860A (en) * | 1986-03-27 | 1987-10-03 | 三菱重工業株式会社 | Heat pump device |
JP2006343088A (en) * | 2005-06-09 | 2006-12-21 | Lg Electronics Inc | Air conditioner |
JP2006343087A (en) * | 2005-06-09 | 2006-12-21 | Lg Electronics Inc | Air conditioner |
-
1984
- 1984-07-11 JP JP14514484A patent/JPS6124950A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61259059A (en) * | 1985-05-13 | 1986-11-17 | オリオン機械株式会社 | Two-diemensional type refrigerator |
JPS62225860A (en) * | 1986-03-27 | 1987-10-03 | 三菱重工業株式会社 | Heat pump device |
JP2006343088A (en) * | 2005-06-09 | 2006-12-21 | Lg Electronics Inc | Air conditioner |
JP2006343087A (en) * | 2005-06-09 | 2006-12-21 | Lg Electronics Inc | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6460371B2 (en) | Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil | |
US7640762B2 (en) | Refrigeration apparatus | |
JPH1019418A (en) | Refrigerator with deep freezer | |
JP2002188865A (en) | Multiple stage compression type refrigerating machine | |
CN1156662C (en) | Heat pump system | |
JPS6124950A (en) | Two-element refrigerator | |
JPS5824764A (en) | Heat pump device | |
JPH05340619A (en) | Low pressure stage refrigerant system in double-pressure type freezer device | |
JPS58178159A (en) | Multistage cascade cooling system | |
JPS5837457A (en) | Refrigerant circuit for refrigerator | |
JPH10253171A (en) | Air conditioner | |
CN218821127U (en) | Air and nitrogen combined cooling system | |
CN221036246U (en) | Gas-liquid hybrid power type heat pipe composite refrigerating system | |
JP4814823B2 (en) | Refrigeration equipment | |
JPS6337865B2 (en) | ||
JPS59225259A (en) | Refrigerator | |
JPH11337198A (en) | Energy saving refrigeration system | |
JPS60238650A (en) | Heat pump | |
JPH04268165A (en) | Double-stage compression and freezing cycle device | |
JPS597859A (en) | Two stage screw refrigerator | |
JPH0664071U (en) | Multi-source refrigerator | |
KR200214006Y1 (en) | Air-conditioning apparatus with low compression load | |
JPS5865Y2 (en) | Refrigeration equipment | |
CN118293043A (en) | Piston compressor unit with air supplementing and enthalpy increasing functions | |
KR200214009Y1 (en) | Air-conditioning apparatus with low compression load |