JP2005337700A - Refrigerant cooling circuit - Google Patents

Refrigerant cooling circuit Download PDF

Info

Publication number
JP2005337700A
JP2005337700A JP2005125226A JP2005125226A JP2005337700A JP 2005337700 A JP2005337700 A JP 2005337700A JP 2005125226 A JP2005125226 A JP 2005125226A JP 2005125226 A JP2005125226 A JP 2005125226A JP 2005337700 A JP2005337700 A JP 2005337700A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure side
compressor
refrigerant pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005125226A
Other languages
Japanese (ja)
Inventor
Kimimichi Kuboyama
久保山  公道
Toshiaki Tsuchiya
敏章 土屋
Koji Takiguchi
浩司 滝口
Yuichi Takahashi
裕一 高橋
Kidaiki Fumino
喜代輝 文野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2005125226A priority Critical patent/JP2005337700A/en
Publication of JP2005337700A publication Critical patent/JP2005337700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchanging efficiency in an internal heat exchanger, to inhibit pressure rise on a high pressure side, to promote liquefaction of a refrigerant passing through an evaporator, and to improve the returning of refrigerant oil to a compressor. <P>SOLUTION: A plurality of high pressure-side refrigerant pipes 14A constituting a resisting pipe conduit are mounted inside of a low pressure-side refrigerant pipe 14B, and the low pressure-side refrigerant pipe 14B is covered by a heat insulating material 14C. Thus a heat exchanging area of the high pressure-side refrigerant pipes 14A and the low pressure-side refrigerant pipe 14B can be largely taken, and further the heat exchanging efficiency can be improved as it is hardly affected by the outside air. The refrigerant can be easily liquefied by a gas cooler by improving the heat exchanging efficiency, thus the pressure rise at high pressure side can be inhibited, and the refrigerant oil can be easily returned to the compressor. Further as the high pressure-side refrigerant pipes 14A and the low pressure-side refrigerant pipe 14B are spirally formed in the vertical direction, the refrigerant is delivered from an upper part to a lower part by the low pressure-side refrigerant pipe 14B, and the refrigerant is delivered from the lower part to the upper part by the high pressure-side refrigerant pipe 14A, and the delivery of the refrigerant oil to the compressor can be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば断熱筐体の庫内の冷却を行うための冷媒循環経路を形成する冷媒冷却回路に関するものである。   The present invention relates to a refrigerant cooling circuit that forms a refrigerant circulation path for cooling, for example, an interior of a heat insulating housing.

従来、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどの断熱筐体の冷却庫内を冷却するための冷媒冷却回路が知られている。冷媒冷却回路は、主に圧縮機、放熱器、絞り部、蒸発器を経て冷媒を循環する冷媒循環経路を形成してある。そして、冷媒冷却回路を循環する冷媒としては、地球環境に対する影響の少ない冷媒が使用してある。例えば、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ないなどの点で、二酸化炭素を冷媒として使用してある。   2. Description of the Related Art Conventionally, for example, a refrigerant cooling circuit for cooling the inside of a refrigerator of a heat insulating housing such as a vending machine, a refrigerator, a freezer showcase / refrigerated showcase, or a beverage dispenser is known. The refrigerant cooling circuit forms a refrigerant circulation path for circulating the refrigerant mainly through the compressor, the radiator, the throttle unit, and the evaporator. As the refrigerant circulating in the refrigerant cooling circuit, a refrigerant having little influence on the global environment is used. For example, carbon dioxide is used as a refrigerant in that it has nonflammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

上記冷媒冷却回路では、圧縮機の出口側から放熱器を経て絞り部の入口側までの高圧側における放熱器と絞り部との間、絞り部の出口側から蒸発器を経て圧縮機の入口側までの低圧側における蒸発器と圧縮機との間に内部熱交換器を設けてある。この内部熱交換器は、高圧側の冷媒管路と低圧側の冷媒管路とを、互いに熱交換可能な距離を有して非接触向流するように配設してある。これにより、放熱器から得られる冷媒が液化しやすくなる一方、蒸発器から気化した冷媒が圧縮機に供給されることになる(例えば、特許文献1参照)。   In the refrigerant cooling circuit, between the radiator on the high pressure side from the outlet side of the compressor through the radiator to the inlet side of the throttle unit and the throttle unit, from the outlet side of the throttle unit to the inlet side of the compressor through the evaporator An internal heat exchanger is provided between the evaporator and the compressor on the low pressure side. This internal heat exchanger is arranged so that the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe flow in a non-contact counterflow with a distance allowing heat exchange with each other. Thereby, while the refrigerant | coolant obtained from a radiator becomes easy to liquefy, the refrigerant | coolant vaporized from the evaporator is supplied to a compressor (for example, refer patent document 1).

特開2004−54424号公報JP 2004-54424 A

ところで、冷媒冷却回路の冷媒として二酸化炭素を使用すると、当該二酸化炭素の臨界温度が約31℃と低いことから、従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに圧力が高くなる。そして、上述した従来の冷媒冷却回路では、内部熱交換器が高圧側の冷媒管路と低圧側の冷媒管路とを単純に熱交換可能な距離をおいて設けてあるだけである。このため、内部熱交換器での熱交換効率が悪く、蒸発器を通過した二酸化炭素が一部液化したままで圧縮機に供給されるという問題がある。   By the way, when carbon dioxide is used as the refrigerant in the refrigerant cooling circuit, the critical temperature of the carbon dioxide is as low as about 31 ° C., so that it is far more than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. Pressure increases. In the conventional refrigerant cooling circuit described above, the internal heat exchanger is simply provided at a distance that allows heat exchange between the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe. For this reason, the heat exchange efficiency in an internal heat exchanger is bad, and there exists a problem that the carbon dioxide which passed the evaporator is supplied to a compressor with a part liquefied.

また、内部熱交換器の熱交換効率が悪いと、放熱器の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、放熱器において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。二酸化炭素が一部気化したままであると、高圧側の圧力上昇を抑えることができなくなる。   Moreover, if the heat exchange efficiency of the internal heat exchanger is poor, the temperature of the radiator may exceed the critical temperature of carbon dioxide (about 31 ° C.). In this case, it becomes a supercritical pressure state in which carbon dioxide does not liquefy while being vaporized in the radiator. If the carbon dioxide is partially vaporized, the pressure increase on the high pressure side cannot be suppressed.

また、圧縮機では、その内部に冷凍機油を完全に封止することが困難であり、冷媒循環経路の循環運転時に圧縮機から冷凍機油が吐出される。内部熱交換器の熱交換効率が悪いと、圧縮機から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機に戻すことが難しくなる。   Further, in the compressor, it is difficult to completely seal the refrigerating machine oil therein, and the refrigerating machine oil is discharged from the compressor during the circulation operation of the refrigerant circulation path. If the heat exchange efficiency of the internal heat exchanger is poor, it is difficult to circulate the refrigeration oil discharged from the compressor through the refrigerant circulation path and return it to the compressor.

なお、断熱筐体に複数の冷却庫を有し、各冷却庫内をそれぞれ独立して冷却する場合、具体的には、例えば自動販売機において、複数の商品収納庫をそれぞれ独立して冷却する場合がある。この場合、各冷却庫(商品収納庫)内に蒸発器をそれぞれ配置し、絞り部の出口側の経路を分岐して各蒸発器に接続するとともに、各蒸発器の出口側の経路を集合させて圧縮機に接続することで、圧縮機、放熱器、絞り部を共通とした複数の冷媒循環経路を形成する。また、絞り部から蒸発器に至る上記各経路には、それぞれ電磁弁を設ける。そして、各電磁弁を選択的に開放することによって、開放した電磁弁のある経路に接続した蒸発器を介して冷媒を循環運転させる。これにより、各冷却庫(商品収納庫)を独立して冷却する。しかし、複数の蒸発器を接続して複数の冷媒循環経路を形成した冷媒冷却回路においては、全ての蒸発器を介して冷媒を循環運転した状態を基準として冷媒の循環量を設定している。このため、例えば1つの蒸発器を介して冷媒を循環運転した場合に、循環する冷媒に余剰が発生することになる。この結果、圧縮機に液冷媒が戻って圧縮機が損傷するおそれがある。また、冷媒が気化しない超臨界状態では、余剰冷媒の増加によって液・気体の状態が混在して高圧側圧力が高くなり、圧力異常になって冷媒冷却回路の仕様限界を超えてしまう。この問題は、冷媒冷却回路の冷媒として超臨界温度が約31℃である二酸化炭素を使用した場合に顕著にあらわれることになる。この問題に対し、アキュームレータを用いて、気液を分離することで圧縮機への液冷媒の戻りを防止したり、アキュームレータに冷媒を一時滞留することで高圧側への冷媒流入を防いで高圧側圧力の上昇を防止することが考えられる。しかしながら、冷媒を滞留する容積を有するアキュームレータが必要になることや、冷熱熱量を破棄することになって冷却効率が低下するなどの問題があるため好ましくない。   In addition, when there are a plurality of coolers in the heat insulating housing and each of the coolers is cooled independently, specifically, for example, in a vending machine, the plurality of product storages are cooled independently. There is a case. In this case, an evaporator is arranged in each cooler (commodity storage), the outlet side path of the throttle is branched and connected to each evaporator, and the outlet side path of each evaporator is assembled. By connecting to the compressor, a plurality of refrigerant circulation paths having a common compressor, radiator, and throttle are formed. In addition, an electromagnetic valve is provided in each of the paths from the throttle unit to the evaporator. Then, by selectively opening each solenoid valve, the refrigerant is circulated through an evaporator connected to a path with the opened solenoid valve. Thereby, each refrigerator (product storage) is cooled independently. However, in a refrigerant cooling circuit in which a plurality of evaporators are connected to form a plurality of refrigerant circulation paths, the amount of refrigerant circulation is set based on the state in which the refrigerant is circulated through all the evaporators. For this reason, for example, when the refrigerant is circulated through one evaporator, surplus is generated in the circulating refrigerant. As a result, the liquid refrigerant may return to the compressor and the compressor may be damaged. Further, in the supercritical state where the refrigerant is not vaporized, the excess refrigerant increases, the liquid / gas state is mixed, the high-pressure side pressure is increased, and the pressure becomes abnormal and exceeds the specification limit of the refrigerant cooling circuit. This problem becomes prominent when carbon dioxide having a supercritical temperature of about 31 ° C. is used as the refrigerant in the refrigerant cooling circuit. To solve this problem, the liquid refrigerant is prevented from returning to the compressor by separating the gas and liquid using an accumulator, or the refrigerant is temporarily retained in the accumulator to prevent the refrigerant from flowing into the high pressure side. It is conceivable to prevent an increase in pressure. However, it is not preferable because an accumulator having a volume for retaining the refrigerant is required and the cooling efficiency is reduced due to discarding the amount of heat generated by cooling.

