JP2010249444A - Freezer-refrigerator - Google Patents

Freezer-refrigerator Download PDF

Info

Publication number
JP2010249444A
JP2010249444A JP2009100721A JP2009100721A JP2010249444A JP 2010249444 A JP2010249444 A JP 2010249444A JP 2009100721 A JP2009100721 A JP 2009100721A JP 2009100721 A JP2009100721 A JP 2009100721A JP 2010249444 A JP2010249444 A JP 2010249444A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
refrigerator
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100721A
Other languages
Japanese (ja)
Inventor
Tsuneyoshi Cho
張  恒良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009100721A priority Critical patent/JP2010249444A/en
Priority to EP09843369A priority patent/EP2420760A1/en
Priority to PCT/JP2009/070739 priority patent/WO2010119591A1/en
Priority to CN200980158764.0A priority patent/CN102395840B/en
Priority to RU2011146643/06A priority patent/RU2496063C2/en
Publication of JP2010249444A publication Critical patent/JP2010249444A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezer-refrigerator capable of reducing power consumption. <P>SOLUTION: This freezer-refrigerator comprises a refrigeration compartment 2 for refrigerating and storing an object to be stored, a freezing compartment 4 for freezing and storing an object to be stored, a first compressor 11 for operating a first refrigeration cycle 10 in which a first refrigerant flows, a first radiator 12 disposed on a high-temperature section of the first refrigeration cycle 10, a first evaporator 14 disposed on a low-temperature section of the first refrigeration cycle 10, a second compressor 21 for operating a second refrigeration cycle 20 in which a second refrigerant flows, a second evaporator 24 disposed on a low-temperature section of the second refrigeration cycle 20, and an intermediate heat exchanger 31 for performing heat exchange between the low-temperature section of the first refrigeration cycle 10 and a high-temperature section of the second refrigeration cycle 20. The first evaporator 14 cools the refrigeration compartment 2, and the second evaporator 24 cools the freezing compartment 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷蔵室及び冷凍室をそれぞれ冷却する第1、第2蒸発器を備えた冷凍冷蔵庫に関する。また、温度の異なる第1、第2冷却室を備えた冷却庫に関する。   The present invention relates to a refrigerator-freezer provided with first and second evaporators for cooling a refrigerator compartment and a freezer compartment, respectively. Moreover, it is related with the refrigerator provided with the 1st, 2nd cooling chamber from which temperature differs.

従来の冷凍冷蔵庫は圧縮機により運転される単一の冷凍サイクルの低温部に蒸発器が配される。蒸発器は冷凍室の背後等に設置され、蒸発器と熱交換した冷気が冷蔵室及び冷凍室に送出される。これにより、冷蔵室及び冷凍室が冷却される。   In a conventional refrigerator-freezer, an evaporator is disposed in a low temperature part of a single refrigeration cycle operated by a compressor. The evaporator is installed behind the freezer compartment, and cold air exchanged with the evaporator is sent to the refrigerator compartment and the freezer compartment. Thereby, a refrigerator compartment and a freezer compartment are cooled.

特許文献1、2には第1、第2圧縮機によりそれぞれ運転される第1、第2冷凍サイクルを有した二元冷凍サイクルが開示される。二元冷凍サイクルには第1冷凍サイクルの低温部と第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器が設けられる。また、第2冷凍サイクルの低温部に蒸発器が配される。   Patent Documents 1 and 2 disclose a dual refrigeration cycle having first and second refrigeration cycles operated by first and second compressors, respectively. The dual refrigeration cycle is provided with an intermediate heat exchanger that performs heat exchange between the low temperature portion of the first refrigeration cycle and the high temperature portion of the second refrigeration cycle. An evaporator is disposed in the low temperature part of the second refrigeration cycle.

第1圧縮機の駆動によって第1冷凍サイクルの低温部の中間熱交換器が低温に維持される。第2圧縮機の駆動によって第2冷凍サイクルの冷媒が中間熱交換器で放熱して凝縮され、第2冷凍サイクルの低温部の蒸発器は中間熱交換器よりも更に低温に維持される。従って、蒸発器と熱交換した極低温の冷気を貯蔵室に供給することができる。   The intermediate heat exchanger in the low temperature part of the first refrigeration cycle is maintained at a low temperature by driving the first compressor. By driving the second compressor, the refrigerant in the second refrigeration cycle dissipates heat in the intermediate heat exchanger and is condensed, and the evaporator in the low temperature part of the second refrigeration cycle is maintained at a lower temperature than the intermediate heat exchanger. Therefore, the cryogenic cold air heat-exchanged with the evaporator can be supplied to the storage chamber.

また、特許文献2の二元冷凍サイクルの第2冷凍サイクルには中間熱交換器の後段にレシーバが設けられる。レシーバは第2冷凍サイクルの中間熱交換器から流出した冷媒の気液分離を行い、液冷媒を吐出する。これにより、蒸発器に流入する冷媒に含まれる気泡を低減して冷媒の循環量を確保し、冷却能力の低下を防止することができる。   In addition, the second refrigeration cycle of the dual refrigeration cycle of Patent Document 2 is provided with a receiver after the intermediate heat exchanger. The receiver performs gas-liquid separation of the refrigerant flowing out from the intermediate heat exchanger of the second refrigeration cycle, and discharges the liquid refrigerant. Thereby, the bubble contained in the refrigerant | coolant which flows into an evaporator can be reduced, the circulation amount of a refrigerant | coolant can be ensured, and the fall of a cooling capability can be prevented.

特開2004−279014号公報(第2頁−第8頁、第1図)Japanese Patent Application Laid-Open No. 2004-279014 (page 2 to page 8, FIG. 1) 実開平5−36258号公報(第5頁−第6頁、第1図)Japanese Utility Model Publication No. 5-36258 (pages 5-6, FIG. 1)

従来の冷凍冷蔵庫に搭載する単一の冷凍サイクルは、冷却器を担う蒸発器が温度帯の違う冷凍室と冷蔵室を同時に冷却する構成になっている。このため、例えば−20℃の冷凍室温度を維持するために蒸発器の蒸発温度を−20℃以下にして−20℃以下の冷気を冷凍室に循環させる必要がある。この時、例えば0〜5℃に維持される冷蔵室も同時に−20℃以下の冷気で冷却されることになる。   A single refrigeration cycle mounted on a conventional refrigerator-freezer is configured such that an evaporator serving as a cooler simultaneously cools a freezer compartment and a refrigerator compartment having different temperature zones. For this reason, for example, in order to maintain a freezer compartment temperature of −20 ° C., it is necessary to reduce the evaporation temperature of the evaporator to −20 ° C. or lower and circulate cold air of −20 ° C. or lower to the freezer compartment. At this time, the refrigerating room maintained at 0 to 5 ° C., for example, is simultaneously cooled with cold air of −20 ° C. or less.

しかし、0〜5℃に維持される冷蔵室の冷却には−20℃以下の冷気を必要とせず、冷蔵室の設定温度より数度低い冷気でも十分冷却が可能である。同じ冷気量を生成する際に、冷気の温度が低いほど必要な電力等のエネルギーが多くなる。従って、冷蔵室と蒸発器との温度差が大きいため冷凍サイクルのCOP(Coefficient Of Performance:成績係数)が低くなり、冷凍冷蔵庫の消費電力が大きい問題があった。   However, cooling of the refrigerator compartment maintained at 0 to 5 ° C. does not require cold air of −20 ° C. or lower, and can be sufficiently cooled even with cold air that is several degrees lower than the set temperature of the refrigerator compartment. When generating the same amount of cold air, the lower the temperature of the cold air, the more energy required such as electric power. Therefore, since the temperature difference between the refrigerator compartment and the evaporator is large, the COP (Coefficient Of Performance) of the refrigeration cycle is low, and there is a problem that the power consumption of the refrigerator-freezer is large.

また、特許文献1、2の二元冷凍サイクルを冷凍冷蔵庫に搭載した場合も同様に、蒸発器が極低温に維持されるため冷蔵室と蒸発器との温度差が大きくなる。   Similarly, when the dual refrigeration cycle of Patent Documents 1 and 2 is mounted on a refrigerator-freezer, the temperature difference between the refrigerator compartment and the evaporator increases because the evaporator is maintained at a very low temperature.

本発明は、消費電力を削減できる冷凍冷蔵庫及び冷却庫を提供することを目的とする。   An object of this invention is to provide the freezer refrigerator and refrigerator which can reduce power consumption.

上記目的を達成するために本発明の冷凍冷蔵庫は、貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室と、第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、第1冷凍サイクルの低温部に配されて前記冷蔵室を冷却する第1蒸発器と、第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、第1冷凍サイクルの低温部よりも低温に維持される第2冷凍サイクルの低温部に配されて前記冷凍室を冷却する第2蒸発器と、第1冷凍サイクルの低温部と第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器と、前記中間熱交換器の第1冷凍サイクル側に配されるとともに第1冷媒の気液を分離してガス冷媒を吐出するレシーバとを備えたことを特徴としている。   In order to achieve the above object, the refrigerator-freezer of the present invention includes a refrigerating room for storing stored items in a refrigerator, a freezing chamber for storing stored items in a frozen state, and a first compression that operates a first refrigeration cycle through which a first refrigerant flows. A first evaporator that is disposed in a low temperature part of the first refrigeration cycle and cools the refrigerator compartment, a second compressor that operates a second refrigeration cycle through which a second refrigerant flows, and a first refrigeration cycle A second evaporator disposed in a low temperature part of the second refrigeration cycle that is maintained at a lower temperature than the low temperature part to cool the freezer compartment; and between a low temperature part of the first refrigeration cycle and a high temperature part of the second refrigeration cycle. An intermediate heat exchanger for exchanging heat with the first heat exchanger, and a receiver that is disposed on the first refrigeration cycle side of the intermediate heat exchanger and separates the gas-liquid of the first refrigerant and discharges the gas refrigerant. It is said.

