JP2008224064A - Heat pump hot water supply device - Google Patents

Heat pump hot water supply device Download PDF

Info

Publication number
JP2008224064A
JP2008224064A JP2007059428A JP2007059428A JP2008224064A JP 2008224064 A JP2008224064 A JP 2008224064A JP 2007059428 A JP2007059428 A JP 2007059428A JP 2007059428 A JP2007059428 A JP 2007059428A JP 2008224064 A JP2008224064 A JP 2008224064A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
pressure side
water supply
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059428A
Other languages
Japanese (ja)
Inventor
Yoshiki Yamaoka
由樹 山岡
Shinji Watanabe
伸二 渡辺
Noriho Okaza
典穂 岡座
Katsuhiro Wada
克広 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007059428A priority Critical patent/JP2008224064A/en
Publication of JP2008224064A publication Critical patent/JP2008224064A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply system for a heat pump hot water supply device capable of supplying hot water with small power consumption while improving a system performance coefficient during hot water supply and heating operation. <P>SOLUTION: The heat transfer area of a refrigerant-to-refrigerant heat exchange part of a liquid gas heat exchanger is optimized to make a refrigerant circulation amount and the operating pressure of a gas cooler adequate to a refrigerant-to-refrigerant heat exchange amount. This maximizes the system result coefficient for the heat pump hot water supply device, resulting in the highly efficient hot water supply system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスクーラにおける冷媒から放出される熱を利用して温水を供給するヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump hot water supply apparatus that supplies hot water using heat released from a refrigerant in a gas cooler.

従来、この種のヒートポンプ給湯装置は、図8に示すような構造を有していた。   Conventionally, this type of heat pump hot water supply apparatus has a structure as shown in FIG.

なお、以下では、高圧側において超臨界となり得る物質を冷媒として用いるヒートポンプ給湯装置として、現在、最も一般的な二酸化炭素を冷媒とするヒートポンプ給湯装置について述べる。   Hereinafter, as a heat pump hot water supply apparatus that uses a substance that can be supercritical on the high pressure side as a refrigerant, a heat pump hot water supply apparatus that uses carbon dioxide as the most common refrigerant at present will be described.

図8に示すように、従来のヒートポンプ給湯装置では、ヒートポンプユニット41に、圧縮機31、ガスクーラ32、減圧機構である膨張弁33、蒸発器34をこの順で環状に接続して構成する冷媒回路35を設けている。   As shown in FIG. 8, in a conventional heat pump hot water supply apparatus, a refrigerant circuit configured by connecting a heat pump unit 41 to a compressor 31, a gas cooler 32, an expansion valve 33 as a pressure reducing mechanism, and an evaporator 34 in this order in an annular shape. 35 is provided.

また、貯湯ユニット42に、貯湯タンク37、積層ポンプ38、三方弁39、給湯混合弁40を設け、貯湯タンク37の底部から積層ポンプ38、ガスクーラ32、三方弁39を経て貯湯タンク37の塔頂へ戻す沸き上げ回路を構成し、給湯混合弁40は供給水配管と貯湯タンク37からの給湯配管の混合部に設けられている。   The hot water storage unit 42 is provided with a hot water storage tank 37, a stacking pump 38, a three-way valve 39, and a hot water mixing valve 40, and the top of the hot water storage tank 37 passes through the stacking pump 38, the gas cooler 32, and the three-way valve 39 from the bottom of the hot water storage tank 37. The hot water mixing valve 40 is provided in the mixing portion of the hot water supply pipe from the hot water storage tank 37 and the hot water supply tank 37.

なお、ヒートポンプユニット41の冷媒回路35は、ガスクーラ32から膨張弁33へ供給される高圧側冷媒と蒸発器34から圧縮機31へ供給される低圧側冷媒の間で冷媒間熱交換を行う液ガス熱交換器36を備えている。   The refrigerant circuit 35 of the heat pump unit 41 is a liquid gas that performs heat exchange between refrigerants between the high-pressure side refrigerant supplied from the gas cooler 32 to the expansion valve 33 and the low-pressure side refrigerant supplied from the evaporator 34 to the compressor 31. A heat exchanger 36 is provided.

また、液ガス熱交換器36は図9に示すように構成される。   Further, the liquid gas heat exchanger 36 is configured as shown in FIG.

図に示すように、液ガス熱交換器36は、径の大きい低圧側冷媒配管44と低圧側冷媒配管44の内側に形成された低圧側冷媒配管44よりも径の小さい高圧側冷媒配管43を配する二重管構造であり、高圧側冷媒配管43の両端には分岐管45が形成されている。   As shown in the figure, the liquid gas heat exchanger 36 has a low-pressure refrigerant pipe 44 having a large diameter and a high-pressure refrigerant pipe 43 having a smaller diameter than the low-pressure refrigerant pipe 44 formed inside the low-pressure refrigerant pipe 44. A double pipe structure is provided, and branch pipes 45 are formed at both ends of the high-pressure side refrigerant pipe 43.

そして、低圧側冷媒配管44と高圧側冷媒配管43により、高圧側冷媒流路46と低圧側冷媒流路47が形成されている。   The low pressure side refrigerant pipe 44 and the high pressure side refrigerant pipe 43 form a high pressure side refrigerant flow path 46 and a low pressure side refrigerant flow path 47.

