JP2007162988A - Vapor compression refrigerating cycle - Google Patents

Vapor compression refrigerating cycle Download PDF

Info

Publication number
JP2007162988A
JP2007162988A JP2005357701A JP2005357701A JP2007162988A JP 2007162988 A JP2007162988 A JP 2007162988A JP 2005357701 A JP2005357701 A JP 2005357701A JP 2005357701 A JP2005357701 A JP 2005357701A JP 2007162988 A JP2007162988 A JP 2007162988A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
liquid
gas
vapor compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005357701A
Other languages
Japanese (ja)
Inventor
Yuichi Matsumoto
雄一 松元
Masato Tsuboi
政人 坪井
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005357701A priority Critical patent/JP2007162988A/en
Priority to EP06125847A priority patent/EP1795835A3/en
Priority to US11/609,617 priority patent/US20070130988A1/en
Publication of JP2007162988A publication Critical patent/JP2007162988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression refrigerating cycle capable of solving problems regarding a space and weight by integrating an oil separator and a vapor-liquid separator and improving a refrigerating capacity. <P>SOLUTION: The vapor compression refrigerating cycle includes a compressor, a heat radiator for releasing the heat of a refrigerant which is heated and compressed at a high temperature and high pressure by the compressor, a first stage decompression mechanism for decompressing the high-pressure refrigerant whose heat is released by the heat radiator, the oil separator and the vapor-liquid separator for the oil-separation and vapor-liquid-separation of the refrigerant which is decompressed by the first stage decompression mechanism, a second stage decompression mechanism for further decompressing a liquid refrigerant separated by the vapor-liquid separator and an evaporator for evaporating the refrigerant which is decompressed to a low temperature and low pressure by the second stage decompression mechanism and connects them sequentially in a ring shape with a refrigerant flow passage. The oil separator and the vapor-liquid separator are integrated and a vapor refrigerant and oil separated from the oil separator integrated vapor-liquid separator are made to flow into the compressor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸気圧縮式冷凍サイクルに関し、とくに、二酸化炭素冷媒を使用した空調装置において、冷凍能力及び成績係数を向上させることが可能な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and more particularly to a vapor compression refrigeration cycle capable of improving refrigeration capacity and coefficient of performance in an air conditioner using a carbon dioxide refrigerant.

温暖化防止、オゾン層保護などの地球環境問題から冷凍空調装置の冷媒として利用されているフロン系冷媒の使用が規制され始めようとしており、自然系冷媒が注目されている。特にヨーロッパでは、脱フロン化対策として二酸化炭素冷媒が提案されている。二酸化炭素冷媒は、無毒、不燃性であるが冷媒としての理論エネルギー効率が低いため、高効率化には課題が多い。効率を改善する方法の一つとして、オイルセパレータを用いて圧縮機以外へのコンポーネントへオイルを循環させない手段が提案されている(例えば、特許文献1)。
特開2000−274890号公報
Due to global environmental problems such as prevention of global warming and protection of the ozone layer, the use of chlorofluorocarbon refrigerants used as refrigerants in refrigeration air conditioners is beginning to be regulated, and natural refrigerants are attracting attention. Particularly in Europe, a carbon dioxide refrigerant has been proposed as a countermeasure for defluorination. Carbon dioxide refrigerant is non-toxic and non-flammable, but its theoretical energy efficiency as a refrigerant is low, so there are many problems in improving efficiency. As one of the methods for improving the efficiency, means for preventing oil from circulating to components other than the compressor using an oil separator has been proposed (for example, Patent Document 1).
JP 2000-274890 A

しかし、蒸気圧縮式冷凍サイクル中にオイルセパレータや気液分離器をそれぞれ個別に設けると、スペース上の問題が生じる。また、二酸化炭素冷媒は、その物理的性質から高圧側が臨界圧を越える超臨界状態となるため、その圧力に耐えうる材質、構造の検討が必要であり、おのずと機器の材料の厚みが増し、更には重量が増加する傾向にある。さらに、オイルが蒸発器へ流入すると熱伝達率が減少し熱交換効率が低下する。   However, when an oil separator and a gas-liquid separator are individually provided in the vapor compression refrigeration cycle, a space problem occurs. Carbon dioxide refrigerant is in a supercritical state where the high-pressure side exceeds the critical pressure due to its physical properties, so it is necessary to study materials and structures that can withstand the pressure, which naturally increases the thickness of equipment materials. Tends to increase in weight. Furthermore, when the oil flows into the evaporator, the heat transfer coefficient decreases and the heat exchange efficiency decreases.

そこで本発明の課題は、上記のような問題点を踏まえて、オイルセパレータと気液分離器を一体化することでスペース、重量上の問題を解決しながら、さらに冷凍能力を向上させることが可能な蒸気圧縮式冷凍サイクルを提供することにある。   In view of the above problems, the object of the present invention is to integrate the oil separator and the gas-liquid separator so as to solve the space and weight problems and further improve the refrigeration capacity. And providing a simple vapor compression refrigeration cycle.

上記課題を解決するために、本発明に係る蒸気圧縮式冷凍サイクルは、冷媒を圧縮する圧縮機と、該圧縮機によって高温高圧となった冷媒を放熱させる放熱器と、放熱器によって放熱した高圧冷媒を減圧する1段目減圧機構と、1段目減圧機構により減圧した冷媒をオイル分離するオイルセパレータ及び気液分離する気液分離器と、前記気液分離器により分離された液冷媒を更に減圧する2段目減圧機構と、2段目減圧機構により低温低圧となった冷媒を蒸発させる蒸発器とを有し、それらを順次冷媒流路にて環状に接続した冷凍サイクルであって、前記オイルセパレータと前記気液分離器が一体化されており、該オイルセパレータ一体型気液分離器から分離した気冷媒とオイルを前記圧縮機へ流入させる流路を備えていることを特徴とするものからなる。   In order to solve the above problems, a vapor compression refrigeration cycle according to the present invention includes a compressor that compresses a refrigerant, a radiator that dissipates the high-temperature and high-pressure refrigerant by the compressor, and a high-pressure that dissipates heat by the radiator. A first-stage decompression mechanism that decompresses the refrigerant, an oil separator that separates the refrigerant decompressed by the first-stage decompression mechanism, a gas-liquid separator that separates the gas and liquid, and a liquid refrigerant separated by the gas-liquid separator A refrigeration cycle having a second-stage decompression mechanism for decompressing and an evaporator for evaporating the refrigerant that has become low-temperature and low-pressure by the second-stage decompression mechanism, and sequentially connecting them in a circular manner through a refrigerant flow path, An oil separator and the gas-liquid separator are integrated, and a flow path for introducing the gas refrigerant and oil separated from the oil separator-integrated gas-liquid separator into the compressor is provided. Consisting of.