この構成によると、第1、第2圧縮機によって第1、第2冷凍サイクルが運転され、第1、第2冷媒がそれぞれ流通して第1、第2冷凍サイクルの低温部及び高温部が形成される。第1冷凍サイクルの低温部の第1蒸発器及び中間熱交換器には低温低圧の第1冷媒が流入し、第1蒸発器により降温された冷気によって冷蔵室が冷却される。第2冷凍サイクルの高温部は高温高圧の第2冷媒が流入して中間熱交換器により吸熱されて放熱する。第2冷凍サイクルの低温部の第2蒸発器には低温低圧の第2冷媒が流入し、第2蒸発器により降温された冷気によって冷凍室が冷却される。中間熱交換器に流入する第1冷媒は気液混合状態で第2冷媒と熱交換した後、レシーバにより分離されたガス状態の第1冷媒が第2冷媒と熱交換して吸熱する。   According to this configuration, the first and second refrigeration cycles are operated by the first and second compressors, and the first and second refrigerants are circulated to form the low temperature portion and the high temperature portion of the first and second refrigeration cycles, respectively. Is done. The first low-temperature and low-pressure refrigerant flows into the first evaporator and the intermediate heat exchanger in the low temperature part of the first refrigeration cycle, and the refrigerator compartment is cooled by the cold air cooled by the first evaporator. A high temperature and high pressure second refrigerant flows into the high temperature part of the second refrigeration cycle and is absorbed by the intermediate heat exchanger to dissipate heat. The low-temperature and low-pressure second refrigerant flows into the second evaporator in the low-temperature part of the second refrigeration cycle, and the freezer compartment is cooled by the cold air cooled by the second evaporator. The first refrigerant flowing into the intermediate heat exchanger exchanges heat with the second refrigerant in a gas-liquid mixed state, and then the gas-state first refrigerant separated by the receiver exchanges heat with the second refrigerant and absorbs heat.

また本発明は、上記構成の冷凍冷蔵庫において、前記中間熱交換器は第1冷凍サイクルの上流側と第2冷凍サイクルの下流側とが熱交換し、第1冷凍サイクルの下流側と第2冷凍サイクルの上流側とが熱交換することを特徴としている。この構成によると、中間熱交換器に流入する気液混合状態の第1冷媒は、中間熱交換器で放熱された第2冷媒と熱交換する。レシーバを通過したガス状態の第1冷媒は、中間熱交換器に流入した高温の第2冷媒と熱交換する。   Further, according to the present invention, in the refrigerator with the above configuration, the intermediate heat exchanger exchanges heat between the upstream side of the first refrigeration cycle and the downstream side of the second refrigeration cycle, and the downstream side of the first refrigeration cycle and the second refrigeration cycle. It is characterized by heat exchange with the upstream side of the cycle. According to this configuration, the first refrigerant in the gas-liquid mixed state flowing into the intermediate heat exchanger exchanges heat with the second refrigerant radiated by the intermediate heat exchanger. The gas-state first refrigerant that has passed through the receiver exchanges heat with the high-temperature second refrigerant that has flowed into the intermediate heat exchanger.

また本発明は、上記構成の冷凍冷蔵庫において、前記中間熱交換器は、第1冷凍サイクルの前記レシーバよりも上流で第2冷媒から主に潜熱を奪って第1冷媒に潜熱を与える潜熱熱交換部と、第1冷凍サイクルの前記レシーバよりも下流で第2冷媒から主に顕熱を奪って第1冷媒に顕熱を与える顕熱熱交換部とを有することを特徴としている。この構成によると、中間熱交換器に流入する気液混合状態の第1冷媒は第2冷媒の凝縮熱(潜熱)を奪って気化する。レシーバを通過したガス状態の第1冷媒は高温の第2冷媒の顕熱を奪って昇温する。   Further, the present invention provides the refrigerator with the above configuration, wherein the intermediate heat exchanger mainly takes latent heat from the second refrigerant upstream of the receiver of the first refrigeration cycle to give latent heat to the first refrigerant. And a sensible heat exchange section that mainly takes sensible heat from the second refrigerant downstream of the receiver of the first refrigeration cycle and applies sensible heat to the first refrigerant. According to this configuration, the first refrigerant in the gas-liquid mixed state flowing into the intermediate heat exchanger takes the condensation heat (latent heat) of the second refrigerant and vaporizes it. The first refrigerant in the gas state that has passed through the receiver takes up the sensible heat of the high-temperature second refrigerant and rises in temperature.

また本発明は、上記構成の冷凍冷蔵庫において、第1、第2冷凍サイクルの高温部にそれぞれ配される第1、第2放熱器を備え、前記中間熱交換器を第2放熱器の後段に配置したことを特徴としている。この構成によると、第1圧縮機の駆動により第1冷媒は第1放熱器で放熱した後に低温部の第1蒸発器及び中間熱交換器を流通する。第2圧縮機の駆動により第2冷媒は第2放熱器で放熱して降温された後に中間熱交換器に流入して第1冷媒と熱交換する。   The present invention further includes a first refrigerator and a second radiator disposed in the high-temperature portions of the first and second refrigeration cycles in the refrigerator-freezer having the above-described configuration, and the intermediate heat exchanger is provided at the subsequent stage of the second radiator. It is characterized by the arrangement. According to this configuration, the first refrigerant radiates heat in the first radiator by driving the first compressor, and then flows through the first evaporator and the intermediate heat exchanger in the low temperature part. When the second compressor is driven, the second refrigerant radiates heat at the second radiator and drops in temperature, and then flows into the intermediate heat exchanger to exchange heat with the first refrigerant.

また本発明は、上記構成の冷凍冷蔵庫において、第2蒸発器から流出した第2冷媒が前記中間熱交換器から流出した第2冷媒との間で熱交換を行った後、第1放熱器から流出した第1冷媒との間で熱交換を行うことを特徴としている。この構成によると、中間熱交換器から流出した第2冷媒は第2蒸発器から流出した低温の第2冷媒により吸熱されてエンタルピーが低下する。また、第1放熱器から流出した第1冷媒は第2蒸発器から流出した低温の第2冷媒により吸熱されてエンタルピーが低下する。これにより、冷却能力の高い第1、第2冷媒が第1、第2蒸発器に流入する。   In the refrigerator having the above-described configuration, the second refrigerant that has flowed out of the second evaporator performs heat exchange with the second refrigerant that has flowed out of the intermediate heat exchanger. It is characterized in that heat exchange is performed with the first refrigerant that has flowed out. According to this configuration, the second refrigerant flowing out from the intermediate heat exchanger is absorbed by the low-temperature second refrigerant flowing out from the second evaporator, and the enthalpy is reduced. Further, the first refrigerant flowing out from the first radiator is absorbed by the low-temperature second refrigerant flowing out from the second evaporator, and the enthalpy is lowered. Thereby, the 1st, 2nd refrigerant | coolant with high cooling capacity flows in into a 1st, 2nd evaporator.

また本発明は、上記構成の冷凍冷蔵庫において、第1、第2冷媒がイソブタンから成ることを特徴としている。   According to the present invention, in the refrigerator-freezer configured as described above, the first and second refrigerants are made of isobutane.

また本発明は、上記構成の冷凍冷蔵庫において、第1冷媒の沸点が第2冷媒の沸点よりも高いことを特徴としている。   Moreover, the present invention is characterized in that, in the refrigerator-freezer configured as described above, the boiling point of the first refrigerant is higher than the boiling point of the second refrigerant.

また本発明は、上記構成の冷凍冷蔵庫において、第1冷媒がイソブタンから成るとともに、第2冷媒がプロパンまたは二酸化炭素から成ることを特徴としている。   According to the present invention, in the refrigerator-freezer configured as described above, the first refrigerant is made of isobutane and the second refrigerant is made of propane or carbon dioxide.

また本発明の冷却庫は、第1、第2冷却室と、第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、第1冷凍サイクルの低温部に配されて第1冷却室を冷却する第1蒸発器と、第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、第1冷凍サイクルの低温部よりも低温に維持される第2冷凍サイクルの低温部に配されて第2冷却室を冷却する第2蒸発器と、第1冷凍サイクルの低温部と第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器と、前記中間熱交換器の第1冷凍サイクル側に配されるとともに第1冷媒の気液を分離してガス冷媒を吐出するレシーバとを備えたことを特徴としている。   Moreover, the refrigerator of the present invention is arranged in the first and second cooling chambers, the first compressor that operates the first refrigeration cycle in which the first refrigerant flows, and the low temperature portion of the first refrigeration cycle, so that the first cooling is performed. A first evaporator that cools the chamber, a second compressor that operates a second refrigeration cycle through which the second refrigerant flows, and a low temperature part of the second refrigeration cycle that is maintained at a lower temperature than the low temperature part of the first refrigeration cycle A second evaporator for cooling the second cooling chamber, an intermediate heat exchanger for exchanging heat between the low temperature part of the first refrigeration cycle and the high temperature part of the second refrigeration cycle, and the intermediate heat exchange And a receiver that separates the gas-liquid of the first refrigerant and discharges the gas refrigerant.

本発明によると、第1圧縮機により運転される第1冷凍サイクルの低温部と第2圧縮機により運転される第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器を設けた二元冷凍サイクル式の冷凍冷蔵庫において、第1冷凍サイクルに設けた第1蒸発器により冷蔵室を冷却して第2冷凍サイクルに設けた第2蒸発器により冷凍室を冷却する。このため、第1蒸発器と冷蔵室との温度差を小さくでき、第1、第2圧縮機を高い効率で運転することができる。従って、冷凍サイクルのCOP(Coefficient Of Performance:成績係数)が向上し、冷凍冷蔵庫の消費電力を削減することができる。   According to the present invention, there is provided an intermediate heat exchanger for exchanging heat between the low temperature part of the first refrigeration cycle operated by the first compressor and the high temperature part of the second refrigeration cycle operated by the second compressor. In the two-stage refrigeration cycle type refrigerator-freezer, the refrigerator compartment is cooled by the first evaporator provided in the first refrigeration cycle, and the freezer compartment is cooled by the second evaporator provided in the second refrigeration cycle. For this reason, the temperature difference between the first evaporator and the refrigerator compartment can be reduced, and the first and second compressors can be operated with high efficiency. Therefore, the COP (Coefficient Of Performance) of the refrigeration cycle is improved, and the power consumption of the refrigerator-freezer can be reduced.

