JP2004177020A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2004177020A
JP2004177020A JP2002344936A JP2002344936A JP2004177020A JP 2004177020 A JP2004177020 A JP 2004177020A JP 2002344936 A JP2002344936 A JP 2002344936A JP 2002344936 A JP2002344936 A JP 2002344936A JP 2004177020 A JP2004177020 A JP 2004177020A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
hot water
oil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344936A
Other languages
Japanese (ja)
Inventor
Atsushi Yamazaki
淳 山崎
Shigeki Iwanami
重樹 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002344936A priority Critical patent/JP2004177020A/en
Publication of JP2004177020A publication Critical patent/JP2004177020A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heater A for improving heat pump performance when the outside air temperature is low. <P>SOLUTION: This water heater A has a refrigerant circuit 4 for annularly connecting a compressor 1 for compressing a refrigerant, an oil separator 2 for separating the refrigerant and oil, a refrigerant passage 31 of a refrigerant-water heat exchanger 3 and an air heat exchanger 5 attached with a refrigerant pressure reducing device and an electric fan 51, an oil return pipe 7 for returning the oil separated by the oil separator 2 to the compressor 1 and a hot water supply circuit 6 for annularly connecting a hot and cold water passage 32 of the refrigerant-water heat exchanger 3, a hot water storage tank 61 and a circulating pump 62. This water heater A performs heat pump operation for heating hot and cold water by exchanging heat between the high temperature refrigerant passing through the refrigerant passage 31 and the hot and cold water passing through the hot and cold water passage 32 by putting the compressor 1, the circulating pump 62 and the electric fan 51 in an operation state. This water heater A is provided with the oil return pipe 7 on the upstream side of the air heat exchanger 5, and is constituted so that air raised in the temperature by heat of the oil return pipe 7 passes through the air heat exchanger 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒水熱交換器の冷媒通路を通過する高温の冷媒と、冷媒水熱交換器の湯水通路を通過する湯水とを熱交換して湯水を加熱するヒートポンプ運転を行う給湯器に関する。
【0002】
【従来の技術】
特許文献1に記載のヒートポンプサイクルは、圧縮機から吐出された冷媒とオイルとを分離するオイル分離器を具備し、オイル分離器に回収されたオイルが水熱交換器のオイル通路を通って圧縮機に戻るオイル還流通路を有している。
