JP2001056157A - Refrigerating device - Google Patents
Refrigerating deviceInfo
- Publication number
- JP2001056157A JP2001056157A JP11229695A JP22969599A JP2001056157A JP 2001056157 A JP2001056157 A JP 2001056157A JP 11229695 A JP11229695 A JP 11229695A JP 22969599 A JP22969599 A JP 22969599A JP 2001056157 A JP2001056157 A JP 2001056157A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- gas
- stage compressor
- liquid separator
- refrigerating machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二段圧縮冷凍サイ
クルを行う冷凍装置に関し、特に、圧縮機の信頼性向上
策に係るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system for performing a two-stage compression refrigeration cycle, and more particularly to a measure for improving the reliability of a compressor.
【0002】[0002]
【従来の技術】従来より、冷凍装置としては冷媒回路で
冷媒を循環させて蒸気圧縮式冷凍サイクルを行うものが
一般的である。また、従来より、この種の冷凍装置とし
て、冷媒の圧縮を二段に分けて行う二段圧縮冷凍サイク
ルを行うものが知られている。2. Description of the Related Art Conventionally, a refrigerating apparatus generally performs a vapor compression type refrigerating cycle by circulating a refrigerant in a refrigerant circuit. Conventionally, as this type of refrigerating apparatus, a refrigerating apparatus which performs a two-stage compression refrigerating cycle in which refrigerant is compressed in two stages is known.
【0003】上記二段圧縮式の冷凍装置には、低段側の
圧縮機と高段側の圧縮機とが設けられる。蒸発器からの
低圧のガス冷媒は、低段圧縮機に吸入されて中間圧まで
圧縮される。低段圧縮機の吐出冷媒は、高段圧縮機へ送
られて更に圧縮される。そして、高段圧縮機の吐出冷媒
を凝縮器へ送って冷凍サイクルを行う。The two-stage compression type refrigeration system is provided with a low-stage compressor and a high-stage compressor. The low-pressure gas refrigerant from the evaporator is sucked into the low-stage compressor and compressed to an intermediate pressure. The refrigerant discharged from the low-stage compressor is sent to the high-stage compressor and further compressed. Then, the refrigerant discharged from the high-stage compressor is sent to the condenser to perform a refrigeration cycle.
【0004】また、二段圧縮冷凍サイクルでは、COP
(成績係数)を向上させる観点から、各段の圧縮機にお
ける圧縮比を等しく設定するのが望ましい。例えば、5
キロ(kgf/cm2)の冷媒を30キロ(kgf/cm2)まで圧縮
する場合、低段圧縮機で5キロから12キロまで圧縮
し、高段圧縮機で12キロから30キロまで圧縮するよ
うに設定すると、各圧縮機における圧縮比が等しくな
る。In a two-stage compression refrigeration cycle, COP
From the viewpoint of improving (coefficient of performance), it is desirable to set the compression ratios in the compressors of the respective stages to be equal. For example, 5
When compressing kilo (kgf / cm 2 ) refrigerant to 30 kg (kgf / cm 2 ), compress from 5 kg to 12 kg with a low-stage compressor and compress from 12 kg to 30 kg with a high-stage compressor. With such settings, the compression ratios in the respective compressors become equal.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、各圧縮
機における圧縮比を等しく設定した場合、各圧縮機での
差圧が相違する。即ち、各圧縮機における吐出圧力と吸
入圧力の差が相違する。そして、この差圧の相違に起因
して、高段圧縮機の冷凍機油量の不足を招くという問題
があった。以下、この問題点について説明する。However, when the compression ratio in each compressor is set equal, the differential pressure in each compressor differs. That is, the difference between the discharge pressure and the suction pressure in each compressor is different. Then, due to the difference in the differential pressure, there is a problem that a shortage of the refrigerating machine oil amount of the high-stage compressor is caused. Hereinafter, this problem will be described.
【0006】上記冷凍装置に用いられる圧縮機では、ハ
ウジング内に貯留する冷凍機油を圧縮機構や軸受等に供
給して潤滑が行われる。ハウジング内の冷凍機油は、圧
縮されたガス冷媒と共に圧縮機から吐出される。そし
て、通常、圧縮機から出た冷凍機油は冷媒回路を循環し
て再び圧縮機に戻るため、ハウジングにおける冷凍機油
の貯留量はほぼ一定に維持される。[0006] In the compressor used in the refrigerating apparatus, the refrigerating machine oil stored in the housing is supplied to a compression mechanism, a bearing, and the like to perform lubrication. The refrigerating machine oil in the housing is discharged from the compressor together with the compressed gas refrigerant. Usually, the refrigerating machine oil discharged from the compressor circulates through the refrigerant circuit and returns to the compressor again. Therefore, the amount of the refrigerating machine oil stored in the housing is maintained substantially constant.
【0007】ところが、圧縮機からの冷凍機油の吐出量
は、圧縮機における吐出側と吸入側の差圧と相関し、こ
の差圧が大きいほど吐出量が増大する。つまり、上記冷
凍装置では、高段圧縮機からの冷凍機油の流出量が、低
段圧縮機からの冷凍機油の流出量よりも多くなる。従っ
て、高段圧縮機から流出する冷凍機油の量が、低段圧縮
機の吐出冷媒と共に高段圧縮機へ流入する冷凍機油の量
を上回ることになる。このため、運転を継続すると高段
圧縮機に貯留された冷凍機油量が減少し、潤滑不良によ
る焼き付き等のトラブルを招くおそれがあった。However, the discharge amount of refrigerating machine oil from the compressor correlates with the differential pressure between the discharge side and the suction side of the compressor, and the larger the differential pressure, the greater the discharge amount. That is, in the refrigerating apparatus, the outflow of refrigerating machine oil from the high-stage compressor is larger than the outflow of refrigerating machine oil from the low-stage compressor. Therefore, the amount of the refrigerating machine oil flowing out of the high-stage compressor exceeds the amount of the refrigerating machine oil flowing into the high-stage compressor together with the refrigerant discharged from the low-stage compressor. For this reason, if the operation is continued, the amount of refrigerating machine oil stored in the high-stage compressor decreases, and there is a possibility that troubles such as seizure due to poor lubrication may be caused.