また、中間熱交換器の第1冷凍サイクル側にレシーバを設けたので、冷凍冷蔵庫の熱負荷が変動してもガス冷媒の第1冷媒が第2冷媒と熱交換する。これにより、第1冷媒が確実に昇温して第1圧縮機に送られ、中間熱交換器の能力を維持することができる。加えて、レシーバから流出したガス冷媒の第1冷媒が吸熱して昇温された後に第1圧縮機に流入するため、冷熱損失を低減することができる。   In addition, since the receiver is provided on the first refrigeration cycle side of the intermediate heat exchanger, the first refrigerant of the gas refrigerant exchanges heat with the second refrigerant even if the heat load of the refrigerator-freezer fluctuates. Thereby, the temperature of the first refrigerant is surely raised and sent to the first compressor, and the capability of the intermediate heat exchanger can be maintained. In addition, since the first refrigerant of the gas refrigerant flowing out from the receiver absorbs heat and is heated up, it flows into the first compressor, so that it is possible to reduce the heat loss.

本発明の実施形態の冷凍冷蔵庫を示す側面断面図Side surface sectional drawing which shows the refrigerator-freezer of embodiment of this invention 本発明の実施形態の冷凍冷蔵庫の冷凍サイクルを示す図The figure which shows the refrigerating cycle of the refrigerator-freezer of embodiment of this invention. 本発明の実施形態の冷凍冷蔵庫の冷凍サイクルの中間熱交換器の詳細を示す図The figure which shows the detail of the intermediate heat exchanger of the refrigerating cycle of the refrigerator-freezer of embodiment of this invention 本発明の実施形態の冷凍冷蔵庫のP−H線図PH diagram of the refrigerator-freezer of the embodiment of the present invention 容積式圧縮機の断熱圧縮効率と圧縮比との関係を示す図Diagram showing the relationship between adiabatic compression efficiency and compression ratio of positive displacement compressors 本発明の実施形態の冷凍冷蔵庫の冷凍サイクルの中間熱交換器の位置と温度との関係を示す図The figure which shows the relationship between the position and temperature of the intermediate heat exchanger of the refrigerating cycle of the refrigerator-freezer of embodiment of this invention. 比較例の冷凍サイクルを示す図The figure which shows the refrigerating cycle of a comparative example 比較例の冷凍サイクルの中間熱交換器の位置と温度との関係を示す図The figure which shows the relationship between the position and temperature of the intermediate heat exchanger of the refrigerating cycle of a comparative example

以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の冷凍冷蔵庫を示す側面断面図である。冷凍冷蔵庫1は上部に貯蔵物を冷蔵保存する冷蔵室2が配される。冷蔵室2の下方には冷蔵室2よりも高温で野菜の保存に適した温度に維持される野菜室3が設けられる。冷凍冷蔵庫1の下部には貯蔵物を冷凍保存する冷凍室4が配される。冷蔵室2の前面は回動式の断熱扉2aにより開閉される。野菜室3及び冷凍室4の前面はそれぞれ収納ケース3b、4bと一体の引き出し式の断熱扉3a、4aにより開閉される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing a refrigerator-freezer according to an embodiment. The refrigerator-freezer 1 is provided with a refrigerator compartment 2 for storing stored items in a refrigerator. Below the refrigerator compartment 2 is provided a vegetable compartment 3 which is maintained at a temperature higher than that of the refrigerator compartment 2 and suitable for storage of vegetables. A freezer compartment 4 for storing stored items in a frozen state is disposed at the bottom of the freezer 1. The front surface of the refrigerator compartment 2 is opened and closed by a rotating heat insulating door 2a. The front surfaces of the vegetable compartment 3 and the freezer compartment 4 are opened and closed by drawer-type heat insulating doors 3a and 4a integrated with the storage cases 3b and 4b, respectively.

冷凍室4の後方には機械室5が設けられる。機械室5内には詳細を後述する第1、第2冷凍サイクル10、20(図2参照)をそれぞれ運転する第1、第2圧縮機11、21が配される。冷蔵室2の背面には第1圧縮機11に接続される第1蒸発器14が配され、第1蒸発器14の上方には冷蔵室送風機15が配される。冷凍室4の背面には第2圧縮機21に接続される第2蒸発器24が配され、第2蒸発器24の上方には冷凍室送風機25が配される。   A machine room 5 is provided behind the freezer room 4. First and second compressors 11 and 21 for operating first and second refrigeration cycles 10 and 20 (see FIG. 2), which will be described in detail later, are disposed in the machine room 5. A first evaporator 14 connected to the first compressor 11 is disposed on the back surface of the refrigerator compartment 2, and a refrigerator refrigerator 15 is disposed above the first evaporator 14. A second evaporator 24 connected to the second compressor 21 is disposed on the back surface of the freezer compartment 4, and a freezer compartment blower 25 is disposed above the second evaporator 24.

第1蒸発器14と熱交換して冷却された冷気は冷蔵室送風機15により冷蔵室2に吐出される。該冷気は冷蔵室2内を流通し、冷蔵室2に連通する野菜室3に流入する。野菜室3に流入した冷気は野菜室3内を流通し、第1蒸発器14に戻る。これにより、冷蔵室2及び野菜室3が冷却される。第2蒸発器24と熱交換して冷却された冷気は冷凍室送風機25により冷凍室4に吐出される。冷凍室4に吐出された冷気は冷凍室4内を流通し、第2蒸発器24に戻る。これにより、冷凍室4が冷却される。   Cold air cooled by exchanging heat with the first evaporator 14 is discharged to the refrigerator compartment 2 by the refrigerator refrigerator 15. The cold air flows through the refrigerator compartment 2 and flows into the vegetable compartment 3 communicating with the refrigerator compartment 2. The cold air that has flowed into the vegetable compartment 3 flows through the vegetable compartment 3 and returns to the first evaporator 14. Thereby, the refrigerator compartment 2 and the vegetable compartment 3 are cooled. The cold air cooled by exchanging heat with the second evaporator 24 is discharged to the freezer compartment 4 by the freezer blower 25. The cold air discharged into the freezer compartment 4 flows through the freezer compartment 4 and returns to the second evaporator 24. Thereby, the freezer compartment 4 is cooled.

図2は冷凍冷蔵庫1の冷凍サイクルを示している。冷凍冷蔵庫1の冷凍サイクル30は第1、第2冷凍サイクル10、20が中間熱交換器31により連結されたカスケード式の二元冷凍サイクルになっている。即ち、第1冷凍サイクル10が高温サイクルを形成して第2冷凍サイクル20が低温サイクルを形成する。そして、中間熱交換器31によって第1冷凍サイクル10の低温部と第2冷凍サイクル20の高温部との間で熱交換が行われる。これにより、第2冷凍サイクル20の低温部を第1冷凍サイクル10の低温部よりも低温に維持する。   FIG. 2 shows the refrigeration cycle of the refrigerator 1. The refrigeration cycle 30 of the refrigerator 1 is a cascade type dual refrigeration cycle in which the first and second refrigeration cycles 10 and 20 are connected by an intermediate heat exchanger 31. That is, the first refrigeration cycle 10 forms a high temperature cycle, and the second refrigeration cycle 20 forms a low temperature cycle. Then, heat exchange is performed between the low temperature part of the first refrigeration cycle 10 and the high temperature part of the second refrigeration cycle 20 by the intermediate heat exchanger 31. Accordingly, the low temperature part of the second refrigeration cycle 20 is maintained at a lower temperature than the low temperature part of the first refrigeration cycle 10.

第1圧縮機11により運転される第1冷凍サイクル10は冷媒管16により接続される第1放熱器12、第1減圧装置13、第1蒸発器14を有している。冷媒管16内にはイソブタン等の第1冷媒が矢印S1の方向に流通する。即ち、第1冷媒は第1圧縮機11、第1放熱器12、第1減圧装置13、第1蒸発器14、中間熱交換器31、第1圧縮機11の順に通って循環する。尚、中間熱交換器31の第1冷凍サイクル10側には気液を分離し、液冷媒を貯溜してガス冷媒を吐出する第1レシーバ17が設けられる。第1レシーバ17により第1圧縮機11への液冷媒の流入が防止される。   The first refrigeration cycle 10 operated by the first compressor 11 has a first radiator 12, a first decompressor 13, and a first evaporator 14 connected by a refrigerant pipe 16. A first refrigerant such as isobutane flows in the refrigerant pipe 16 in the direction of the arrow S1. That is, the first refrigerant circulates through the first compressor 11, the first radiator 12, the first decompressor 13, the first evaporator 14, the intermediate heat exchanger 31, and the first compressor 11 in this order. A first receiver 17 that separates gas and liquid, stores liquid refrigerant, and discharges gas refrigerant is provided on the first refrigeration cycle 10 side of the intermediate heat exchanger 31. The first receiver 17 prevents the liquid refrigerant from flowing into the first compressor 11.

第2圧縮機21により運転される第2冷凍サイクル20は冷媒管26により接続される第2放熱器22、第2減圧装置23、第2蒸発器24を有している。冷媒管26内にはイソブタン等の第2冷媒が矢印S2の方向に流通する。即ち、第2冷媒が第2圧縮機21、第2放熱器22、中間熱交換器31、第2減圧装置23、第2蒸発器24、第2圧縮機21の順に通って循環する。尚、第2蒸発器24の下流には気液を分離し、液冷媒を貯溜してガス冷媒を吐出する第2レシーバ27が設けられる。第2レシーバ27により第2圧縮機21への液冷媒の流入が防止される。   The second refrigeration cycle 20 operated by the second compressor 21 has a second radiator 22, a second decompressor 23, and a second evaporator 24 connected by a refrigerant pipe 26. A second refrigerant such as isobutane flows in the refrigerant pipe 26 in the direction of the arrow S2. That is, the second refrigerant circulates through the second compressor 21, the second radiator 22, the intermediate heat exchanger 31, the second decompressor 23, the second evaporator 24, and the second compressor 21 in this order. A second receiver 27 that separates gas and liquid, stores liquid refrigerant, and discharges gas refrigerant is provided downstream of the second evaporator 24. The second receiver 27 prevents the liquid refrigerant from flowing into the second compressor 21.