【0003】
【特許文献1】
特開2001− 304701号公報 (第1頁〜第4頁、図1)
【0004】
【発明が解決しようとする課題】
特許文献1に記載のヒートポンプサイクルは、直接、高温のオイルを水の加熱に利用しているので、熱ロスが少なく、高効率である。
【0005】
しかし、蒸発圧力が外気温に左右されるので、外気温が低い時に運転すると蒸発圧力が下がる。その結果、圧縮機の圧縮比の増加や、冷媒流量の低下を引き起し、ヒートポンプサイクルの性能低下を招く。
【0006】
更に、外気温が低い時は、蒸発圧力がフロストする領域に入る虞がある。このため、霜による熱交換器の目詰まりを防ぐため、除霜運転(ヒートポンプ性能にマイナス要因)を頻繁に実施する必要がある。
【0007】
本発明の目的は、外気温度が低い場合のヒートポンプ性能の向上を図った給湯器の提供にある。
【0008】
【課題を解決するための手段】
〔請求項1について〕
冷媒回路は、冷媒を圧縮する圧縮機、冷媒とオイルとを分離するオイルセパレータ、冷媒水熱交換器の冷媒通路、減圧手段、および空気熱交換器(冷媒蒸発器として機能)を環状に接続してなる。
【0009】
給湯回路は、冷媒水熱交換器の湯水通路、貯湯槽、および循環ポンプを環状に接続してなる。
ヒートポンプ運転は、圧縮機および循環ポンプを作動状態にして、冷媒通路を通過する高温の冷媒と湯水通路を通過する湯水とを熱交換して湯水を加熱する。
【0010】
空気熱交換器の上流側にオイル戻し配管を配設している。このため、オイルセパレータで分離した高温のオイル(高温の冷媒の熱を受けるため)がオイル戻し配管を介して圧縮機に戻る際に、空気熱交換器を通過する空気を加熱する。
【0011】
これにより、空気熱交換器内の冷媒の蒸発圧力を高めることができ、外気温度が低い場合でも、圧縮機の稼働率の低減と冷媒循環量の増大とが図れ、ヒートポンプ性能を向上させることができる。
また、外気温度が低い場合でも、空気熱交換器のフロストを抑制(蒸発圧力が高いため)でき、空気熱交換器の除霜回数を低減することができる。
【0012】
〔請求項2について〕
冷媒回路は、冷媒を圧縮する圧縮機、冷媒とオイルとを分離するオイルセパレータ、冷媒水熱交換器の冷媒通路、減圧手段、およびファンを付設した空気熱交換器を環状に接続してなる。
【0013】
給湯回路は、冷媒水熱交換器の湯水通路、貯湯槽、および循環ポンプを環状に接続してなる。
ヒートポンプ運転は、圧縮機、前記循環ポンプ、およびファンを作動状態にして、冷媒通路を通過する高温の冷媒と湯水通路を通過する湯水とを熱交換して湯水を加熱する。
【0014】
空気熱交換器の上流側にオイル戻し配管を配設している。
このため、オイルセパレータで分離した高温のオイルがオイル戻し配管を介して圧縮機に戻る際に、空気熱交換器に臨ませた部分が発する熱によって空気が昇温し、この加熱された空気が空気熱交換器を通過する。
【0015】
これにより、空気熱交換器内の冷媒の蒸発圧力を高めることができ、外気温度が低い場合でも、圧縮機の稼働率の低減と冷媒循環量の増大とが図れ、ヒートポンプ性能を向上させることができる。
また、外気温度が低い場合でも、空気熱交換器のフロストを抑制(蒸発圧力が高いため)でき、空気熱交換器の除霜回数を低減することができる。
【0016】
〔請求項3について〕
冷媒に、高圧側の圧力が臨界圧力以上である二酸化炭素を採用している。
このサイクルでは、冷媒にフロン等を使用するサイクルに比べて、高圧側の圧力が高いため、サイクル内に封入するオイル量が多い。
このため、空気熱交換器を通過する空気を、高温の多量のオイルにより効率良く昇温させることができる。
また、冷媒が二酸化炭素であるので、容易に手に入るとともに、オゾン層を破壊せず地球環境にやさしい。
【0017】
【発明の実施の形態】
本発明の一実施例(請求項1〜3に対応)を、図1および図2に基づいて説明する。
給湯器Aは、圧縮機1、オイルセパレータ2、冷媒水熱交換器3の冷媒通路31、冷媒減圧装置41、電動ファン51を付設した空気熱交換器5、およびアキュームレータ42を冷媒配管で環状に接続してなる冷媒回路4と、冷媒水熱交換器3の湯水通路32、貯湯槽61、および循環ポンプ62を環状に接続してなる給湯回路6と、オイルを圧縮機1に戻すためのオイル戻し配管7と、圧縮機1、電動ファン51、循環ポンプ62を制御する制御器8とを備える。
【0018】
そして、ヒートポンプ運転を行う際には、制御器8が、圧縮機1、電動ファン51、および循環ポンプ62を作動状態にして、冷媒通路31を通過する高温の冷媒と湯水通路32を通過する湯水とを熱交換して湯水を加熱する。
【0019】
ヒートポンプ運転中、制御器8は、吐出冷媒温度−給水温度が所定値(例えば10℃)となる様に、圧縮機1および冷媒減圧装置41を制御してサイクルの高圧を維持している。
【0020】
圧縮機1は、モータ部12によって駆動され、吸引したガス冷媒(臨界圧力が低いCO)を臨界圧力以上に圧縮して吐出する。この圧縮機1の冷媒吐出量は、モータの回転数に応じて可変可能である。
また、圧縮機1から吐出する冷媒の温度を検出するため、圧縮機1の出口側には吐出冷媒温度センサ(図示せず)が配されている。
【0021】