【0008】本発明は、かかる点に鑑みてなされたもの
であり、その目的とするところは、二段圧縮冷凍サイク
ルの高段圧縮機における冷凍機油の貯留量を確保し、ト
ラブルを回避して信頼性を向上させることにある。[0008] The present invention has been made in view of such a point, and an object of the present invention is to secure the storage amount of refrigerating machine oil in a high-stage compressor of a two-stage compression refrigeration cycle and avoid trouble. The purpose is to improve reliability.
【0009】[0009]
【課題を解決するための手段】−解決手段− 本発明が講じた第1の解決手段は、多段圧縮冷凍サイク
ルを行う冷凍装置を対象としている。そして、複数の圧
縮機(11,12)と中間圧の冷媒を気液分離する気液分離
器(16)とを有する冷媒回路(10)と、上記気液分離器
(16)に貯留する冷凍機油を高段側の高段圧縮機(12)
へ供給する油回収手段(40)とを設けるものである。[Means for Solving the Problems] -Solution Means- A first solution means adopted by the present invention is directed to a refrigeration apparatus that performs a multi-stage compression refrigeration cycle. A refrigerant circuit (10) having a plurality of compressors (11, 12) and a gas-liquid separator (16) for gas-liquid separation of intermediate-pressure refrigerant; and a refrigeration circuit stored in the gas-liquid separator (16). High-stage compressor on the high-stage side (12)
And an oil recovery means (40) for supplying oil to the tank.
【0010】本発明が講じた第2の解決手段は、二段圧
縮冷凍サイクルを行う冷凍装置を対象としている。低段
圧縮機(11)と高段圧縮機(12)と中間圧の冷媒を気液
分離する気液分離器(16)とを有する冷媒回路(10)
と、上記気液分離器(16)に貯留する冷凍機油を高段圧
縮機(12)へ供給する油回収手段(40)とを設けるもの
である。The second solution taken by the present invention is directed to a refrigeration system that performs a two-stage compression refrigeration cycle. Refrigerant circuit (10) having a low-stage compressor (11), a high-stage compressor (12), and a gas-liquid separator (16) for gas-liquid separation of intermediate-pressure refrigerant
And oil recovery means (40) for supplying the refrigerating machine oil stored in the gas-liquid separator (16) to the high-stage compressor (12).
【0011】本発明が講じた第3の解決手段は、上記第
1又は第2の解決手段において、油回収手段(40)は、
気液分離器(16)からガス冷媒と共に冷凍機油を高段圧
縮機(12)の吸入側に供給するインジェクション管(4
0)によって構成されるものである。[0011] The third solution taken by the present invention is the first or the second solution, wherein the oil recovery means (40) comprises:
An injection pipe (4) that supplies refrigerating machine oil together with gas refrigerant from the gas-liquid separator (16) to the suction side of the high-stage compressor (12).
0).
【0012】本発明が講じた第4の解決手段は、上記第
3の解決手段において、気液分離器(16)は、容器状の
本体部(30)を備え、インジェクション管(40)の一端
部は、上記本体部(30)の内部空間に開口してガス冷媒
を吸い込む内部管路(41)に形成される一方、上記内部
管路(41)は、上記本体部(30)の内部空間の底部に位
置し且つ油孔(43)が形成された底管路部(42)を備
え、上記本体部(30)に貯留する冷凍機油を上記油孔
(43)から吸い込むように構成されるものである。A fourth solution taken by the present invention is the above-mentioned third solution, wherein the gas-liquid separator (16) comprises a container-shaped main body (30), and one end of an injection pipe (40). The part is formed in an internal pipe (41) that opens into the internal space of the main body (30) and sucks the gas refrigerant, while the internal pipe (41) is formed in the internal space of the main body (30). A bottom pipe portion (42) which is located at the bottom of the tub and has an oil hole (43) formed therein, and is configured to suck refrigerating machine oil stored in the main body (30) from the oil hole (43). Things.
【0013】−作用−上記第1,第2の解決手段では、
冷媒回路(10)で冷媒が循環し、冷媒の圧縮、凝縮、膨
張、蒸発を繰り返して冷凍サイクルが行われる。冷媒の
圧縮は、各段の圧縮機(11,12)によって段階的に行わ
れる。第2の解決手段の場合を例に説明すると、蒸発後
の低圧ガス冷媒は、低段圧縮機(11)で中間圧まで圧縮
される。その後、中間圧のガス冷媒は、高段圧縮機(1
2)で更に圧縮されて高圧となる。凝縮後の冷媒は、中
間圧まで膨張した後に気液分離器(16)に導入される。
気液分離器(16)で分離された中間圧の液冷媒は、その
後に蒸発する。-Operation- In the first and second solving means,
The refrigerant circulates in the refrigerant circuit (10), and the refrigerant is repeatedly compressed, condensed, expanded and evaporated to perform a refrigeration cycle. The compression of the refrigerant is performed stepwise by the compressors (11, 12) of each stage. Taking the case of the second solution as an example, the low-pressure gas refrigerant after evaporation is compressed to an intermediate pressure by the low-stage compressor (11). Thereafter, the intermediate-pressure gas refrigerant is supplied to the high-stage compressor (1
In 2), it is further compressed to high pressure. The condensed refrigerant is introduced into the gas-liquid separator (16) after expanding to an intermediate pressure.
