JPH0664071U - Multi-source refrigerator - Google Patents

Multi-source refrigerator

Info

Publication number
JPH0664071U
JPH0664071U JP1090793U JP1090793U JPH0664071U JP H0664071 U JPH0664071 U JP H0664071U JP 1090793 U JP1090793 U JP 1090793U JP 1090793 U JP1090793 U JP 1090793U JP H0664071 U JPH0664071 U JP H0664071U
Authority
JP
Japan
Prior art keywords
source
condenser
compressor
outlet
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090793U
Other languages
Japanese (ja)
Inventor
正博 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP1090793U priority Critical patent/JPH0664071U/en
Publication of JPH0664071U publication Critical patent/JPH0664071U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】冷凍効率を高められる多元冷凍装置を提供す
る。 【構成】複数台の冷凍機を凝縮器をなすカスケードコン
デンサで多段に連結した多元冷凍装置において、最高元
側の圧縮機1から延びる吐出管を凝縮器2に接続し、こ
の凝縮器2の出口管路を最低元側の吸入側熱交換器16
に接続し、この吸入側熱交換器16の出口管路を膨脹弁
4を介して中元カスケードコンデンサ5の凝縮コイル5
aに接続し、この凝縮コイル5aの出口を吸入管によっ
て最高元側の圧縮機1の吸入側に接続し、最低元の圧縮
機10から延びる吐出管を低元カスケードコンデンサ9
に接続し、この低元カスケードコンデンサ9の出口管路
を膨脹弁12を介して冷却器13の冷却コイル13aに
接続し、この冷却コイル13aの出口を吸入側熱交換器
16の放熱コイル16aに接続し、この放熱コイル16
aの出口を吸入管によって最低元側の圧縮機15の吸入
側に接続した。
(57) [Summary] [Objective] To provide a multi-source refrigeration system capable of enhancing refrigeration efficiency. [Structure] In a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser, a discharge pipe extending from a compressor 1 on the highest source side is connected to a condenser 2, and an outlet of the condenser 2 The suction side heat exchanger 16 with the pipe line at the lowest side
And the outlet pipe of the suction side heat exchanger 16 is connected via the expansion valve 4 to the condenser coil 5 of the middle cascade condenser 5.
a, the outlet of the condensing coil 5a is connected to the suction side of the compressor 1 on the highest source side by a suction pipe, and the discharge pipe extending from the compressor 10 on the lowest source is connected to the low source cascade condenser 9
To the cooling coil 13a of the cooler 13 via the expansion valve 12, and the outlet of the cooling coil 13a to the heat radiation coil 16a of the suction side heat exchanger 16. Connect this heat dissipation coil 16
The outlet of a was connected to the suction side of the lowest compressor 15 by a suction pipe.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、−100℃以下に冷却する超低温装置などに用いられる多元冷凍装 置に関し、特に高元冷凍機の冷凍効果を高められるように改善したものに関する 。 The present invention relates to a multi-source refrigerating device used in an ultra-low temperature device for cooling to -100 ° C. or lower, and more particularly to a multi-source refrigerating device improved to enhance the refrigerating effect of a high-grade refrigerator.

【0002】[0002]

【従来の技術】[Prior art]

多元冷凍装置では、高元側の冷凍機の凝縮器を冷却水によって冷却するととも に、この高元側の冷却コイルを低元側の冷凍機の圧縮機から吐出される冷媒ガス を凝縮するための凝縮器に接続し、複数台の冷凍機を熱交換器によって連結する ことにより、低元側の冷却器を非常に低い温度に冷却できるようになっている。 In a multi-source refrigeration system, the condenser of the high-side refrigerator is cooled by cooling water, and this high-side cooling coil condenses the refrigerant gas discharged from the compressor of the low-side refrigerator. It is possible to cool the cooler on the low side to a very low temperature by connecting it to the condenser and connecting multiple refrigerators with a heat exchanger.