この本発明に係る蒸気圧縮式冷凍サイクルにおいては、上記オイルセパレータ一体型気液分離器により分離された液冷媒と、蒸発器から流出する冷媒を熱交換する冷媒熱交換手段を有することが好ましい。   The vapor compression refrigeration cycle according to the present invention preferably includes refrigerant heat exchange means for exchanging heat between the liquid refrigerant separated by the oil separator-integrated gas-liquid separator and the refrigerant flowing out of the evaporator.

また、上記冷媒熱交換手段は、オイルセパレータ一体型気液分離器本体の液冷媒貯留位置に合わせて、蒸発器からの配管を密着させることで熱交換を行う構成とすることができる。   Further, the refrigerant heat exchanging means may be configured to perform heat exchange by closely fitting a pipe from the evaporator in accordance with the liquid refrigerant storage position of the oil separator integrated gas-liquid separator main body.

また、上記冷媒熱交換手段は、オイルセパレータ一体型気液分離器から流出する液冷媒と蒸発器から流出する冷媒を、それぞれ、二重管構造の配管内の内側外側の冷媒流路を対向流として通過させることにより熱交換を行う構成とすることもできる。   Further, the refrigerant heat exchanging means causes the liquid refrigerant flowing out from the oil separator-integrated gas-liquid separator and the refrigerant flowing out from the evaporator to respectively flow in the refrigerant channels on the inner and outer sides in the pipe having the double tube structure. It can also be set as the structure which heat-exchanges by making it pass as.

また、上記オイルセパレータ一体型気液分離器によるオイルセパレート手段は、遠心分離または/及び衝突分離させる構成とすることができる。   Further, the oil separator means by the oil separator integrated gas-liquid separator can be configured to perform centrifugal separation and / or collision separation.

また、上記1段目減圧機構は、該1段目減圧機構の出口側の冷媒圧力を臨界圧力以下となるように制御することが好ましい。   The first-stage decompression mechanism is preferably controlled so that the refrigerant pressure on the outlet side of the first-stage decompression mechanism is equal to or lower than the critical pressure.

また、上記1段目減圧機構または/及び2段目減圧機構は、冷媒の温度または/及び圧力の値に応じて膨張度が変化する機械式膨張弁から構成することができる。   The first-stage decompression mechanism and / or the second-stage decompression mechanism can be constituted by a mechanical expansion valve whose expansion degree changes according to the temperature or / and pressure value of the refrigerant.

また、上記1段目減圧機構または/及び2段目減圧機構は、冷媒の温度または/及び圧力の値に応じて、電気信号により弁開度が変更される電子膨張弁から構成することもできる。   Further, the first-stage decompression mechanism and / or the second-stage decompression mechanism can be configured from an electronic expansion valve whose valve opening is changed by an electrical signal in accordance with the temperature or / and pressure value of the refrigerant. .

本発明に係る蒸気圧縮式冷凍サイクルは、とくに、冷媒として二酸化炭素が用いられる冷凍サイクルに好適なものである。   The vapor compression refrigeration cycle according to the present invention is particularly suitable for a refrigeration cycle in which carbon dioxide is used as a refrigerant.

また、本発明に係る蒸気圧縮式冷凍サイクルは、とくに、車両用空調装置の冷凍サイクルとして用いられて好適なものである。   The vapor compression refrigeration cycle according to the present invention is particularly suitable for use as a refrigeration cycle for a vehicle air conditioner.

近年、代替冷媒化と省エネルギーが冷凍空調システムの重要課題となっているが、とくに二酸化炭素を冷媒とした蒸気圧縮式冷凍サイクルでは、サイクル内を循環する潤滑油(オイル)は熱交換器での熱伝達率低下や配管での圧力損失を増加させるので、空調装置の性能に大きく影響する。その他、吐出冷媒温度が高く、膨張機構前冷媒温度が下げにくく、蒸発器における乾き度が高くなって、熱伝達率が低くなる傾向にある。そこで本発明は、熱交換器(とくに蒸発器)へのオイル流入を低減し、かつ、熱伝達率を高くすることで冷凍能力を向上させることを目的としたものである。熱交換器へのオイル流入量の低減は、オイルセパレータを用いて冷媒とオイルを分離し、オイルを圧縮機へ戻すことで達成し、熱伝達率を高くすることは、気液分離器を用いて気液冷媒を分離し、液冷媒のみを蒸発器へ流入させることで達成する。そして、これら2つの機器を一体化することで、スペース、重量上の問題の解消もはかることができるようにしたものである。   In recent years, alternative refrigerants and energy savings have become important issues in refrigeration and air conditioning systems. Especially in the vapor compression refrigeration cycle using carbon dioxide as the refrigerant, the lubricating oil (oil) circulating in the cycle is used in the heat exchanger. Since the heat transfer rate is lowered and the pressure loss in the piping is increased, it greatly affects the performance of the air conditioner. In addition, the discharge refrigerant temperature is high, the refrigerant temperature before the expansion mechanism is hardly lowered, the dryness in the evaporator is increased, and the heat transfer rate tends to be lowered. Therefore, the present invention aims to improve the refrigerating capacity by reducing the oil inflow to the heat exchanger (especially the evaporator) and increasing the heat transfer coefficient. Reduction of oil inflow to the heat exchanger is achieved by separating the refrigerant and oil using an oil separator and returning the oil to the compressor. Increasing the heat transfer rate uses a gas-liquid separator. This is achieved by separating the gas-liquid refrigerant and allowing only the liquid refrigerant to flow into the evaporator. By integrating these two devices, the problem of space and weight can be solved.