冷媒水熱交換器3は、圧縮機1の圧縮部11で圧縮された高温高圧のガス冷媒と湯水とを熱交換するものであり、冷媒が通過する冷媒通路31と、湯水が通過する湯水通路32とが隣接して設けられ、冷媒の流れ方向と湯水の流れ方向とが対向する様に構成されている。
【0022】
冷媒減圧装置41は、膨張弁であり、冷媒水熱交換器3の冷媒通路31と空気熱交換器5との間に設けられている。冷媒通路31を通過して冷却した冷媒が冷媒減圧装置41を通過する際に減圧して空気熱交換器5に送られる。なお、制御器8により弁開度が操作される。
【0023】
空気熱交換器5の下流側に配設した電動ファン51により発生する空気流により外気が引き込まれて通過し、冷媒減圧装置41で減圧した冷媒と外気とを熱交換して冷媒を蒸発させる。
【0024】
循環ポンプ62は、貯湯槽61内の湯水が、出口から冷媒水熱交換器3の湯水通路32の入口→湯水通路32→湯水通路32の出口を経て入口から貯湯槽61内へ戻る水流を発生させる。この循環ポンプ62の流水量は、制御器8が司るポンプモータへの通電量に応じて増減する。
【0025】
貯湯槽61は、耐蝕性に優れた金属(例えばステンレス)で形成され、給湯用の温水を長時間に亘って保温可能な断熱構造を備える。そして、貯湯槽61内の温水は、キッチン、風呂、床暖房、室内暖房用に用いられる。
【0026】
オイル減圧装置71を介設したオイル戻し配管7は、オイルセパレータ2のオイル分離出口に基端側を接続し、圧縮機1のモータ部12内に末端側を接続している。
このオイル戻し配管7は、中央部分が空気熱交換器5の上流側に蛇行して配設されている。これにより、オイル戻し配管7が発する熱によって昇温した空気が空気熱交換器5を通過する。
【0027】
給湯器Aは、以下の様に作動する。
圧縮機1から吐出する高温高圧の冷媒は、オイルセパレータ2でオイルが取り除かれた後、冷媒水熱交換器3の冷媒通路31を通過する。
この際、冷媒水熱交換器3の湯水通路32を流れている湯水を高温の冷媒が加熱し、通過後、降温する。
【0028】
一方、オイルセパレータ2で分離された高温高圧のオイルは、オイル減圧装置71で減圧され、空気熱交換器5の上流側に臨む蛇行部分を通過して降温し、圧縮機1のモータ部12に戻り、モータ部12を潤滑および冷却する。
【0029】
低温高圧となった冷媒は、冷媒減圧装置41を通過して減圧し、空気熱交換器5へ進入する。
オイル戻し配管7が発する熱によって昇温した空気が空気熱交換器5を通過するので、冷媒がその熱を吸熱して蒸発する。
空気熱交換器5を出た蒸気冷媒は、アキュームレータ42を通過し、圧縮機1の圧縮部11に入る。
【0030】
本実施例の給湯器Aは、以下の利点を有する。
[あ]本実施例の給湯器Aは、空気熱交換器5の上流側にオイル戻し配管7を蛇行して配設している。
このため、オイルセパレータ2で分離した高温のオイルがオイル戻し配管7を介して圧縮機1に戻る際に、オイル戻し配管7の蛇行部分が発する熱によって空気が昇温し、この加熱された空気が空気熱交換器5を通過する。
【0031】
空気熱交換器5の冷媒と熱交換する空気は、オイル戻し配管7の蛇行部分が発する熱によって昇温しているので、外気温よりも温度が高い。
よって、図2のP− h線図の太い実線で示す様に、熱交換する空気を加熱しない従来品(破線)に比べて蒸発圧力が高くなるので冷媒循環量が増大し、外気温度が低い場合のヒートポンプ性能が向上する。
【0032】
また、外気温度が低い場合でも、空気熱交換器5のフロストを抑制(蒸発圧力が高いため)でき、空気熱交換器5の除霜回数を低減することができる。
【0033】
[い]圧縮機1のモータ部12は、空気と熱交換した後のオイルで冷却されるので、圧縮部11に流入する冷媒の吸入過熱度を適度に保つことができ、圧縮機1の効率が向上する。
【0034】
[う]冷媒に、高圧側の圧力が臨界圧力以上である二酸化炭素を採用している。このサイクルでは、冷媒にフロン等を使用するサイクルに比べて、高圧側の圧力が高いため、サイクル内に封入するオイル量が多い。
このため、空気熱交換器5を通過する空気を、高温の多量のオイルにより効率良く昇温させることができる。
また、冷媒が二酸化炭素であるので、容易に手に入るとともに、オゾン層を破壊せず地球環境にやさしい。
【図面の簡単な説明】
【図1】本発明の一実施例に係る給湯器の構成図である。
【図2】その給湯器および従来品の給湯器のP− h線図である。
【符号の説明】
A 給湯器
1 圧縮機
2 オイルセパレータ
3 冷媒水熱交換器
4 冷媒回路
5 空気熱交換器
6 給湯回路
7 オイル戻し配管
31 冷媒通路
32 湯水通路
41 冷媒減圧装置(減圧手段)
51 電動ファン
61 貯湯槽
62 循環ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water heater that performs a heat pump operation to heat water by exchanging heat between a high-temperature refrigerant passing through a refrigerant passage of a refrigerant water heat exchanger and hot water passing through a water passage of the refrigerant water heat exchanger.