本発明は、上記実情に鑑みて、内部熱交換器における熱交換効率を向上させて、高圧側の圧力上昇を抑えることができ、また放熱器において冷媒の液化を促進させることができ、さらに圧縮機への冷凍機油の戻りを良くすることができ、さらにまた複数の冷媒循環経路を形成した場合の余剰冷媒による不都合を防ぐことができる冷媒冷却回路を提供することを目的とする。   In view of the above circumstances, the present invention can improve the heat exchange efficiency in the internal heat exchanger, suppress an increase in pressure on the high pressure side, promote the liquefaction of the refrigerant in the radiator, and further compress An object of the present invention is to provide a refrigerant cooling circuit that can improve the return of refrigeration oil to the machine and that can prevent inconvenience due to excess refrigerant when a plurality of refrigerant circulation paths are formed.

上記の目的を達成するために、本発明の請求項1に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成して、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けた冷媒冷却回路において、前記内部熱交換器は、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、前記低圧側冷媒配管と前記高圧側冷媒配管との間に対向流をなすことを特徴とする。   In order to achieve the above object, a refrigerant cooling circuit according to claim 1 of the present invention includes a compressor that compresses a refrigerant, a radiator that dissipates heat supplied from the compressor, and is supplied from the radiator. Forming a refrigerant circulation path having a throttle part for adjusting the flow rate of the refrigerant to be cooled and an evaporator for evaporating the refrigerant supplied from the throttle part and returning it to the compressor, In the refrigerant cooling circuit provided with an internal heat exchanger for exchanging heat between the low pressure side and the low pressure side, the internal heat exchanger includes a high pressure side refrigerant pipe forming a resistance line inside the low pressure side refrigerant pipe. A counter flow is formed between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe.

本発明の請求項2に係る冷媒冷却回路は、上記請求項1において、前記内部熱交換器は、抵抗管路をなす前記高圧側冷媒配管を前記低圧側冷媒配管の内部に複数内装してあることを特徴とする。   A refrigerant cooling circuit according to a second aspect of the present invention is the refrigerant cooling circuit according to the first aspect, wherein the internal heat exchanger includes a plurality of the high-pressure side refrigerant pipes forming a resistance pipe in the low-pressure side refrigerant pipe. It is characterized by that.

本発明の請求項3に係る冷媒冷却回路は、上記請求項1または2において、前記低圧側冷媒配管を断熱材で被覆してあることを特徴とする。   A refrigerant cooling circuit according to a third aspect of the present invention is characterized in that, in the first or second aspect, the low-pressure side refrigerant pipe is covered with a heat insulating material.

上記の目的を達成するために、本発明の請求項4に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成して、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けた冷媒冷却回路において、前記内部熱交換器は、扁平形状とした低圧側冷媒配管と、扁平形状とした内部に複数の抵抗管路を有した高圧側冷媒配管とを接触した状態で並設して、前記低圧側冷媒配管と前記高圧側冷媒配管との間に対向流をなすことを特徴とする。   In order to achieve the above object, a refrigerant cooling circuit according to a fourth aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and is supplied from the radiator. Forming a refrigerant circulation path having a throttle part for adjusting the flow rate of the refrigerant to be cooled and an evaporator for evaporating the refrigerant supplied from the throttle part and returning it to the compressor, In the refrigerant cooling circuit provided with the internal heat exchanger for exchanging heat between the low-pressure side and the low-pressure side, the internal heat exchanger includes a flat low-pressure refrigerant pipe and a plurality of resistance pipes inside the flat shape A high pressure side refrigerant pipe having a passage is arranged in parallel with each other, and a counter flow is formed between the low pressure side refrigerant pipe and the high pressure side refrigerant pipe.

本発明の請求項5に係る冷媒冷却回路は、上記請求項4において、前記低圧側冷媒配管と前記高圧側冷媒配管とを共に断熱材で被覆してあることを特徴とする。   The refrigerant cooling circuit according to a fifth aspect of the present invention is characterized in that, in the fourth aspect, the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe are both covered with a heat insulating material.

本発明の請求項6に係る冷媒冷却回路は、上記請求項1〜5のいずれか一つにおいて、前記内部熱交換器は、前記低圧側冷媒配管が上方から下方に向けて冷媒を送り、高圧側冷媒配管が下方から上方に向けて冷媒を送る形態で設けてあることを特徴とする。   A refrigerant cooling circuit according to a sixth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to fifth aspects, wherein the internal heat exchanger is configured to send the refrigerant from above to the low pressure side refrigerant pipe, The side refrigerant pipe is provided in such a form that the refrigerant is sent from below to above.

本発明の請求項7に係る冷媒冷却回路は、上記請求項1〜6のいずれか一つにおいて、前記内部熱交換器は、前記低圧側冷媒配管および前記高圧側冷媒配管の長さを1.3m以上としてあることを特徴とする。   A refrigerant cooling circuit according to a seventh aspect of the present invention is the refrigerant cooling circuit according to any one of the first to sixth aspects, wherein the internal heat exchanger has a length of the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe set to 1. It is characterized by being 3 m or more.

本発明の請求項8に係る冷媒冷却回路は、上記請求項1〜7のいずれか一つにおいて、前記内部熱交換器は、前記低圧側冷媒配管および前記高圧側冷媒配管を螺旋状に配してあることを特徴とする。   The refrigerant cooling circuit according to an eighth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to seventh aspects, wherein the internal heat exchanger has the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe arranged in a spiral shape. It is characterized by being.

本発明の請求項9に係る冷媒冷却回路は、上記請求項1〜8のいずれか一つにおいて、前記冷媒が二酸化炭素であることを特徴とする。   A refrigerant cooling circuit according to a ninth aspect of the present invention is the refrigerant cooling circuit according to any one of the first to eighth aspects, wherein the refrigerant is carbon dioxide.

本発明の請求項10に係る冷媒冷却回路は、二酸化炭素冷媒を圧縮する圧縮機と、前記圧縮機から供給される二酸化炭素冷媒を放熱させる放熱器と、前記放熱器から供給される二酸化炭素冷媒の流量を調節する絞り部と、前記絞り部から供給される二酸化炭素冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて、前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成した冷媒冷却回路において、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けたことを特徴とする。   A refrigerant cooling circuit according to claim 10 of the present invention includes a compressor that compresses carbon dioxide refrigerant, a radiator that dissipates heat of carbon dioxide refrigerant supplied from the compressor, and a carbon dioxide refrigerant supplied from the radiator. A throttle unit that adjusts the flow rate of the refrigerant, and an evaporator that evaporates the carbon dioxide refrigerant supplied from the throttle unit and returns the refrigerant to the compressor. A plurality of the evaporators are provided, and the compressor, the radiator And a refrigerant cooling circuit in which a plurality of refrigerant circulation paths having the same throttle portion are formed, and an internal heat exchanger that performs heat exchange between the high-pressure side and the low-pressure side of the refrigerant circulation path is provided. To do.

本発明の請求項11に係る冷媒冷却回路は、上記請求項10において、前記内部熱交換器は、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、前記低圧側冷媒配管と前記高圧側冷媒配管との間で熱交換を行うことを特徴とする。   The refrigerant cooling circuit according to an eleventh aspect of the present invention is the refrigerant cooling circuit according to the tenth aspect, wherein the internal heat exchanger includes a high-pressure side refrigerant pipe forming a resistance pipe inside the low-pressure side refrigerant pipe, Heat exchange is performed between the refrigerant pipe and the high-pressure side refrigerant pipe.

本発明の請求項12に係る冷媒冷却回路は、上記請求項10または11において、前記蒸発器から前記圧縮機に帰還する二酸化炭素冷媒が余剰を伴うとき、前記内部熱交換器は、前記高圧側冷媒配管の出口の冷媒温度を、高圧側圧力が前記圧縮機の仕様限界を下回るような温度にする熱交換量に設定してあることを特徴とする。   A refrigerant cooling circuit according to a twelfth aspect of the present invention is the refrigerant cooling circuit according to the tenth or eleventh aspect, wherein when the carbon dioxide refrigerant returning from the evaporator to the compressor is accompanied by surplus, the internal heat exchanger is The refrigerant temperature at the outlet of the refrigerant pipe is set to an amount of heat exchange so that the high-pressure side pressure is lower than the specification limit of the compressor.

本発明に係る冷媒冷却回路は、内部熱交換器について、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、低圧側冷媒配管と高圧側冷媒配管との間に対向流をなす。これにより、相互の熱交換面積を大きく取れるので熱交換効率を向上することができる。また、抵抗管路をなす複数の高圧側冷媒配管を低圧側冷媒配管の内部に内装することで、相互の熱交換面積をさらに大きく取れるので熱交換効率をさらに向上することができる。さらに、低圧側冷媒配管を断熱材で被覆することで、熱交換に際して外気の影響、すなわち外部との熱交換を抑えるので熱交換効率をさらに向上することができる。   The refrigerant cooling circuit according to the present invention includes an internal heat exchanger in which a high-pressure side refrigerant pipe forming a resistance pipe is provided inside a low-pressure side refrigerant pipe, and is opposed between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe. Make a flow. Thereby, since a mutual heat exchange area can be taken large, heat exchange efficiency can be improved. In addition, by installing a plurality of high-pressure refrigerant pipes that form resistance pipes inside the low-pressure refrigerant pipe, the heat exchange area can be further increased, so that the heat exchange efficiency can be further improved. Furthermore, by covering the low-pressure refrigerant pipe with a heat insulating material, the heat exchange efficiency can be further improved because the influence of outside air during heat exchange, that is, heat exchange with the outside is suppressed.

また、本発明に係る冷媒冷却回路は、内部熱交換器について、扁平形状とした低圧側冷媒配管と、扁平形状とした内部に複数の抵抗管路を有した高圧側冷媒配管とを接触した状態で並設して、低圧側冷媒配管と高圧側冷媒配管との間に対向流をなす。これにより、相互の熱交換面積を大きく取れるので熱交換効率を向上することができる。さらに、低圧側冷媒配管と高圧側冷媒配管とを共に断熱材で被覆することで、熱交換に際して外気の影響を、すなわち外部との熱交換抑えるので熱交換効率をさらに向上することができる。   The refrigerant cooling circuit according to the present invention is a state in which the flat low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe having a plurality of resistance pipes in the flat shape are in contact with each other for the internal heat exchanger. Are arranged in parallel to form a counter flow between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe. Thereby, since a mutual heat exchange area can be taken large, heat exchange efficiency can be improved. Furthermore, by covering both the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe with a heat insulating material, the influence of outside air during heat exchange, that is, heat exchange with the outside can be suppressed, so that the heat exchange efficiency can be further improved.

そして、熱交換効率が向上することにより、放熱器において冷媒が液化しやすくなるので、高圧側の圧力上昇を抑えることができる。また、熱交換効率が向上することにより、蒸発器において二酸化炭素が気化するので、一部液化したままで二酸化炭素が圧縮機に供給される事態を無くすことができる。さらに、熱交換効率が向上することにより、圧縮機から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機に戻し易くすることができる。   And since heat-exchange efficiency improves and a refrigerant | coolant becomes easy to liquefy in a heat radiator, the pressure rise on a high voltage | pressure side can be suppressed. Further, since the heat exchange efficiency is improved, carbon dioxide is vaporized in the evaporator, so that it is possible to eliminate the situation where carbon dioxide is supplied to the compressor while being partially liquefied. Furthermore, by improving the heat exchange efficiency, the refrigeration oil discharged from the compressor can be easily circulated through the refrigerant circulation path and returned to the compressor.