The intermediate-pressure liquid refrigerant separated by the gas-liquid separator (16) evaporates thereafter.
【0014】各圧縮機(12)の冷凍機油は、冷媒と共に
冷媒回路(10)を循環する。第2の解決手段の場合を例
に説明すると、高段圧縮機(12)から流出した冷凍機油
は、冷媒と共に冷媒回路(10)を流れて気液分離器(1
6)に入る。冷凍機油は、一部が気液分離器(16)に留
まり、残りが冷媒と共に流れて低段圧縮機(11)に流入
する。低段圧縮機(11)から流出した冷凍機油は、中間
圧の冷媒と共に高段圧縮機(12)に吸入される。また、
気液分離器(16)に留まった冷凍機油も、油回収手段
(40)によって高段圧縮機(12)へ送り込まれる。即
ち、気液分離器(16)内の冷凍機油は、低段側の圧縮機
(11)を経ることなく、油回収手段(40)によって高段
側の圧縮機(12)へ直接送り込まれる。The refrigerating machine oil of each compressor (12) circulates in the refrigerant circuit (10) together with the refrigerant. Taking the case of the second solution as an example, the refrigerating machine oil flowing out of the high-stage compressor (12) flows through the refrigerant circuit (10) together with the refrigerant, and flows into the gas-liquid separator (1).
Enter 6). A part of the refrigerating machine oil stays in the gas-liquid separator (16), and the rest flows with the refrigerant and flows into the low-stage compressor (11). The refrigerating machine oil flowing out of the low-stage compressor (11) is sucked into the high-stage compressor (12) together with the intermediate-pressure refrigerant. Also,
The refrigerating machine oil remaining in the gas-liquid separator (16) is also sent to the high-stage compressor (12) by the oil recovery means (40). That is, the refrigerating machine oil in the gas-liquid separator (16) is directly sent to the high-stage compressor (12) by the oil recovery means (40) without passing through the low-stage compressor (11).
【0015】上記第3の解決手段では、気液分離器(1
6)の中間圧のガス冷媒は、インジェクション管(40)
を通じて高段圧縮機(12)に送り込まれる。その際、気
液分離器(16)に貯留する冷凍機油は、中間圧のガス冷
媒と共にインジェクション管(40)内を流れ、高段圧縮
機(12)に供給される。In the third solution, the gas-liquid separator (1
6) Intermediate pressure gas refrigerant, injection pipe (40)
Through the high-stage compressor (12). At this time, the refrigerating machine oil stored in the gas-liquid separator (16) flows through the injection pipe (40) together with the intermediate-pressure gas refrigerant, and is supplied to the high-stage compressor (12).
【0016】上記第4の解決手段では、インジェクショ
ン管(40)の一端部が内部管路(41)に形成され、この
内部管路(41)の底管路部(42)に油孔(43)が形成さ
れる。ここで、冷凍機油の比重は液冷媒の比重よりも大
きいことから、気液分離器(16)の底部に冷凍機油が溜
まり込む。そして、この気液分離器(16)の底部に溜ま
った冷凍機油が油孔(43)からインジェクション管(4
0)内に流入し、ガス冷媒と共に高段圧縮機(12)に供
給される。In the fourth solution, one end of the injection pipe (40) is formed in the internal pipe (41), and an oil hole (43) is formed in the bottom pipe (42) of the internal pipe (41). ) Is formed. Here, since the specific gravity of the refrigeration oil is greater than the specific gravity of the liquid refrigerant, the refrigeration oil accumulates at the bottom of the gas-liquid separator (16). Then, the refrigerating machine oil collected at the bottom of the gas-liquid separator (16) flows through the oil hole (43) into the injection pipe (4).
0) and is supplied to the high-stage compressor (12) together with the gas refrigerant.
【0017】[0017]
【発明の効果】上記の解決手段によれば、冷凍機油の貯
留量が低下しやすい高段側の高段圧縮機(12)に対し、
冷媒回路(10)内を流れる冷凍機油を油回収手段(40)
によって送り込むことができる。つまり、高段圧縮機
(12)から流出して冷媒回路(10)内を流れる冷凍機油
を、低段側の圧縮機(11)を通じてだけでなく、油回収
手段(40)によっても高段圧縮機(12)に戻すことがで
きる。このため、高段圧縮機(12)における冷凍機油の
貯留量を確保することができ、焼き付き等のトラブルを
回避して信頼性を向上させることができる。According to the above-mentioned solution, the high-stage compressor (12) on the high-stage side, in which the storage amount of the refrigerating machine oil tends to decrease,
Oil recovery means (40) for refrigerating machine oil flowing in the refrigerant circuit (10)
Can be sent by In other words, the refrigerating machine oil flowing out of the high-stage compressor (12) and flowing in the refrigerant circuit (10) is not only passed through the low-stage compressor (11) but also by the high-stage compression by the oil recovery means (40). Machine (12). For this reason, the storage amount of the refrigerating machine oil in the high-stage compressor (12) can be ensured, and troubles such as seizure can be avoided to improve reliability.
【0018】特に、上記第3の解決手段によれば、中間
圧のガス冷媒を高段圧縮機(12)へ送るインジェクショ
ン管(40)が油回収手段(40)を構成している。つま
り、インジェクション管(40)が油回収手段(40)を兼
ねるような構成とでき、構成を複雑化させることなく高
段圧縮機(12)に冷凍機油を確実に戻すことができる。In particular, according to the third solution, the injection pipe (40) for sending the intermediate-pressure gas refrigerant to the high-stage compressor (12) constitutes the oil recovery means (40). That is, the injection pipe (40) can be configured to also serve as the oil recovery means (40), and the refrigerating machine oil can be reliably returned to the high-stage compressor (12) without complicating the configuration.