このように、本発明に係る蒸気圧縮式冷凍サイクルによれば、オイルセパレータと気液分離器が一体化されているので、それぞれを別体で接続するよりも部品点数、組付/組立工数の低減ができ、搭載性を向上させることができ、スペース、重量上の問題の解消をはかることができる。また、オイルセパレータにより分離されたオイルを圧縮機に戻して蒸発器へのオイル流入量を低減でき、蒸発器における蒸発時の熱伝達率を向上できる。更に、配管や熱交換器内での圧力損失を低減できる。   Thus, according to the vapor compression refrigeration cycle according to the present invention, since the oil separator and the gas-liquid separator are integrated, the number of parts and the number of assembling / assembling steps can be reduced compared to connecting them separately. It can be reduced, the mountability can be improved, and the problem of space and weight can be solved. In addition, the oil separated by the oil separator can be returned to the compressor, the amount of oil flowing into the evaporator can be reduced, and the heat transfer rate during evaporation in the evaporator can be improved. Furthermore, pressure loss in the piping and heat exchanger can be reduced.

また、気液分離による効果としては、気液分離により液冷媒のみを蒸発器へ流入させることで蒸発潜熱(冷凍効果またはエンタルピ差)を拡大することができ、冷凍能力の向上が期待できる。換言すれば、冷却能力の小さい蒸気冷媒が含まれる気液混合冷媒が流入する場合に比べ、蒸発器のサイズを小さくできる可能性がある。   Moreover, as an effect by gas-liquid separation, the latent heat of vaporization (refrigeration effect or enthalpy difference) can be expanded by allowing only liquid refrigerant to flow into the evaporator by gas-liquid separation, and improvement of the refrigerating capacity can be expected. In other words, there is a possibility that the size of the evaporator can be reduced as compared with the case where a gas-liquid mixed refrigerant containing a vapor refrigerant having a small cooling capacity flows.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の第1実施態様に係る蒸気圧縮式冷凍サイクルを示している。図1の構成において、1は圧縮機で、2は圧縮機1で圧縮された冷媒を放熱する放熱器(ガスクーラ)である。3は冷媒を膨張させる1段目減圧機構で、冷媒を減圧膨張させる。4は1段目減圧機構3で膨張した冷媒を気液に分離し、かつ冷媒と共に流通するオイルを分離するオイルセパレータ一体型気液分離器である。その名の通り、オイルセパレータと気液分離器を一体化したものである。5はオイルセパレータ一体型気液分離器4で分離され流出した液冷媒を更に膨張させる2段目減圧機構で、6は2段目減圧機構5で減圧膨張された冷媒を蒸発させる蒸発器(エバポレータ)である。7はオイルセパレータ一体型気液分離器4で分離された気冷媒とオイルを圧縮機1へ流通させる圧縮機への流入配管である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a vapor compression refrigeration cycle according to a first embodiment of the present invention. In the configuration of FIG. 1, 1 is a compressor and 2 is a radiator (gas cooler) that radiates the refrigerant compressed by the compressor 1. 3 is a first-stage decompression mechanism for expanding the refrigerant, and expands the refrigerant under reduced pressure. Reference numeral 4 denotes an oil separator-integrated gas-liquid separator that separates the refrigerant expanded by the first-stage decompression mechanism 3 into gas and liquid and separates the oil that flows along with the refrigerant. As its name suggests, it is an integrated oil separator and gas-liquid separator. Reference numeral 5 denotes a second stage pressure reducing mechanism for further expanding the liquid refrigerant separated and discharged by the oil separator integrated gas-liquid separator 4, and reference numeral 6 denotes an evaporator (evaporator) for evaporating the refrigerant decompressed and expanded by the second stage pressure reducing mechanism 5. ). Reference numeral 7 denotes an inflow pipe to the compressor for circulating the gas refrigerant and oil separated by the oil separator integrated gas-liquid separator 4 to the compressor 1.

オイルセパレータ一体型気液分離器4では、1段目減圧機構3で減圧膨張した気液混合冷媒を気液分離し、かつ冷媒中のオイルを遠心分離または/及び衝突分離させる。その他、分離した気冷媒は圧縮機への流入配管7を通して圧縮機1へ戻る。また、同時にオイルも戻される。一方、液冷媒は、2段目減圧機構5へと流入する。   In the oil separator integrated gas-liquid separator 4, the gas-liquid mixed refrigerant decompressed and expanded by the first-stage decompression mechanism 3 is gas-liquid separated, and the oil in the refrigerant is subjected to centrifugal separation and / or collision separation. In addition, the separated gas refrigerant returns to the compressor 1 through the inflow pipe 7 to the compressor. At the same time, the oil is returned. On the other hand, the liquid refrigerant flows into the second-stage decompression mechanism 5.

本発明の特徴とするところは、性能向上のためのコンポーネントであるオイルセパレータ、気液分離器を一体化したことである。また、継手部を減らし冷媒漏洩箇所を減少させるため、オイル戻し配管と気冷媒の圧縮機への流入配管を同一にしたことにある。   The feature of the present invention is that an oil separator and a gas-liquid separator, which are components for improving performance, are integrated. Further, in order to reduce the joint portion and reduce the refrigerant leakage location, the oil return pipe and the inflow pipe of the gas refrigerant to the compressor are made the same.