図2は中間熱交換器31の詳細を示す図である。中間熱交換器31は第1冷凍サイクル10に設けた熱交換部31a、31bと第2冷凍サイクル20に設けた熱交換部31c、31dとを隣接し、互いに壁面を介して熱交換可能に形成される。熱交換部31aは第1蒸発器14の後段に配され、熱交換部31dは第2放熱器22の後段に配される。   FIG. 2 is a diagram showing details of the intermediate heat exchanger 31. The intermediate heat exchanger 31 is formed such that the heat exchanging parts 31a and 31b provided in the first refrigeration cycle 10 and the heat exchanging parts 31c and 31d provided in the second refrigeration cycle 20 are adjacent to each other and can exchange heat via wall surfaces. Is done. The heat exchanging part 31 a is arranged downstream of the first evaporator 14, and the heat exchanging part 31 d is arranged downstream of the second radiator 22.

中間熱交換器31の第1冷凍サイクル10側には第1レシーバ17の上流及び下流にそれぞれ熱交換部31a、31bが設けられる。これにより、熱交換部31aは気液混合した第1冷媒が気化熱(潜熱)を与えられて気化し、熱交換部31bはガス状態の第1冷媒が顕熱を与えられて昇温する。   On the first refrigeration cycle 10 side of the intermediate heat exchanger 31, heat exchange units 31a and 31b are provided upstream and downstream of the first receiver 17, respectively. As a result, the heat exchange unit 31a is vaporized by the vaporization (latent heat) of the first refrigerant mixed with the gas and liquid, and the heat exchange unit 31b is heated by the sensible heat of the first refrigerant in the gas state.

第1冷凍サイクル1の上流側の熱交換部31aは第2冷凍サイクル20の下流側の熱交換部31cと隣接して熱交換する。また、第1冷凍サイクル1の下流側の熱交換部31bは第2冷凍サイクル20の上流側の熱交換部31dと隣接して熱交換する。この時、熱交換部31dが高温の第2冷媒から主に顕熱を放出し、熱交換部31dで降温した第2冷媒が熱交換部31cで主に凝縮熱(潜熱)を放出するように熱交換部31c、31dの長さが設定される。従って、熱交換部31a、31cは第2冷媒の潜熱を第1冷媒の潜熱として与える潜熱熱交換部を構成し、熱交換部31b、31dは第2冷媒の顕熱を第1冷媒の顕熱として与える顕熱熱交換部を構成する。   The heat exchange unit 31 a on the upstream side of the first refrigeration cycle 1 performs heat exchange adjacent to the heat exchange unit 31 c on the downstream side of the second refrigeration cycle 20. Further, the heat exchanging portion 31 b on the downstream side of the first refrigeration cycle 1 performs heat exchange adjacent to the heat exchanging portion 31 d on the upstream side of the second refrigeration cycle 20. At this time, the heat exchange unit 31d mainly releases sensible heat from the high-temperature second refrigerant, and the second refrigerant cooled by the heat exchange unit 31d mainly releases the condensation heat (latent heat) at the heat exchange unit 31c. The length of the heat exchange parts 31c and 31d is set. Therefore, the heat exchange units 31a and 31c constitute a latent heat exchange unit that gives the latent heat of the second refrigerant as the latent heat of the first refrigerant, and the heat exchange units 31b and 31d convert the sensible heat of the second refrigerant to the sensible heat of the first refrigerant. The sensible heat exchange section given as

また、第1、第2冷凍サイクル10、20には、第1、第2内部熱交換器32、33が設けられる。第1内部熱交換器32は第1冷凍サイクル10に設けた熱交換部32aと第2冷凍サイクル20に設けた熱交換部32bとを隣接し、互いに壁面を介して熱交換可能に形成される。   The first and second refrigeration cycles 10 and 20 are provided with first and second internal heat exchangers 32 and 33, respectively. The first internal heat exchanger 32 is formed so that the heat exchanging part 32a provided in the first refrigeration cycle 10 and the heat exchanging part 32b provided in the second refrigeration cycle 20 are adjacent to each other and can exchange heat via wall surfaces. .

第2内部熱交換器33は中間熱交換器31の後段に配された熱交換部33aと第2蒸発器24の後段に配された熱交換部33bとを隣接し、互いに壁面を介して熱交換可能に形成される。熱交換部33aは中間熱交換器31から流出して第2蒸発器に流入する前の第2冷媒が流通し、熱交換部33bは第2蒸発器24を流出した後の第2冷媒が流通する。第2減圧装置23がキャピラリチューブから成る場合は熱交換部33aを第2減圧装置23と兼ねてもよい。   The second internal heat exchanger 33 adjoins the heat exchange part 33a arranged downstream of the intermediate heat exchanger 31 and the heat exchange part 33b arranged downstream of the second evaporator 24, and heats them through the wall surfaces. Formed interchangeably. The second refrigerant before flowing out from the intermediate heat exchanger 31 and flowing into the second evaporator flows through the heat exchanger 33a, and the second refrigerant after flowing out of the second evaporator 24 flows through the heat exchanger 33b. To do. In the case where the second decompression device 23 is made of a capillary tube, the heat exchanging portion 33a may also serve as the second decompression device 23.

第1内部熱交換器32の熱交換部32aは第1放熱器12の後段に配され、第1蒸発器14に流入する前の第1冷媒が流通する。熱交換部32bは第2内部熱交換器33の熱交換部33bの後段に配され、第2内部熱交換器33を流出した後の第2冷媒が流通する。第1減圧装置13がキャピラリチューブから成る場合は熱交換部32aを第1減圧装置13と兼ねてもよい。   The heat exchanging part 32a of the first internal heat exchanger 32 is arranged at the rear stage of the first radiator 12, and the first refrigerant before flowing into the first evaporator 14 flows therethrough. The heat exchanging part 32b is arranged downstream of the heat exchanging part 33b of the second internal heat exchanger 33, and the second refrigerant after flowing out of the second internal heat exchanger 33 flows therethrough. In the case where the first pressure reducing device 13 is formed of a capillary tube, the heat exchanging portion 32 a may also serve as the first pressure reducing device 13.

上記構成の冷凍冷蔵庫1において、第1、第2圧縮機11、21の駆動によって冷媒管16、26をそれぞれ第1、第2冷媒が流通する。第1、第2圧縮機11、21は第1、第2冷媒を圧縮して高温高圧にし、第1、第2減圧装置13、23は第1、第2冷媒を減圧、膨張して低温低圧にする。   In the refrigerator-freezer 1 having the above configuration, the first and second refrigerants flow through the refrigerant pipes 16 and 26 by driving the first and second compressors 11 and 21, respectively. The first and second compressors 11 and 21 compress the first and second refrigerants to high temperature and high pressure, and the first and second decompression devices 13 and 23 decompress and expand the first and second refrigerants at low temperature and low pressure. To.

従って、第1、第2冷媒が第1、第2圧縮機11、21を流出して第1、第2減圧装置13、23に流入するまでの間は第1、第2冷凍サイクル10、20の高温部となる。第1、第2冷媒が第1、第2減圧装置13、23を流出して第1、第2圧縮機11、21に流入するまでの間は第1、第2冷凍サイクル10、20の低温部となる。   Accordingly, the first and second refrigeration cycles 10 and 20 until the first and second refrigerants flow out of the first and second compressors 11 and 21 and flow into the first and second decompression devices 13 and 23. It becomes the high temperature part. The low temperature of the first and second refrigeration cycles 10 and 20 until the first and second refrigerant flows out of the first and second decompression devices 13 and 23 and flows into the first and second compressors 11 and 21. Part.

第1圧縮機11で圧縮された高温高圧の第1冷媒は第1放熱器12で周囲空気に熱を奪われて凝縮する。第1放熱器12で液化した第1冷媒は第1内部熱交換器32で第2冷凍サイクル20の低温部の第2冷媒に熱を奪われて更に降温される。第1内部熱交換器32で冷却されて過冷却度が大きくなった液体状態の第1冷媒は第1減圧装置13に流入する。第1冷媒は第1減圧装置13で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。   The high-temperature and high-pressure first refrigerant compressed by the first compressor 11 is deprived of heat by the first radiator 12 and condensed. The first refrigerant liquefied by the first radiator 12 is deprived of heat by the first refrigerant in the low temperature part of the second refrigeration cycle 20 by the first internal heat exchanger 32 and further cooled. The liquid first refrigerant cooled by the first internal heat exchanger 32 and having a high degree of supercooling flows into the first pressure reducing device 13. The first refrigerant is decompressed and expanded by the first decompression device 13, and becomes a low-temperature wet steam having a low dryness.

低温の湿り蒸気となった第1冷媒は第1蒸発器14に流入し、冷蔵室2の冷気から熱を奪って蒸発して更に乾き度の高い湿り蒸気となる。第1蒸発器14から流出した湿り蒸気状態の第1冷媒は中間熱交換器31の熱交換部31aに流入する。第1冷媒は熱交換部31aで熱交換部31cの第2冷媒の潜熱を奪いながら気化して第1レシーバ17に流入する。   The first refrigerant that has become low-temperature wet steam flows into the first evaporator 14, takes heat from the cold air in the refrigerator compartment 2, evaporates, and becomes wet steam with higher dryness. The first refrigerant in a wet vapor state flowing out from the first evaporator 14 flows into the heat exchange part 31 a of the intermediate heat exchanger 31. The first refrigerant evaporates while taking away the latent heat of the second refrigerant in the heat exchanging part 31 c in the heat exchanging part 31 a and flows into the first receiver 17.