以上のように構成されたヒートポンプ給湯装置について、以下にその動作を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement is demonstrated below.

圧縮機31から吐出された高圧の冷媒はガスクーラ32へ供給され、ガスクーラ32においてその凝縮熱を利用して水と熱交換を行い、温度の低下した冷媒は液ガス熱交換器36の高圧側冷媒流路46へ供給される。液ガス熱交換器36においては低圧側冷媒流路47を流れる冷媒と熱交換を行い、放熱した後に膨張弁33に供給される。膨張弁33にて減圧された後、蒸発器34に供給されて吸熱し、液ガス熱交換器36の低圧側冷媒流路47を経て、圧縮機31へ吸入される。   The high-pressure refrigerant discharged from the compressor 31 is supplied to the gas cooler 32, and heat exchange with water is performed using the heat of condensation in the gas cooler 32. It is supplied to the flow path 46. In the liquid gas heat exchanger 36, heat is exchanged with the refrigerant flowing through the low-pressure side refrigerant flow path 47, and after being dissipated, the heat is supplied to the expansion valve 33. After being depressurized by the expansion valve 33, it is supplied to the evaporator 34 to absorb heat, and is sucked into the compressor 31 through the low-pressure side refrigerant flow path 47 of the liquid gas heat exchanger 36.

一方、ガスクーラ32において加熱される水は、積層ポンプ38の作用で貯湯タンク37の底部より供給され、ガスクーラ32において加熱された後に、温水となって三方弁39を経て貯湯タンク37の上部に戻される。   On the other hand, the water heated in the gas cooler 32 is supplied from the bottom of the hot water storage tank 37 by the action of the stacking pump 38, heated in the gas cooler 32, converted into hot water, and returned to the upper part of the hot water storage tank 37 through the three-way valve 39. It is.

ところで、液ガス熱交換器36は高圧側冷媒と低圧側冷媒の間で熱交換を行うことにより、高圧側冷媒圧力を抑制するという働きを持つが、同時に、ガスクーラ32入口の冷媒温度を上昇させ、冷凍サイクル内の冷媒循環量を減少させるという働きも有する。   By the way, the liquid gas heat exchanger 36 functions to suppress the high-pressure side refrigerant pressure by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant, but at the same time, raises the refrigerant temperature at the inlet of the gas cooler 32. It also has the function of reducing the amount of refrigerant circulating in the refrigeration cycle.

ここで、ガスクーラ32入口における冷媒温度の上昇は、加熱能力の増加という影響を与えるが、冷媒循環量の減少は、加熱能力の減少という影響を与え、各々、相反する影響を与える。したがって、この双方の寄与度により加熱能力の増減が決定し、システム成績係数の増減が決定する。   Here, an increase in the refrigerant temperature at the inlet of the gas cooler 32 has an effect of increasing the heating capacity, but a decrease in the circulation amount of the refrigerant has an effect of decreasing the heating capacity, and each has an opposite effect. Therefore, the increase / decrease in heating capacity is determined by the contributions of both, and the increase / decrease in system performance coefficient is determined.

そのため、液ガス熱交換器36における冷媒間熱交換量を最適化することによって、システム成績係数を最大にする液ガス熱交換器36を発明することは非常に重要であった(例えば、特許文献1、2参照)。
特開2006−300487号公報 特開2005−351537号公報
Therefore, inventing the liquid gas heat exchanger 36 that maximizes the system coefficient of performance by optimizing the amount of heat exchange between refrigerants in the liquid gas heat exchanger 36 has been very important (for example, Patent Documents). 1 and 2).
JP 2006-300487 A JP 2005-351537 A

しかしながら、特許文献1には放熱ロスが少なく、熱交換効率が高い液ガス熱交換器として、その概要は記載されているものの、冷媒間熱交換量に着目してシステム成績係数を最大にする仕様についての言及はない。そのため、ガスクーラ入口冷媒温度が不十分であったり、冷媒循環量が過小になったりして、システム成績係数が低くなるという問題点を有していた。   However, although Patent Document 1 describes a summary as a liquid gas heat exchanger with little heat dissipation loss and high heat exchange efficiency, it is a specification that maximizes the system coefficient of performance by paying attention to the amount of heat exchange between refrigerants. There is no mention of. For this reason, the refrigerant temperature at the inlet of the gas cooler is insufficient, or the refrigerant circulation amount becomes excessively low, resulting in a problem that the system performance coefficient is lowered.

また、特許文献2に記載のような液ガス熱交換器における冷媒間熱交換量を調節することができる冷凍サイクル装置(図なし)も提案されているが、この冷凍サイクル装置においては、冷媒を減圧させる膨張弁を2つ搭載しており、冷凍サイクル装置の大型化および制御仕様の複雑化は不可避である。近年のヒートポンプ給湯装置はコンパクトタイプが主流であることを考慮すると、冷凍サイクル装置の拡大に伴う筐体の大型化は大きな課題であった。   Also, a refrigeration cycle apparatus (not shown) that can adjust the amount of heat exchange between refrigerants in a liquid gas heat exchanger as described in Patent Document 2 has been proposed. Two expansion valves for reducing the pressure are mounted, and it is inevitable that the refrigeration cycle apparatus is enlarged and the control specifications are complicated. Considering that compact heat pump water heaters in recent years are the mainstream, increasing the size of the housing accompanying the expansion of the refrigeration cycle apparatus has been a major issue.