【0003】 図3に、従来から知られるこの多元冷凍装置の構成を示す。この図で、高元圧 縮機1から延びる吐出管は、コイル2aに外部から冷却水が供給される高元凝縮 器2に接続され、この凝縮器2の出口が高元中間冷却器3、膨脹弁4を介して中 元カスケードコンデンサ5の蒸発コイル5a入口に接続される。この蒸発コイル 5aの出口は、吸入管によって高元圧縮機1の吸入側に接続される。FIG. 3 shows the configuration of this conventionally known multi-source refrigeration system. In this figure, the discharge pipe extending from the high pressure compressor 1 is connected to a high temperature condenser 2 to which cooling water is externally supplied to a coil 2a, and the outlet of this condenser 2 is a high temperature intermediate cooler 3, It is connected via the expansion valve 4 to the inlet of the evaporation coil 5a of the medium cascade condenser 5. The outlet of the evaporation coil 5a is connected to the suction side of the high-pressure compressor 1 by a suction pipe.

【0004】 また、中元圧縮機6の吐出管は中元カスケードコンデンサ5に接続され、この カスケードコンデンサ5の出口が中元吸入熱交換器7、膨脹弁8を介して低元カ スケードコンデンサ9の蒸発コイル9a入口に接続される。この蒸発コイル9a の出口は、中元吸入熱交換器7の放熱コイル7aを通り吸入管によって中元圧縮 機6の吸入側に接続される。The discharge pipe of the middle-source compressor 6 is connected to the middle-source cascade condenser 5, and the outlet of the cascade condenser 5 passes through the middle-source intake heat exchanger 7 and the expansion valve 8 to the low-source cascade condenser 9 Is connected to the inlet of the evaporation coil 9a. The outlet of the evaporation coil 9a passes through the heat radiating coil 7a of the medium intake heat exchanger 7 and is connected to the intake side of the medium compressor 6 by an intake pipe.

【0005】 また、低元圧縮機10の吐出管は低元カスケードコンデンサ9に接続され、こ のカスケードコンデンサ9の出口が低元吸入熱交換器11、膨脹弁12を介して 冷却器13の冷却コイル13a入口に接続される。この冷却コイル13aの出口 は、低元吸入熱交換器11の放熱コイル11aを通り吸入管によって低元圧縮機 10の吸入側に接続される。図中、14、15は圧力保護容器である。Further, the discharge pipe of the low-source compressor 10 is connected to the low-source cascade condenser 9, and the outlet of the cascade condenser 9 cools the cooler 13 via the low-source intake heat exchanger 11 and the expansion valve 12. It is connected to the inlet of the coil 13a. The outlet of the cooling coil 13a passes through the heat dissipation coil 11a of the low-source intake heat exchanger 11 and is connected to the intake side of the low-source compressor 10 by an intake pipe. In the figure, 14 and 15 are pressure protection containers.

【0006】 このように構成される多元冷凍装置では、冷凍運転時に高元圧縮機1からのガ ス冷媒が高元凝縮器2で冷却水によって凝縮され、この凝縮器2を出た液冷媒が 膨脹弁4を介して中元カスケードコンデンサ5のコイル5aに送られることで、 このコイル5a内で蒸発する。この蒸発作用により中元圧縮機6からのガス冷媒 が凝縮され、液化した冷媒が膨脹弁8を介して低元カスケードコンデンサ9のコ イル9aに送られることで、このコイル9a内で蒸発する。この蒸発作用によっ て低元圧縮機10からのガス冷媒が凝縮され、液冷媒が膨脹弁12を介して冷却 コイル13aに送られることで、冷却器13によって冷凍庫などの熱負荷の冷却 が行なわれる。In the multi-source refrigeration system configured as described above, the gas refrigerant from the high-grade compressor 1 is condensed by the cooling water in the high-grade condenser 2 during the refrigeration operation, and the liquid refrigerant exiting from the condenser 2 is condensed. By being sent to the coil 5a of the medium cascade capacitor 5 via the expansion valve 4, the vapor is evaporated in the coil 5a. Due to this evaporation action, the gas refrigerant from the middle compressor 6 is condensed, and the liquefied refrigerant is sent to the coil 9a of the low-stage cascade condenser 9 through the expansion valve 8 to be evaporated in the coil 9a. By this evaporating action, the gas refrigerant from the low-pressure compressor 10 is condensed, and the liquid refrigerant is sent to the cooling coil 13a via the expansion valve 12, whereby the cooler 13 cools the heat load of the freezer or the like. Be done.

【0007】 また、低元側および中元側に設けられている吸入熱交換器7、11では、吸入 ガスと液冷媒とをそれぞれ熱交換することで、冷凍効果を高めている。In addition, in the suction heat exchangers 7 and 11 provided on the low side and the medium side, the refrigerating effect is enhanced by exchanging heat between the suction gas and the liquid refrigerant, respectively.