また、低圧側冷媒配管が上方から下方に向けて冷媒を送り、高圧側冷媒配管が下方から上方に向けて冷媒を送る形態で設けることで、低圧側において圧縮機への冷凍機油の戻りを良くすることができる。   In addition, the low pressure side refrigerant pipe sends the refrigerant from above to below, and the high pressure side refrigerant pipe sends the refrigerant from below to above, so that the refrigeration oil can be returned to the compressor on the low pressure side. can do.

また、低圧側冷媒配管および高圧側冷媒配管の長さを1.3m以上としてあれば、内部熱交換器の高圧側出口の冷媒温度を所定温度以下に冷却して高圧側圧力が仕様限界を超える事態を防ぐことができる。さらに、低圧側冷媒配管および高圧側冷媒配管を螺旋状に配すれば、低圧側冷媒配管および高圧側冷媒配管を長尺に形成しても設置容積を低減することができる。   If the length of the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe is set to 1.3 m or more, the refrigerant temperature at the high-pressure side outlet of the internal heat exchanger is cooled to a predetermined temperature or lower, and the high-pressure side pressure exceeds the specification limit. The situation can be prevented. Furthermore, if the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe are arranged in a spiral shape, the installation volume can be reduced even if the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe are formed long.

特に、本発明の内部熱交換器は、冷媒として二酸化炭素を用いて冷媒循環経路が比較的高圧状態になる冷媒冷却回路に有用である。   In particular, the internal heat exchanger of the present invention is useful for a refrigerant cooling circuit in which carbon dioxide is used as a refrigerant and the refrigerant circulation path is in a relatively high pressure state.

また、蒸発器を複数設けて、圧縮機、放熱器および絞り部を共通とした複数の冷媒循環経路を形成して、冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けた。そして、内部熱交換器は、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、前記低圧側冷媒配管と前記高圧側冷媒配管との間で熱交換を行う。これにより、二酸化炭素冷媒を用いて複数の冷媒循環経路を形成した冷媒冷却回路において、例えば1つの蒸発器を介して冷媒を循環運転した場合に、循環する冷媒に余剰が発生することになるが、低圧側冷媒配管および高圧側冷媒配管によって低圧側と高圧側との間で熱交換させることで液冷媒を気化して圧縮機に戻すことが可能になる。この結果、圧縮機における液圧縮を防いで圧縮機の損傷を防止することができる。また、同時に高圧側を冷却するため、冷媒密度が高くなり高圧側圧力を下げることができる。特に、余剰冷媒量が多い場合には、高圧側圧力が高くなるが冷却熱容量(熱交換量)も大きくなるため、高圧側圧力を低下させることができる。   Also, internal heat is provided in which a plurality of evaporators are provided to form a plurality of refrigerant circulation paths that share a compressor, a radiator, and a throttle, and heat is exchanged between the high-pressure side and the low-pressure side of the refrigerant circulation path. An exchange was provided. The internal heat exchanger includes a high-pressure side refrigerant pipe forming a resistance line inside the low-pressure side refrigerant pipe, and performs heat exchange between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe. As a result, in a refrigerant cooling circuit in which a plurality of refrigerant circulation paths are formed using carbon dioxide refrigerant, for example, when the refrigerant is circulated through one evaporator, surplus is generated in the circulating refrigerant. The liquid refrigerant can be vaporized and returned to the compressor by exchanging heat between the low pressure side and the high pressure side through the low pressure side refrigerant pipe and the high pressure side refrigerant pipe. As a result, liquid compression in the compressor can be prevented and damage to the compressor can be prevented. Moreover, since the high pressure side is cooled at the same time, the refrigerant density increases and the high pressure side pressure can be lowered. In particular, when the surplus refrigerant amount is large, the high-pressure side pressure increases, but the cooling heat capacity (heat exchange amount) also increases, so the high-pressure side pressure can be reduced.

以下に添付図面を参照して、本発明に係る冷媒冷却回路の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of a refrigerant cooling circuit according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る冷媒冷却回路の一実施例を示す概略図である。図1に示すように、本実施例における冷媒冷却回路は、主に、圧縮機1、ガスクーラー(放熱器)2、電子膨張弁(絞り部)3、蒸発器4を接続して、冷媒を循環可能な冷媒循環経路を形成したものである。また、冷媒は、本実施例では、例えば二酸化炭素を使用してある。二酸化炭素は、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ない冷媒である。   FIG. 1 is a schematic view showing an embodiment of a refrigerant cooling circuit according to the present invention. As shown in FIG. 1, the refrigerant cooling circuit in this embodiment mainly includes a compressor 1, a gas cooler (heat radiator) 2, an electronic expansion valve (throttle portion) 3, and an evaporator 4 to connect refrigerant. A circulating refrigerant circulation path is formed. In the present embodiment, for example, carbon dioxide is used as the refrigerant. Carbon dioxide is a refrigerant that has non-flammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

圧縮機1は、蒸発器4から帰還される二酸化炭素を圧縮して高温高圧の状態とするものである。圧縮機1は、本実施例では、中間熱交換器10を使用して2段階の圧縮動作を実行する。具体的に、圧縮機1は、2段階の圧縮動作において、1段階目の圧縮動作を行う第1圧縮機1aと、2段階目の圧縮動作を行う第2圧縮機1bとの間に中間熱交換器10を設けてある。そして、中間熱交換器10は、第1圧縮機1aによる1段階目の圧縮動作の後に、第1圧縮機1aが圧縮した状態の二酸化炭素を冷却して第2圧縮機1bに戻す。このように、圧縮機1は、中間熱交換器10を介して2段階の圧縮動作を実行することで、低消費電力で高圧縮効率を得て二酸化炭素を所望とする高温高圧の状態に圧縮することが可能になる。なお、本実施例では、第1圧縮機1aでの1段階目の圧縮によって二酸化炭素を約6MPaに圧縮し、第2圧縮機1bでの2段階目の圧縮によって二酸化炭素を約9MPaに圧縮する。   The compressor 1 compresses the carbon dioxide returned from the evaporator 4 to bring it into a high temperature and high pressure state. In the present embodiment, the compressor 1 uses the intermediate heat exchanger 10 to perform a two-stage compression operation. Specifically, in the two-stage compression operation, the compressor 1 has an intermediate heat between the first compressor 1a that performs the first-stage compression operation and the second compressor 1b that performs the second-stage compression operation. An exchanger 10 is provided. Then, after the first stage compression operation by the first compressor 1a, the intermediate heat exchanger 10 cools the carbon dioxide compressed by the first compressor 1a and returns it to the second compressor 1b. In this way, the compressor 1 performs a two-stage compression operation via the intermediate heat exchanger 10, thereby obtaining high compression efficiency with low power consumption and compressing carbon dioxide to a desired high temperature and high pressure state. It becomes possible to do. In this embodiment, carbon dioxide is compressed to about 6 MPa by the first stage compression in the first compressor 1a, and carbon dioxide is compressed to about 9 MPa by the second stage compression in the second compressor 1b. .

また、圧縮機1には、オイルセパレータ11が接続してある。オイルセパレータ11は、圧縮機1から吐出した冷凍機油を圧縮機1に戻すためのものである。冷凍機油は、圧縮機1の内部における摩擦、冷媒漏れなどを防止するが、この冷凍機油を圧縮機1の内部で完全に封止することが困難である。特に、上記のごとく圧縮機1によって二酸化炭素を高圧に圧縮しており、この圧力が従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに高圧であるので、圧縮機1からの冷凍機油の吐出量は多くなる。そこで、本実施例では、圧縮機1において、第2圧縮機1bの出口側と、第1圧縮機1aの入口側との間にオイルセパレータ11を接続しており、第2圧縮機1bから吐出した冷凍機油を第1圧縮機1aに戻している。   An oil separator 11 is connected to the compressor 1. The oil separator 11 is for returning the refrigeration oil discharged from the compressor 1 to the compressor 1. The refrigerating machine oil prevents friction and refrigerant leakage in the compressor 1, but it is difficult to completely seal the refrigerating machine oil inside the compressor 1. In particular, the compressor 1 compresses carbon dioxide to a high pressure as described above, and this pressure is much higher than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. The amount of refrigeration oil discharged from the machine 1 increases. Therefore, in the present embodiment, in the compressor 1, the oil separator 11 is connected between the outlet side of the second compressor 1b and the inlet side of the first compressor 1a, and discharged from the second compressor 1b. The refrigerating machine oil thus returned is returned to the first compressor 1a.

なお、圧縮機1としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機、或いは、これらの圧縮能力を調整可能なインバータ圧縮機などがある。そして、冷媒冷却回路を配設する対象、環境、あるいは、冷媒冷却回路のコストなどに見合う圧縮機を適宜適用すればよい。   The compressor 1 includes a reciprocating compressor, a rotary compressor, a scroll compressor, or an inverter compressor that can adjust the compression capacity thereof. And what is necessary is just to apply suitably the compressor corresponding to the object which arrange | positions a refrigerant | coolant cooling circuit, an environment, or the cost of a refrigerant | coolant cooling circuit.

ガスクーラー2は、圧縮機1から供給される高温高圧の二酸化炭素を、放熱させて二酸化炭素を液化するためのものである。本実施例におけるガスクーラー2は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。このガスクーラー2には、ファン21が設けてある。ファン21は、ガスクーラー2を送風するためのものであり、ファンモータ22によって駆動される。   The gas cooler 2 is for liquefying carbon dioxide by releasing heat from high-temperature and high-pressure carbon dioxide supplied from the compressor 1. The gas cooler 2 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The gas cooler 2 is provided with a fan 21. The fan 21 is for blowing the gas cooler 2 and is driven by a fan motor 22.

電子膨張弁3は、ガスクーラー2から供給される二酸化炭素を減圧し、蒸発温度および流量を制御するためのものである。   The electronic expansion valve 3 is for reducing the pressure of carbon dioxide supplied from the gas cooler 2 and controlling the evaporation temperature and flow rate.

蒸発器4は、電子膨張弁3から供給される液体の二酸化炭素が蒸発したとき、周囲の熱を吸収することによって周囲温度を冷却するためのものである。本実施例における蒸発器4は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。この蒸発器4には、ファン41が設けてある。ファン41は、蒸発器4を送風するためのものであり、ファンモータ42によって駆動される。   The evaporator 4 is for cooling the ambient temperature by absorbing ambient heat when the liquid carbon dioxide supplied from the electronic expansion valve 3 evaporates. The evaporator 4 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The evaporator 4 is provided with a fan 41. The fan 41 is for blowing the evaporator 4 and is driven by a fan motor 42.