図2は、図1の構成における二酸化炭素冷媒のモリエル線図上に各コンポーネントの状態点を直線で結んだものである。11は二酸化炭素冷媒の飽和液線と飽和蒸気線を示したもので、両者をまとめて飽和曲線としている。12は二酸化炭素冷媒の臨界点を通る等温度線を示している。なお、図2における数字は、図1に示した各コンポーネントを表す数字であり、コンポーネントでの動作を示している。   FIG. 2 is a diagram in which the state points of each component are connected by a straight line on the Mollier diagram of the carbon dioxide refrigerant in the configuration of FIG. 11 shows the saturated liquid line and saturated vapor line of the carbon dioxide refrigerant, which are combined into a saturation curve. 12 shows an isothermal line passing through the critical point of the carbon dioxide refrigerant. The numbers in FIG. 2 are numbers representing the components shown in FIG. 1, and indicate the operation of the components.

図3は、本発明の第2実施態様に係る蒸気圧縮式冷凍サイクルを示している。本実施態様は、図1の構成にオイルセパレータ一体型気液分離器4内の液冷媒、または/及びオイルセパレータ一体型気液分離器4から流出する冷媒と、蒸発器6から流出する冷媒を熱交換する冷媒熱交換手段としての熱交換配管8を設けたものである。   FIG. 3 shows a vapor compression refrigeration cycle according to the second embodiment of the present invention. In the present embodiment, the liquid refrigerant in the oil separator integrated gas-liquid separator 4 and / or the refrigerant flowing out from the oil separator integrated gas liquid separator 4 and the refrigerant flowing out from the evaporator 6 are added to the configuration of FIG. A heat exchange pipe 8 is provided as refrigerant heat exchange means for heat exchange.

このような構成においては、2段目減圧機構5直前の冷媒温度を下げることで過冷却が可能となる。同時に圧縮機1の液圧縮防止のために過熱度をつけることができ、更なる冷凍能力の向上とサイクル運転の信頼性が期待できる。   In such a configuration, it is possible to perform supercooling by lowering the refrigerant temperature immediately before the second stage pressure reducing mechanism 5. At the same time, the degree of superheat can be set to prevent liquid compression of the compressor 1, and further improvement of the refrigerating capacity and reliability of cycle operation can be expected.

図4は、図3の構成における二酸化炭素冷媒のモリエル線図上に各コンポーネントの状態点を直線で結んだものである。図2と同様に11は二酸化炭素冷媒の飽和液線と飽和蒸気線を示したもので、両者をまとめて飽和曲線としている。12は二酸化炭素冷媒の臨界点を通る等温度線を示している。図2との違いは、オイルセパレータ一体型気液分離器4内または/及びオイルセパレータ一体型気液分離器4から流出する冷媒と、蒸発器6から流出する冷媒を熱交換させたことによる熱交換効果が追記されていることである。詳述すると、2段目減圧機構5直前が液冷媒のため、飽和曲線上まで移動している。なお、図4におけるΔh2は過冷却度を示しており、Δh1は過熱度を示しており、上記冷媒熱交換手段による熱交換の効果は、ほぼΔh1≒Δh2として表すことができる。   FIG. 4 is a diagram in which the state points of each component are connected by a straight line on the Mollier diagram of the carbon dioxide refrigerant in the configuration of FIG. Like FIG. 2, 11 shows the saturated liquid line and saturated vapor line of a carbon dioxide refrigerant, and they are put together into a saturation curve. 12 shows an isothermal line passing through the critical point of the carbon dioxide refrigerant. The difference from FIG. 2 is that heat generated by heat exchange between the refrigerant flowing out of the oil separator integrated gas / liquid separator 4 and / or the oil separator integrated gas / liquid separator 4 and the refrigerant flowing out of the evaporator 6. The exchange effect is added. More specifically, since the liquid refrigerant is immediately before the second stage decompression mechanism 5, it has moved to the saturation curve. Note that Δh2 in FIG. 4 indicates the degree of supercooling, Δh1 indicates the degree of superheating, and the effect of heat exchange by the refrigerant heat exchange means can be expressed as approximately Δh1≈Δh2.

図5は、本発明の特徴とするオイルセパレータ一体型気液分離器に関して、遠心分離方式の例について内部断面図を示したものである。図5で示した特徴とするところは冷媒とオイルの分離を遠心分離で行なっていることである。1段目減圧機構からの冷媒流路22から気液混合冷媒が流入し、圧縮機への気冷媒とオイル流路24を中心に円方向に回転する。その時の遠心力で冷媒とオイルが遠心分離する(遠心分離流31)。この時、冷媒圧力は臨界圧以下まで下げられているので、冷媒とオイルは相溶しない。オイル密度の方が冷媒より大きくなるので、オイルは一番下のオイル層29に溜まる。また、気液冷媒は密度の大きい液冷媒がオイル層29の上に液冷媒層28として溜まり、気冷媒はその他の空間中である気冷媒層27に少量の液冷媒と共に(気液混合状態にて)存在する。2段目減圧機構への冷媒流路23はオイル層29よりも高い位置にあり、液冷媒層28に存在する微量のオイルが液冷媒と一緒に流出しないように上部にはオイル流入防止板30を設置してある。気冷媒層27の気冷媒(気液混合冷媒)はデフューザー兼チューブサポート26を通って気冷媒中に存在する液滴を取り除く。気冷媒のみが圧縮機への気冷媒とオイル流路24に流入する。同時にオイル戻し孔25からオイルを吸って気冷媒とオイルが流出する構造となっている。以上が耐圧容器21に収められている。なお図5における矢印は冷媒の流れを示している。   FIG. 5 shows an internal cross-sectional view of an example of a centrifugal separation system for an oil separator-integrated gas-liquid separator that is a feature of the present invention. The feature shown in FIG. 5 is that the refrigerant and the oil are separated by centrifugation. The gas-liquid mixed refrigerant flows in from the refrigerant flow path 22 from the first-stage decompression mechanism, and rotates in the circular direction around the gas refrigerant and the oil flow path 24 to the compressor. The refrigerant and oil are centrifuged by the centrifugal force at that time (centrifugal flow 31). At this time, since the refrigerant pressure is lowered to a critical pressure or less, the refrigerant and the oil are not compatible. Since the oil density is greater than that of the refrigerant, the oil accumulates in the lowest oil layer 29. In addition, the gas-liquid refrigerant is a liquid refrigerant having a high density that accumulates on the oil layer 29 as a liquid refrigerant layer 28. The gas refrigerant is stored in the gas refrigerant layer 27 in another space together with a small amount of liquid refrigerant (in a gas-liquid mixed state). Exist). The refrigerant flow path 23 to the second-stage decompression mechanism is located higher than the oil layer 29, and an oil inflow prevention plate 30 is provided at the top so that a small amount of oil existing in the liquid refrigerant layer 28 does not flow out together with the liquid refrigerant. Is installed. The gas refrigerant (gas-liquid mixed refrigerant) in the gas refrigerant layer 27 passes through the diffuser / tube support 26 to remove droplets present in the gas refrigerant. Only the gas refrigerant flows into the oil flow path 24 and the gas refrigerant to the compressor. At the same time, the refrigerant is sucked from the oil return hole 25 and the gas refrigerant and the oil flow out. The above is contained in the pressure vessel 21. In addition, the arrow in FIG. 5 has shown the flow of the refrigerant | coolant.