【0008】 このような多元冷凍装置では、低元冷凍機で取った熱が中元冷凍機の熱負荷と なり、中元冷凍機の熱負荷が高元冷凍機の熱負荷となることで、低元冷凍機側の 冷却器13による冷却温度を超低温に設定することができる。In such a multi-source refrigerator, the heat taken by the low-end refrigerator becomes the heat load of the middle-source refrigerator, and the heat load of the middle-source refrigerator becomes the heat load of the high-source refrigerator, It is possible to set the cooling temperature by the cooler 13 on the low-source refrigerator side to an ultra-low temperature.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、低元側の冷却器13での冷媒の蒸発温度は−100℃以下と低く、 このような低温の冷媒を直接低元圧縮機10に戻した場合圧縮機10の動作不良 を招くので、圧縮機10を保護する観点から冷媒を−60℃程度まで加熱する必 要がある。 By the way, the evaporation temperature of the refrigerant in the cooler 13 on the low temperature side is as low as −100 ° C. or lower, and if such a low temperature refrigerant is directly returned to the low temperature compressor 10, it causes malfunction of the compressor 10. From the viewpoint of protecting the compressor 10, it is necessary to heat the refrigerant to about -60 ° C.

【0010】 このため、従来の多元冷凍装置では低元側の冷媒を吸入熱交換器11で液冷媒 と熱交換する以外に、圧縮機10の吸入口に接続される配管途中で放熱し、冷媒 を昇温したあとに圧縮機10に戻していた。Therefore, in the conventional multi-source refrigeration system, in addition to exchanging heat of the low-side refrigerant with the liquid refrigerant in the suction heat exchanger 11, heat is radiated in the middle of the pipe connected to the suction port of the compressor 10, and the refrigerant is cooled. Was returned to the compressor 10 after the temperature was raised.

【0011】 したがって、配管途中で冷媒を放熱させる分だけ、冷凍効率を低下させるとい う問題が生じる。Therefore, there arises a problem that the refrigeration efficiency is reduced by the amount of heat released from the refrigerant in the middle of the piping.

【0012】 図4に、従来の多元冷凍装置におけるモリエル線図を示す。図中、Δi3が配 管途中で放熱昇温する分のエンタルピであり、Δi1(=Δi2)は熱交換器1 1で放熱される過冷却分のエンタルピである。FIG. 4 shows a Mollier diagram in the conventional multi-source refrigeration system. In the figure, Δi3 is the enthalpy for radiating and raising the temperature during pipe distribution, and Δi1 (= Δi2) is the enthalpy for the supercooling that radiates heat in the heat exchanger 11.

【0013】 本考案は、このような従来の技術が有する課題を解決するために提案されたも のであり、冷凍効率を高められる多元冷凍装置を提供することを目的とする。The present invention has been proposed in order to solve the problems of the conventional techniques, and an object of the present invention is to provide a multi-source refrigeration system capable of enhancing refrigeration efficiency.

【0014】[0014]

【課題を解決するための手段】[Means for Solving the Problems]

この目的を達成するために本考案は、複数台の冷凍機を凝縮器をなすカスケー ドコンデンサで多段に連結した多元冷凍装置において、最高元側の圧縮機から延 びる吐出管を凝縮器に接続し、この凝縮器の出口管路を最低元側の吸入側熱交換 器に接続し、この吸入側熱交換器の出口管路を膨脹弁を介して第一のカスケード コンデンサの蒸発コイルに接続し、この蒸発コイルの出口を吸入管によって最上 元側の圧縮機の吸入側に接続し、最低元の圧縮機から延びる吐出管を第二のカス ケードコンデンサに接続し、この第二のカスケードコンデンサの出口管路を膨脹 弁を介して冷却器の冷却コイルに接続し、この冷却コイルの出口を上記吸入側熱 交換器の放熱コイルに接続し、この放熱コイルの出口を吸入管によって最低元側 の圧縮機の吸入側に接続した構成としてある。 In order to achieve this object, the present invention is a multi-source refrigeration system in which multiple refrigerators are connected in multiple stages with a cascading condenser forming a condenser, and the discharge pipe extending from the compressor on the highest source side is connected to the condenser. Then, connect the outlet line of this condenser to the lowest inlet side heat exchanger, and connect the outlet line of this inlet side heat exchanger to the evaporation coil of the first cascade condenser via the expansion valve. , The outlet of this evaporation coil is connected to the suction side of the compressor on the top side by a suction pipe, and the discharge pipe extending from the compressor of the lowest side is connected to the second cascade condenser. The outlet pipe is connected to the cooling coil of the cooler via the expansion valve, the outlet of this cooling coil is connected to the heat radiation coil of the suction side heat exchanger, and the outlet of the heat radiation coil is connected to the lowest source side by the suction pipe. Inhalation of compressor There is a configuration in which to connect to.