蒸発器4は、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどにおける断熱筐体の冷却庫の内部に配置してある。特に、本実施例では、例えば自動販売機において、複数(実施例では3室)の冷却庫(商品収納庫)をそれぞれ独立して冷却するために、各冷却庫内に蒸発器4(4a,4b,4c)をそれぞれ配置してある。すなわち、蒸発器4a,4b,4cは、電子膨張弁3から3方に分岐したそれぞれの経路に接続してある。また、前記各経路において各蒸発器4a,4b,4cの入口側には、各電磁弁12a,12b,12cがそれぞれ設けてある。そして、各電磁弁12a,12b,12cを選択的に開放することで、各蒸発器4a,4b,4cに電子膨張弁3からの二酸化炭素が供給される。また、各蒸発器4a,4b,4cの出口側の経路は、互いに集合して圧縮機1の第1圧縮機1aに接続してある。なお、本実施例における電磁弁12a,12b,12cは、その入口側と出口側との圧力差(例えば入口側が高圧で出力側が低圧)、およびバネ弾性力を利用することによって弁体を弁座に当接させるよう助勢して閉鎖状態になり、この状態から電磁コイル部に通電されると弁体が弁座から離間されて開放状態になる構成のものが採用してある。   The evaporator 4 is arrange | positioned inside the refrigerator of the heat insulation housing | casing in a vending machine, a refrigerator, a freezer showcase, a refrigerated showcase, or a drink dispenser etc., for example. In particular, in this embodiment, for example, in an automatic vending machine, in order to cool a plurality of (three rooms in the embodiment) refrigerators (product storage units) independently, the evaporators 4 (4a, 4a, 4b, 4c) are arranged respectively. That is, the evaporators 4a, 4b, and 4c are connected to respective paths branched from the electronic expansion valve 3 in three directions. Further, electromagnetic valves 12a, 12b, and 12c are provided on the inlet sides of the evaporators 4a, 4b, and 4c in the respective paths. And carbon dioxide from the electronic expansion valve 3 is supplied to each evaporator 4a, 4b, 4c by selectively open | releasing each solenoid valve 12a, 12b, 12c. Further, the outlet-side paths of the evaporators 4a, 4b, and 4c are gathered together and connected to the first compressor 1a of the compressor 1. The solenoid valves 12a, 12b, and 12c in the present embodiment are configured so that the valve body is seated by utilizing a pressure difference between the inlet side and the outlet side (for example, the inlet side is high pressure and the output side is low pressure) and spring elastic force. A configuration is adopted in which the valve body is separated from the valve seat and opened when the electromagnetic coil portion is energized from this state.

また、電子膨張弁3から各蒸発器4a,4b,4cに至る各経路であって、各電磁弁12a,12b,12cと各蒸発器4a,4b,4cとの間には、それぞれ減圧手段13a,13b,13cが設けてある。減圧手段13a,13b,13cは、電磁弁12a,12b,12cと蒸発器4a,4b,4cとの間の経路中に圧力抵抗を付与する絞りとして作用する。本実施例における減圧手段13a,13b,13cは、前記各経路中に設けたオリフィスとして形成してある。なお、減圧手段13a,13b,13cは、経路中に圧力抵抗を付与する絞りとして作用するものであればオリフィスに限定されない。   The decompression means 13a is connected to each of the evaporators 4a, 4b, and 4c from the electronic expansion valve 3 and between each of the solenoid valves 12a, 12b, and 12c and each of the evaporators 4a, 4b, and 4c. , 13b, 13c are provided. The decompression means 13a, 13b, and 13c act as throttles that provide pressure resistance in the path between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c. The decompression means 13a, 13b, and 13c in the present embodiment are formed as orifices provided in the respective paths. The decompression means 13a, 13b, and 13c are not limited to orifices as long as they function as a throttle that provides pressure resistance in the path.

なお、蒸発器4の周辺部の温度は、蒸発器4が周辺部の熱を吸収することによって低下する。冷凍サイクルとしては、蒸発器4で吸収した蒸発熱を捨てる必要があるが、蒸発器4を設けた断熱筐体の庫内は、外部の気温よりかなり低い温度になっており、低温部から奪った熱を高温の外部へ直接捨てることができない。そこで、圧縮機1は、蒸発器4の蒸発熱を外部の気温より高い温度にして捨てるため、蒸発器4から供給される二酸化炭素を高温高圧の蒸気に変換する役目を担っている。   Note that the temperature at the periphery of the evaporator 4 decreases as the evaporator 4 absorbs the heat at the periphery. As the refrigeration cycle, it is necessary to throw away the heat of evaporation absorbed by the evaporator 4, but the inside of the heat-insulating housing provided with the evaporator 4 is considerably lower than the outside temperature, and is taken away from the low temperature part. Heat cannot be thrown away directly to the hot outside. Therefore, the compressor 1 plays the role of converting carbon dioxide supplied from the evaporator 4 into high-temperature and high-pressure steam in order to discard the evaporation heat of the evaporator 4 at a temperature higher than the outside air temperature.

また、断熱筐体の冷却庫の内部に設けた蒸発器4に関し、冷媒循環経路への冷媒の循環運転時に伴って結露水などが排水として発生する。そして、排水は、冷却庫の外部であって圧縮機1およびガスクーラー2などを配した部位にある蒸発手段15に導かれる。この蒸発手段15は、圧縮機1(第2圧縮機1b)とガスクーラー2との間であって、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に設けてある。図には明示しないが、蒸発手段15は、排水を導かれる蒸発皿と、当該蒸発皿の内方に配置した蒸発パイプと、当該蒸発パイプに関わる吸水性の蒸発シートとを有している。蒸発パイプは、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に接続してあって、圧縮機1から吐出した高温高圧の二酸化炭素が通過する。すなわち、蒸発皿に導かれた排水は、高温高圧の二酸化炭素が通過する蒸発パイプによって加熱され、蒸発シートに吸収されて蒸発する。このとき、排水によって蒸発パイプに通過する二酸化炭素を予冷する。   Further, with respect to the evaporator 4 provided inside the cooler of the heat insulating housing, dew condensation water or the like is generated as drainage during the refrigerant circulation operation to the refrigerant circulation path. Then, the waste water is led to the evaporation means 15 located outside the cooler and provided with the compressor 1, the gas cooler 2, and the like. The evaporation means 15 is provided between the compressor 1 (second compressor 1 b) and the gas cooler 2 and in a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2. Although not clearly shown in the figure, the evaporating means 15 includes an evaporating dish into which drainage is guided, an evaporating pipe disposed inside the evaporating dish, and a water-absorbing evaporating sheet related to the evaporating pipe. The evaporation pipe is connected to a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2, and high-temperature and high-pressure carbon dioxide discharged from the compressor 1 passes therethrough. That is, the waste water led to the evaporating dish is heated by the evaporating pipe through which high-temperature and high-pressure carbon dioxide passes, and is absorbed by the evaporating sheet and evaporates. At this time, carbon dioxide passing through the evaporation pipe is pre-cooled by drainage.

ところで、二酸化炭素を冷媒として使用したとき、外気温が高温となる夏場などでは、ガスクーラー2の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、ガスクーラー2において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。一方、蒸発器4を通過した二酸化炭素は、全て気化していることが望ましい。蒸発器4を通過した二酸化炭素が一部液化したままで圧縮機1に供給されると、圧縮機1は液圧縮を起こしてシリンダーを破損してしまうおそれがある。   By the way, when carbon dioxide is used as a refrigerant, the temperature of the gas cooler 2 may exceed the critical temperature of carbon dioxide (about 31 ° C.) in summer when the outside air temperature becomes high. In this case, the gas cooler 2 is in a supercritical pressure state in which carbon dioxide is not vaporized while being vaporized. On the other hand, it is desirable that all the carbon dioxide that has passed through the evaporator 4 is vaporized. If the carbon dioxide that has passed through the evaporator 4 is supplied to the compressor 1 while being partially liquefied, the compressor 1 may cause liquid compression and damage the cylinder.

そこで、ガスクーラー2と電子膨張弁3との間、蒸発器4と圧縮機1(第1圧縮機1a)との間に内部熱交換器14を設けてある。図2は内部熱交換器を示す平面図、図3は内部熱交換器を示す正面図、図4は内部熱交換器を示す側面図、図5は内部熱交換器を示す斜視図、図6は内部熱交換器の断面図である。   Therefore, an internal heat exchanger 14 is provided between the gas cooler 2 and the electronic expansion valve 3 and between the evaporator 4 and the compressor 1 (first compressor 1a). 2 is a plan view showing the internal heat exchanger, FIG. 3 is a front view showing the internal heat exchanger, FIG. 4 is a side view showing the internal heat exchanger, FIG. 5 is a perspective view showing the internal heat exchanger, and FIG. FIG. 3 is a cross-sectional view of an internal heat exchanger.

内部熱交換器14は、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行うためのものである。冷媒循環経路の高圧側とは、圧縮機1の出口側からガスクーラー2を経て電子膨張弁3の入口側までの間である。また、冷媒循環経路の低圧側とは、電子膨張弁3の出口側から蒸発器4を経て圧縮機1の入口側までの間である。   The internal heat exchanger 14 is for exchanging heat between the high pressure side and the low pressure side of the refrigerant circulation path. The high pressure side of the refrigerant circulation path is from the outlet side of the compressor 1 to the inlet side of the electronic expansion valve 3 through the gas cooler 2. The low pressure side of the refrigerant circulation path is from the outlet side of the electronic expansion valve 3 to the inlet side of the compressor 1 through the evaporator 4.

図2〜図6に示すように内部熱交換器14は、高圧側であるガスクーラー2と電子膨張弁3との間に高圧側冷媒配管14Aを設けてある。また、内部熱交換器14は、低圧側である蒸発器4と圧縮機1(第1圧縮機1a)との間に低圧側冷媒配管14Bを設けてある。高圧側冷媒配管14Aは、抵抗管路としてのキャピラリチューブをなし、低圧側冷媒配管14Bの内部に内装してある。また、高圧側冷媒配管14Aは、低圧側冷媒配管14Bの内部に複数(本実施例では3つ)内装してある。このように、内部熱交換器14は、高圧側冷媒配管14Aを低圧側冷媒配管14Bの内部に内装した2重管構造としてある。   As shown in FIGS. 2 to 6, the internal heat exchanger 14 is provided with a high-pressure side refrigerant pipe 14 </ b> A between the gas cooler 2 on the high-pressure side and the electronic expansion valve 3. The internal heat exchanger 14 is provided with a low-pressure side refrigerant pipe 14B between the evaporator 4 on the low-pressure side and the compressor 1 (first compressor 1a). The high-pressure side refrigerant pipe 14A is a capillary tube as a resistance pipe, and is built inside the low-pressure side refrigerant pipe 14B. In addition, a plurality of (three in this embodiment) high-pressure side refrigerant pipes 14A are provided inside the low-pressure side refrigerant pipe 14B. Thus, the internal heat exchanger 14 has a double-pipe structure in which the high-pressure side refrigerant pipe 14A is housed inside the low-pressure side refrigerant pipe 14B.