[0002]
[Prior art]
The heat pump cycle described in Patent Document 1 includes an oil separator that separates oil and refrigerant discharged from a compressor, and the oil collected in the oil separator is compressed through an oil passage of a water heat exchanger. It has an oil return passage returning to the machine.
[0003]
[Patent Document 1]
JP 2001-304701 A (Pages 1 to 4, FIG. 1)
[0004]
[Problems to be solved by the invention]
The heat pump cycle described in Patent Literature 1 directly uses high-temperature oil for heating water, so that heat loss is small and high efficiency.
[0005]
However, since the evaporating pressure depends on the outside air temperature, the evaporating pressure decreases when the operation is performed when the outside air temperature is low. As a result, an increase in the compression ratio of the compressor and a decrease in the flow rate of the refrigerant are caused, and the performance of the heat pump cycle is reduced.
[0006]
Further, when the outside air temperature is low, there is a possibility that the evaporating pressure enters a region where the frost is frosted. For this reason, in order to prevent clogging of the heat exchanger due to frost, it is necessary to frequently perform a defrosting operation (a negative factor for the heat pump performance).
[0007]
An object of the present invention is to provide a water heater that improves heat pump performance when the outside air temperature is low.
[0008]
[Means for Solving the Problems]
[About claim 1]
The refrigerant circuit circularly connects a compressor for compressing the refrigerant, an oil separator for separating the refrigerant and oil, a refrigerant passage of the refrigerant / water heat exchanger, a pressure reducing means, and an air heat exchanger (functioning as a refrigerant evaporator). It becomes.
[0009]
The hot water supply circuit is configured by annularly connecting a hot water passage, a hot water storage tank, and a circulation pump of the refrigerant / water heat exchanger.
In the heat pump operation, the compressor and the circulation pump are operated to heat the hot water by exchanging heat between the high-temperature refrigerant passing through the refrigerant passage and the hot water passing through the hot water passage.
[0010]
An oil return pipe is provided upstream of the air heat exchanger. Therefore, when the high-temperature oil separated by the oil separator (to receive the heat of the high-temperature refrigerant) returns to the compressor via the oil return pipe, the air passing through the air heat exchanger is heated.
[0011]
As a result, the evaporation pressure of the refrigerant in the air heat exchanger can be increased, and even when the outside air temperature is low, the operation rate of the compressor can be reduced and the refrigerant circulation amount can be increased, and the heat pump performance can be improved. it can.
Further, even when the outside air temperature is low, the frost of the air heat exchanger can be suppressed (because the evaporation pressure is high), and the number of times of defrosting of the air heat exchanger can be reduced.
[0012]
[About claim 2]
The refrigerant circuit is formed by annularly connecting a compressor for compressing the refrigerant, an oil separator for separating the refrigerant and oil, a refrigerant passage of the refrigerant / water heat exchanger, a pressure reducing means, and an air heat exchanger provided with a fan.
[0013]
The hot water supply circuit is configured by annularly connecting a hot water passage, a hot water storage tank, and a circulation pump of the refrigerant / water heat exchanger.
In the heat pump operation, the compressor, the circulation pump, and the fan are operated to heat the hot water by exchanging heat between the high-temperature refrigerant passing through the refrigerant passage and the hot water passing through the hot water passage.