【0015】 この多元冷凍装置が低元冷凍機、中元冷凍機および高元冷凍機を連結した三元 冷凍装置をなす場合、最高元側の圧縮機が高元圧縮機に対応し、第一のカスケー ドコンデンサが中元カスケードコンデンサに対応する。また、最低元の圧縮機が 低元圧縮機に対応し、第二のカスケードコンデンサが低元カスケードコンデンサ に対応する。When this multi-source refrigerating device forms a three-way refrigerating device in which a low-source refrigerating machine, a middle-source refrigerating machine, and a high-source refrigerating machine are connected, the compressor on the highest source side corresponds to the high-source compressor, and The cascading capacitor of corresponds to the Nakamoto cascade capacitor. Also, the lowest original compressor corresponds to the low original compressor, and the second cascade capacitor corresponds to the low original cascade capacitor.

【0016】[0016]

【作用】 上述した構成によれば、最低元の吸入ガスと最高元の液冷媒とを最低元側に設 けた吸入側熱交換器によって熱交換でき、最高元側の冷凍効果を増大できる。With the above-described configuration, the suction gas of the lowest element and the liquid refrigerant of the highest element can be exchanged by the suction side heat exchanger provided on the lowest element side, and the refrigerating effect on the highest element side can be increased.

【0017】[0017]

【実施例】【Example】

以下、本考案による多元冷凍装置の具体的な実施例を図面に基づき詳細に説明 する。なお、説明にあたっては従来例と同様部分に同一符号を付して、重複する 部分の説明を省略する。 Hereinafter, specific embodiments of the multi-source refrigeration system according to the present invention will be described in detail with reference to the drawings. In the description, the same parts as those in the conventional example are designated by the same reference numerals and the description of the overlapping parts will be omitted.

【0018】 図1の系統図に、この多元冷凍装置の一実施例を示す。この図で、低元側冷却 器13の冷却コイル13aの出口と低元圧縮機10の吸入口とを結ぶ管路途中に は、低元吸入熱交換器11の他に、吸入側熱交換器をなす低元吸入・高元液熱交 換器16が設けられており、冷却コイル13aから出た吸入ガスはこれら熱交換 器11、16の各放熱コイル11a、16aを通って低元圧縮機10に吸入され る。An example of this multi-source refrigeration system is shown in the system diagram of FIG. In this figure, in addition to the low-source intake heat exchanger 11, the intake-side heat exchanger 11 is provided in the middle of the pipeline connecting the outlet of the cooling coil 13a of the low-source cooler 13 and the intake port of the low-source compressor 10. A low-source intake / high-source liquid heat exchanger 16 is provided, and the intake gas discharged from the cooling coil 13a passes through the heat radiation coils 11a and 16a of the heat exchangers 11 and 16 to the low-source compressor. Inhaled to 10.

【0019】 高元側凝縮器2の出口から延びる管路は、高元中間冷却器3を介して低元吸入 ・高元液熱交換器16の入口に接続され、この熱交換器16の出口が管路によっ て膨脹弁4を介し中元カスケードコンデンサ5の蒸発コイル5aの入口に接続さ れている。この蒸発コイル5aの出口は、吸入管によって高元圧縮機1に接続さ れる。The pipe extending from the outlet of the high-source side condenser 2 is connected to the inlet of the low-source intake / high-source liquid heat exchanger 16 via the high-source intercooler 3 and the outlet of the heat exchanger 16 Is connected to the inlet of the evaporation coil 5a of the middle cascade condenser 5 via the expansion valve 4 by a pipe line. The outlet of the evaporation coil 5a is connected to the high-pressure compressor 1 by a suction pipe.