本発明は上記課題を解決するものであり、システム成績係数の向上という効果を有し、かつ小型の筐体に格納することができる小型液ガス熱交換器サイクルを搭載したヒートポンプ給湯装置を提供することを目的とする。   The present invention solves the above problems and provides a heat pump hot water supply apparatus equipped with a small liquid gas heat exchanger cycle that has the effect of improving the system coefficient of performance and can be stored in a small casing. For the purpose.

上記目的を達成するために、本発明は、ヒートポンプ給湯装置に搭載される液ガス熱交換器をその冷媒間熱交換部の面積が220cm以上300cm以下である液ガス熱交換器とした。 In order to achieve the above object, according to the present invention, a liquid gas heat exchanger mounted in a heat pump hot water supply apparatus is a liquid gas heat exchanger having an area of a heat exchange section between refrigerants of 220 cm 2 or more and 300 cm 2 or less.

本発明によれば、液ガス熱交換器の冷媒間熱交換部の面積を220cm以上300cm以下という構成にしたことにより、適量の冷媒間熱交換量を得て、システム成績係数の向上という効果を得ることができる。 According to the present invention, the area of the heat exchanger between the refrigerants of the liquid gas heat exchanger is configured to be not less than 220 cm 2 and not more than 300 cm 2, thereby obtaining an appropriate amount of heat exchange between the refrigerants and improving the system performance coefficient. An effect can be obtained.

本発明の実施の形態においては、少なくとも圧縮機と、ガスクーラと、減圧機構と、蒸発器と、高圧側冷媒を与熱流体として低圧側冷媒を受熱流体とする冷媒間熱交換を行う液ガス熱交換器を備えるヒートポンプ給湯装置において、液ガス熱交換器は冷媒間熱交換部の伝熱面積が220cm以上300cm以下であることを特徴とする。 In the embodiment of the present invention, at least a compressor, a gas cooler, a decompression mechanism, an evaporator, and liquid gas heat that performs heat exchange between refrigerants using a high-pressure side refrigerant as a heating fluid and a low-pressure side refrigerant as a heat-receiving fluid. In a heat pump hot water supply apparatus provided with an exchanger, the liquid gas heat exchanger has a heat transfer area of a heat exchange section between refrigerants of 220 cm 2 or more and 300 cm 2 or less.

この構成により、適切な冷媒間熱交換量を得ることができるように作用し、システム成績係数を向上させるという効果を奏する。   With this configuration, there is an effect that an appropriate amount of heat exchange between refrigerants can be obtained and the system performance coefficient is improved.

また、本発明は液ガス熱交換器の冷媒間熱交換部の長さを0.8m以下としたものであり、この構成により、本発明は液ガス熱交換器を小型化して、格納するヒートポンプユニットの筐体をコンパクト化することができる。   In addition, the present invention is such that the length of the heat exchanger between the refrigerants of the liquid gas heat exchanger is 0.8 m or less, and with this configuration, the present invention is a heat pump for downsizing and storing the liquid gas heat exchanger The unit housing can be made compact.

また、本発明は、液ガス熱交換器を二重管構造により構成し、外管の内部に複数本の内管を配する構造とするものである。この構成により、本発明は液ガス熱交換器をさらに小型化して、格納するヒートポンプユニットの筐体をさらにコンパクト化することができる。   In the present invention, the liquid gas heat exchanger has a double pipe structure, and a plurality of inner pipes are arranged inside the outer pipe. With this configuration, the present invention can further reduce the size of the liquid gas heat exchanger and further reduce the size of the housing of the heat pump unit to be stored.

また、本発明は二重管構造により構成される液ガス熱交換器を内管を高圧側冷媒配管とし、外管を低圧側冷媒配管とするものである。この構成により、本発明は外管の肉厚を小さくすることができ、液ガス熱交換器に用いられる材料量を低減することができる。   In the present invention, the liquid gas heat exchanger having a double-pipe structure has an inner pipe as a high-pressure side refrigerant pipe and an outer pipe as a low-pressure side refrigerant pipe. With this configuration, the present invention can reduce the thickness of the outer tube, and can reduce the amount of material used for the liquid gas heat exchanger.

また、本発明は二重管構造により構成される液ガス熱交換器において、内管をφ約4mm銅管2本、外管をφ約13mm銅管1本とし、冷媒間熱交換部の長さを0.4m以上0.8m以下としたものである。この構成により、本発明は分岐管数を最小に抑えて、製造工数を削減することができる。   Further, the present invention is a liquid gas heat exchanger having a double pipe structure, wherein the inner tube has two φ4 mm copper tubes and the outer tube has one φ13 mm copper tube, and the length of the heat exchanger between the refrigerants is long. The thickness is 0.4 m or more and 0.8 m or less. With this configuration, the present invention can minimize the number of branch pipes and reduce the number of manufacturing steps.