第1レシーバ17に流入した第1冷媒は気液分離され、液冷媒を貯溜してガス冷媒が吐出される。第1レシーバ17から吐出されたガス状態の第1冷媒は熱交換部31bで熱交換部31dの主に顕熱を奪いながら昇温して過熱蒸気となる。過熱蒸気となった第1冷媒は第1圧縮機11に戻る。これにより、第1冷媒が循環して第1冷凍サイクル10が運転される。   The first refrigerant flowing into the first receiver 17 is gas-liquid separated, and the liquid refrigerant is stored and the gas refrigerant is discharged. The first refrigerant in a gas state discharged from the first receiver 17 is heated to become superheated steam while taking mainly sensible heat of the heat exchange part 31d in the heat exchange part 31b. The first refrigerant that has become superheated steam returns to the first compressor 11. As a result, the first refrigerant circulates and the first refrigeration cycle 10 is operated.

第2圧縮機21で圧縮された高温高圧の第2冷媒は第2放熱器22で周囲空気に熱を奪われる。第2放熱器22で降温された第2冷媒は中間熱交換器31の熱交換部31dに流入する。熱交換部31dに流入した第2冷媒は熱交換部31bの第1冷媒に主に顕熱を奪われて更に冷却される。降温されたガス状態の第2冷媒は熱交換部31cに流入し、熱交換部31aの第1冷媒に主に潜熱を奪われて凝縮する。凝縮した第2冷媒は第2内部熱交換器33で第2冷凍サイクル20の低温部の第2冷媒に熱を奪われて更に降温される。   The high-temperature and high-pressure second refrigerant compressed by the second compressor 21 is deprived of the ambient air by the second radiator 22. The second refrigerant lowered in temperature by the second radiator 22 flows into the heat exchange part 31d of the intermediate heat exchanger 31. The second refrigerant that has flowed into the heat exchanging portion 31d is further cooled by mainly taking sensible heat from the first refrigerant in the heat exchanging portion 31b. The temperature-reduced second refrigerant in the gas state flows into the heat exchanging part 31c, and is mainly deprived of latent heat and condensed by the first refrigerant in the heat exchanging part 31a. The condensed second refrigerant is further lowered in temperature by the second internal heat exchanger 33 where heat is taken away by the second refrigerant in the low temperature portion of the second refrigeration cycle 20.

第2内部熱交換器33で冷却されて過冷却度が大きくなった液体状態の第2冷媒は第2減圧装置23に流入する。第2冷媒は第2減圧装置23で減圧、膨張し、低温の湿り蒸気となる。低温の湿り蒸気となった第2冷媒は第2蒸発器24に流入し、冷凍室4の冷気から熱を奪って蒸発して湿り蒸気となる。   The second refrigerant in a liquid state cooled by the second internal heat exchanger 33 and having a high degree of supercooling flows into the second decompression device 23. The second refrigerant is decompressed and expanded by the second decompression device 23, and becomes low-temperature wet steam. The second refrigerant that has become low-temperature wet steam flows into the second evaporator 24, takes heat from the cold air in the freezer compartment 4 and evaporates to become wet steam.

第2蒸発器24から流出した湿り蒸気状態の第2冷媒は第2内部熱交換器33及び第1内部熱交換器32に導かれ、高温の第2冷媒及び第1冷媒から熱を奪って過熱蒸気となる。過熱蒸気となった第2冷媒は第2圧縮機21に戻る。これにより、第2冷媒が循環して第2冷凍サイクル20が運転される。   The second refrigerant in the wet vapor state flowing out from the second evaporator 24 is guided to the second internal heat exchanger 33 and the first internal heat exchanger 32, and takes heat from the high-temperature second refrigerant and the first refrigerant and overheats. It becomes steam. The second refrigerant that has become superheated steam returns to the second compressor 21. As a result, the second refrigerant circulates and the second refrigeration cycle 20 is operated.

尚、第2圧縮機21は第1圧縮機11の駆動後に中間熱交換器31の温度が低下した後に駆動される。そして、冷蔵室2及び冷凍室4の温度や、中間熱交換器31の熱交換部31a、31bと熱交換部31c、31dとの温度差を監視する。これらが所定値になるようにインバータ制御によって第1、第2圧縮機11、21の回転数が制御される。   The second compressor 21 is driven after the temperature of the intermediate heat exchanger 31 is lowered after the first compressor 11 is driven. And the temperature difference between the temperature of the refrigerator compartment 2 and the freezer compartment 4, and the heat exchange parts 31a and 31b of the intermediate heat exchanger 31, and the heat exchange parts 31c and 31d is monitored. The rotation speeds of the first and second compressors 11 and 21 are controlled by inverter control so that these become predetermined values.

図4は冷凍サイクル30の圧力−エンタルピー線図(P−H線図)を示している。縦軸は圧力を示し、横軸はエンタルピーを示している。また、図中、各点A、B、C、D、E、E’、F、a、b、b’、b”c、d、e、fは、図2に示す冷凍サイクルの各点と対応している。   FIG. 4 shows a pressure-enthalpy diagram (PH diagram) of the refrigeration cycle 30. The vertical axis represents pressure, and the horizontal axis represents enthalpy. Also, in the figure, each point A, B, C, D, E, E ′, F, a, b, b ′, b ″ c, d, e, and f are the points of the refrigeration cycle shown in FIG. It corresponds.

第1冷凍サイクル10(A−B−C−D−E−E’−F−A)の場合、A−Bは第1圧縮機11における過程を表わしている。B−Cは第1放熱器12における過程を表わしている。C−Dは第1内部熱交換器32の熱交換部32aにおける過程を表わしている。D−Eは第1減圧装置13における過程を表わしている。E−E’は第1蒸発器14における過程を表わしている。E’−Fは中間熱交換器31の熱交換部31aにおける過程を表している。F−Aは中間熱交換器31の熱交換部31bにおける過程を表している。   In the case of the first refrigeration cycle 10 (A-B-C-D-E-E'-F-A), A-B represents a process in the first compressor 11. B-C represents a process in the first radiator 12. CD represents the process in the heat exchange part 32a of the first internal heat exchanger 32. DE represents the process in the first pressure reducing device 13. E-E ′ represents a process in the first evaporator 14. E′-F represents a process in the heat exchange part 31 a of the intermediate heat exchanger 31. F-A represents a process in the heat exchange part 31b of the intermediate heat exchanger 31.

第2冷凍サイクル20(a−b−b’−b”−c−d−e−f−a)の場合も同様であり、a−bは第2圧縮機21における過程を表わしている。b−b’は第2放熱器22における過程を表わしている。b’−b”は中間熱交換器31の熱交換部31dにおける過程を表している。b”−cは中間熱交換器31の熱交換部31cにおける過程を表している。c−dは第2内部熱交換器33の熱交換部33aにおける過程を表わしている。d−eは第2減圧装置23における過程を表わしている。e−fは第2蒸発器24における過程を表わしている。f−aは第2内部熱交換器33の熱交換部33b及び第1内部熱交換器32の熱交換部32bにおける過程を表わしている。   The same applies to the second refrigeration cycle 20 (ab-b'-b "-cd-fa), where ab represents the process in the second compressor 21. b -B 'represents the process in the second heat radiator 22. b'-b "represents the process in the heat exchange part 31d of the intermediate heat exchanger 31. b ″ -c represents a process in the heat exchange part 31c of the intermediate heat exchanger 31. cd represents a process in the heat exchange part 33a of the second internal heat exchanger 33. de represents the first. 2 represents the process in the decompression device 23. ef represents the process in the second evaporator 24. fa represents the heat exchange section 33b and the first internal heat exchanger of the second internal heat exchanger 33. The process in 32 heat-exchange parts 32b is represented.

第1、第2冷凍サイクル10、20が同じ冷媒(例えば、イソブタン)が封入されているため、P−H線図上で第1、第2冷凍サイクル10、20の温度関係や圧力関係が分りやすくなっている。例えば、第1冷凍サイクル10のA点の圧力PAは第2冷凍サイクル20のb点の圧力Pbよりも若干低くなっている。これは、第1冷凍サイクル10が第2冷凍サイクル20から熱を奪うためである。   Since the same refrigerant (for example, isobutane) is sealed in the first and second refrigeration cycles 10 and 20, the temperature relationship and the pressure relationship of the first and second refrigeration cycles 10 and 20 are found on the PH diagram. It has become easier. For example, the pressure PA at the point A of the first refrigeration cycle 10 is slightly lower than the pressure Pb at the point b of the second refrigeration cycle 20. This is because the first refrigeration cycle 10 takes heat from the second refrigeration cycle 20.

従来の単一の冷凍サイクルの場合には冷凍室4が同じ設定温度であれば、冷蔵室2及び冷凍室4をそれぞれ冷却する第1、第2蒸発器の蒸発温度は図4のe−fで表されている程度となる。これに対して、本実施形態の冷蔵室2を冷却する第1蒸発器14の蒸発温度は図4のE−E’で表わされる。冷媒の湿り蒸気の領域においては圧力Pが高いほど温度も高いので、第1蒸発器14の蒸発温度が単一の冷凍サイクルの場合よりも高くなる。   In the case of the conventional single refrigeration cycle, if the freezer compartment 4 has the same set temperature, the evaporating temperatures of the first and second evaporators for cooling the refrigerator compartment 2 and the freezer compartment 4 respectively are ef in FIG. It is the level expressed by. On the other hand, the evaporation temperature of the first evaporator 14 for cooling the refrigerator compartment 2 of the present embodiment is represented by E-E 'in FIG. In the wet steam region of the refrigerant, the higher the pressure P, the higher the temperature, so that the evaporation temperature of the first evaporator 14 becomes higher than in the case of a single refrigeration cycle.

これにより、従来の単一の冷凍サイクルの場合に、例えば20℃であった第1蒸発器14と冷蔵室2との温度差を、例えば5℃以下に格段に小さくすることができる。従って、冷蔵室2の冷却に無駄なエネルギーを使うことなく、効率の高い冷凍冷蔵庫1を提供できる。   Thereby, in the case of the conventional single refrigeration cycle, the temperature difference between the first evaporator 14 and the refrigerator compartment 2 which has been 20 ° C., for example, can be remarkably reduced to, for example, 5 ° C. or less. Therefore, the highly efficient refrigerator-freezer 1 can be provided without using wasteful energy for cooling the refrigerator compartment 2.