【0020】 このように構成される多元冷凍装置では、低元側の吸入ガスと高元側の液冷媒 とを熱交換器16で熱交換し、従来吸入管路で放熱により捨てていた吸入ガスの 熱量を高元冷凍機側で回収できるようしている。したがって、図2にこの多元冷 凍装置のモリエル線図を示すように高元液冷媒のエンタルピが小さくなり、Y1 で示すように高元冷凍機の冷凍効果が増大する。図中、Δi3が熱交換器16で 高元液冷媒と熱交換される過冷却分のエンタルピに対応している。なお、Y2は 従来の装置における冷凍効果を示す。 これにより、高元冷凍機の冷媒循環量が少なくなり、圧縮機1のピストン押し 退け量が小さくなるので、圧縮機1の小型化、省エネルギ化が図れる。In the multi-source refrigeration system configured as described above, the suction gas on the low-source side and the liquid refrigerant on the high-source side are heat-exchanged by the heat exchanger 16, and the suction gas that has been conventionally discarded by heat radiation in the suction pipe line. The amount of heat generated by the high-end refrigerator can be recovered. Therefore, as shown in the Mollier diagram of this multi-source refrigeration system in FIG. 2, the enthalpy of the high-grade liquid refrigerant is small, and the refrigerating effect of the high-grade refrigerator is increased as indicated by Y1. In the figure, Δi3 corresponds to the enthalpy of the supercooled portion that is heat-exchanged with the high-grade liquid refrigerant in the heat exchanger 16. Note that Y2 indicates the refrigerating effect in the conventional device. As a result, the refrigerant circulation amount of the high-end refrigerator is reduced and the piston displacement amount of the compressor 1 is reduced, so that the compressor 1 can be downsized and energy can be saved.

【0021】 なお、上述した実施例では、三元単段冷凍装置を例にとり説明したが、本考案 は高元系統が2段サイクルのものにも適用できる。In the above-mentioned embodiment, the three-source single-stage refrigerating device is described as an example, but the present invention can be applied to a high-source system having a two-stage cycle.

【0022】[0022]

【考案の効果】[Effect of device]

以上説明したように本考案によれば、最低元の吸入ガスと高元側の液冷媒とを 熱交換しているので、高元液冷媒のエンタルピが小さくなり、高元冷凍機の冷凍 効果を増大できる。 これにより、高元冷凍機を5〜10%程度小形化できるとともに、省エネルギ 化が図れる。 また、多元冷凍装置全体での冷凍効率を向上できる。 As described above, according to the present invention, since the lowest source intake gas and the high-source side liquid refrigerant are heat-exchanged, the enthalpy of the high-source liquid refrigerant becomes small, and the refrigerating effect of the high-source refrigerator is reduced. Can increase. As a result, the high-end refrigerator can be downsized by about 5 to 10% and energy can be saved. Further, the refrigeration efficiency of the entire multi-source refrigeration system can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による多元冷凍装置の一実施例を示す系
統図。
FIG. 1 is a system diagram showing an embodiment of a multi-source refrigeration system according to the present invention.

【図2】図1の多元冷凍装置のモリエル線図。FIG. 2 is a Mollier diagram of the multi-source refrigeration system shown in FIG.

【図3】従来の多元冷凍装置を示す系統図。FIG. 3 is a system diagram showing a conventional multi-source refrigeration system.

【図4】従来の多元冷凍装置をモリエル線図。FIG. 4 is a Mollier diagram showing a conventional multi-source refrigeration system.

【符号の説明】[Explanation of symbols]

1 高元圧縮機 2 高元凝縮器 3 高元中間冷却器 4、8、12 膨脹弁 5 中元カスケードコンデンサ 6 中元圧縮機 7 中元吸入熱交換器 9 低元カスケードコンデンサ 10 低元圧縮機 11 低元吸入熱交換器 13 冷却器 14、15 圧力保護容器 16 低元吸入・高元液熱交換器 1 High-source compressor 2 High-source condenser 3 High-source intercooler 4, 8, 12 Expansion valve 5 Middle-source cascade condenser 6 Middle-source compressor 7 Middle-source intake heat exchanger 9 Low-source cascade condenser 10 Low-source compressor 11 Low-source intake heat exchanger 13 Coolers 14 and 15 Pressure protection container 16 Low-source intake / high-source liquid heat exchanger