図6は、図5に比べ、衝突分離方式の内部断面図を示したものである。図中の番号は図5と同じである。図6の方式の特徴とするところは、冷媒とオイルの分離を衝突分離で行なっていることである。1段目減圧機構からの冷媒流路22から気液混合冷媒が流入し、デフューザー兼チューブサポート26に衝突させることで冷媒とオイルを分離するものである(衝突分離流32)。なお、図5に示した方式にもデフューザー兼チューブサポート26が設けられており、これと衝突させることで冷媒とオイルが分離されることから、厳密には、図5の方式は、遠心分離方式を主体とし、それに衝突分離方式も兼ね備えたものと言うことができる。   FIG. 6 shows an internal cross-sectional view of the collision separation system compared to FIG. The numbers in the figure are the same as in FIG. The feature of the system of FIG. 6 is that the refrigerant and oil are separated by collision separation. The gas-liquid mixed refrigerant flows in from the refrigerant flow path 22 from the first-stage decompression mechanism and collides with the diffuser / tube support 26 to separate the refrigerant and oil (collision separation flow 32). 5 is also provided with a diffuser and tube support 26, and the refrigerant and oil are separated by colliding with the diffuser and tube support 26. Strictly speaking, the system of FIG. It can be said that it also has a collision separation method.

図7は、図3に示した構成において、オイルセパレータ一体型気液分離器4内の冷媒と蒸発器6から流出する冷媒を熱交換するために、オイルセパレータ一体型気液分離器4の液冷媒貯留部に熱交換配管(扁平管)41を用いたものである。オイルセパレータ一体型気液分離器4の液冷媒層28付近に熱交換配管(扁平管)41を巻き付け熱交換させる。熱交換配管(扁平管)41の内部を並列扁平多孔管42としたことで熱交換効率の向上を図っている。このような構成を採用すれば、耐圧容器21への加工等は不要であり、比較的容易に実現可能である。   FIG. 7 shows the liquid in the oil separator integrated gas-liquid separator 4 in order to exchange heat between the refrigerant in the oil separator integrated gas / liquid separator 4 and the refrigerant flowing out of the evaporator 6 in the configuration shown in FIG. A heat exchange pipe (flat tube) 41 is used for the refrigerant storage section. A heat exchange pipe (flat pipe) 41 is wound around the liquid refrigerant layer 28 of the oil separator integrated gas-liquid separator 4 to exchange heat. The inside of the heat exchange pipe (flat tube) 41 is a parallel flat porous tube 42, thereby improving the heat exchange efficiency. If such a configuration is adopted, processing to the pressure vessel 21 is not necessary and can be realized relatively easily.

図8は、図3に示した構成において、オイルセパレータ一体型気液分離器4から2段目減圧機構へ流入する液冷媒と蒸発器6から流出する冷媒を熱交換するために、二重管構造の熱交換配管51を用いたものである。二重管構造の熱交換配管51では、オイルセパレータ一体型気液分離器4から2段目減圧機構へ流入する液冷媒と蒸発器6から流出する冷媒との間で効率よく熱交換させるために、両流れは対向流または並行流とされる。   FIG. 8 shows a configuration of a double pipe for exchanging heat between the liquid refrigerant flowing from the oil separator-integrated gas-liquid separator 4 to the second-stage decompression mechanism and the refrigerant flowing out of the evaporator 6 in the configuration shown in FIG. A heat exchange pipe 51 having a structure is used. In the heat exchange pipe 51 having a double-pipe structure, in order to efficiently exchange heat between the liquid refrigerant flowing from the oil separator-integrated gas-liquid separator 4 into the second-stage decompression mechanism and the refrigerant flowing out from the evaporator 6. Both flows are counterflow or parallel flow.

このように、本発明においては、とくにオイルセパレータ一体型気液分離器あるいは冷媒熱交換手段は各種の構成を採り得る。   Thus, in the present invention, the oil separator integrated gas-liquid separator or the refrigerant heat exchanging means can take various configurations.