さらに、本発明は、液ガス熱交換器において、高圧側冷媒配管と低圧側冷媒配管が接するように配する構造としたものである。この構成により、本発明は液ガス熱交換器をさらに小型化して、格納するヒートポンプユニットの筐体をさらにコンパクト化することができる。   Furthermore, the present invention is a liquid gas heat exchanger having a structure in which a high-pressure side refrigerant pipe and a low-pressure side refrigerant pipe are in contact with each other. With this configuration, the present invention can further reduce the size of the liquid gas heat exchanger and further reduce the size of the housing of the heat pump unit to be stored.

また、本発明は、高圧側冷媒配管と低圧側冷媒配管を接するように配する液ガス熱交換器において、高圧側冷媒配管と低圧側冷媒配管の少なくともどちらか一方が複数本で構成するものである。この構成により、本発明は液ガス熱交換器の冷媒配管の圧力損失を低減することができる。   Further, the present invention is a liquid gas heat exchanger arranged such that a high-pressure side refrigerant pipe and a low-pressure side refrigerant pipe are in contact with each other, and at least one of the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe is constituted by a plurality. is there. By this structure, this invention can reduce the pressure loss of the refrigerant | coolant piping of a liquid gas heat exchanger.

また、本発明は、高圧側冷媒配管と低圧側冷媒配管の少なくともどちらか一方が複数本で構成される液ガス熱交換器において、複数本である冷媒配管を他方の冷媒配管に巻きつける構造としたものである。この構成により、本発明は液ガス熱交換器をさらに小型化して、格納するヒートポンプユニットの筐体をさらにコンパクト化することができる。   Further, the present invention provides a structure in which a plurality of refrigerant pipes are wound around the other refrigerant pipe in a liquid gas heat exchanger in which at least one of the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe is constituted by a plurality. It is a thing. With this configuration, the present invention can further reduce the size of the liquid gas heat exchanger and further reduce the size of the housing of the heat pump unit to be stored.

また、本発明は、液ガス熱交換器において、ガスクーラから減圧機構に供給される高圧側冷媒と、蒸発器から圧縮機に供給される低圧側冷媒の熱交換に用いられる構造としたものである。この構成により、本発明はガスクーラと蒸発器をともに効果的に動作させることができる。   Further, the present invention is a liquid gas heat exchanger having a structure used for heat exchange between a high-pressure side refrigerant supplied from a gas cooler to a decompression mechanism and a low-pressure side refrigerant supplied from an evaporator to a compressor. . With this configuration, the present invention can effectively operate both the gas cooler and the evaporator.

また、本発明は、冷媒として、高圧側で超臨界状態となり得る冷媒を用いるものである。この構成により、本発明は高圧側冷媒温度を高くすることができ、高温の温水を効率よく得ることができる。   In the present invention, a refrigerant that can be in a supercritical state on the high-pressure side is used as the refrigerant. By this structure, this invention can make high pressure side refrigerant | coolant temperature high, and can obtain high temperature hot water efficiently.

また、本発明は、高圧側において超臨界状態となり得る冷媒として二酸化炭素を用いたものである。この構成により、本発明は用いる冷媒が不燃性冷媒であるため、発火や爆発の危険性を取り除くことができる。   In the present invention, carbon dioxide is used as a refrigerant that can be in a supercritical state on the high-pressure side. With this configuration, since the refrigerant used in the present invention is a non-flammable refrigerant, the risk of ignition or explosion can be eliminated.

以下、本発明の実施例におけるヒートポンプ給湯装置について図面を参照しながら述べる。
(実施例1)
まず、本発明の実施例1におけるヒートポンプ給湯装置に搭載の液ガス熱交換器の構成について述べる。
Hereinafter, the heat pump hot-water supply apparatus in the Example of this invention is described, referring drawings.
(Example 1)
First, the structure of the liquid gas heat exchanger mounted in the heat pump hot-water supply apparatus in Example 1 of this invention is described.

図1は液ガス熱交換器の軸鉛直方向の断面図である。   FIG. 1 is a cross-sectional view of the liquid gas heat exchanger in the axial vertical direction.

図1に示すように、複数ある高圧側冷媒配管1は、低圧側冷媒配管2内に配置されている。ここで高圧側冷媒配管1はφ4mmとし、低圧側冷媒配管2はφ12.7mmとする。   As shown in FIG. 1, a plurality of high-pressure side refrigerant pipes 1 are arranged in a low-pressure side refrigerant pipe 2. Here, the high-pressure side refrigerant pipe 1 is φ4 mm, and the low-pressure side refrigerant pipe 2 is φ12.7 mm.

高圧側冷媒配管1の内部空間は高圧側冷媒流路3であり、高圧側冷媒配管1と低圧側冷媒配管2の間隙は低圧側冷媒流路4である。   The internal space of the high pressure side refrigerant pipe 1 is a high pressure side refrigerant flow path 3, and the gap between the high pressure side refrigerant pipe 1 and the low pressure side refrigerant pipe 2 is a low pressure side refrigerant flow path 4.

また、図2は液ガス熱交換器の正面図である。   FIG. 2 is a front view of the liquid gas heat exchanger.

図2に示すように、高圧側冷媒配管1および低圧側冷媒配管2は、分岐管5、6で分岐される。ここで、二重管部分は全長0.7mである。   As shown in FIG. 2, the high-pressure side refrigerant pipe 1 and the low-pressure side refrigerant pipe 2 are branched by branch pipes 5 and 6. Here, the double tube portion has a total length of 0.7 m.