この内部熱交換器14は、上述したように複数の高圧側冷媒配管14Aを低圧側冷媒配管14Bの内部に内装した形態で上下方向に螺旋状にして形成してある。具体的に、高圧側冷媒配管14Aは、図2〜図5に示すように、螺旋状とした下端に高圧側冷媒配管14Aの入口部14Aaを設け、螺旋状とした上端に高圧側冷媒配管14Aの出口部14Abを設けてある。これら入口部14Aaおよび出口部14Abは、高圧側冷媒配管14Aの複数の抵抗管路を集束した一口の管をなしてある。そして、高圧側冷媒配管14Aは、図6に示すように、複数の抵抗管路を束ねた形態で、螺旋状に形成してある。一方、低圧側冷媒配管14Bは、図6に示すように、高圧側冷媒配管14Aの全ての抵抗管路を覆う態様で設けてあり、図2〜図5に示すように、高圧側冷媒配管14Aの入口部14Aaの後段から出口部14Abの前段に至り螺旋状に形成してある。この低圧側冷媒配管14Bは、螺旋状とした上端側に入口部14Baを設け、螺旋状とした下端側に出口部14Bbを設けてある。このように、内部熱交換器14は、高圧側冷媒配管14Aが下方から上方に向けて冷媒を送る態様で設けてあり、低圧側冷媒配管14Bが上方から下方に向けて冷媒を送る態様で設けて高圧側と低圧側との冷媒に対向流を生じさせる。これにより、ガスクーラー2から得られる二酸化炭素は、液化しやすくなる。一方、圧縮機1には、蒸発器4から気化した二酸化炭素が供給される。   As described above, the internal heat exchanger 14 is formed in a spiral shape in the vertical direction in a form in which a plurality of high-pressure side refrigerant pipes 14A are housed inside the low-pressure side refrigerant pipe 14B. Specifically, as shown in FIGS. 2 to 5, the high-pressure side refrigerant pipe 14 </ b> A is provided with an inlet portion 14 </ b> Aa of the high-pressure side refrigerant pipe 14 </ b> A at the spiral lower end, and the high-pressure side refrigerant pipe 14 </ b> A at the spiral upper end. 14Ab is provided. The inlet portion 14Aa and the outlet portion 14Ab are formed as a single pipe that converges a plurality of resistance pipes of the high-pressure side refrigerant pipe 14A. And the high-pressure side refrigerant | coolant piping 14A is formed in the spiral form with the form which bundled the some resistance pipe line, as shown in FIG. On the other hand, the low-pressure side refrigerant pipe 14B is provided so as to cover all the resistance lines of the high-pressure side refrigerant pipe 14A as shown in FIG. 6, and the high-pressure side refrigerant pipe 14A as shown in FIGS. From the rear stage of the inlet part 14Aa to the front stage of the outlet part 14Ab, a spiral shape is formed. This low-pressure side refrigerant pipe 14B is provided with an inlet portion 14Ba on the upper end side that is spiraled and an outlet portion 14Bb on the lower end side that is spiraled. Thus, the internal heat exchanger 14 is provided in such a mode that the high-pressure side refrigerant pipe 14A sends the refrigerant from below to above, and the low-pressure side refrigerant pipe 14B is provided in a form that sends the refrigerant from above to below. Thus, a counter flow is generated in the refrigerant on the high pressure side and the low pressure side. Thereby, the carbon dioxide obtained from the gas cooler 2 becomes easy to liquefy. On the other hand, the carbon dioxide vaporized from the evaporator 4 is supplied to the compressor 1.

図6に示すように、高圧側冷媒配管14Aは、各抵抗管路の相互の外周壁を非接触な形態で設けてあり、かつ、高圧側冷媒配管14Aをなす各抵抗管路の外周壁と低圧側冷媒配管14Bの内周壁とは相互に非接触な形態で設けてあることが相互の熱交換の上で好ましい。さらに、低圧側冷媒配管14Bの外周には、可撓性を有したチューブ状の断熱材14Cが設けてあり、低圧側と高圧側との間の熱交換が外気の影響を受けないように構成してある。   As shown in FIG. 6, the high-pressure side refrigerant pipe 14 </ b> A is provided in such a manner that the outer peripheral walls of the respective resistance pipes are in a non-contact manner, and the outer peripheral walls of the respective resistance pipes constituting the high-pressure side refrigerant pipe 14 </ b> A It is preferable in terms of mutual heat exchange that the low pressure side refrigerant pipe 14B is provided in a form that is not in contact with the inner peripheral wall. Further, a flexible tube-shaped heat insulating material 14C is provided on the outer periphery of the low-pressure side refrigerant pipe 14B so that heat exchange between the low-pressure side and the high-pressure side is not affected by outside air. It is.

本実施例において、高圧側冷媒配管14Aは、その抵抗配管の外径がφ3.0mm、肉厚が0.5mm、長さが2060mmとしてある。また、低圧側冷媒配管14Bは、外径がφ9.52mm、肉厚が0.8mm、長さが1957mmとしてある。さらに、断熱材14Cは、外径がφ19.0mm、肉厚が3.0mm、長さが1800mmとしてある。このように、内部熱交換器14は、長尺であるが螺旋状とすることで設置容積を低減している。   In the present embodiment, the high-pressure refrigerant pipe 14A has an outer diameter of the resistance pipe of φ3.0 mm, a thickness of 0.5 mm, and a length of 2060 mm. The low-pressure side refrigerant pipe 14B has an outer diameter of φ9.52 mm, a wall thickness of 0.8 mm, and a length of 1957 mm. Further, the heat insulating material 14C has an outer diameter of φ19.0 mm, a wall thickness of 3.0 mm, and a length of 1800 mm. As described above, the internal heat exchanger 14 is long but has a spiral shape to reduce the installation volume.

内部熱交換器14は、その長さを1.3m以上とすることが好ましい。この長さについて詳述すると、上述したように断熱筐体の冷却庫を3室とした場合、各冷媒循環経路を3室全て、2室あるいは1室のみの循環運転が考えられる。図7に示すように、3室全てを循環運転したときの内部熱交換器14の高圧側圧力は10MPa(基準圧力)であり、かつ、本実施例での冷媒冷却回路における仕様限界の高圧側圧力は12MPaであったとするである。この場合、高圧側圧力が最も上がる1室のみの循環運転のとき、高圧側圧力が仕様限界を超えないための内部熱交換器14の高圧側出口の冷媒温度は18℃以下である。すなわち、内部熱交換器14によって高圧側出口の冷媒温度を18℃以下に冷却すれば高圧側圧力が仕様限界を超えない。さらに、図8に示すように、高圧側の冷媒温度を少なくとも18℃にするための内部熱交換器14の交換熱量は160Wである。そして、図9に示すように、内部熱交換器14の交換熱量を160W以上にするための当該内部熱交換器14の長さが1.3m以上となる。このように、内部熱交換器14の長さを1.3m以上とすれば、内部熱交換器14の高圧側出口の冷媒温度を18℃以下にして、高圧側圧力を仕様値内(12MPa)にできる。   The length of the internal heat exchanger 14 is preferably 1.3 m or more. If this length is explained in full detail, when the cooler of a heat insulation housing is made into three rooms as mentioned above, circulation operation of all the three rooms of each refrigerant circulation path may be considered. As shown in FIG. 7, the high-pressure side pressure of the internal heat exchanger 14 when all three chambers are circulated is 10 MPa (reference pressure), and the high-pressure side of the specification limit in the refrigerant cooling circuit in this embodiment. It is assumed that the pressure was 12 MPa. In this case, at the time of circulation operation of only one chamber where the high pressure side pressure is the highest, the refrigerant temperature at the high pressure side outlet of the internal heat exchanger 14 for the high pressure side pressure not exceeding the specification limit is 18 ° C. or less. That is, if the refrigerant temperature at the high-pressure side outlet is cooled to 18 ° C. or less by the internal heat exchanger 14, the high-pressure side pressure does not exceed the specification limit. Further, as shown in FIG. 8, the exchange heat amount of the internal heat exchanger 14 for setting the refrigerant temperature on the high pressure side to at least 18 ° C. is 160 W. And as shown in FIG. 9, the length of the said internal heat exchanger 14 for setting the exchange heat amount of the internal heat exchanger 14 to 160 W or more will be 1.3 m or more. Thus, if the length of the internal heat exchanger 14 is 1.3 m or more, the refrigerant temperature at the high-pressure side outlet of the internal heat exchanger 14 is set to 18 ° C. or less, and the high-pressure side pressure is within the specification value (12 MPa). Can be.

図10は内部熱交換器の熱交換量を示す図である。図10に示すように内部熱交換器14の熱交換量は、蒸発器4(4a,4b,4c)から圧縮機1(1a)に帰還する二酸化炭素冷媒が余剰を伴うとき、高圧側冷媒配管14Aの出口(出口部14Ab)の冷媒温度を、高圧側圧力が圧縮機1の仕様限界を下回るような温度にする熱交換量に設定してある。例えば、図1において蒸発器4の熱交換量比を、蒸発器4a:蒸発器4b:蒸発器4cで「1:2:3」とする。また、冷媒循環量を「a」として全て(3つ)の蒸発器4を動作した場合の余剰冷媒量を「0」とする。この場合、蒸発器4aのみ1つを動作したとき、余剰冷媒量は5a/6となり、図10に示すように1段目である第1圧縮機1aの容積が2ccである場合に、内部熱交換器14の熱交換量minは、y=80x(y:内部熱交換器熱交換量,x=圧縮機容量,80:係数)の式によって160Wになる。さらに、内部熱交換器14の熱交換量maxは、y=500x(y:内部熱交換器熱交換量,x=圧縮機容量,500:係数)の式によって1000Wになる。すなわち、上記例によれば、内部熱交換器14の熱交換量は、図7、図8および図10に示すように、蒸発器4(4a,4b,4c)から圧縮機1(1a)に帰還する二酸化炭素冷媒が余剰を伴うとき、高圧側冷媒配管14Aの出口(出口部14Ab)の冷媒温度を、高圧側圧力が圧縮機1の仕様限界(12MPa)を下回るような温度(18℃以下)にする熱交換量(160W〜1000W)に設定してある。なお、上記例では、高圧側圧力が圧縮機1の仕様限界を下回るような温度を18℃以下としてあるが、20℃以下であってもよい。   FIG. 10 is a diagram showing the heat exchange amount of the internal heat exchanger. As shown in FIG. 10, the heat exchange amount of the internal heat exchanger 14 is such that when the carbon dioxide refrigerant returning to the compressor 1 (1a) from the evaporator 4 (4a, 4b, 4c) is accompanied by surplus, the high-pressure side refrigerant pipe The refrigerant temperature at the outlet of 14A (exit part 14Ab) is set to a heat exchange amount that makes the high-pressure side pressure lower than the specification limit of the compressor 1. For example, in FIG. 1, the heat exchange amount ratio of the evaporator 4 is set to “1: 2: 3” in the evaporator 4a: evaporator 4b: evaporator 4c. Further, the surplus refrigerant amount when all (three) evaporators 4 are operated with the refrigerant circulation amount “a” is set to “0”. In this case, when only one evaporator 4a is operated, the surplus refrigerant amount is 5a / 6, and the internal heat is reduced when the volume of the first compressor 1a as the first stage is 2 cc as shown in FIG. The heat exchange amount min of the exchanger 14 is 160 W according to the equation y = 80x (y: internal heat exchanger heat exchange amount, x = compressor capacity, 80: coefficient). Furthermore, the heat exchange amount max of the internal heat exchanger 14 is 1000 W according to the equation y = 500x (y: internal heat exchanger heat exchange amount, x = compressor capacity, 500: coefficient). That is, according to the above example, the heat exchange amount of the internal heat exchanger 14 is changed from the evaporator 4 (4a, 4b, 4c) to the compressor 1 (1a) as shown in FIGS. When the returned carbon dioxide refrigerant is accompanied by surplus, the refrigerant temperature at the outlet of the high-pressure side refrigerant pipe 14A (exit portion 14Ab) is set to a temperature at which the high-pressure side pressure falls below the specification limit (12 MPa) of the compressor 1 (18 ° C or less ) Is set to the heat exchange amount (160W to 1000W). In the above example, the temperature at which the high-pressure side pressure falls below the specification limit of the compressor 1 is set to 18 ° C. or lower, but may be 20 ° C. or lower.