[0014]
An oil return pipe is provided upstream of the air heat exchanger.
Therefore, when the high-temperature oil separated by the oil separator returns to the compressor through the oil return pipe, the temperature of the air rises due to the heat generated by the part facing the air heat exchanger, and the heated air is heated. Pass through an air heat exchanger.
[0015]
As a result, the evaporation pressure of the refrigerant in the air heat exchanger can be increased, and even when the outside air temperature is low, the operation rate of the compressor can be reduced and the refrigerant circulation amount can be increased, and the heat pump performance can be improved. it can.
Further, even when the outside air temperature is low, the frost of the air heat exchanger can be suppressed (because the evaporation pressure is high), and the number of times of defrosting of the air heat exchanger can be reduced.
[0016]
[About claim 3]
Carbon dioxide whose pressure on the high pressure side is equal to or higher than the critical pressure is employed as the refrigerant.
In this cycle, since the pressure on the high pressure side is higher than in a cycle in which chlorofluorocarbon or the like is used as the refrigerant, a larger amount of oil is sealed in the cycle.
For this reason, the temperature of the air passing through the air heat exchanger can be efficiently raised by a large amount of high-temperature oil.
In addition, since the refrigerant is carbon dioxide, it can be easily obtained and does not destroy the ozone layer and is environmentally friendly.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention (corresponding to claims 1 to 3) will be described with reference to FIGS.
The water heater A includes a compressor 1, an oil separator 2, a refrigerant passage 31 of a refrigerant / water heat exchanger 3, a refrigerant pressure reducing device 41, an air heat exchanger 5 provided with an electric fan 51, and an accumulator 42, which are annularly connected with refrigerant piping. A refrigerant circuit 4 connected thereto, a hot water supply circuit 6 in which the hot water passage 32 of the refrigerant water heat exchanger 3, the hot water storage tank 61, and the circulation pump 62 are connected in an annular shape, and an oil for returning oil to the compressor 1. A return pipe 7 and a controller 8 for controlling the compressor 1, the electric fan 51, and the circulation pump 62 are provided.
[0018]
When performing the heat pump operation, the controller 8 activates the compressor 1, the electric fan 51, and the circulation pump 62 so that the high-temperature refrigerant passing through the refrigerant passage 31 and the hot water passing through the hot water passage 32 are turned on. And heat exchange to heat the water.
[0019]
During operation of the heat pump, the controller 8 controls the compressor 1 and the refrigerant pressure reducing device 41 to maintain the high pressure of the cycle so that the discharge refrigerant temperature-supply water temperature becomes a predetermined value (for example, 10 ° C.).
[0020]
The compressor 1 is driven by the motor unit 12, compresses the sucked gas refrigerant (CO 2 having a low critical pressure) to a pressure equal to or higher than the critical pressure, and discharges the compressed gas refrigerant. The refrigerant discharge amount of the compressor 1 can be changed according to the rotation speed of the motor.
In order to detect the temperature of the refrigerant discharged from the compressor 1, a discharge refrigerant temperature sensor (not shown) is disposed at an outlet side of the compressor 1.
[0021]
The refrigerant / water heat exchanger 3 exchanges heat between the high-temperature and high-pressure gas refrigerant compressed by the compression section 11 of the compressor 1 and hot water, and a refrigerant passage 31 through which the refrigerant passes, and a hot water passage through which the hot water passes. 32 are provided adjacent to each other, so that the flow direction of the refrigerant and the flow direction of the hot and cold water are opposed to each other.
[0022]
The refrigerant pressure reducing device 41 is an expansion valve, and is provided between the refrigerant passage 31 of the refrigerant / water heat exchanger 3 and the air heat exchanger 5. When the refrigerant cooled through the refrigerant passage 31 passes through the refrigerant pressure reducing device 41, the pressure is reduced and sent to the air heat exchanger 5. The valve opening is operated by the controller 8.
[0023]
The outside air is drawn in and passed by the air flow generated by the electric fan 51 disposed downstream of the air heat exchanger 5, and the refrigerant decompressed by the refrigerant pressure reducing device 41 exchanges heat with the outside air to evaporate the refrigerant.