次に、上記のように構成された液ガス熱交換器が冷凍サイクルに与える動作および作用について述べる。   Next, the operation and action that the liquid gas heat exchanger configured as described above gives to the refrigeration cycle will be described.

高圧側冷媒流路3を循環する高圧側冷媒と低圧側冷媒流路4を循環する低圧側冷媒は、液ガス熱交換器において対向流をなして高圧側冷媒配管1を介して冷媒間熱交換を行う。ここで、冷媒間熱交換は高圧側冷媒を与熱流体、低圧側冷媒を受熱流体とする熱交換である。   The high-pressure side refrigerant circulating in the high-pressure side refrigerant flow path 3 and the low-pressure side refrigerant circulating in the low-pressure side refrigerant flow path 4 form a counterflow in the liquid gas heat exchanger and exchange heat between refrigerants via the high-pressure side refrigerant pipe 1. I do. Here, inter-refrigerant heat exchange is heat exchange in which the high-pressure side refrigerant is the heating fluid and the low-pressure side refrigerant is the heat receiving fluid.

乾球温度16℃、湿球温度12℃の中間環境温度において、ガスクーラで17℃の水を65℃の湯に沸き上げる定格条件において、本実施例における液ガス熱交換器は従来の液ガス熱交換器よりも伝熱面積が増加しているため、冷媒間熱交換量も増加する。   The liquid-gas heat exchanger according to the present embodiment is a conventional liquid-gas heat exchanger under rated conditions in which water at 17 ° C. is heated to 65 ° C. hot water by a gas cooler at an intermediate environmental temperature of dry bulb temperature 16 ° C. and wet bulb temperature 12 ° C. Since the heat transfer area is larger than that of the exchanger, the amount of heat exchange between refrigerants also increases.

このように、当然のことながら、図3に示すように、液ガス熱交換器の伝熱面積が増加するにつれて、冷媒間熱交換量は増加する。なお、本実施例における液ガス熱交換器の伝熱面積は150cmである。 Thus, as a matter of course, as shown in FIG. 3, the amount of heat exchange between refrigerants increases as the heat transfer area of the liquid gas heat exchanger increases. In addition, the heat transfer area of the liquid gas heat exchanger in a present Example is 150 cm < 2 >.

次に、液ガス熱交換器を搭載しない冷凍サイクルと本実施例における冷凍サイクルの動作点を描いたモリエル線図を図4に示す。ただし、圧縮機周波数は同一のものとする。   Next, FIG. 4 shows a Mollier diagram depicting operating points of a refrigeration cycle not equipped with a liquid gas heat exchanger and a refrigeration cycle in the present embodiment. However, the compressor frequency shall be the same.

図4において2つの冷凍サイクルを比較すると、液ガス熱交換器を搭載する本実施例における冷凍サイクルにおいては、冷媒の圧縮機吸入過熱度が大きくなり、同冷媒密度が小さくなるため、冷凍サイクルの冷媒循環量は減少するものの、圧縮機吐出冷媒温度が上昇し、ガスクーラにおける冷媒の比エンタルピ差を拡大した状態にてガスクーラを動作させることがわかる。   When comparing the two refrigeration cycles in FIG. 4, in the refrigeration cycle in the present embodiment equipped with the liquid gas heat exchanger, the compressor suction superheat degree of the refrigerant increases and the refrigerant density decreases. It can be seen that, although the refrigerant circulation amount decreases, the compressor discharge refrigerant temperature rises and the gas cooler is operated in a state where the specific enthalpy difference of the refrigerant in the gas cooler is enlarged.

このとき、ガスクーラ入口における冷媒の比エンタルピは増加し、冷媒温度が高くなるため、ガスクーラの動作圧力を図4に示すように低下させることができる。   At this time, the specific enthalpy of the refrigerant at the gas cooler inlet increases and the refrigerant temperature increases, so that the operating pressure of the gas cooler can be lowered as shown in FIG.

本実施例によれば、上記の構成により、液ガス熱交換器は冷媒間熱交換部の伝熱面積を150cmとすることによって、液ガス熱交換器において所定の熱量を冷媒間で授受して、圧縮機吐出冷媒温度によるシステム成績係数向上効果を大きく得ながら、冷媒循環量低下によるシステム成績係数下降効果を最小限に抑制して、システム成績係数向上効果を最大限に得ることができるという効果を奏する。 According to the present embodiment, with the above configuration, the liquid gas heat exchanger transfers a predetermined amount of heat between the refrigerants in the liquid gas heat exchanger by setting the heat transfer area of the heat exchanger between the refrigerants to 150 cm 2. The system performance coefficient improvement effect due to the refrigerant discharge refrigerant temperature can be greatly suppressed, while the system performance coefficient decrease effect due to the decrease in the refrigerant circulation amount can be minimized and the system performance coefficient improvement effect can be maximized. There is an effect.

ここで、冷媒間熱交換量とシステム成績係数の関係を図5に示す。   Here, the relationship between the amount of heat exchange between refrigerants and the system coefficient of performance is shown in FIG.

図5より、冷媒間熱交換量が所定量以下のときは、熱交換量の増加に伴いシステム成績係数は向上するが、熱交換量が所定量以上のときは、システム成績係数は低下するという傾向がわかる。   From FIG. 5, when the heat exchange amount between refrigerants is less than or equal to a predetermined amount, the system performance coefficient improves as the heat exchange amount increases, but when the heat exchange amount is greater than or equal to the predetermined amount, the system performance coefficient decreases. I can see the trend.