【0019】[0019]
【発明の実施の形態1】以下、本発明の実施形態を図面
に基づいて詳細に説明する。Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
【0020】図1に示すように、第1実施形態に係る冷
凍装置は、いわゆる2段圧縮式冷凍サイクルを行う冷媒
回路(10)を備え、冷房運転を行う空調機に構成されて
いる。As shown in FIG. 1, the refrigeration apparatus according to the first embodiment includes a refrigerant circuit (10) for performing a so-called two-stage compression refrigeration cycle, and is configured as an air conditioner for performing a cooling operation.
【0021】冷媒回路(10)には、低段圧縮機(11)と
高段圧縮機(12)とが設けられている。両圧縮機(11,1
2)は、いわゆるローリングピストン型の圧縮機構をモ
ータと共にハウジングに収納して構成された全密閉型圧
縮機である。また、両圧縮機(11,12)は、いわゆる高
圧ドーム型に構成されている。尚、両圧縮機(11,12)
の圧縮機構には、ローリングピストン型に限らず、スク
ロール型やその他の形式のものを適用してもよい。更
に、両圧縮機(11,12)を、いわゆる低圧ドーム型に構
成してもよい。The refrigerant circuit (10) is provided with a low stage compressor (11) and a high stage compressor (12). Both compressors (11,1
2) is a hermetic compressor in which a so-called rolling piston type compression mechanism is housed together with a motor in a housing. Further, both compressors (11, 12) are configured as a so-called high-pressure dome type. In addition, both compressors (11,12)
The compression mechanism is not limited to the rolling piston type, but may be a scroll type or another type. Further, both compressors (11, 12) may be configured as a so-called low-pressure dome type.
【0022】低段圧縮機(11)と高段圧縮機(12)と
は、直列に接続されている。即ち、低段圧縮機(11)の
吐出側と高段圧縮機(12)の吸入側とが、第1吐出管
(21)によって接続されている。高段圧縮機(12)の吐
出側は、第2吐出管(22)を介して室外熱交換器(14)
の入口端に接続されている。The low-stage compressor (11) and the high-stage compressor (12) are connected in series. That is, the discharge side of the low-stage compressor (11) and the suction side of the high-stage compressor (12) are connected by the first discharge pipe (21). The discharge side of the high-stage compressor (12) is connected to the outdoor heat exchanger (14) via the second discharge pipe (22).
Connected to the entrance end of the
【0023】上記室外熱交換器(14)は、図外の室外ユ
ニットに設けられている。そして、室外熱交換器(14)
は、高段圧縮機(12)の吐出冷媒と室外空気とを熱交換
させて該吐出冷媒を凝縮させる凝縮器を構成している。
室外熱交換器(14)の出口端は、第1冷媒配管(24)を
介して気液分離器(16)と接続されている。この第1冷
媒配管(24)には、第1膨張弁(15)が設けられてい
る。The outdoor heat exchanger (14) is provided in an outdoor unit (not shown). And the outdoor heat exchanger (14)
Constitutes a condenser for exchanging heat between refrigerant discharged from the high-stage compressor (12) and outdoor air to condense the discharged refrigerant.
The outlet end of the outdoor heat exchanger (14) is connected to the gas-liquid separator (16) via the first refrigerant pipe (24). The first refrigerant pipe (24) is provided with a first expansion valve (15).
【0024】上記気液分離器(16)は、円筒容器状の本
体部(30)を備え、二相状態の冷媒をガス冷媒と液冷媒
とに分離するように構成されている。気液分離器(16)
の詳細については、後述する。また、気液分離器(16)
は、第2冷媒配管(25)を介して室内熱交換器(18)の
入口端と接続されている。この第2冷媒配管(25)に
は、第2膨張弁(17)が設けられている。The gas-liquid separator (16) includes a cylindrical container-shaped main body (30), and is configured to separate a refrigerant in a two-phase state into a gas refrigerant and a liquid refrigerant. Gas-liquid separator (16)
Will be described later in detail. In addition, gas-liquid separator (16)
Is connected to the inlet end of the indoor heat exchanger (18) via the second refrigerant pipe (25). The second refrigerant pipe (25) is provided with a second expansion valve (17).
【0025】上記室内熱交換器(18)は、図外の室内ユ
ニットに設けられている。そして、室内熱交換器(18)
は、気液分離器(16)から送られた液冷媒と室内空気と
を熱交換させる蒸発器を構成している。この室内熱交換
器(18)での熱交換によって、室内空気が冷却される。
室内熱交換器(18)の出口端は、吸入管(27)を介して
低段圧縮機(11)の吸入側に接続されている。The indoor heat exchanger (18) is provided in an indoor unit (not shown). And indoor heat exchanger (18)
Constitutes an evaporator that exchanges heat between the liquid refrigerant sent from the gas-liquid separator (16) and room air. The indoor air is cooled by the heat exchange in the indoor heat exchanger (18).
An outlet end of the indoor heat exchanger (18) is connected to a suction side of the low-stage compressor (11) via a suction pipe (27).
【0026】また、上記気液分離器(16)には、インジ
ェクション管(40)が接続されている。このインジェク
ション管(40)は、一端部が気液分離器(16)に接続さ
れ、他端部が第1吐出管(21)に接続されている。以
下、気液分離器(16)及びインジェクション管(40)に
ついて、図2を参照しながら説明する。An injection pipe (40) is connected to the gas-liquid separator (16). One end of the injection pipe (40) is connected to the gas-liquid separator (16), and the other end is connected to the first discharge pipe (21). Hereinafter, the gas-liquid separator (16) and the injection pipe (40) will be described with reference to FIG.