[0024]
The circulation pump 62 generates a water flow in which the hot water in the hot water tank 61 returns from the outlet to the hot water tank 61 through the inlet of the hot water passage 32 of the refrigerant / water heat exchanger 3 → the hot water passage 32 → the outlet of the hot water passage 32. Let it. The amount of water flowing from the circulation pump 62 increases or decreases according to the amount of power supplied to the pump motor controlled by the controller 8.
[0025]
Hot water storage tank 61 is formed of a metal (for example, stainless steel) having excellent corrosion resistance, and has a heat insulating structure capable of keeping hot water for hot water supply for a long time. The hot water in the hot water storage tank 61 is used for kitchen, bath, floor heating, and room heating.
[0026]
The oil return pipe 7 provided with the oil pressure reducing device 71 has a base end connected to an oil separation outlet of the oil separator 2 and a tail end connected to the motor section 12 of the compressor 1.
The oil return pipe 7 has a central portion meandering upstream of the air heat exchanger 5. Thus, the air heated by the heat generated by the oil return pipe 7 passes through the air heat exchanger 5.
[0027]
Water heater A operates as follows.
The high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the refrigerant passage 31 of the refrigerant water heat exchanger 3 after the oil is removed by the oil separator 2.
At this time, the high-temperature refrigerant heats the hot and cold water flowing in the hot and cold water passages 32 of the refrigerant / water heat exchanger 3, and after passing through, the temperature drops.
[0028]
On the other hand, the high-temperature and high-pressure oil separated by the oil separator 2 is decompressed by the oil decompression device 71, passes through a meandering portion facing the upstream side of the air heat exchanger 5, and cools down. Then, the motor unit 12 is lubricated and cooled.
[0029]
The low-temperature and high-pressure refrigerant passes through the refrigerant pressure reducing device 41 and is depressurized, and enters the air heat exchanger 5.
Since the air heated by the heat generated by the oil return pipe 7 passes through the air heat exchanger 5, the refrigerant absorbs the heat and evaporates.
The vapor refrigerant exiting the air heat exchanger 5 passes through the accumulator 42 and enters the compression section 11 of the compressor 1.
[0030]
Water heater A of the present embodiment has the following advantages.
[A] In the water heater A of this embodiment, an oil return pipe 7 is arranged in a meandering manner upstream of the air heat exchanger 5.
Therefore, when the high-temperature oil separated by the oil separator 2 returns to the compressor 1 through the oil return pipe 7, the temperature of the air increases due to the heat generated by the meandering portion of the oil return pipe 7, and the heated air Pass through the air heat exchanger 5.
[0031]
The temperature of the air that exchanges heat with the refrigerant of the air heat exchanger 5 is higher than the outside air temperature because the temperature of the air is increased by the heat generated by the meandering portion of the oil return pipe 7.
Therefore, as shown by the thick solid line in the Ph diagram of FIG. 2, the evaporation pressure is higher than that of the conventional product (dashed line) which does not heat the air to be heat-exchanged, so that the refrigerant circulation amount is increased and the outside air temperature is low. In this case, the heat pump performance is improved.
[0032]
In addition, even when the outside air temperature is low, the frost of the air heat exchanger 5 can be suppressed (because the evaporation pressure is high), and the number of times of defrosting of the air heat exchanger 5 can be reduced.
[0033]
[I] Since the motor section 12 of the compressor 1 is cooled by oil after heat exchange with air, the degree of superheating of the refrigerant flowing into the compression section 11 can be kept at an appropriate level, and the efficiency of the compressor 1 can be maintained. Is improved.
[0034]
[U] Carbon dioxide whose pressure on the high pressure side is equal to or higher than the critical pressure is employed as the refrigerant. In this cycle, since the pressure on the high pressure side is higher than in a cycle in which chlorofluorocarbon or the like is used as the refrigerant, a larger amount of oil is sealed in the cycle.
For this reason, the temperature of the air passing through the air heat exchanger 5 can be efficiently raised by a large amount of high-temperature oil.
In addition, since the refrigerant is carbon dioxide, it can be easily obtained and does not destroy the ozone layer and is environmentally friendly.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a water heater according to one embodiment of the present invention.
FIG. 2 is a Ph diagram of the water heater and a conventional water heater.