この傾向は、冷媒間熱交換量が小さいときは圧縮機吐出冷媒温度が上昇することによる影響が大きいが、所定量を超えて冷媒間熱交換量が過大になると、冷媒循環量の低下が著しくなり、システム成績係数が低下することに起因する。   This tendency is greatly affected by an increase in the temperature of refrigerant discharged from the compressor when the amount of heat exchange between refrigerants is small. However, if the amount of heat exchange between refrigerants exceeds a predetermined amount and the amount of heat exchange between refrigerants is excessive, the refrigerant circulation rate significantly decreases. This is because the system performance coefficient decreases.

図6に液ガス熱交換器の伝熱面積とシステム成績係数の関係を示す。   FIG. 6 shows the relationship between the heat transfer area of the liquid gas heat exchanger and the system performance coefficient.

図に示すように、伝熱面積が220cm以上300cm以下のときに、液ガス熱交換器において、適切な熱量を冷媒間で交換して、システム成績係数を最大にすることができる。 As shown in the figure, when the heat transfer area is not less than 220 cm 2 and not more than 300 cm 2 , the system gas performance coefficient can be maximized by exchanging an appropriate amount of heat between the refrigerants in the liquid gas heat exchanger.

なお、ここでは試験条件の一例として乾球温度16℃、湿球温度12℃の中間環境温度においてガスクーラで17℃の水を65℃の湯に沸き上げる定格条件を示したが、本実施例は、いかなる外気温度においてもシステム成績係数向上という同様の効果を奏する。   Here, as an example of the test conditions, the rated conditions of boiling water at 17 ° C. to 65 ° C. with a gas cooler at an intermediate environmental temperature of dry bulb temperature 16 ° C. and wet bulb temperature 12 ° C. are shown. The same effect of improving the system performance coefficient can be obtained at any outdoor temperature.

また、ここでは、冷凍サイクル装置のコンデンサがガスクーラであるCOヒートポンプ給湯装置の場合について示したが、コンデンサは空気調和器の凝縮器であっても、同様の効果を得ることができる。
(実施例2)
以下では、本発明の実施例2におけるヒートポンプ給湯装置に搭載の液ガス熱交換器の構成について述べる。
In addition, although the case where the condenser of the refrigeration cycle apparatus is a CO 2 heat pump hot water supply apparatus in which the condenser is a gas cooler has been described, the same effect can be obtained even if the condenser is a condenser of an air conditioner.
(Example 2)
Below, the structure of the liquid gas heat exchanger mounted in the heat pump hot-water supply apparatus in Example 2 of this invention is described.

図7は液ガス熱交換器の冷媒間熱交換部の模式図である。   FIG. 7 is a schematic view of the inter-refrigerant heat exchange section of the liquid gas heat exchanger.

図に示すように、2本の高圧側冷媒配管7は低圧側冷媒配管8に接するように巻きつける構成であり、高圧側冷媒配管7の両端には分岐管9が配されている。   As shown in the figure, the two high-pressure refrigerant pipes 7 are wound so as to be in contact with the low-pressure refrigerant pipe 8, and branch pipes 9 are arranged at both ends of the high-pressure refrigerant pipe 7.

本実施例によれば、上記の構造により、定格条件におけるシステム成績係数向上と超低環境温度・高入水温時の大加熱能力確保の両立に加えて、冷媒配管径が小さいために配管肉厚を小さくすることができるという効果を奏する
なお、動作および作用は(実施例1)に同じであるので、ここでは省略した。
According to the present embodiment, the above structure improves the system performance coefficient under rated conditions and secures a large heating capacity at an ultra-low ambient temperature and a high incoming water temperature. In addition, since operation | movement and an effect | action are the same as (Example 1), it abbreviate | omitted here.

また、ここでは、2本の高圧側冷媒配管7を低圧側冷媒配管8に巻きつけて 接する液ガス熱交換器を示したが、複数本の低圧側冷媒配管8を高圧側冷媒配管7に巻きつけて接する液ガス熱交換器や高圧側冷媒配管と低圧側冷媒配管がともに複数本で互いに巻きついて接する液ガス熱交換器であっても同様に製造することができ、同様の効果を得ることができる。   In addition, here, the liquid gas heat exchanger in which the two high-pressure refrigerant pipes 7 are wound around the low-pressure refrigerant pipe 8 is shown, but a plurality of low-pressure refrigerant pipes 8 are wound around the high-pressure refrigerant pipe 7. A liquid gas heat exchanger that is in contact with each other or a liquid gas heat exchanger that is in contact with a plurality of high pressure side refrigerant pipes and low pressure side refrigerant pipes that are wound around each other can be manufactured in the same manner, and the same effect can be obtained. Can do.

本発明のヒートポンプ給湯装置は、既存の液ガス熱交換器とほぼ同等の大きさで、システム成績係数を向上させる効果を有し、ヒートポンプ給湯装置一般の高効率化・省エネルギー化に対して有用である。   The heat pump water heater of the present invention is approximately the same size as an existing liquid gas heat exchanger, has the effect of improving the system performance coefficient, and is useful for improving the efficiency and energy saving of heat pump water heaters in general. is there.