【0027】上記気液分離器(16)では、本体部(30)
の上端部に第1冷媒配管(24)が接続されている。この
第1冷媒配管(24)は、気液分離器(16)の内部の上端
部に開口している。そして、第1膨張弁(15)で減圧さ
れた気液二相状態の冷媒は、第1冷媒配管(24)を通じ
て気液分離器(16)に送り込まれ、液冷媒とガス冷媒と
に分離される。一方、上記本体部(30)の下端部には、
第2冷媒配管(25)が接続されている。気液分離器(1
6)の液冷媒は、第2冷媒配管(25)を通じて送り出さ
れる。In the gas-liquid separator (16), the main body (30)
The first refrigerant pipe (24) is connected to the upper end of the first refrigerant pipe. The first refrigerant pipe (24) is open at the upper end inside the gas-liquid separator (16). The refrigerant in the gas-liquid two-phase state decompressed by the first expansion valve (15) is sent to the gas-liquid separator (16) through the first refrigerant pipe (24), and is separated into a liquid refrigerant and a gas refrigerant. You. On the other hand, at the lower end of the main body (30),
The second refrigerant pipe (25) is connected. Gas-liquid separator (1
The liquid refrigerant of 6) is sent out through the second refrigerant pipe (25).
【0028】上記インジェクション管(40)は、本体部
(30)の側方から該本体部(30)の内部に突出する状態
で接続されている。そして、本体部(30)の内部に位置
するインジェクション管(40)の一端部が、内部管路
(41)に構成されている。この内部管路(41)は、J字
状に湾曲した形状とされている。そして、内部管路(4
1)は、上端が本体部(30)の内部の上端部に開口し、
本体部(30)の内部のガス冷媒を取り込むように構成さ
れている。The injection pipe (40) is connected so as to protrude from the side of the main body (30) into the main body (30). One end of the injection pipe (40) located inside the main body (30) is formed as an internal pipe (41). The internal conduit (41) has a J-shaped curved shape. And the internal pipeline (4
1) The upper end opens at the upper end inside the main body (30),
It is configured to take in the gas refrigerant inside the main body (30).
【0029】また、内部管路(41)は、湾曲部分が本体
部(30)内の下端部に位置する姿勢で配置され、該湾曲
部分が底管路部(42)に構成されている。底管路部(4
2)には、所定の直径の油孔(43)が形成されている。
この油孔(43)は、底管路部(42)の側面に開口し、冷
凍機油を管内に取り込むように構成されている。そし
て、インジェクション管(40)は、気液分離器(16)に
貯留する冷凍機油を高段圧縮機(12)へ供給する油回収
手段(40)を構成している。The inner conduit (41) is arranged such that a curved portion is located at a lower end portion in the main body (30), and the curved portion is formed as a bottom conduit (42). Bottom pipeline (4
2), an oil hole (43) having a predetermined diameter is formed.
The oil hole (43) is open to the side surface of the bottom conduit (42), and is configured to take in refrigerating machine oil into the pipe. And the injection pipe (40) constitutes oil recovery means (40) for supplying the refrigerating machine oil stored in the gas-liquid separator (16) to the high-stage compressor (12).
【0030】−運転動作− 冷房運転時の動作について説明する。冷房運転時には、
第1膨張弁(15)及び第2膨張弁(17)が所定開度に調
節される。-Operation- An operation during the cooling operation will be described. During cooling operation,
The first expansion valve (15) and the second expansion valve (17) are adjusted to a predetermined opening.
【0031】高段圧縮機(12)から吐出された高圧のガ
ス冷媒は、第2吐出管(22)を通って室外熱交換器(1
4)へ流入し、室外空気と熱交換して凝縮する。その
際、高段圧縮機(12)からは、ガス冷媒と共に冷凍機油
も流出し、冷媒と共に冷媒回路(10)内を流通する。凝
縮した冷媒は、室外熱交換器(14)から第1冷媒配管
(24)へ流入し、第1膨張弁(15)で減圧される。減圧
されて中間圧の気液二相状態となった冷媒は、その後、
気液分離器(16)に流入する。The high-pressure gas refrigerant discharged from the high-stage compressor (12) passes through the second discharge pipe (22) and passes through the outdoor heat exchanger (1).
4), heat exchange with outdoor air and condenses. At this time, the refrigerating machine oil flows out together with the gas refrigerant from the high-stage compressor (12), and flows through the refrigerant circuit (10) together with the refrigerant. The condensed refrigerant flows from the outdoor heat exchanger (14) into the first refrigerant pipe (24), and is depressurized by the first expansion valve (15). The refrigerant which has been decompressed and has become a gas-liquid two-phase state of intermediate pressure,
It flows into the gas-liquid separator (16).
【0032】気液二相状態の冷媒は、気液分離器(16)
の本体部(30)の内部で第1冷媒配管(24)から放出さ
れる。そして、該冷媒のうち液冷媒だけが本体部(30)
の底に溜まり、これによってガス冷媒と液冷媒とが分離
される。分離された液冷媒は、第2冷媒配管(25)へと
流入する。The refrigerant in the gas-liquid two-phase state is supplied to the gas-liquid separator (16)
Is discharged from the first refrigerant pipe (24) inside the main body (30). And only the liquid refrigerant of the refrigerant is the main body (30).
And the gas refrigerant and the liquid refrigerant are separated from each other. The separated liquid refrigerant flows into the second refrigerant pipe (25).
【0033】第2冷媒配管(25)に流入した液冷媒は、
第2膨張弁(17)で更に減圧された後に室内熱交換器
(18)へ送られる。室内熱交換器(18)では、冷媒が室
内空気と熱交換を行って蒸発し、室内空気が冷却され
る。蒸発した冷媒は、吸入管(27)を通って低段圧縮機
(11)に吸入される。The liquid refrigerant flowing into the second refrigerant pipe (25)
After being further reduced in pressure by the second expansion valve (17), it is sent to the indoor heat exchanger (18). In the indoor heat exchanger (18), the refrigerant exchanges heat with the indoor air to evaporate, thereby cooling the indoor air. The evaporated refrigerant is sucked into the low-stage compressor (11) through the suction pipe (27).