[Explanation of symbols]
A Water heater 1 Compressor 2 Oil separator 3 Refrigerant water heat exchanger 4 Refrigerant circuit 5 Air heat exchanger 6 Hot water supply circuit 7 Oil return pipe 31 Refrigerant passage 32 Hot water passage 41 Refrigerant decompression device (decompression means)
51 electric fan 61 hot water tank 62 circulation pump

Claims (3)

冷媒を圧縮する圧縮機、前記冷媒とオイルとを分離するオイルセパレータ、冷媒水熱交換器の冷媒通路、減圧手段、および空気熱交換器を環状に接続してなる冷媒回路と、
前記オイルセパレータで分離された前記オイルを前記圧縮機に戻すためのオイル戻し配管と、
前記冷媒水熱交換器の湯水通路、貯湯槽、および循環ポンプを環状に接続してなる給湯回路とを備え、
前記圧縮機および前記循環ポンプを作動状態にして、前記冷媒通路を通過する高温の冷媒と前記湯水通路を通過する湯水とを熱交換して前記湯水を加熱するヒートポンプ運転を行う給湯器において、
前記オイル戻し配管を前記空気熱交換器の上流側に配設したことを特徴とする給湯器。
A compressor that compresses a refrigerant, an oil separator that separates the refrigerant and oil, a refrigerant passage of a refrigerant / water heat exchanger, a depressurizing unit, and a refrigerant circuit that connects the air heat exchanger in an annular manner;
An oil return pipe for returning the oil separated by the oil separator to the compressor,
A hot water supply circuit formed by annularly connecting a hot water passage, a hot water storage tank, and a circulating pump of the refrigerant water heat exchanger,
In the water heater performing a heat pump operation of heating the hot water by exchanging heat between the high-temperature refrigerant passing through the refrigerant passage and hot water passing through the hot water passage while the compressor and the circulation pump are in an operating state.
A water heater, wherein the oil return pipe is disposed upstream of the air heat exchanger.
冷媒を圧縮する圧縮機、前記冷媒とオイルとを分離するオイルセパレータ、冷媒水熱交換器の冷媒通路、減圧手段、およびファンを付設した空気熱交換器を環状に接続してなる冷媒回路と、
前記オイルセパレータで分離された前記オイルを前記圧縮機に戻すためのオイル戻し配管と、
前記冷媒水熱交換器の湯水通路、貯湯槽、および循環ポンプを環状に接続してなる給湯回路とを備え、
前記圧縮機、前記循環ポンプ、および前記ファンを作動状態にして、前記冷媒通路を通過する高温の冷媒と前記湯水通路を通過する湯水とを熱交換して前記湯水を加熱するヒートポンプ運転を行う給湯器において、
前記オイル戻し配管を前記空気熱交換器の上流側に配設し、前記オイル戻し配管の熱によって昇温した空気が前記空気熱交換器を通過する様にしたことを特徴とする給湯器。
A compressor that compresses the refrigerant, an oil separator that separates the refrigerant and oil, a refrigerant passage of the refrigerant water heat exchanger, a refrigerant circuit formed by annularly connecting an air heat exchanger provided with a decompression unit and a fan,
An oil return pipe for returning the oil separated by the oil separator to the compressor,
A hot water supply circuit formed by annularly connecting a hot water passage, a hot water storage tank, and a circulating pump of the refrigerant water heat exchanger,
A hot water supply in which the compressor, the circulation pump, and the fan are operated to exchange heat between a high-temperature refrigerant passing through the refrigerant passage and hot water passing through the hot water passage to heat the hot water. In the vessel,
A water heater, wherein the oil return pipe is disposed upstream of the air heat exchanger, and the air heated by the heat of the oil return pipe passes through the air heat exchanger.
前記冷媒に、高圧側の圧力が臨界圧力以上である二酸化炭素を採用したことを特徴とする請求項1または請求項2に記載の給湯器。3. The water heater according to claim 1, wherein carbon dioxide whose pressure on a high pressure side is equal to or higher than a critical pressure is adopted as the refrigerant. 4.