本発明の実施例1におけるヒートポンプ給湯機の液ガス熱交換器の軸鉛直方向断面図Axial vertical direction sectional view of a liquid gas heat exchanger of a heat pump water heater in Example 1 of the present invention. 同ヒートポンプ給湯機の液ガス熱交換器の正面図Front view of liquid gas heat exchanger of the same heat pump water heater 同ヒートポンプ給湯機の液ガス熱交換器の冷媒間熱交換部の伝熱面積と熱交換量の関係を示す特性図The characteristic figure which shows the relationship between the heat transfer area of the heat exchange part between refrigerants of the liquid gas heat exchanger of the heat pump water heater, and the amount of heat exchange 同ヒートポンプ給湯機における乾球温度16℃、湿球温度12℃の中間環境温度において、ガスクーラで17℃の水を65℃の湯に沸き上げる定格条件での冷凍サイクルの動作線を描いたモリエル線図Mollier wire depicting the operating line of the refrigeration cycle under the rated conditions of boiling 17 ° C water to 65 ° C hot water with a gas cooler at an intermediate environmental temperature of 16 ° C dry bulb temperature and 12 ° C wet bulb temperature in the same heat pump water heater Figure 同ヒートポンプ給湯機における定格条件における液ガス熱交換器における冷媒間熱交換量とシステム成績係数の関係を示す特性図Characteristic diagram showing the relationship between the amount of heat exchange between refrigerants and the system coefficient of performance in a liquid gas heat exchanger under rated conditions in the same heat pump water heater 同ヒートポンプ給湯機における定格条件における液ガス熱交換器の冷媒間熱交換部の伝熱面積とシステム成績係数の関係を示す特性図The characteristic figure which shows the relationship between the heat transfer area of the heat exchange part between refrigerants of the liquid gas heat exchanger in the rated condition in the heat pump water heater and the system performance coefficient 本発明の実施例2におけるヒートポンプ給湯機の液ガス熱交換器の冷媒間熱交換部の模式図The schematic diagram of the heat exchanger between refrigerant | coolants of the liquid gas heat exchanger of the heat pump water heater in Example 2 of this invention. 従来の冷凍サイクル装置を示す模式図Schematic diagram showing a conventional refrigeration cycle apparatus 従来の液ガス熱交換器を示す模式図Schematic diagram showing a conventional liquid gas heat exchanger

符号の説明Explanation of symbols

1 高圧側冷媒配管
2 低圧側冷媒配管
3 高圧側冷媒流路
4 低圧側冷媒流路
5 分岐管
6 分岐管
7 高圧側冷媒配管
8 低圧側冷媒配管
9 分岐管
31 圧縮機
32 ガスクーラ
33 膨張弁
34 蒸発器
35 冷媒回路
36 液ガス熱交換器
37 貯湯タンク
38 積層ポンプ
39 三方弁
40 給湯混合弁
41 ヒートポンプユニット
42 貯湯ユニット
43 高圧側冷媒配管
44 低圧側冷媒配管
45 分岐管
46 高圧側冷媒流路
47 低圧側冷媒流路
DESCRIPTION OF SYMBOLS 1 High pressure side refrigerant pipe 2 Low pressure side refrigerant pipe 3 High pressure side refrigerant flow path 4 Low pressure side refrigerant flow path 5 Branch pipe 6 Branch pipe 7 High pressure side refrigerant pipe 8 Low pressure side refrigerant pipe 9 Branch pipe 31 Compressor 32 Gas cooler 33 Expansion valve 34 Evaporator 35 Refrigerant circuit 36 Liquid gas heat exchanger 37 Hot water storage tank 38 Laminated pump 39 Three-way valve 40 Hot water supply mixing valve 41 Heat pump unit 42 Hot water storage unit 43 High pressure side refrigerant pipe 44 Low pressure side refrigerant pipe 45 Branch pipe 46 High pressure side refrigerant flow path 47 Low pressure side refrigerant flow path

Claims (11)