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】複数台の冷凍機と凝縮器をなすカスケード
コンデンサで多段に連結した多元冷凍装置において、最
高元側の圧縮機から延びる吐出管を凝縮器に接続し、こ
の凝縮器の出口管路を最低元側の吸入側熱交換器に接続
し、この吸入側熱交換器の出口管路を膨脹弁を介して第
一のカスケードコンデンサの凝縮コイルに接続し、この
凝縮コイルの出口を吸入管によって最高元側の圧縮機の
吸入側に接続し、最低元の圧縮機から延びる吐出管を第
二のカスケードコンデンサに接続し、この第二のカスケ
ードコンデンサの出口管路を膨脹弁を介して冷却器の冷
却コイルに接続し、この冷却コイルの出口を上記吸入側
熱交換器の放熱コイルに接続し、この放熱コイルの出口
を吸入管によって最低元側の圧縮機の吸入側に接続した
ことを特徴とする多元冷凍装置。
1. In a multi-source refrigeration system in which a plurality of refrigerators and a cascade condenser forming a condenser are connected in multiple stages, a discharge pipe extending from a compressor on the highest source side is connected to the condenser, and an outlet pipe of the condenser. The line is connected to the heat exchanger on the suction side of the lowest source side, the outlet line of this heat exchanger on the suction side is connected to the condenser coil of the first cascade condenser via the expansion valve, and the outlet of this condenser coil is sucked. Connected to the suction side of the compressor of the highest source side by a pipe, connect the discharge pipe extending from the compressor of the lowest source to the second cascade condenser, and the outlet line of this second cascade condenser through the expansion valve. Connected to the cooling coil of the cooler, connected the outlet of this cooling coil to the radiation coil of the suction side heat exchanger, and connected the outlet of this radiation coil to the suction side of the lowest compressor by the suction pipe. Characterized by Stage refrigeration apparatus.
JP1090793U 1993-02-18 1993-02-18 Multi-source refrigerator Pending JPH0664071U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090793U JPH0664071U (en) 1993-02-18 1993-02-18 Multi-source refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090793U JPH0664071U (en) 1993-02-18 1993-02-18 Multi-source refrigerator

Publications (1)

Publication Number Publication Date
JPH0664071U true JPH0664071U (en) 1994-09-09

Family

ID=11763365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090793U Pending JPH0664071U (en) 1993-02-18 1993-02-18 Multi-source refrigerator

Country Status (1)

Country Link
JP (1) JPH0664071U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JP2010249444A (en) * 2009-04-17 2010-11-04 Sharp Corp Freezer-refrigerator
JP2011117685A (en) * 2009-12-04 2011-06-16 Sharp Corp Freezer-refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616551A (en) * 1984-06-20 1986-01-13 株式会社東洋製作所 Energy-conservation plural refrigerator
JPH0510955B2 (en) * 1986-11-14 1993-02-12 Yuu Jii Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616551A (en) * 1984-06-20 1986-01-13 株式会社東洋製作所 Energy-conservation plural refrigerator
JPH0510955B2 (en) * 1986-11-14 1993-02-12 Yuu Jii Kk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JP2010249444A (en) * 2009-04-17 2010-11-04 Sharp Corp Freezer-refrigerator
JP2011117685A (en) * 2009-12-04 2011-06-16 Sharp Corp Freezer-refrigerator

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US6519967B1 (en) Arrangement for cascade refrigeration system
US6460358B1 (en) Flash gas and superheat eliminator for evaporators and method therefor
KR20010037714A (en) Refrigeration system of refrigerator with two evaporators
JPH10132400A (en) Parallel type freezer
JPH10103800A (en) Composite type refrigerating plant
US20090223232A1 (en) Defrost system
JP2006220351A (en) Freezer
JP2007051788A (en) Refrigerating device
JPH0664071U (en) Multi-source refrigerator
JP4352327B2 (en) Ejector cycle
JP2001033110A (en) Refrigerator
JP2816525B2 (en) Multi-source refrigeration equipment
JP2002327969A (en) Refrigerating system
JP2000064906A (en) Engine-drive type heat pump cycle
JP2003106688A (en) Refrigerating cycle
JPH02161263A (en) Air conditioner
US11859881B2 (en) Refrigeration system and control method therefor
JPS58178159A (en) Multistage cascade cooling system
JP2685583B2 (en) Heat pump heat recovery device
JP3084918B2 (en) Heat pump water heater
KR910002808Y1 (en) Throttle type super cooler
KR100512418B1 (en) condensation system using refrigerant
JPS6124950A (en) Two-element refrigerator