このように内部熱交換器14では、二酸化炭素冷媒を用いて複数の冷媒循環経路を形成した冷媒冷却回路において、例えば1つの蒸発器4aを介して冷媒を循環運転した場合に、循環する冷媒に余剰が発生することになるが、低圧側冷媒配管14Bおよび高圧側冷媒配管14Aによって低圧側と高圧側との間で熱交換させることで液冷媒を気化して圧縮機1に戻す。この結果、圧縮機1における液圧縮を防いで圧縮機1の損傷を防止することが可能になる。また、同時に高圧側を冷却するため、冷媒密度が高くなり高圧側圧力を下げることが可能になる。   As described above, in the internal heat exchanger 14, in the refrigerant cooling circuit in which a plurality of refrigerant circulation paths are formed using carbon dioxide refrigerant, for example, when the refrigerant is circulated through one evaporator 4a, the refrigerant is circulated. Although surplus occurs, the liquid refrigerant is vaporized and returned to the compressor 1 by heat exchange between the low pressure side and the high pressure side by the low pressure side refrigerant pipe 14B and the high pressure side refrigerant pipe 14A. As a result, liquid compression in the compressor 1 can be prevented and damage to the compressor 1 can be prevented. Moreover, since the high pressure side is cooled at the same time, the refrigerant density increases and the high pressure side pressure can be lowered.

以下、二酸化炭素を冷媒として使用する本発明の冷媒冷却回路の動作について説明する。なお、冷媒冷却回路の以下の動作において、電磁弁12aのみが開放状態で、他の電磁弁12b,12cが閉塞状態であることとする。   Hereinafter, the operation of the refrigerant cooling circuit of the present invention using carbon dioxide as the refrigerant will be described. In the following operation of the refrigerant cooling circuit, only the electromagnetic valve 12a is open, and the other electromagnetic valves 12b and 12c are closed.

冷却庫にある蒸発器4aから帰還された二酸化炭素は、内部熱交換器14を介して第1圧縮機1aに吸引されて低圧圧縮(約6MPaに圧縮)される。第1圧縮機1aから吐出された二酸化炭素は、中間熱交換器10を経て冷却された後に第2圧縮機1bに吸引されて高圧圧縮(約9MPaに圧縮)される。このとき、第2圧縮機1bから二酸化炭素と共に吐出された冷凍機油は、オイルセパレータ11によって第1圧縮機1aの入口側に戻される。   The carbon dioxide returned from the evaporator 4a in the refrigerator is sucked into the first compressor 1a via the internal heat exchanger 14 and compressed at a low pressure (compressed to about 6 MPa). The carbon dioxide discharged from the first compressor 1a is cooled through the intermediate heat exchanger 10, and then sucked into the second compressor 1b and compressed at a high pressure (compressed to about 9 MPa). At this time, the refrigerating machine oil discharged together with carbon dioxide from the second compressor 1b is returned to the inlet side of the first compressor 1a by the oil separator 11.

次いで、第2圧縮機1bから吐出された二酸化炭素は、蒸発手段15で予冷されて、ガスクーラー2に送られる。ガスクーラー2に送られた二酸化炭素は、放熱されて液化して、内部熱交換器14を介して電子膨張弁3に至る。   Next, the carbon dioxide discharged from the second compressor 1 b is pre-cooled by the evaporation means 15 and sent to the gas cooler 2. The carbon dioxide sent to the gas cooler 2 is radiated and liquefied, and reaches the electronic expansion valve 3 via the internal heat exchanger 14.

次いで、電子膨張弁3において、二酸化炭素は、減圧されて蒸発温度および流量を制御される。その後、二酸化炭素は、開放状態にある電磁弁12aを経て、減圧手段13aを介して蒸発器4aに至る。   Next, in the electronic expansion valve 3, the carbon dioxide is depressurized and the evaporation temperature and flow rate are controlled. Thereafter, the carbon dioxide passes through the electromagnetic valve 12a in the open state and reaches the evaporator 4a through the decompression means 13a.

最後に、蒸発器4aに供給された二酸化炭素は、吸熱して加熱蒸気として気化される。二酸化炭素の吸熱によって蒸発器4aを設けた冷却庫の内部が独立して冷却されることになる。そして、二酸化炭素は、蒸発器4aから内部熱交換器14を介して第1圧縮機1aに吸引されて帰還して循環運転が行われる。   Finally, the carbon dioxide supplied to the evaporator 4a absorbs heat and is vaporized as heated steam. The inside of the refrigerator provided with the evaporator 4a is cooled independently by the absorption of carbon dioxide. The carbon dioxide is sucked from the evaporator 4a through the internal heat exchanger 14 to the first compressor 1a and returned to be circulated.

上記二酸化炭素の循環運転において、閉鎖状態にしてある電磁弁12b,12cを有した経路に設けた蒸発器4b,4cは、上記循環運転が実行されている冷媒循環経路の蒸発器4aと出口側が集合してある。このため、従前では電磁弁12aのみが開放状態である場合に、閉塞状態の電磁弁12b,12cの入口側と出口側との圧力差がほぼ等しくなる。しかし、本実施例では、各電磁弁12a,12b,12cと、各蒸発器4a,4b,4cとの間の経路に減圧手段13a,13b,13cがそれぞれ設けてある。このため、閉鎖状態の電磁弁12b,12cを有した経路では、減圧手段13b,13cが経路中に圧力抵抗を付与する絞りとして作用するため、閉鎖状態の電磁弁12b,12cの出口側が低圧になり入口側が高圧になる。これにより、閉鎖状態にある電磁弁12b,12cの入口側と出口側との間に圧力差が生じ、入口側と出口側との圧力差によって電磁弁12b,12cの閉塞状態が助勢されるので、当該電磁弁12b,12cの閉鎖状態が維持される。   In the carbon dioxide circulation operation, the evaporators 4b and 4c provided in the path having the solenoid valves 12b and 12c in the closed state are connected to the evaporator 4a and the outlet side of the refrigerant circulation path in which the circulation operation is performed. It is gathered. For this reason, conventionally, when only the solenoid valve 12a is in an open state, the pressure difference between the inlet side and the outlet side of the solenoid valves 12b and 12c in the closed state becomes substantially equal. However, in this embodiment, decompression means 13a, 13b, and 13c are provided in the paths between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c, respectively. For this reason, in the path having the closed solenoid valves 12b and 12c, the decompression means 13b and 13c act as a throttle for applying pressure resistance in the path, so that the outlet side of the closed solenoid valves 12b and 12c has a low pressure. The inlet side becomes high pressure. Accordingly, a pressure difference is generated between the inlet side and the outlet side of the electromagnetic valves 12b and 12c in the closed state, and the closed state of the electromagnetic valves 12b and 12c is assisted by the pressure difference between the inlet side and the outlet side. The closed state of the electromagnetic valves 12b and 12c is maintained.

また、上記二酸化炭素の循環運転において、内部熱交換器14は、高圧側冷媒配管14Aと低圧側冷媒配管14Bとの間で熱交換を行う。ここで、内部熱交換器14は、抵抗管路をなす高圧側冷媒配管14Aを低圧側冷媒配管14Bの内部に内装してある。このため、相互の熱交換面積を大きく取れるので熱交換効率が向上する。また、複数の高圧側冷媒配管14Aを低圧側冷媒配管14Bの内部に内装することにより、相互の熱交換面積をさらに大きく取れるので熱交換効率がさらに向上する。また、低圧側冷媒配管14Bを断熱材14Cで被覆してあるため、熱交換に際して外気の影響、すなわち外部との熱交換を抑えるので、熱交換効率がさらに向上する。   In the carbon dioxide circulation operation, the internal heat exchanger 14 exchanges heat between the high-pressure side refrigerant pipe 14A and the low-pressure side refrigerant pipe 14B. Here, the internal heat exchanger 14 has a high-pressure side refrigerant pipe 14 </ b> A that forms a resistance line inside the low-pressure side refrigerant pipe 14 </ b> B. For this reason, since a mutual heat exchange area can be taken large, heat exchange efficiency improves. Further, by installing a plurality of high-pressure side refrigerant pipes 14A inside the low-pressure side refrigerant pipes 14B, the mutual heat exchange area can be further increased, thereby further improving the heat exchange efficiency. Further, since the low-pressure side refrigerant pipe 14B is covered with the heat insulating material 14C, the influence of outside air at the time of heat exchange, that is, heat exchange with the outside is suppressed, so that the heat exchange efficiency is further improved.

このように、熱交換効率が向上することにより、ガスクーラー2において二酸化炭素が液化しやすくなるので、高圧側の圧力上昇を抑えることが可能になる。また、熱交換効率が向上することにより、蒸発器4において二酸化炭素が気化するので、一部液化したままで二酸化炭素が圧縮機1に供給される事態を無くすことが可能になる。   As described above, since the heat exchange efficiency is improved, carbon dioxide is easily liquefied in the gas cooler 2, so that an increase in pressure on the high pressure side can be suppressed. Further, since the heat exchange efficiency is improved, carbon dioxide is vaporized in the evaporator 4, so that it is possible to eliminate a situation where carbon dioxide is supplied to the compressor 1 while being partially liquefied.

さらに、熱交換効率が向上することにより、圧縮機1から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機1に戻し易くなる。特に、上記内部熱交換器14は、低圧側冷媒配管14Bが上方から下方に向けて冷媒を送り、高圧側冷媒配管14Aが下方から上方に向けて冷媒を送る形態で設けてある。このため、低圧側において圧縮機1への冷凍機油の戻りを良くすることが可能になる。   Furthermore, by improving the heat exchange efficiency, the refrigeration oil discharged from the compressor 1 is easily circulated through the refrigerant circulation path and returned to the compressor 1. In particular, the internal heat exchanger 14 is provided in such a form that the low-pressure side refrigerant pipe 14B sends the refrigerant from above to below, and the high-pressure side refrigerant pipe 14A sends the refrigerant from below to above. For this reason, it becomes possible to improve the return of the refrigeration oil to the compressor 1 on the low pressure side.