【0034】低段圧縮機(11)は、吸入した冷媒を中間
圧にまで圧縮し、第1吐出管(21)へ吐出する。一方、
気液分離器(16)で分離されたガス冷媒は、インジェク
ション管(40)を通って第1吐出管(21)へと導かれ
る。高段圧縮機(12)は、低段圧縮機(11)の吐出冷媒
と気液分離器(16)からのガス冷媒とを吸入する。高段
圧縮機(12)は、吸入した冷媒を高圧にまで圧縮し、第
2吐出管(22)へ吐出する。以上の動作を繰り返して冷
凍サイクル動作を行い、室内を冷房する。The low-stage compressor (11) compresses the drawn refrigerant to an intermediate pressure and discharges the refrigerant to the first discharge pipe (21). on the other hand,
The gas refrigerant separated by the gas-liquid separator (16) is guided to the first discharge pipe (21) through the injection pipe (40). The high-stage compressor (12) sucks the refrigerant discharged from the low-stage compressor (11) and the gas refrigerant from the gas-liquid separator (16). The high-stage compressor (12) compresses the drawn refrigerant to a high pressure and discharges the refrigerant to the second discharge pipe (22). The above operation is repeated to perform a refrigeration cycle operation, thereby cooling the room.
【0035】ここで、気液分離器(16)からは、インジ
ェクション管(40)を通じてガス冷媒だけでなく冷凍機
油も高段圧縮機(12)へ供給される。具体的に、冷媒と
共に気液分離器(16)の本体部(30)に流入した冷凍機
油は、本体部(30)の底付近に溜まり込む。これは、冷
凍機油の比重が液冷媒の比重よりも大きいためである。Here, from the gas-liquid separator (16), not only gas refrigerant but also refrigeration oil is supplied to the high-stage compressor (12) through the injection pipe (40). Specifically, the refrigerating machine oil that has flown into the main body (30) of the gas-liquid separator (16) together with the refrigerant accumulates near the bottom of the main body (30). This is because the specific gravity of the refrigerating machine oil is larger than the specific gravity of the liquid refrigerant.
【0036】本体部(30)に溜まり込んだ冷凍機油の一
部は、油孔(43)からインジェクション管(40)内に流
入する。その後、冷凍機油は、インジェクション管(4
0)におけるガス冷媒の流れに伴って流動し、第1吐出
管(21)を通じて高段圧縮機(12)へ送り込まれる。ま
た、本体部(30)の残りの冷凍機油は、液冷媒と共に第
2冷媒配管(25)へと流入し、冷媒と共に流通して低段
圧縮機(11)に戻る。A part of the refrigerating machine oil accumulated in the main body (30) flows into the injection pipe (40) from the oil hole (43). After that, the refrigeration oil is injected into the injection pipe (4
It flows with the flow of the gas refrigerant in 0) and is sent to the high-stage compressor (12) through the first discharge pipe (21). The remaining refrigerating machine oil of the main body (30) flows into the second refrigerant pipe (25) together with the liquid refrigerant, flows with the refrigerant, and returns to the low-stage compressor (11).
【0037】−実施形態1の効果− 本実施形態1によれば、高段圧縮機(12)に対し、イン
ジェクション管(40)を通じて気液分離器(16)に貯留
する冷凍機油を直接戻すことができる。このため、従来
のように低段圧縮機(11)のみを通じて冷凍機油を高段
圧縮機(12)へ送り返す場合に比べ、高段圧縮機(12)
における冷凍機油の貯留量を確保することができ、焼き
付き等のトラブルを回避して信頼性を向上させることが
できる。According to the first embodiment, the refrigeration oil stored in the gas-liquid separator (16) is directly returned to the high-stage compressor (12) through the injection pipe (40). Can be. For this reason, compared to the conventional case where the refrigerating machine oil is sent back to the high-stage compressor (12) only through the low-stage compressor (11), the high-stage compressor (12)
, The amount of refrigerating machine oil stored can be secured, and problems such as seizure can be avoided to improve reliability.
【0038】また、高段圧縮機(12)において冷凍機油
量が低下するという問題に対しては、従来より、低段圧
縮機(11)から高段圧縮機(12)に冷凍機油をポンプ等
を用いて強制的に送り込むという対策が提案されてい
る。ところが、これではポンプ等の構成を別途設ける必
要があり構成の複雑化を招く。また、ポンプを駆動する
ための動力も別途必要となる。これに対し、本実施形態
によれば、気液分離器(16)から高段圧縮機(12)へガ
ス冷媒を送るインジェクション管(40)の形状を一部変
更するだけで、気液分離器(16)の冷凍機油を高段圧縮
機(12)へ供給することができる。従って、構成の複雑
化や消費電力の増加を回避しつつ高段圧縮機(12)の冷
凍機油量を確保でき、信頼性の向上を図ることができ
る。In order to solve the problem that the amount of refrigerating machine oil in the high-stage compressor (12) is reduced, conventionally, a refrigerating machine oil is pumped from the low-stage compressor (11) to the high-stage compressor (12). There has been proposed a countermeasure of forcibly sending a message using a password. However, in this case, it is necessary to separately provide a configuration such as a pump, and the configuration is complicated. Power for driving the pump is also required separately. On the other hand, according to the present embodiment, the gas-liquid separator is changed only by partially changing the shape of the injection pipe (40) for sending the gas refrigerant from the gas-liquid separator (16) to the high-stage compressor (12). The refrigerating machine oil of (16) can be supplied to the high-stage compressor (12). Therefore, the amount of refrigerating machine oil of the high-stage compressor (12) can be secured while avoiding an increase in power consumption and a complicated configuration, and reliability can be improved.