JP2002344936A 2002-11-28 2002-11-28 Water heater Pending JP2004177020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344936A JP2004177020A (en) 2002-11-28 2002-11-28 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344936A JP2004177020A (en) 2002-11-28 2002-11-28 Water heater

Publications (1)

Publication Number Publication Date
JP2004177020A true JP2004177020A (en) 2004-06-24

Family

ID=32706240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344936A Pending JP2004177020A (en) 2002-11-28 2002-11-28 Water heater

Country Status (1)

Country Link
JP (1) JP2004177020A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602173B1 (en) 2006-04-05 2006-07-25 남기춘 Heating device without outdoor device
DE102008013784A1 (en) 2007-03-15 2008-09-18 Denso Corp., Kariya compressor
JP2009133578A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2010032196A (en) * 2008-02-06 2010-02-12 Daikin Ind Ltd Refrigerating device
EP2251621A1 (en) * 2008-02-06 2010-11-17 Daikin Industries, Ltd. Refrigeration device
JP2011510258A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Refrigerant vapor compression system with lubricant cooler
CN105823256A (en) * 2016-03-22 2016-08-03 东南大学 Working method for air source heat pump device for compressor return oil cooling
CN108168041A (en) * 2018-03-01 2018-06-15 李小红 A kind of air-conditioning defrosting device and its defrosting method
CN108591014A (en) * 2018-05-16 2018-09-28 深圳汇呈环保科技有限公司 Compressor and refrigerating plant with it

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602173B1 (en) 2006-04-05 2006-07-25 남기춘 Heating device without outdoor device
DE102008013784A1 (en) 2007-03-15 2008-09-18 Denso Corp., Kariya compressor
DE102008013784B4 (en) * 2007-03-15 2017-03-23 Denso Corporation compressor
US8096794B2 (en) 2007-03-15 2012-01-17 Denso Corporation Compressor with oil separation and storage
US8356490B2 (en) 2007-11-30 2013-01-22 Daikin Industries, Ltd. Refrigeration apparatus
JP2009133578A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2011510258A (en) * 2008-01-17 2011-03-31 キャリア コーポレイション Refrigerant vapor compression system with lubricant cooler
JP2010032196A (en) * 2008-02-06 2010-02-12 Daikin Ind Ltd Refrigerating device
EP2251621A4 (en) * 2008-02-06 2014-05-14 Daikin Ind Ltd Refrigeration device
EP2251621A1 (en) * 2008-02-06 2010-11-17 Daikin Industries, Ltd. Refrigeration device
CN105823256A (en) * 2016-03-22 2016-08-03 东南大学 Working method for air source heat pump device for compressor return oil cooling
CN108168041A (en) * 2018-03-01 2018-06-15 李小红 A kind of air-conditioning defrosting device and its defrosting method
CN108591014A (en) * 2018-05-16 2018-09-28 深圳汇呈环保科技有限公司 Compressor and refrigerating plant with it
CN108591014B (en) * 2018-05-16 2019-02-15 安徽海立精密铸造有限公司 Compressor and refrigerating plant with it

Similar Documents

Publication Publication Date Title
CN102235777A (en) Heat pump type speed heating apparatus
US7266959B2 (en) Cold climate air-source heat pump
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP4317793B2 (en) Cooling system
JP2004218944A (en) Heat pump air conditioning and water heater
JP2007271211A (en) Refrigerating device
JP2013185808A (en) Heat pump
JP2004177020A (en) Water heater
JP2006220357A (en) Heat pump water heater
JP2009092258A (en) Refrigerating cycle device
JP2005214550A (en) Air conditioner
JP5831466B2 (en) Heating system
JP5919036B2 (en) Heat pump type water heater
JP2011247547A (en) Refrigerating cycle device
JP2008082601A (en) Heat pump hot water supply device
JP2008175402A (en) Operating method of refrigerating cycle device
JP2004003804A (en) Vapor compression type refrigerating machine
JP2005308344A (en) Heat pump water heater
KR200412598Y1 (en) Heat pump system for having function of hot water supply
JP2006017377A (en) Heat pump water heater
JP2006010301A (en) Cold generating system, and cold generating method
JP2011185571A (en) Heat pump system
JP2009281629A (en) Heat pump water heater
JP2005164209A (en) Heat-pump water heater
JP2008107057A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130