また、内部熱交換器14は、高圧側冷媒配管14Aおよび低圧側冷媒配管14Bの長さを1.3m以上としてある。これにより、内部熱交換器14の高圧側出口の冷媒温度を18℃以下に冷却して高圧側圧力が仕様限界を超える事態を防ぐ。さらに、高圧側冷媒配管14Aを低圧側冷媒配管14Bに内装した形態で上下方向に螺旋状にして形成してあるため、設置容積を低減することが可能になる。なお、高圧側冷媒配管14Aおよび低圧側冷媒配管14Bの長さを変えることで、熱交換量を自由に設定することができる。   Further, in the internal heat exchanger 14, the length of the high-pressure side refrigerant pipe 14A and the low-pressure side refrigerant pipe 14B is set to 1.3 m or more. Thereby, the refrigerant | coolant temperature of the high voltage | pressure side exit of the internal heat exchanger 14 is cooled to 18 degrees C or less, and the situation where a high voltage | pressure side pressure exceeds a specification limit is prevented. Furthermore, since the high pressure side refrigerant pipe 14A is spirally formed in the vertical direction with the low pressure side refrigerant pipe 14B built in, it is possible to reduce the installation volume. Note that the heat exchange amount can be freely set by changing the lengths of the high-pressure side refrigerant pipe 14A and the low-pressure side refrigerant pipe 14B.

以下、内部熱交換器の別の実施例を説明する。図11は内部熱交換器の別の実施例を示す断面図である。   Hereinafter, another embodiment of the internal heat exchanger will be described. FIG. 11 is a sectional view showing another embodiment of the internal heat exchanger.

図11に示すように、内部熱交換器14′は、高圧側冷媒配管14A′が、扁平形状とした内部に複数の抵抗管路を有してなる。また、内部熱交換器14′は、低圧側冷媒配管14B′が、扁平形状としてある。そして、高圧側冷媒配管14A′と低圧側冷媒配管14B′との扁平とした外周面を接触した状態で並設してある。これにより、相互の熱交換面積を大きく取れるので熱交換効率が向上する。   As shown in FIG. 11, the internal heat exchanger 14 ′ is configured such that the high-pressure side refrigerant pipe 14 </ b> A ′ has a plurality of resistance pipes in a flat shape. Further, in the internal heat exchanger 14 ', the low-pressure side refrigerant pipe 14B' has a flat shape. The flat outer peripheral surfaces of the high-pressure side refrigerant pipe 14A ′ and the low-pressure side refrigerant pipe 14B ′ are arranged in contact with each other. Thereby, since a mutual heat exchange area can be taken large, heat exchange efficiency improves.

また、内部熱交換器14′は、高圧側冷媒配管と14A′と低圧側冷媒配管14B′とを共に断熱材14C′で被覆してある。これにより、熱交換に際して外気の影響、すなわち外部との熱交換を抑えるので、熱交換効率がさらに向上する。さらに、熱交換効率が向上することにより、圧縮機1から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機1に戻し易くなる。   In addition, the internal heat exchanger 14 'has a high pressure side refrigerant pipe 14A' and a low pressure side refrigerant pipe 14B 'both covered with a heat insulating material 14C'. This suppresses the influence of outside air during heat exchange, that is, heat exchange with the outside, so that the heat exchange efficiency is further improved. Furthermore, by improving the heat exchange efficiency, the refrigeration oil discharged from the compressor 1 is easily circulated through the refrigerant circulation path and returned to the compressor 1.

また、熱交換効率が向上することにより、ガスクーラー2において二酸化炭素が液化しやすくなるので、高圧側の圧力上昇を抑えることが可能になる。また、熱交換効率が向上することにより、蒸発器4において二酸化炭素が気化するので、一部液化したままで二酸化炭素が圧縮機1に供給される事態を無くすことが可能になる。   In addition, since the heat exchange efficiency is improved, carbon dioxide is easily liquefied in the gas cooler 2, so that an increase in pressure on the high pressure side can be suppressed. Further, since the heat exchange efficiency is improved, carbon dioxide is vaporized in the evaporator 4, so that it is possible to eliminate a situation where carbon dioxide is supplied to the compressor 1 while being partially liquefied.

また、図には明示しないが、内部熱交換器14′は、高圧側冷媒配管14A′と低圧側冷媒配管14B′とを並設した形態で上下方向に螺旋状にして形成し、高圧側冷媒配管14A′では、下方から上方に向けて冷媒を送り、低圧側冷媒配管14B′では、上方から下方に向けて冷媒を送る形態としてある。これにより、低圧側において圧縮機1への冷凍機油の戻りを良くすることが可能になる。   Although not clearly shown in the figure, the internal heat exchanger 14 'is formed in a form in which a high-pressure side refrigerant pipe 14A' and a low-pressure side refrigerant pipe 14B 'are arranged side by side in a spiral form, In the pipe 14A ′, the refrigerant is sent from below to above, and in the low-pressure side refrigerant pipe 14B ′, the refrigerant is sent from above to below. Thereby, it becomes possible to improve the return of the refrigeration oil to the compressor 1 on the low pressure side.

また、内部熱交換器14′は、高圧側冷媒配管14A′および低圧側冷媒配管14B′の長さを1.3m以上としてある。これにより、内部熱交換器14の高圧側出口の冷媒温度を18℃以下に冷却して高圧側圧力が仕様限界を超える事態を防ぐ。さらに、高圧側冷媒配管14A′と低圧側冷媒配管14B′とを並設した形態で上下方向に螺旋状にして形成してあるため、設置容積を低減することが可能になる。なお、高圧側冷媒配管14A′および低圧側冷媒配管14B′の長さを変えることで、熱交換量を自由に設定することができる。   In the internal heat exchanger 14 ', the length of the high-pressure side refrigerant pipe 14A' and the low-pressure side refrigerant pipe 14B 'is 1.3 m or more. Thereby, the refrigerant | coolant temperature of the high voltage | pressure side exit of the internal heat exchanger 14 is cooled to 18 degrees C or less, and the situation where a high voltage | pressure side pressure exceeds a specification limit is prevented. Further, since the high-pressure side refrigerant pipe 14A 'and the low-pressure side refrigerant pipe 14B' are formed in a spiral shape in the vertical direction, the installation volume can be reduced. The heat exchange amount can be freely set by changing the lengths of the high-pressure side refrigerant pipe 14A ′ and the low-pressure side refrigerant pipe 14B ′.

本発明に係る冷媒冷却回路の一実施例を示す概略図である。It is the schematic which shows one Example of the refrigerant cooling circuit which concerns on this invention. 内部熱交換器を示す平面図である。It is a top view which shows an internal heat exchanger. 内部熱交換器を示す正面図である。It is a front view which shows an internal heat exchanger. 内部熱交換器を示す側面図である。It is a side view which shows an internal heat exchanger. 内部熱交換器を示す斜視図である。It is a perspective view which shows an internal heat exchanger. 内部熱交換器の断面図である。It is sectional drawing of an internal heat exchanger. 高圧側圧力と内部熱交換器の高圧側出口の冷媒温度との関係を示す図である。It is a figure which shows the relationship between a high voltage | pressure side pressure and the refrigerant | coolant temperature of the high voltage | pressure side exit of an internal heat exchanger. 内部熱交換器の交換熱量と内部熱交換器の高圧側出口の冷媒温度との関係を示す図である。It is a figure which shows the relationship between the amount of exchange heat of an internal heat exchanger, and the refrigerant | coolant temperature of the high voltage | pressure side exit of an internal heat exchanger. 内部熱交換器の長さと内部熱交換器の交換熱量との関係を示す図である。It is a figure which shows the relationship between the length of an internal heat exchanger, and the amount of exchange heat of an internal heat exchanger. 内部熱交換器の熱交換量を示す図である。It is a figure which shows the heat exchange amount of an internal heat exchanger. 内部熱交換器の別の実施例を示す断面図である。It is sectional drawing which shows another Example of an internal heat exchanger.

符号の説明Explanation of symbols

1 圧縮機
1a 第1圧縮機
1b 第2圧縮機
2 ガスクーラー(放熱器)
21 ファン
22 ファンモータ
3 電子膨張弁(絞り部)
4(4a,4b,4c) 蒸発器
41 ファン
42 ファンモータ
10 中間熱交換器
11 オイルセパレータ
12a,12b,12c 電磁弁
13a,13b,13c 減圧手段
14 内部熱交換器
14A 高圧側冷媒配管
14Aa 入口部
14Ab 出口部
14B 低圧側冷媒配管
14Ba 入口部
14Bb 出口部
14C 断熱材
14′内部熱交換器
14A′ 高圧側冷媒配管
14B′ 低圧側冷媒配管
14C′ 断熱材
15 蒸発手段
DESCRIPTION OF SYMBOLS 1 Compressor 1a 1st compressor 1b 2nd compressor 2 Gas cooler (heat radiator)
21 Fan 22 Fan motor 3 Electronic expansion valve (throttle part)
4 (4a, 4b, 4c) Evaporator 41 Fan 42 Fan motor 10 Intermediate heat exchanger 11 Oil separator 12a, 12b, 12c Solenoid valve 13a, 13b, 13c Pressure reducing means 14 Internal heat exchanger 14A High-pressure side refrigerant piping 14Aa Inlet part 14Ab Outlet part 14B Low pressure side refrigerant pipe 14Ba Inlet part 14Bb Outlet part 14C Heat insulating material 14 'Internal heat exchanger 14A' High pressure side refrigerant pipe 14B 'Low pressure side refrigerant pipe 14C' Heat insulating material 15 Evaporating means

Claims (12)

冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成して、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けた冷媒冷却回路において、
前記内部熱交換器は、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、前記低圧側冷媒配管と前記高圧側冷媒配管との間に対向流をなすことを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle A refrigerant cooling circuit provided with an internal heat exchanger that forms a refrigerant circulation path having an evaporator to be returned to the compressor and performs heat exchange between a high pressure side and a low pressure side of the refrigerant circulation path. ,
The internal heat exchanger includes a high-pressure side refrigerant pipe forming a resistance line inside the low-pressure side refrigerant pipe, and forms a counter flow between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe. Refrigerant cooling circuit.
前記内部熱交換器は、抵抗管路をなす前記高圧側冷媒配管を前記低圧側冷媒配管の内部に複数内装してあることを特徴とする請求項1に記載の冷媒冷却回路。   2. The refrigerant cooling circuit according to claim 1, wherein the internal heat exchanger includes a plurality of the high-pressure side refrigerant pipes forming a resistance pipe inside the low-pressure side refrigerant pipe. 前記低圧側冷媒配管を断熱材で被覆してあることを特徴とする請求項1または2に記載の冷媒冷却回路。   The refrigerant cooling circuit according to claim 1 or 2, wherein the low-pressure refrigerant pipe is covered with a heat insulating material. 冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成して、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けた冷媒冷却回路において、
前記内部熱交換器は、扁平形状とした低圧側冷媒配管と、扁平形状とした内部に複数の抵抗管路を有した高圧側冷媒配管とを接触した状態で並設して、前記低圧側冷媒配管と前記高圧側冷媒配管との間に対向流をなすことを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle A refrigerant cooling circuit provided with an internal heat exchanger that forms a refrigerant circulation path having an evaporator to be returned to the compressor and performs heat exchange between a high pressure side and a low pressure side of the refrigerant circulation path. ,
The internal heat exchanger includes a low-pressure refrigerant pipe arranged in parallel with a flat low-pressure side refrigerant pipe and a high-pressure refrigerant pipe having a plurality of resistance pipes in contact with each other. A refrigerant cooling circuit, wherein a counter flow is formed between a pipe and the high-pressure side refrigerant pipe.
前記低圧側冷媒配管と前記高圧側冷媒配管とを共に断熱材で被覆してあることを特徴とする請求項4に記載の冷媒冷却回路。   The refrigerant cooling circuit according to claim 4, wherein both the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe are covered with a heat insulating material. 前記内部熱交換器は、前記低圧側冷媒配管が上方から下方に向けて冷媒を送り、高圧側冷媒配管が下方から上方に向けて冷媒を送る形態で設けてあることを特徴とする請求項1〜5のいずれか一つに記載の冷媒冷却回路。   The internal heat exchanger is provided in such a form that the low-pressure refrigerant pipe sends refrigerant from above to below, and the high-pressure refrigerant pipe sends refrigerant from below to above. The refrigerant cooling circuit as described in any one of -5. 前記内部熱交換器は、前記低圧側冷媒配管および前記高圧側冷媒配管の長さを1.3m以上としてあることを特徴とする請求項1〜6のいずれか一つに記載の冷媒冷却回路。   The refrigerant cooling circuit according to any one of claims 1 to 6, wherein the internal heat exchanger has a length of the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe set to 1.3 m or more. 前記内部熱交換器は、前記低圧側冷媒配管および前記高圧側冷媒配管を螺旋状に配してあることを特徴とする請求項1〜7のいずれか一つに記載の冷媒冷却回路。   The refrigerant cooling circuit according to any one of claims 1 to 7, wherein the internal heat exchanger has the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe arranged in a spiral shape. 前記冷媒が二酸化炭素であることを特徴とする請求項1〜8のいずれか一つに記載の冷媒冷却回路。   The refrigerant cooling circuit according to claim 1, wherein the refrigerant is carbon dioxide. 二酸化炭素冷媒を圧縮する圧縮機と、前記圧縮機から供給される二酸化炭素冷媒を放熱させる放熱器と、前記放熱器から供給される二酸化炭素冷媒の流量を調節する絞り部と、前記絞り部から供給される二酸化炭素冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて、前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成した冷媒冷却回路において、
前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器を設けたことを特徴とする冷媒冷却回路。
A compressor that compresses the carbon dioxide refrigerant, a radiator that dissipates the carbon dioxide refrigerant supplied from the compressor, a throttle unit that adjusts a flow rate of the carbon dioxide refrigerant supplied from the radiator, and the throttle unit A plurality of refrigerant circulation paths having an evaporator for evaporating supplied carbon dioxide refrigerant and returning it to the compressor, wherein a plurality of the evaporators are provided, and the compressor, the radiator and the throttle unit are shared In the refrigerant cooling circuit that forms
An internal heat exchanger for exchanging heat between a high pressure side and a low pressure side of the refrigerant circulation path is provided.
前記内部熱交換器は、抵抗管路をなす高圧側冷媒配管を低圧側冷媒配管の内部に内装して、前記低圧側冷媒配管と前記高圧側冷媒配管との間で熱交換を行うことを特徴とする請求項10に記載の冷媒冷却回路。   The internal heat exchanger includes a high-pressure side refrigerant pipe that forms a resistance pipe inside the low-pressure side refrigerant pipe, and performs heat exchange between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe. The refrigerant cooling circuit according to claim 10. 前記蒸発器から前記圧縮機に帰還する二酸化炭素冷媒が余剰を伴うとき、前記内部熱交換器は、前記高圧側冷媒配管の出口の冷媒温度を、高圧側圧力が前記圧縮機の仕様限界を下回るような温度にする熱交換量に設定してあることを特徴とする請求項10または11に記載の冷媒冷却回路。   When the carbon dioxide refrigerant returning from the evaporator to the compressor is accompanied by surplus, the internal heat exchanger reduces the refrigerant temperature at the outlet of the high-pressure side refrigerant pipe, and the high-pressure side pressure is below the specification limit of the compressor. The refrigerant cooling circuit according to claim 10 or 11, wherein the heat exchange amount is set to such a temperature.
JP2005125226A 2004-04-28 2005-04-22 Refrigerant cooling circuit Pending JP2005337700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125226A JP2005337700A (en) 2004-04-28 2005-04-22 Refrigerant cooling circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004134218 2004-04-28
JP2005125226A JP2005337700A (en) 2004-04-28 2005-04-22 Refrigerant cooling circuit

Publications (1)

Publication Number Publication Date
JP2005337700A true JP2005337700A (en) 2005-12-08

Family

ID=35491462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125226A Pending JP2005337700A (en) 2004-04-28 2005-04-22 Refrigerant cooling circuit

Country Status (1)

Country Link
JP (1) JP2005337700A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162988A (en) * 2005-12-12 2007-06-28 Sanden Corp Vapor compression refrigerating cycle
EP1843109A2 (en) * 2006-04-03 2007-10-10 Sanden Corporation Cooling System
JP2007298196A (en) * 2006-04-28 2007-11-15 Denso Corp Piping with internal heat exchanger and refrigerating cycle device comprising the same
KR100836824B1 (en) 2007-04-06 2008-06-11 삼성전자주식회사 Refrigerant cycle device
JP2008224073A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008224064A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
WO2009142101A1 (en) * 2008-05-20 2009-11-26 サンデン株式会社 Refrigeration cycle
EP1978317A3 (en) * 2007-04-06 2010-04-21 Samsung Electronics Co., Ltd. Refrigerant cycle device
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2010169317A (en) * 2009-01-23 2010-08-05 Hitachi Appliances Inc Heat pump water heater
EP2428750A3 (en) * 2010-07-28 2014-05-28 LG Electronics Inc. Refrigerator and driving method thereof
WO2019130439A1 (en) * 2017-12-26 2019-07-04 三菱電機株式会社 Heat pump hot water supplying outdoor unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585657U (en) * 1978-12-07 1980-06-13
JPS62138770U (en) * 1986-02-24 1987-09-01
JPH0348673U (en) * 1989-09-20 1991-05-10
JP2001147050A (en) * 1999-10-19 2001-05-29 Lg Electronics Inc Refrigerating system for refrigerator equipped with two evaporators
JP2002156162A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Intercooler and air conditioner for vehicle using co2 refrigerant
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2003074996A (en) * 2001-08-30 2003-03-12 Japan Climate Systems Corp Air conditioner for vehicle
JP2003139417A (en) * 2001-11-05 2003-05-14 Fujitsu General Ltd Cooling system
JP2004278948A (en) * 2003-03-17 2004-10-07 Sanyo Electric Co Ltd Heat exchanger for car air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585657U (en) * 1978-12-07 1980-06-13
JPS62138770U (en) * 1986-02-24 1987-09-01
JPH0348673U (en) * 1989-09-20 1991-05-10
JP2001147050A (en) * 1999-10-19 2001-05-29 Lg Electronics Inc Refrigerating system for refrigerator equipped with two evaporators
JP2002156162A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Intercooler and air conditioner for vehicle using co2 refrigerant
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2003074996A (en) * 2001-08-30 2003-03-12 Japan Climate Systems Corp Air conditioner for vehicle
JP2003139417A (en) * 2001-11-05 2003-05-14 Fujitsu General Ltd Cooling system
JP2004278948A (en) * 2003-03-17 2004-10-07 Sanyo Electric Co Ltd Heat exchanger for car air conditioner

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162988A (en) * 2005-12-12 2007-06-28 Sanden Corp Vapor compression refrigerating cycle
EP1843109A2 (en) * 2006-04-03 2007-10-10 Sanden Corporation Cooling System
JP2007278541A (en) * 2006-04-03 2007-10-25 Sanden Corp Cooling system
EP1843109A3 (en) * 2006-04-03 2009-01-28 Sanden Corporation Cooling System
JP2007298196A (en) * 2006-04-28 2007-11-15 Denso Corp Piping with internal heat exchanger and refrigerating cycle device comprising the same
JP2008224073A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008224064A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
EP1978317A3 (en) * 2007-04-06 2010-04-21 Samsung Electronics Co., Ltd. Refrigerant cycle device
KR100836824B1 (en) 2007-04-06 2008-06-11 삼성전자주식회사 Refrigerant cycle device
US8099977B2 (en) 2007-04-06 2012-01-24 Samsung Electronics Co., Ltd. Refrigerant cycle device
JP2009204271A (en) * 2008-02-29 2009-09-10 Tgk Co Ltd Refrigerating cycle
JP2009281610A (en) * 2008-05-20 2009-12-03 Sanden Corp Refrigerating cycle
WO2009142101A1 (en) * 2008-05-20 2009-11-26 サンデン株式会社 Refrigeration cycle
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2010169317A (en) * 2009-01-23 2010-08-05 Hitachi Appliances Inc Heat pump water heater
EP2428750A3 (en) * 2010-07-28 2014-05-28 LG Electronics Inc. Refrigerator and driving method thereof
US9146046B2 (en) 2010-07-28 2015-09-29 Lg Electronics Inc. Refrigerator and driving method thereof
EP3998438A1 (en) * 2010-07-28 2022-05-18 LG Electronics Inc. Refrigerator and driving method thereof
WO2019130439A1 (en) * 2017-12-26 2019-07-04 三菱電機株式会社 Heat pump hot water supplying outdoor unit

Similar Documents

Publication Publication Date Title
JP2005337700A (en) Refrigerant cooling circuit
WO2010119591A1 (en) Freezer-refrigerator and cooling storage unit
US20070180853A1 (en) Refrigerator
JP2005326138A (en) Cooling device and vending machine with it
JP2007218459A (en) Refrigerating cycle device and cool box
KR20110071167A (en) Refrigerator
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP2008025902A (en) Heat exchanger and method of manufacturing heat exchanger
JP4289237B2 (en) Refrigerant cooling circuit
JP4385999B2 (en) Internal heat exchanger
JP2005257149A (en) Refrigerator
JP4720510B2 (en) Refrigerant cycle equipment
JP2004324902A (en) Freezing refrigerator
JP2007051788A (en) Refrigerating device
WO2019224870A1 (en) Showcase
JP2004333092A (en) Freezer/refrigerator
JP6714382B2 (en) refrigerator
WO2014030238A1 (en) Refrigeration device
JP2005331232A (en) Refrigerant cooling circuit
JP2010249444A (en) Freezer-refrigerator
JP2005308346A (en) Refrigerant cooling circuit
JP2017161164A (en) Air-conditioning hot water supply system
WO2009157318A1 (en) Cooling device
JP2007187370A (en) Refrigerant cycle device
CN219014673U (en) Refrigerating system, air conditioner and refrigeration house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420