【0039】−実施形態1の変形例− 上記実施形態1では、インジェクション管(40)の内部
管路(41)をJ字状に湾曲した形状としているが(図2
参照)、これに代えて以下のように形成してもよい。Modification of First Embodiment In the first embodiment, the internal conduit (41) of the injection pipe (40) has a J-shaped curved shape (FIG. 2).
Reference), instead of this, it may be formed as follows.
【0040】図3に示すように、本変形例のインジェク
ション管(40)は、本体部(30)の下端から該本体部
(30)の内部に突出する状態で接続されている。内部管
路(41)は、直管状に形成され、本体部(30)の下端か
ら上方に向かって延びている。また、直管状の内部管路
(41)の下端付近には油孔(43)が形成され、この油孔
(43)から冷凍機油がインジェクション管(40)内に流
入する。As shown in FIG. 3, the injection pipe (40) of the present modification is connected so as to protrude from the lower end of the main body (30) into the main body (30). The internal conduit (41) is formed in a straight tubular shape, and extends upward from the lower end of the main body (30). An oil hole (43) is formed near the lower end of the straight tubular internal pipe (41), and the refrigerating machine oil flows into the injection pipe (40) from the oil hole (43).
【0041】[0041]
【発明の実施の形態2】本発明の実施形態2は、上記実
施形態1において、冷媒回路(10)を変更したものであ
る。以下、実施形態1と異なる構成について説明する。Second Embodiment A second embodiment of the present invention is the same as the first embodiment except that the refrigerant circuit (10) is modified. Hereinafter, a configuration different from the first embodiment will be described.
【0042】図4に示すように、本実施形態2の冷媒回
路(10)では、第1吐出管(21)の構成が実施形態1と
異なる。具体的に、第1吐出管(21)は、一端が低段圧
縮機(11)の吐出側に接続され、他端が第1冷媒配管
(24)における第1膨張弁(15)と気液分離器(16)と
の間に接続されている。そして、低段圧縮機(11)の吐
出冷媒は、一旦気液分離器(16)に導入され、その後、
気液分離器(16)で分離されたガス冷媒と共にインジェ
クション管(40)を流れて高段圧縮機(12)へ供給され
る。尚、インジェクション管(40)内をガス冷媒と共に
冷凍機油が流れる点は、上記実施形態1と同様である。As shown in FIG. 4, in the refrigerant circuit (10) of the second embodiment, the configuration of the first discharge pipe (21) is different from that of the first embodiment. Specifically, the first discharge pipe (21) has one end connected to the discharge side of the low-stage compressor (11) and the other end connected to the first expansion valve (15) in the first refrigerant pipe (24). It is connected between the separator (16). Then, the refrigerant discharged from the low-stage compressor (11) is once introduced into the gas-liquid separator (16), and thereafter,
The gas refrigerant separated by the gas-liquid separator (16) flows through the injection pipe (40) and is supplied to the high-stage compressor (12). In addition, the point that the refrigerating machine oil flows together with the gas refrigerant in the injection pipe (40) is the same as in the first embodiment.
【0043】−実施形態2の変形例− 上記実施形態2では、第1吐出管(21)の他端を第1冷
媒配管(24)に接続したが、これに代えて、図5に示す
ように、第1吐出管(21)の他端を気液分離器(16)に
直接接続するようにしてもよい。Modification of Second Embodiment In the second embodiment, the other end of the first discharge pipe (21) is connected to the first refrigerant pipe (24). Instead, as shown in FIG. Alternatively, the other end of the first discharge pipe (21) may be directly connected to the gas-liquid separator (16).
【0044】[0044]
【発明の実施の形態3】本発明の実施形態3は、冷媒回
路(10)での冷媒循環方向を反転可能とし、冷凍サイク
ル動作とヒートポンプサイクル動作とを切り換えて冷房
運転と暖房運転の両方を行う空調機である。Embodiment 3 In Embodiment 3 of the present invention, the refrigerant circulation direction in the refrigerant circuit (10) can be reversed, and both the cooling operation and the heating operation are performed by switching between the refrigeration cycle operation and the heat pump cycle operation. Air conditioner to do.
【0045】図6に示すように、本実施形態3の冷媒回
路(10)は、上記実施形態1のものとほぼ同様に構成さ
れているが、四路切換弁(13)が追加される共に、これ
に伴って若干構成が変更されている。以下、実施形態1
と異なる構成について説明する。As shown in FIG. 6, the refrigerant circuit (10) of the third embodiment has substantially the same structure as that of the first embodiment, except that a four-way switching valve (13) is added. The configuration is slightly changed accordingly. Hereinafter, the first embodiment
The configuration different from that described above will be described.
【0046】四路切換弁(13)は、第1〜第4ポート
(13a,13b,13c,13d)を備えている。第1ポート(13a)
は、第2吐出管(22)を介して高段圧縮機(12)の吐出
側に接続されている。第2ポート(13b)は、冷媒配管
(23)を介して室外熱交換器(14)の入口端と接続され
ている。第3ポート(13c)は、吸入管(27)を介して
低段圧縮機(11)の吸入側に接続されている。第4ポー
ト(13d)は、冷媒配管(26)を介して室内熱交換器(1
8)の出口端と接続されている。The four-way switching valve (13) has first to fourth ports (13a, 13b, 13c, 13d). 1st port (13a)
Is connected to the discharge side of the high-stage compressor (12) via the second discharge pipe (22). The second port (13b) is connected to the inlet end of the outdoor heat exchanger (14) via the refrigerant pipe (23). The third port (13c) is connected to a suction side of the low-stage compressor (11) via a suction pipe (27). The fourth port (13d) is connected to the indoor heat exchanger (1) through the refrigerant pipe (26).
8) Connected with the outlet end.