本発明の第1実施態様に係る蒸気圧縮式冷凍サイクルの回路である。1 is a circuit of a vapor compression refrigeration cycle according to a first embodiment of the present invention. 図1の回路における二酸化炭素冷媒のモリエル線図である。FIG. 2 is a Mollier diagram of carbon dioxide refrigerant in the circuit of FIG. 1. 本発明の第2実施態様に係る蒸気圧縮式冷凍サイクルの回路である。3 is a circuit of a vapor compression refrigeration cycle according to a second embodiment of the present invention. 図3の回路における二酸化炭素冷媒のモリエル線図である。FIG. 4 is a Mollier diagram of carbon dioxide refrigerant in the circuit of FIG. 3. 本発明におけるオイルセパレータ一体型気液分離器の遠心分離方式の一例を示す図で、(A)は縦断面図、(B)は図(A)のA−A線に沿う横断面図である。It is a figure which shows an example of the centrifugal separation system of the oil separator integrated gas-liquid separator in this invention, (A) is a longitudinal cross-sectional view, (B) is a cross-sectional view which follows the AA line of FIG. . 本発明におけるオイルセパレータ一体型気液分離器の衝突分離方式の一例を示す図で、(A)は縦断面図、(B)は図(A)のA−A線に沿う横断面図である。It is a figure which shows an example of the collision separation system of the oil separator integrated gas-liquid separator in this invention, (A) is a longitudinal cross-sectional view, (B) is a cross-sectional view which follows the AA line of FIG. . 本発明の第2実施態様に係る蒸気圧縮式冷凍サイクルにおける冷媒熱交換手段の一例を示す図で、(A)は正面図、(B)は平面図、(C)は熱交換配管の拡大断面図である。It is a figure which shows an example of the refrigerant | coolant heat exchange means in the vapor compression refrigeration cycle which concerns on 2nd embodiment of this invention, (A) is a front view, (B) is a top view, (C) is an expanded cross section of heat exchange piping. FIG. 本発明の第2実施態様に係る蒸気圧縮式冷凍サイクルにおける冷媒熱交換手段の別の一例を示す一部断面表示斜視図である。It is a partial cross section display perspective view which shows another example of the refrigerant | coolant heat exchange means in the vapor compression refrigeration cycle which concerns on the 2nd embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器(ガスクーラ)
3 1段目減圧機構
4 オイルセパレータ一体型気液分離器
5 2段目減圧機構
6 蒸発器
7 圧縮機への流入配管
8 熱交換配管
11 飽和曲線
12 等温度線
21 耐圧容器
22 1段目減圧機構の冷媒流路
23 2段目減圧機構への冷媒流路
24 圧縮機への気冷媒とオイルの流路
25 オイル戻し孔
26 デフューザー兼チューブサポート
27 気冷媒層
28 液冷媒層
29 オイル層
30 オイル流入防止板
31 遠心分離流
32 衝突分離流
41 熱交換配管(扁平管)
42 並列扁平多孔管
51 二重管構造の熱交換配管
1 Compressor 2 Radiator (gas cooler)
3 First stage pressure reduction mechanism 4 Oil separator integrated gas-liquid separator 5 Second stage pressure reduction mechanism 6 Evaporator 7 Inflow piping to compressor 8 Heat exchange piping
11 Saturation curve
12 isotherm
21 Pressure vessel
22 Refrigerant flow path of first stage pressure reducing mechanism
23 Refrigerant flow path to the second stage pressure reduction mechanism
24 Gas refrigerant and oil flow path to compressor
25 Oil return hole
26 Diffuser and tube support
27 Gas refrigerant layer
28 Liquid refrigerant layer
29 Oil layer
30 Oil inflow prevention plate
31 Centrifugal flow
32 Impact separation flow
41 Heat exchange piping (flat tube)
42 Parallel flat porous tubes
51 Heat exchange piping with double pipe structure

Claims (10)

冷媒を圧縮する圧縮機と、該圧縮機によって高温高圧となった冷媒を放熱させる放熱器と、放熱器によって放熱した高圧冷媒を減圧する1段目減圧機構と、1段目減圧機構により減圧した冷媒をオイル分離するオイルセパレータ及び気液分離する気液分離器と、前記気液分離器により分離された液冷媒を更に減圧する2段目減圧機構と、2段目減圧機構により低温低圧となった冷媒を蒸発させる蒸発器とを有し、それらを順次冷媒流路にて環状に接続した冷凍サイクルであって、前記オイルセパレータと前記気液分離器が一体化されており、該オイルセパレータ一体型気液分離器から分離した気冷媒とオイルを前記圧縮機へ流入させる流路を備えていることを特徴とする蒸気圧縮式冷凍サイクル。   A compressor that compresses the refrigerant, a radiator that dissipates the high-temperature and high-pressure refrigerant by the compressor, a first-stage depressurization mechanism that depressurizes the high-pressure refrigerant radiated by the radiator, and a first-stage depressurization mechanism An oil separator that separates the refrigerant from the oil, a gas-liquid separator that separates the gas and liquid, a second-stage depressurization mechanism that further depressurizes the liquid refrigerant separated by the gas-liquid separator, and a low-temperature and low-pressure by the second-stage depressurization mechanism. A refrigerating cycle in which the refrigerant is vaporized and sequentially connected in an annular manner through the refrigerant flow path, wherein the oil separator and the gas-liquid separator are integrated. A vapor compression refrigeration cycle comprising a flow path for allowing the gas refrigerant and oil separated from the body type gas-liquid separator to flow into the compressor. 