また、従来の単一の冷凍サイクルの場合に同じ温度設定条件であれば、凝縮圧力がB点の圧力PBとなり、蒸発圧力はa点の圧力Paとなる。このため、圧縮機の圧縮比はPB/Paとなる。一方、本実施形態では第1冷凍サイクル10の圧縮比がPB/PAとなり、第2冷凍サイクル20の圧縮比がPb/Paとなる。このため、いずれも単一の冷凍サイクルの圧縮比よりも小さくなる。   Further, in the case of the conventional single refrigeration cycle, if the temperature setting conditions are the same, the condensation pressure becomes the pressure PB at the point B, and the evaporation pressure becomes the pressure Pa at the point a. For this reason, the compression ratio of the compressor is PB / Pa. On the other hand, in the present embodiment, the compression ratio of the first refrigeration cycle 10 is PB / PA, and the compression ratio of the second refrigeration cycle 20 is Pb / Pa. For this reason, all become smaller than the compression ratio of a single refrigeration cycle.

図5はASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers アメリカ暖房冷凍空調学会)の "Guide and Data Book" (1961,p498)による容積式圧縮機の断熱圧縮効率と圧縮比との関係を示している。縦軸は断熱圧縮効率を示し、横軸は圧縮比を示している。尚、現在通常の冷凍冷蔵庫に使われている圧縮機の殆どが容積式である。冷媒がR12とR22の実験データではあるが、他の冷媒でも同じ傾向があると言える。同図によると、圧縮機の圧縮比が小さいほど、圧縮機の断熱圧縮効率が高くなる。   Fig. 5 shows the relationship between adiabatic compression efficiency and compression ratio of positive displacement compressors according to ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) "Guide and Data Book" (1961, p498). Show. The vertical axis represents adiabatic compression efficiency, and the horizontal axis represents the compression ratio. Note that most of the compressors currently used in ordinary refrigerator-freezers are of the positive displacement type. Although the refrigerant is experimental data of R12 and R22, it can be said that other refrigerants have the same tendency. According to the figure, the smaller the compression ratio of the compressor, the higher the adiabatic compression efficiency of the compressor.

周囲温度が25℃、冷蔵室2の温度が3℃、冷凍室4の温度が−18℃、第1、第2冷媒が通常よく使用されるイソブタンの場合に、従来の単一の冷凍サイクルの圧縮比は約8程度である。これに対して、第1、第2冷凍サイクル10、20の圧縮比はそれぞれ2〜3程度となる。従って、従来よりも第1、第2冷凍サイクル10、20の圧縮比がいずれも小さいため、第1、第2圧縮機11、21を高い効率で作動できる。   When the ambient temperature is 25 ° C., the temperature in the refrigerator compartment 2 is 3 ° C., the temperature in the freezer compartment 4 is −18 ° C., and the first and second refrigerants are commonly used isobutane, The compression ratio is about 8. On the other hand, the compression ratios of the first and second refrigeration cycles 10 and 20 are about 2 to 3, respectively. Therefore, since the compression ratios of the first and second refrigeration cycles 10 and 20 are both smaller than the conventional one, the first and second compressors 11 and 21 can be operated with high efficiency.

図6は中間熱交換器31の位置と温度との関係を示す図である。比較のため、図7に示す冷凍サイクル30’の中間熱交換器31の位置と温度との関係を図8に示す。比較例の冷凍サイクル30’は第1レシーバ17を中間熱交換器31の後段に配している。その他の部分は前述の図2に示す冷凍サイクル30と同一である。尚、図6、図8において縦軸は温度を示し、横軸は中間熱交換器31の位置を示している。図中、各点A、F、E’、b’、b”、cは、図2、図7に示す冷凍サイクル30、30’の各点と対応している。   FIG. 6 is a diagram showing the relationship between the position of the intermediate heat exchanger 31 and the temperature. For comparison, FIG. 8 shows the relationship between the position of the intermediate heat exchanger 31 and the temperature of the refrigeration cycle 30 'shown in FIG. In the refrigeration cycle 30 ′ of the comparative example, the first receiver 17 is arranged at the rear stage of the intermediate heat exchanger 31. Other portions are the same as those of the refrigeration cycle 30 shown in FIG. 6 and 8, the vertical axis indicates the temperature, and the horizontal axis indicates the position of the intermediate heat exchanger 31. In the drawing, each point A, F, E ', b', b ", c corresponds to each point of the refrigeration cycles 30, 30 'shown in Figs.

比較例の中間熱交換器31の第2冷凍サイクル20側では第2冷媒が熱交換部31d(b’−b”)で放熱され、熱交換部31c(b”−c)で凝縮される。また、中間熱交換器31の第1冷凍サイクル10側では第1冷媒が熱交換部31a(E’−F)で蒸発し、熱交換部31b(F−A)でも蒸発する。   On the second refrigeration cycle 20 side of the intermediate heat exchanger 31 of the comparative example, the second refrigerant dissipates heat in the heat exchange part 31d (b'-b ") and is condensed in the heat exchange part 31c (b" -c). Further, on the first refrigeration cycle 10 side of the intermediate heat exchanger 31, the first refrigerant evaporates in the heat exchange unit 31a (E'-F), and also evaporates in the heat exchange unit 31b (FA).

このため、熱交換部31bでの第1、第2冷媒の温度差が大きくなり、熱交換による損失が大きい。また、第1レシーバー17から流出したガス冷媒の第1冷媒が第2冷凍サイクル20から吸熱しないため、蒸発温度のまま第1圧縮機1に流入する。従って、冷熱損失が生じやすくなる。   For this reason, the temperature difference of the 1st, 2nd refrigerant | coolant in the heat exchange part 31b becomes large, and the loss by heat exchange is large. Further, since the first refrigerant of the gas refrigerant flowing out from the first receiver 17 does not absorb heat from the second refrigeration cycle 20, it flows into the first compressor 1 at the evaporation temperature. Therefore, the heat loss is likely to occur.

これに対して、本実施形態の中間熱交換器31の第1冷凍サイクル10側では第1冷媒が熱交換部31a(E’−F)で蒸発し、熱交換部31b(F−A)で吸熱される。このため、中間熱交換器31において潜熱熱交換と顕熱熱交換がそれぞれマッチングして行われる。従って、熱交換に要する温度差を最小限まで抑えることができ、熱交換による有効エネルギーの損失を低減することができる。また、第1冷媒が吸熱して昇温された後に第1圧縮機11に流入するため冷熱損失を低減することができる。   In contrast, on the first refrigeration cycle 10 side of the intermediate heat exchanger 31 of the present embodiment, the first refrigerant evaporates in the heat exchange unit 31a (E′-F), and in the heat exchange unit 31b (FA). It absorbs heat. For this reason, in the intermediate heat exchanger 31, latent heat exchange and sensible heat exchange are performed in matching. Therefore, the temperature difference required for heat exchange can be minimized, and loss of effective energy due to heat exchange can be reduced. Further, since the first refrigerant absorbs heat and is heated to flow into the first compressor 11, the heat loss can be reduced.

本実施形態によると、第1圧縮機11により運転される第1冷凍サイクル10の低温部と第2圧縮機21により運転される第2冷凍サイクル20の高温部との間で熱交換を行う中間熱交換器31を設けた二元冷凍サイクル式の冷凍冷蔵庫1において、第1冷凍サイクル10に設けた第1蒸発器14により冷蔵室2を冷却して第2冷凍サイクル20に設けた第2蒸発器24により冷凍室4を冷却する。このため、第1蒸発器14と冷蔵室2との温度差を小さくできるとともに、第1、第2圧縮機11、21を高い効率で運転することができる。従って、従来よりも冷凍サイクル30のCOPが向上し、冷凍冷蔵庫1の消費電力を削減することができる。   According to the present embodiment, the heat exchange is performed between the low temperature part of the first refrigeration cycle 10 operated by the first compressor 11 and the high temperature part of the second refrigeration cycle 20 operated by the second compressor 21. In the refrigerator-freezer 1 of the two-stage refrigeration cycle type provided with the heat exchanger 31, the second evaporation provided in the second refrigeration cycle 20 by cooling the refrigerator compartment 2 by the first evaporator 14 provided in the first refrigeration cycle 10. The freezer compartment 4 is cooled by the vessel 24. For this reason, the temperature difference between the first evaporator 14 and the refrigerator compartment 2 can be reduced, and the first and second compressors 11 and 21 can be operated with high efficiency. Therefore, the COP of the refrigeration cycle 30 is improved as compared with the conventional case, and the power consumption of the refrigerator-freezer 1 can be reduced.

また、中間熱交換器31の第1冷凍サイクル10側に第1レシーバ17を設けたので、冷凍冷蔵庫1の熱負荷が変動してもガス冷媒の第1冷媒が第2冷媒と熱交換する。これにより、第1冷媒が確実に昇温して第1圧縮機11に送られ、中間熱交換器31の能力を維持することができる。加えて、第1レシーバ17から流出したガス冷媒の第1冷媒が吸熱して昇温された後に第1圧縮機11に流入するため、冷熱損失を低減することができる。   Moreover, since the 1st receiver 17 was provided in the 1st freezing cycle 10 side of the intermediate heat exchanger 31, even if the heat load of the refrigerator-freezer 1 fluctuates, the 1st refrigerant | coolant of a gas refrigerant exchanges heat with a 2nd refrigerant | coolant. Thereby, the temperature of the first refrigerant is reliably raised and sent to the first compressor 11, and the capability of the intermediate heat exchanger 31 can be maintained. In addition, since the first refrigerant of the gas refrigerant that has flowed out of the first receiver 17 absorbs heat and then rises in temperature, it flows into the first compressor 11, so that the heat loss can be reduced.