少なくとも圧縮機と、ガスクーラと、減圧機構と、蒸発器と、高圧側冷媒を与熱流体として低圧側冷媒を受熱流体とする冷媒間熱交換を行う液ガス熱交換器を備え、前記液ガス熱交換器は冷媒間熱交換部の伝熱面積が220cm以上300cm以下であることを特徴とするヒートポンプ給湯装置。 At least a compressor, a gas cooler, a decompression mechanism, an evaporator, and a liquid gas heat exchanger that performs heat exchange between refrigerants using a high pressure side refrigerant as a heat transfer fluid and a low pressure side refrigerant as a heat reception fluid. A heat pump hot water supply apparatus characterized in that the heat exchanger area of the heat exchanger between the refrigerants is 220 cm 2 or more and 300 cm 2 or less. 前記液ガス熱交換器は、冷媒間熱交換部の長さが0.8m以下であることを特徴とする請求項1に記載のヒートポンプ給湯装置。 2. The heat pump hot water supply apparatus according to claim 1, wherein the liquid-gas heat exchanger has a length of a heat exchanger between refrigerants of 0.8 m or less. 前記液ガス熱交換器は、二重管構造により形成され、外管の内部に複数本の内管を配することを特徴とする請求項2に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 2, wherein the liquid gas heat exchanger is formed by a double pipe structure, and a plurality of inner pipes are arranged inside the outer pipe. 前記液ガス熱交換器は、前記内管を高圧側冷媒配管とし、前記外管を低圧側冷媒配管とすることを特徴とする請求項3に記載のヒートポンプ給湯装置。 4. The heat pump hot water supply apparatus according to claim 3, wherein the liquid gas heat exchanger uses the inner pipe as a high-pressure side refrigerant pipe and the outer pipe as a low-pressure side refrigerant pipe. 前記液ガス熱交換器は、前記内管が2本の銅管φ約4mm、前記外管が1本の銅管φ約13mmで構成され、冷媒間熱交換部の長さが0.4m以上0.8m以下であることを特徴とする請求項4に記載のヒートポンプ給湯装置。 The liquid gas heat exchanger is configured such that the inner pipe is composed of two copper pipes of about 4 mm and the outer pipe is composed of one copper pipe of about 13 mm, and the length of the heat exchanger between the refrigerants is 0.4 m or more. It is 0.8 m or less, The heat pump hot-water supply apparatus of Claim 4 characterized by the above-mentioned. 前記液ガス熱交換器は、高圧側冷媒配管と低圧側冷媒配管が接するように配することを特徴とする請求項2に記載のヒートポンプ給湯装置。 The heat pump water heater according to claim 2, wherein the liquid gas heat exchanger is arranged so that the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe are in contact with each other. 前記液ガス熱交換器は、前記高圧側冷媒配管と前記低圧側冷媒配管の少なくともどちらか一方が複数本で構成されることを特徴とする請求項6に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 6, wherein the liquid gas heat exchanger includes a plurality of at least one of the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe. 前記液ガス熱交換器は、複数本である冷媒配管を他方の冷媒配管に巻きつけることを特徴とする請求項7に記載のヒートポンプ給湯装置。 The heat pump water heater according to claim 7, wherein the liquid gas heat exchanger winds a plurality of refrigerant pipes around the other refrigerant pipe. 前記液ガス熱交換器は、前記ガスクーラから前記減圧機構に供給される高圧側冷媒と、前記蒸発器から前記圧縮機に供給される低圧側冷媒の熱交換に用いられることを特徴とする請求項5または8に記載のヒートポンプ給湯装置。 The liquid-gas heat exchanger is used for heat exchange between a high-pressure refrigerant supplied from the gas cooler to the decompression mechanism and a low-pressure refrigerant supplied from the evaporator to the compressor. The heat pump hot water supply apparatus according to 5 or 8. 冷媒として、高圧側において超臨界状態となり得る冷媒を用いることを特徴とする請求項9に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 9, wherein a refrigerant that can be in a supercritical state on the high-pressure side is used as the refrigerant. 冷媒として、二酸化炭素を用いることを特徴とする請求項10に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 10, wherein carbon dioxide is used as the refrigerant.
JP2007059428A 2007-03-09 2007-03-09 Heat pump hot water supply device Pending JP2008224064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059428A JP2008224064A (en) 2007-03-09 2007-03-09 Heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059428A JP2008224064A (en) 2007-03-09 2007-03-09 Heat pump hot water supply device

Publications (1)

Publication Number Publication Date
JP2008224064A true JP2008224064A (en) 2008-09-25

Family

ID=39842903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059428A Pending JP2008224064A (en) 2007-03-09 2007-03-09 Heat pump hot water supply device

Country Status (1)

Country Link
JP (1) JP2008224064A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit
JP2005345066A (en) * 2004-06-07 2005-12-15 T Rad Co Ltd Distributor of heat exchanger
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2006162238A (en) * 2004-11-09 2006-06-22 Denso Corp Double wall tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit
JP2005345066A (en) * 2004-06-07 2005-12-15 T Rad Co Ltd Distributor of heat exchanger
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2006162238A (en) * 2004-11-09 2006-06-22 Denso Corp Double wall tube

Similar Documents

Publication Publication Date Title
EP2770277B1 (en) Water heater
JP2010223537A (en) Heat pump hot water supply system
JP2009204235A (en) Heat pump type water heater
JP2014163566A (en) Water heater
JP2006118820A (en) Heat pump type water heater
CN103836790A (en) Heat pump water heater
JP2006200777A (en) Heat pump water heater
JP2013124802A (en) Refrigeration cycle apparatus
JP2008082601A (en) Heat pump hot water supply device
JP2008224073A (en) Heat pump hot water supply device
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
JP4805179B2 (en) Water refrigerant heat exchanger
JP2009281631A (en) Heat pump unit
JP2004177020A (en) Water heater
JP5111221B2 (en) Water heater
JP2008224064A (en) Heat pump hot water supply device
JP2005069608A (en) Hot water utilizing system
JP2012073008A (en) Refrigeration cycle device
CN210267788U (en) Water-cooling fluorine pump dual cycle economizer system
JP5997057B2 (en) Heat pump type heating device
JP2010078171A (en) Internal heat exchanger
JP4893047B2 (en) Heat pump type water heater
JP2008157513A (en) Heat pump hot water supply apparatus
JP5262428B2 (en) Heat pump system
JP2008096101A (en) Heat pump type hot water supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731