前記オイルセパレータ一体型気液分離器により分離された液冷媒と、蒸発器から流出する冷媒を熱交換する冷媒熱交換手段を有することを特徴とする、請求項1に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 1, further comprising refrigerant heat exchange means for exchanging heat between the liquid refrigerant separated by the oil separator-integrated gas-liquid separator and the refrigerant flowing out of the evaporator. . 前記冷媒熱交換手段は、オイルセパレータ一体型気液分離器本体の液冷媒貯留位置に合わせて、蒸発器からの配管を密着させることで熱交換を行うことを特徴とする、請求項2に記載の蒸気圧縮式冷凍サイクル。   The said refrigerant | coolant heat exchange means performs heat exchange by sticking the piping from an evaporator according to the liquid refrigerant storage position of an oil separator integrated gas-liquid separator main body, It is characterized by the above-mentioned. Vapor compression refrigeration cycle. 前記冷媒熱交換手段は、オイルセパレータ一体型気液分離器から流出する液冷媒と蒸発器から流出する冷媒を、それぞれ、二重管構造の配管内の内側外側の冷媒流路を対向流として通過させることにより熱交換を行うことを特徴とする、請求項2に記載の蒸気圧縮式冷凍サイクル。   The refrigerant heat exchanging means passes the liquid refrigerant flowing out of the oil separator integrated gas-liquid separator and the refrigerant flowing out of the evaporator, respectively, through the refrigerant flow channels inside and outside the double pipe structure as counterflows. The vapor compression refrigeration cycle according to claim 2, wherein heat exchange is performed by causing the heat exchange. 前記オイルセパレータ一体型気液分離器によるオイルセパレート手段は、遠心分離または/及び衝突分離させることを特徴とする、請求項1〜4のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 4, wherein the oil separation means by the oil separator integrated gas-liquid separator performs centrifugal separation and / or collision separation. 前記1段目減圧機構は、該1段目減圧機構の出口側の冷媒圧力を臨界圧力以下となるように制御することを特徴とする、請求項1〜5のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression type according to any one of claims 1 to 5, wherein the first stage pressure reducing mechanism controls the refrigerant pressure on the outlet side of the first stage pressure reducing mechanism to be equal to or lower than a critical pressure. Refrigeration cycle. 前記1段目減圧機構または/及び2段目減圧機構は、冷媒の温度または/及び圧力の値に応じて膨張度が変化する機械式膨張弁であることを特徴とする、請求項1〜6のいずれかに記載の蒸気圧縮式冷凍サイクル。   The first-stage decompression mechanism and / or the second-stage decompression mechanism is a mechanical expansion valve whose degree of expansion changes according to the temperature or / and pressure value of the refrigerant. The vapor compression refrigeration cycle according to any one of the above. 前記1段目減圧機構または/及び2段目減圧機構は、冷媒の温度または/及び圧力の値に応じて、電気信号により弁開度が変更される電子膨張弁であることを特徴とする、請求項1〜6のいずれかに記載の蒸気圧縮式冷凍サイクル。   The first-stage decompression mechanism or / and the second-stage decompression mechanism is an electronic expansion valve whose valve opening is changed by an electric signal in accordance with the temperature or / and pressure value of the refrigerant. The vapor compression refrigeration cycle according to any one of claims 1 to 6. 冷媒として二酸化炭素が用いられることを特徴とする、請求項1〜8のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 1, wherein carbon dioxide is used as the refrigerant. 車両用空調装置の冷凍サイクルとして用いられることを特徴とする、請求項1〜9のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 9, wherein the vapor compression refrigeration cycle is used as a refrigeration cycle of a vehicle air conditioner.
JP2005357701A 2005-12-12 2005-12-12 Vapor compression refrigerating cycle Pending JP2007162988A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005357701A JP2007162988A (en) 2005-12-12 2005-12-12 Vapor compression refrigerating cycle
EP06125847A EP1795835A3 (en) 2005-12-12 2006-12-11 Vapor compression refrigerating system
US11/609,617 US20070130988A1 (en) 2005-12-12 2006-12-12 Vapor compression refrigerating systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357701A JP2007162988A (en) 2005-12-12 2005-12-12 Vapor compression refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2007162988A true JP2007162988A (en) 2007-06-28