また、中間熱交換器31は第1冷凍サイクル10の上流側の熱交換部31aと第2冷凍サイクル20の下流側の熱交換部31cとが熱交換し、第1冷凍サイクル10の下流側の熱交換部31bと第2冷凍サイクル20の上流側の熱交換部31dとが熱交換するので、第1レシーバ17を流出したガス状態の第1冷媒が高温の第2冷媒と熱交換する。これにより、第2冷媒の放熱による顕熱は第1冷媒を昇温させる顕熱に用いられ、第1、第2冷媒の熱交換の温度差を小さくすることができる。従って、熱交換による有効エネルギーの損失を低減し、冷凍冷蔵庫1の消費電力をより削減することができる。   In addition, the intermediate heat exchanger 31 exchanges heat between the heat exchanging portion 31 a on the upstream side of the first refrigeration cycle 10 and the heat exchanging portion 31 c on the downstream side of the second refrigeration cycle 20. Since the heat exchanging part 31b and the heat exchanging part 31d on the upstream side of the second refrigeration cycle 20 exchange heat, the first refrigerant in the gas state flowing out of the first receiver 17 exchanges heat with the high-temperature second refrigerant. Thereby, the sensible heat by the heat radiation of the second refrigerant is used for the sensible heat for raising the temperature of the first refrigerant, and the temperature difference in heat exchange between the first and second refrigerants can be reduced. Therefore, the loss of effective energy due to heat exchange can be reduced, and the power consumption of the refrigerator-freezer 1 can be further reduced.

また、潜熱熱交換部(31a、31c)で第1冷媒が第2冷媒から主に潜熱を奪い、顕熱熱交換部(31b、31d)で第1冷媒が第2冷媒から主に顕熱を奪うので、第1、第2冷媒の潜熱熱交換と顕熱熱交換がそれぞれマッチングして行われ、両者の温度差をより小さくすることができる。   In addition, the first refrigerant mainly takes latent heat from the second refrigerant in the latent heat exchanger (31a, 31c), and the first refrigerant mainly receives sensible heat from the second refrigerant in the sensible heat exchanger (31b, 31d). Therefore, the latent heat exchange and the sensible heat exchange of the first and second refrigerants are performed in matching, and the temperature difference between the two can be further reduced.

また、第1、第2冷凍サイクル10、20の高温部にそれぞれ第1、第2放熱器12、22を設けたので、第1、第2冷凍サイクル10、20全体の放熱温度をより低くすることができる。従って、冷凍サイクル30のCOPが向上する。また、中間熱交換器31を第2放熱器22の後段に配置したので、中間熱交換器31によって第1冷媒に熱を奪われる前に第2冷媒が第2放熱器22を流通する。これにより、第2放熱器22で熱交換して放熱した後の第2冷媒が中間熱交換器31で冷却されるので、より効率的に熱交換を行うことができる。   In addition, since the first and second radiators 12 and 22 are provided in the high temperature portions of the first and second refrigeration cycles 10 and 20, respectively, the heat radiation temperature of the entire first and second refrigeration cycles 10 and 20 is further lowered. be able to. Therefore, the COP of the refrigeration cycle 30 is improved. In addition, since the intermediate heat exchanger 31 is arranged at the subsequent stage of the second radiator 22, the second refrigerant flows through the second radiator 22 before the heat is taken away by the first refrigerant by the intermediate heat exchanger 31. Thereby, since the 2nd refrigerant | coolant after heat-exchanging with the 2nd heat radiator 22 and thermally radiating is cooled by the intermediate heat exchanger 31, heat exchange can be performed more efficiently.

また、第2内部熱交換器33で第2蒸発器24から流出した第2冷媒が中間熱交換器31から流出した第2冷媒との間で熱交換を行った後、第1内部熱交換器32で第1放熱器12から流出した第1冷媒との間で熱交換を行うので、第1、第2蒸発器14、24に流入する第1、第2冷媒のエンタルピーを低下させることができる。従って、第1、第2蒸発器14、24に流入する第1、第2冷媒の冷却能力をさらに向上することができる。   In addition, after the second refrigerant flowing out from the second evaporator 24 in the second internal heat exchanger 33 exchanges heat with the second refrigerant flowing out from the intermediate heat exchanger 31, the first internal heat exchanger Since heat exchange is performed with the first refrigerant flowing out of the first radiator 12 at 32, the enthalpies of the first and second refrigerants flowing into the first and second evaporators 14 and 24 can be reduced. . Therefore, the cooling capacity of the first and second refrigerants flowing into the first and second evaporators 14 and 24 can be further improved.

本実施形態において、第1、第2冷媒にイソブタン等の同じ冷媒を用いて説明しているが、異なる冷媒を用いてもよい。この時、第1冷媒の沸点を第2冷媒の沸点よりも高くするとよい。これにより、第2冷媒が第1冷媒よりも蒸気密度が高くなり、第2冷凍サイクル20の性能をより向上することができるのでさらに好ましい。   In the present embodiment, the same refrigerant such as isobutane is used for the first and second refrigerants, but different refrigerants may be used. At this time, the boiling point of the first refrigerant may be higher than the boiling point of the second refrigerant. Thereby, since the vapor density of the second refrigerant is higher than that of the first refrigerant and the performance of the second refrigeration cycle 20 can be further improved, it is further preferable.

例えば、第1冷媒としてイソブタン(沸点−12℃)を用い、第2冷媒としてプロパン(沸点−40.09℃)または二酸化炭素(沸点−78.5℃)を用いると容易に実現することができる。これらの冷媒はいずれも自然界に大量に存在する物質を利用する自然冷媒である。従って、自然冷媒を用いる冷凍サイクルの冷却効率を高めることにより、冷凍冷蔵庫1の環境負荷のさらなる低減を実現することができる。   For example, it can be easily realized by using isobutane (boiling point −12 ° C.) as the first refrigerant and propane (boiling point −40.09 ° C.) or carbon dioxide (boiling point −78.5 ° C.) as the second refrigerant. . All of these refrigerants are natural refrigerants that use substances that exist in large quantities in nature. Therefore, the environmental load of the refrigerator-freezer 1 can be further reduced by increasing the cooling efficiency of the refrigeration cycle using the natural refrigerant.

尚、室内温度の異なる第1、第2冷却室にそれぞれ第1、第2蒸発器14、24を配置する二元式の冷凍サイクルを備えた冷却庫であればどのようなものにも同様に適用が可能である。即ち、家庭用の冷凍冷蔵庫1を中心とする冷凍サイクル応用機器に適用することができる。   In addition, as long as it is a refrigerator equipped with a two-way refrigeration cycle in which the first and second evaporators 14 and 24 are arranged in the first and second cooling chambers having different room temperatures, the same applies to any one. Applicable. In other words, the present invention can be applied to refrigeration cycle application equipment centered on a domestic refrigerator-freezer 1.

本発明によると、冷蔵室及び冷凍室をそれぞれ冷却する第1、第2蒸発器を備えた冷凍冷蔵庫に利用することができる。また、温度の異なる第1、第2冷却室をそれぞれ冷却する第1、第2蒸発器を備えた冷却庫に利用することができる。   According to this invention, it can utilize for the refrigerator refrigerator provided with the 1st, 2nd evaporator which cools a refrigerator compartment and a freezer compartment, respectively. Moreover, it can utilize for the refrigerator provided with the 1st, 2nd evaporator which cools the 1st, 2nd cooling chamber from which temperature differs, respectively.

1 冷凍冷蔵庫
2 冷蔵室
3 野菜室
4 冷凍室
10 第1冷凍サイクル
11 第1圧縮機
12 第1放熱器
13 第1減圧装置
14 第1蒸発器
15 冷蔵室送風機
16、26 冷媒管
17 第1レシーバ
20 第2冷凍サイクル
21 第2圧縮機
22 第2放熱器
23 第2減圧装置
24 第2蒸発器
25 冷凍室送風機
27 第2レシーバ
30、30’ 冷凍サイクル
31 中間熱交換器
31a、31c 熱交換部(潜熱熱交換部)
31b、31d 熱交換部(顕熱熱交換部)
32 第1内部熱交換器
33 第2内部熱交換器
DESCRIPTION OF SYMBOLS 1 Refrigerator Refrigerator 2 Refrigerated room 3 Vegetable room 4 Freezer room 10 1st freezing cycle 11 1st compressor 12 1st heat radiator 13 1 decompression device 14 1st evaporator 15 Cold room fan 16, 26 Refrigerant tube 17 1st receiver 20 2nd refrigeration cycle 21 2nd compressor 22 2nd radiator 23 2nd decompression device 24 2nd evaporator 25 freezer compartment blower 27 2nd receiver 30, 30 'refrigeration cycle 31 intermediate heat exchanger 31a, 31c heat exchange part (Latent heat exchanger)
31b, 31d Heat exchange part (sensible heat exchange part)
32 1st internal heat exchanger 33 2nd internal heat exchanger

Claims (9)

貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室と、第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、第1冷凍サイクルの低温部に配されて前記冷蔵室を冷却する第1蒸発器と、第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、第1冷凍サイクルの低温部よりも低温に維持される第2冷凍サイクルの低温部に配されて前記冷凍室を冷却する第2蒸発器と、第1冷凍サイクルの低温部と第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器と、前記中間熱交換器の第1冷凍サイクル側に配されるとともに第1冷媒の気液を分離してガス冷媒を吐出するレシーバとを備えたことを特徴とする冷凍冷蔵庫。   It is arranged in a cold room for storing stored items in a refrigerator, a freezing chamber for storing stored items in a frozen state, a first compressor for operating a first refrigeration cycle through which a first refrigerant flows, and a low temperature part of the first refrigeration cycle. A first evaporator that cools the refrigerating chamber, a second compressor that operates a second refrigeration cycle through which a second refrigerant flows, and a second refrigeration cycle that is maintained at a lower temperature than a low temperature portion of the first refrigeration cycle. A second evaporator arranged in a low temperature section for cooling the freezer compartment, an intermediate heat exchanger for exchanging heat between the low temperature section of the first refrigeration cycle and the high temperature section of the second refrigeration cycle, and the intermediate heat A refrigerator-freezer comprising a receiver that is disposed on the first refrigeration cycle side of the exchanger and that separates the gas-liquid of the first refrigerant and discharges the gas refrigerant. 前記中間熱交換器は第1冷凍サイクルの上流側と第2冷凍サイクルの下流側とが熱交換し、第1冷凍サイクルの下流側と第2冷凍サイクルの上流側とが熱交換することを特徴とする請求項1に記載の冷凍冷蔵庫。   The intermediate heat exchanger exchanges heat between the upstream side of the first refrigeration cycle and the downstream side of the second refrigeration cycle, and exchanges heat between the downstream side of the first refrigeration cycle and the upstream side of the second refrigeration cycle. The refrigerator-freezer according to claim 1. 前記中間熱交換器は、第1冷凍サイクルの前記レシーバよりも上流で第2冷媒から主に潜熱を奪って第1冷媒に潜熱を与える潜熱熱交換部と、第1冷凍サイクルの前記レシーバよりも下流で第2冷媒から主に顕熱を奪って第1冷媒に顕熱を与える顕熱熱交換部とを有することを特徴とする請求項2に記載の冷凍冷蔵庫。   The intermediate heat exchanger has a latent heat exchange section that mainly takes latent heat from the second refrigerant upstream of the receiver of the first refrigeration cycle and applies latent heat to the first refrigerant, and more than the receiver of the first refrigeration cycle. The refrigerator-freezer according to claim 2, further comprising a sensible heat exchange section that draws sensible heat mainly from the second refrigerant and applies sensible heat to the first refrigerant downstream. 第1、第2冷凍サイクルの高温部にそれぞれ配される第1、第2放熱器を備え、前記中間熱交換器を第2放熱器の後段に配置したことを特徴とする請求項1〜請求項3のいずれかに記載の冷凍冷蔵庫。   The first and second radiators respectively disposed in the high-temperature portions of the first and second refrigeration cycles are provided, and the intermediate heat exchanger is arranged at the subsequent stage of the second radiator. Item 4. The refrigerator-freezer according to any one of Items 3. 第2蒸発器から流出した第2冷媒が前記中間熱交換器から流出した第2冷媒との間で熱交換を行った後、第1放熱器から流出した第1冷媒との間で熱交換を行うことを特徴とする請求項4に記載の冷凍冷蔵庫。   The second refrigerant flowing out from the second evaporator exchanges heat with the second refrigerant flowing out from the intermediate heat exchanger, and then exchanges heat with the first refrigerant flowing out from the first radiator. It performs, The refrigerator-freezer of Claim 4 characterized by the above-mentioned. 第1、第2冷媒がイソブタンから成ることを特徴とする請求項1〜請求項5のいずれかに記載の冷凍冷蔵庫。   6. The refrigerator-freezer according to claim 1, wherein the first and second refrigerants are made of isobutane. 第1冷媒の沸点が第2冷媒の沸点よりも高いことを特徴とする請求項1〜請求項5のいずれかに記載の冷凍冷蔵庫。   The refrigerator according to any one of claims 1 to 5, wherein the boiling point of the first refrigerant is higher than the boiling point of the second refrigerant. 第1冷媒がイソブタンから成るとともに、第2冷媒がプロパンまたは二酸化炭素から成ることを特徴とする請求項7に記載の冷凍冷蔵庫。   The refrigerator-freezer according to claim 7, wherein the first refrigerant is made of isobutane and the second refrigerant is made of propane or carbon dioxide. 第1、第2冷却室と、第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、第1冷凍サイクルの低温部に配されて第1冷却室を冷却する第1蒸発器と、第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、第1冷凍サイクルの低温部よりも低温に維持される第2冷凍サイクルの低温部に配されて第2冷却室を冷却する第2蒸発器と、第1冷凍サイクルの低温部と第2冷凍サイクルの高温部との間で熱交換を行う中間熱交換器と、前記中間熱交換器の第1冷凍サイクル側に配されるとともに第1冷媒の気液を分離してガス冷媒を吐出するレシーバとを備えたことを特徴とする冷却庫。   First and second cooling chambers, a first compressor that operates a first refrigeration cycle through which a first refrigerant flows, and a first evaporator that is disposed in a low temperature portion of the first refrigeration cycle and cools the first cooling chamber And a second compressor operating the second refrigeration cycle through which the second refrigerant flows, and a second cooling chamber disposed in a low temperature part of the second refrigeration cycle maintained at a lower temperature than the low temperature part of the first refrigeration cycle A second evaporator that cools the refrigerant, an intermediate heat exchanger that exchanges heat between the low temperature portion of the first refrigeration cycle and the high temperature portion of the second refrigeration cycle, and the first refrigeration cycle side of the intermediate heat exchanger And a receiver for separating the gas-liquid of the first refrigerant and discharging the gas refrigerant.
JP2009100721A 2009-04-17 2009-04-17 Freezer-refrigerator Pending JP2010249444A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009100721A JP2010249444A (en) 2009-04-17 2009-04-17 Freezer-refrigerator
EP09843369A EP2420760A1 (en) 2009-04-17 2009-12-11 Freezer-refrigerator and cooling storage unit
PCT/JP2009/070739 WO2010119591A1 (en) 2009-04-17 2009-12-11 Freezer-refrigerator and cooling storage unit
CN200980158764.0A CN102395840B (en) 2009-04-17 2009-12-11 Freezer-refrigerator
RU2011146643/06A RU2496063C2 (en) 2009-04-17 2009-12-11 Refrigerator with low-temperature separation, and refrigerating storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100721A JP2010249444A (en) 2009-04-17 2009-04-17 Freezer-refrigerator

Publications (1)

Publication Number Publication Date
JP2010249444A true JP2010249444A (en) 2010-11-04

Family

ID=43311983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100721A Pending JP2010249444A (en) 2009-04-17 2009-04-17 Freezer-refrigerator

Country Status (1)

Country Link
JP (1) JP2010249444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102946A (en) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd Freezing refrigeration method and freezing refrigeration facility
KR101327818B1 (en) * 2011-12-16 2013-11-08 부경대학교 산학협력단 A hybrid type cascade refrigeration system
CN105509386A (en) * 2014-09-23 2016-04-20 青岛海尔开利冷冻设备有限公司 Supermarket cold chain and air conditioning linkage system and control method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100164U (en) * 1980-12-09 1982-06-19
JPS5998244U (en) * 1982-12-22 1984-07-03 株式会社日立製作所 Multi-dimensional refrigerator
JPH0510955U (en) * 1991-07-26 1993-02-12 三菱重工業株式会社 Dual refrigerator
JPH0664071U (en) * 1993-02-18 1994-09-09 株式会社東洋製作所 Multi-source refrigerator
JPH0712439A (en) * 1993-06-25 1995-01-17 Daikin Ind Ltd Binary refrigerator
JPH08240363A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Freezing cycle
JPH10103800A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Composite type refrigerating plant
JP2000105012A (en) * 1998-09-30 2000-04-11 Daikin Ind Ltd Refrigerating device
JP2005077042A (en) * 2003-09-02 2005-03-24 Yukinobu Ikemoto Cooling system, and construction method of cooling system
JP2005257164A (en) * 2004-03-11 2005-09-22 Sanden Corp Cooler
JP2008002759A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Binary refrigerating system and cold storage
JP2008107959A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Automatic vending machine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100164U (en) * 1980-12-09 1982-06-19
JPS5998244U (en) * 1982-12-22 1984-07-03 株式会社日立製作所 Multi-dimensional refrigerator
JPH0510955U (en) * 1991-07-26 1993-02-12 三菱重工業株式会社 Dual refrigerator
JPH0664071U (en) * 1993-02-18 1994-09-09 株式会社東洋製作所 Multi-source refrigerator
JPH0712439A (en) * 1993-06-25 1995-01-17 Daikin Ind Ltd Binary refrigerator
JPH08240363A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Freezing cycle
JPH10103800A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Composite type refrigerating plant
JP2000105012A (en) * 1998-09-30 2000-04-11 Daikin Ind Ltd Refrigerating device
JP2005077042A (en) * 2003-09-02 2005-03-24 Yukinobu Ikemoto Cooling system, and construction method of cooling system
JP2005257164A (en) * 2004-03-11 2005-09-22 Sanden Corp Cooler
JP2008002759A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Binary refrigerating system and cold storage
JP2008107959A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Automatic vending machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102946A (en) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd Freezing refrigeration method and freezing refrigeration facility
KR101327818B1 (en) * 2011-12-16 2013-11-08 부경대학교 산학협력단 A hybrid type cascade refrigeration system
CN105509386A (en) * 2014-09-23 2016-04-20 青岛海尔开利冷冻设备有限公司 Supermarket cold chain and air conditioning linkage system and control method thereof
CN105509386B (en) * 2014-09-23 2018-06-15 青岛海尔开利冷冻设备有限公司 Supermarket's cold chain and air conditioning linkend system and control method

Similar Documents

Publication Publication Date Title
WO2010119591A1 (en) Freezer-refrigerator and cooling storage unit
JP6125000B2 (en) Dual refrigeration equipment
JP2009300000A (en) Refrigerator-freezer and cooling storage
WO2012066763A1 (en) Freezer
JP5261066B2 (en) Refrigerator and refrigerator
JP2004190917A (en) Refrigeration device
JP2005337700A (en) Refrigerant cooling circuit
JP2008002759A (en) Binary refrigerating system and cold storage
JP2005326138A (en) Cooling device and vending machine with it
JP2007218459A (en) Refrigerating cycle device and cool box
KR20110072687A (en) Refrigerator
CA2710478A1 (en) Defrost system and method for a subcritical cascade r-744 refrigeration system
CN100371662C (en) Refrigerator
JP2007218460A (en) Refrigerating cycle device and cool box
WO2010098005A1 (en) Binary heat pump and refrigerator
JP2008116100A (en) Commodity storage apparatus
JP5270523B2 (en) Freezer refrigerator
JP2013092291A (en) Refrigerator and freezer device
JP2007093112A (en) Cooling storage
KR20100027353A (en) Refrigerating and freezing apparatus
JP2010249444A (en) Freezer-refrigerator
JP5506638B2 (en) Refrigeration equipment
JP2007051788A (en) Refrigerating device
JP2005257149A (en) Refrigerator
JP2004324902A (en) Freezing refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120820

A521 Written amendment

Effective date: 20121012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130416

Free format text: JAPANESE INTERMEDIATE CODE: A02