Family

ID=37876936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357701A Pending JP2007162988A (en) 2005-12-12 2005-12-12 Vapor compression refrigerating cycle

Country Status (3)

Country Link
US (1) US20070130988A1 (en)
EP (1) EP1795835A3 (en)
JP (1) JP2007162988A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008349A (en) * 2007-06-29 2009-01-15 Daikin Ind Ltd Gas-liquid separator
WO2009157301A1 (en) * 2008-06-27 2009-12-30 サンデン株式会社 Refrigeration cycle
JP2010078262A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Oil separator
JP2010181090A (en) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp Gas liquid separator and refrigerating cycle device mounted with the same
JP2012002418A (en) * 2010-06-16 2012-01-05 Hitachi Appliances Inc Air conditioner and gas-liquid separator
WO2014097484A1 (en) * 2012-12-21 2014-06-26 三菱電機株式会社 Refrigeration cycle device
JP2014185811A (en) * 2013-03-22 2014-10-02 Fujitsu General Ltd Refrigeration cycle device
EP2169332A3 (en) * 2008-09-29 2014-12-03 Sanyo Electric Co., Ltd. Oil separator for separating refrigerant and oil
JP2015152260A (en) * 2014-02-17 2015-08-24 株式会社デンソー Gas-liquid separator and refrigeration cycle device including the same
KR101811957B1 (en) * 2016-11-09 2017-12-22 한국해양대학교 산학협력단 Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
KR20200053172A (en) * 2018-11-08 2020-05-18 한국해양대학교 산학협력단 Precooled refrigerator
CN113432350A (en) * 2020-03-20 2021-09-24 青岛海尔空调电子有限公司 Pipeline oil cleaning device for air conditioning system and air conditioning system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2340406B1 (en) * 2008-10-01 2018-10-31 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle
US8596080B2 (en) * 2010-05-27 2013-12-03 Delphi Technologies, Inc. Air conditioning system having an improved internal heat exchanger
DE102011014955A1 (en) * 2011-03-24 2012-09-27 Airbus Operations Gmbh Cooling system and method for operating a cooling system
DE202011102503U1 (en) * 2011-06-03 2012-09-04 Glen Dimplex Deutschland Gmbh heat pump system
DK177329B1 (en) * 2011-06-16 2013-01-14 Advansor As Refrigeration system
KR102034582B1 (en) 2012-07-24 2019-11-08 엘지전자 주식회사 Refrigerating cycle and Refrigerator having the same
CN103836856B (en) * 2012-11-22 2016-06-29 浙江三花制冷集团有限公司 A kind of oil eliminator and apply the refrigeration plant of this oil eliminator
FR3030700B1 (en) * 2014-12-18 2019-03-22 Valeo Systemes Thermiques AIR CONDITIONING CIRCUIT FOR A MOTOR VEHICLE
US11255580B2 (en) 2015-08-20 2022-02-22 Lennox Industries Inc. Carbon dioxide cooling system with subcooling
KR20200137837A (en) * 2019-05-31 2020-12-09 현대자동차주식회사 Gas-liquid separation device for vehicle
CN111546852B (en) * 2020-04-30 2021-07-13 西安交通大学 Transcritical carbon dioxide electric vehicle thermal management system and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158458A (en) * 1979-05-24 1980-12-09 Hitachi Ltd Gassliquid separator for refrigeration cycle
JPH10111047A (en) * 1996-10-03 1998-04-28 Hitachi Ltd Air conditioner
JPH11257805A (en) * 1998-03-13 1999-09-24 Matsushita Electric Ind Co Ltd Lubricant return device for freezing cycle
JP2000035251A (en) * 1998-07-17 2000-02-02 Zexel Corp Three layers separator in cooling cycle
JP2000046420A (en) * 1998-07-31 2000-02-18 Zexel Corp Refrigeration cycle
JP2001324227A (en) * 2000-05-18 2001-11-22 Sanyo Electric Co Ltd Receiver tank and air conditioning equipment
JP2005106315A (en) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp Refrigerator-freezer
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397654A (en) * 1977-02-07 1978-08-26 Toshiba Corp Air conditioner
JPS6035014Y2 (en) * 1977-12-29 1985-10-18 セイコーインスツルメンツ株式会社 Oil separator in gas compressor
US5300434A (en) * 1987-11-06 1994-04-05 Washington Research Foundation Hybridoma cell line producing an antibody to type-I collagen amino-terminal telopeptide
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
JPH03260556A (en) * 1990-03-08 1991-11-20 Mitsubishi Electric Corp Equipment for refrigeration cycle
JPH04371759A (en) * 1991-06-21 1992-12-24 Hitachi Ltd Freezing cycle of two-stage compression and two-stage expansion
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
JPH11159920A (en) * 1997-11-27 1999-06-15 Denso Corp Refrigerating cycle device
JPH11248294A (en) * 1998-02-27 1999-09-14 Showa Alum Corp Refrigerating machine
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JP2000274890A (en) * 1999-03-18 2000-10-06 Nippon Soken Inc Supercritical cycle
JP2001056157A (en) * 1999-08-16 2001-02-27 Daikin Ind Ltd Refrigerating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158458A (en) * 1979-05-24 1980-12-09 Hitachi Ltd Gassliquid separator for refrigeration cycle
JPH10111047A (en) * 1996-10-03 1998-04-28 Hitachi Ltd Air conditioner
JPH11257805A (en) * 1998-03-13 1999-09-24 Matsushita Electric Ind Co Ltd Lubricant return device for freezing cycle
JP2000035251A (en) * 1998-07-17 2000-02-02 Zexel Corp Three layers separator in cooling cycle
JP2000046420A (en) * 1998-07-31 2000-02-18 Zexel Corp Refrigeration cycle
JP2001324227A (en) * 2000-05-18 2001-11-22 Sanyo Electric Co Ltd Receiver tank and air conditioning equipment
JP2005106315A (en) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp Refrigerator-freezer
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008349A (en) * 2007-06-29 2009-01-15 Daikin Ind Ltd Gas-liquid separator
WO2009157301A1 (en) * 2008-06-27 2009-12-30 サンデン株式会社 Refrigeration cycle
JP2010007978A (en) * 2008-06-27 2010-01-14 Sanden Corp Refrigerating cycle
JP2010078262A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Oil separator
EP2169332A3 (en) * 2008-09-29 2014-12-03 Sanyo Electric Co., Ltd. Oil separator for separating refrigerant and oil
JP2010181090A (en) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp Gas liquid separator and refrigerating cycle device mounted with the same
JP2012002418A (en) * 2010-06-16 2012-01-05 Hitachi Appliances Inc Air conditioner and gas-liquid separator
JP5921718B2 (en) * 2012-12-21 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
WO2014097484A1 (en) * 2012-12-21 2014-06-26 三菱電機株式会社 Refrigeration cycle device
WO2014097742A1 (en) * 2012-12-21 2014-06-26 三菱電機株式会社 Refrigeration cycle device
JP2014185811A (en) * 2013-03-22 2014-10-02 Fujitsu General Ltd Refrigeration cycle device
JP2015152260A (en) * 2014-02-17 2015-08-24 株式会社デンソー Gas-liquid separator and refrigeration cycle device including the same
KR101811957B1 (en) * 2016-11-09 2017-12-22 한국해양대학교 산학협력단 Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
KR20200053172A (en) * 2018-11-08 2020-05-18 한국해양대학교 산학협력단 Precooled refrigerator
KR102126133B1 (en) * 2018-11-08 2020-06-23 한국해양대학교 산학협력단 Precooled refrigerator
CN113432350A (en) * 2020-03-20 2021-09-24 青岛海尔空调电子有限公司 Pipeline oil cleaning device for air conditioning system and air conditioning system

Also Published As

Publication number Publication date
EP1795835A3 (en) 2008-10-08
US20070130988A1 (en) 2007-06-14
EP1795835A2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP2007162988A (en) Vapor compression refrigerating cycle
US7320228B2 (en) Refrigerant cycle apparatus
JP4626531B2 (en) Ejector refrigeration cycle
CN101688697B (en) Refrigerant vapor compression system with dual economizer circuits
EP2223021B1 (en) Refrigerating system and method for refrigerating
EP1628088A2 (en) Refrigerant cycle apparatus
JP2008530511A (en) Refrigeration circuit with improved liquid / vapor receiver
WO2010038762A1 (en) Refrigeration cycle device
JP2008281326A (en) Refrigerating unit and heat exchanger used for the refrigerating unit
JP4411349B2 (en) Condensation heat converter and refrigeration system using the same
JP2008051344A (en) Gas-liquid separator and refrigerating device comprising the same
JP2008057807A (en) Refrigerating cycle, and air conditioner and refrigerator using the same
JP2007218459A (en) Refrigerating cycle device and cool box
JP2007315687A (en) Refrigerating cycle
JP4400522B2 (en) Ejector refrigeration cycle
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2007057156A (en) Refrigeration cycle
JPH1019421A (en) Refrigerating cycle and accumulator used for the cycle
JP4971877B2 (en) Refrigeration cycle
JP4952830B2 (en) Ejector refrigeration cycle
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP2008164288A (en) Refrigerating device
JP4694365B2 (en) Pressure reducer module with oil separator
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110418

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110527