【0047】そして、四路切換弁(13)は、第1ポート
(13a)と第2ポート(13b)とが連通し且つ第3ポート
(13c)と第4ポート(13d)とが連通する状態(図1に
実線で示す状態)と、第1ポート(13a)と第4ポート
(13d)と連通し且つ第2ポート(13b)と第3ポート
(13c)とが連通する状態(図1に破線で示す状態)と
に切り換わるように構成されている。The four-way switching valve (13) is in a state where the first port (13a) communicates with the second port (13b) and the third port (13c) communicates with the fourth port (13d). (A state shown by a solid line in FIG. 1) and a state in which the first port (13a) communicates with the fourth port (13d) and the second port (13b) communicates with the third port (13c) (FIG. 1). (A state shown by a broken line).
【0048】−運転動作− 冷媒回路(10)の運転動作について、図6を参照しなが
ら説明する。冷房運転時には、四路切換弁(13)が図6
に実線で示すように切り換えられると共に、第1膨張弁
(15)及び第2膨張弁(17)が所定開度に調節される。-Operation- The operation of the refrigerant circuit (10) will be described with reference to FIG. During cooling operation, the four-way switching valve (13)
Are switched as shown by the solid line, and the first expansion valve (15) and the second expansion valve (17) are adjusted to a predetermined opening degree.
【0049】高段圧縮機(12)から吐出された高圧のガ
ス冷媒は、四路切換弁(13)を通って室外熱交換器(1
4)へ流入し、室外空気と熱交換して凝縮する。凝縮し
た冷媒は、第1膨張弁(15)で減圧されて中間圧とな
り、二相状態で気液分離器(16)に流入する。気液分離
器(16)では、二相状態の冷媒がガス冷媒と液冷媒とに
分離される。気液分離器(16)の液冷媒は、第2膨張弁
(17)で更に減圧された後に室内熱交換器(18)へ送ら
れる。室内熱交換器(18)では、冷媒が室内空気と熱交
換を行って蒸発し、室内空気が冷却される。蒸発した冷
媒は、四路切換弁(13)を通って低段圧縮機(11)に吸
入される。The high-pressure gas refrigerant discharged from the high-stage compressor (12) passes through the four-way switching valve (13) and passes through the outdoor heat exchanger (1).
4), heat exchange with outdoor air and condenses. The condensed refrigerant is reduced in pressure by the first expansion valve (15) to an intermediate pressure, and flows into the gas-liquid separator (16) in a two-phase state. In the gas-liquid separator (16), the two-phase refrigerant is separated into a gas refrigerant and a liquid refrigerant. The liquid refrigerant in the gas-liquid separator (16) is further reduced in pressure by the second expansion valve (17), and then sent to the indoor heat exchanger (18). In the indoor heat exchanger (18), the refrigerant exchanges heat with the indoor air to evaporate, thereby cooling the indoor air. The evaporated refrigerant is sucked into the low-stage compressor (11) through the four-way switching valve (13).
【0050】低段圧縮機(11)は、吸入した冷媒を中間
圧にまで圧縮し、第1吐出管(21)へ吐出する。一方、
気液分離器(16)で分離されたガス冷媒は、インジェク
ション管(40)を通って第1吐出管(21)へと導かれ
る。高段圧縮機(12)は、低段圧縮機(11)の吐出冷媒
と気液分離器(16)からのガス冷媒とを吸入する。高段
圧縮機(12)は、吸入した冷媒を高圧にまで圧縮し、第
2吐出管(22)へ吐出する。以上の動作を繰り返して冷
凍サイクル動作を行い、室内を冷房する。The low-stage compressor (11) compresses the drawn refrigerant to an intermediate pressure and discharges it to the first discharge pipe (21). on the other hand,
The gas refrigerant separated by the gas-liquid separator (16) is guided to the first discharge pipe (21) through the injection pipe (40). The high-stage compressor (12) sucks the refrigerant discharged from the low-stage compressor (11) and the gas refrigerant from the gas-liquid separator (16). The high-stage compressor (12) compresses the drawn refrigerant to a high pressure and discharges the refrigerant to the second discharge pipe (22). The above operation is repeated to perform a refrigeration cycle operation, thereby cooling the room.
【0051】一方、暖房運転時には、四路切換弁(13)
が図6に破線で示すように切り換えられると共に、第1
膨張弁(15)及び第2膨張弁(17)が所定開度に調節さ
れる。On the other hand, during the heating operation, the four-way switching valve (13)
Is switched as shown by the broken line in FIG.
The expansion valve (15) and the second expansion valve (17) are adjusted to a predetermined opening.
【0052】高段圧縮機(12)から吐出された高圧のガ
ス冷媒は、四路切換弁(13)を通って室内熱交換器(1
8)へ流入する。室内熱交換器(18)では、冷媒が室内
空気と熱交換を行って凝縮し、室内空気が加熱される。
凝縮した冷媒は、第2膨張弁(17)でで減圧されて中間
圧となり、二相状態で気液分離器(16)に流入する。気
液分離器(16)では、二相状態の冷媒がガス冷媒と液冷
媒とに分離される。The high-pressure gas refrigerant discharged from the high-stage compressor (12) passes through the four-way switching valve (13) and passes through the indoor heat exchanger (1).
8). In the indoor heat exchanger (18), the refrigerant exchanges heat with the indoor air to condense, and the indoor air is heated.
The condensed refrigerant is reduced in pressure by the second expansion valve (17) to have an intermediate pressure, and flows into the gas-liquid separator (16) in a two-phase state. In the gas-liquid separator (16), the two-phase refrigerant is separated into a gas refrigerant and a liquid refrigerant.
【0053】気液分離器(16)の液冷媒は、第1膨張弁
(15)で更に減圧された後に室外熱交換器(14)へ流入
し、室外空気と熱交換して蒸発する。蒸発した冷媒は、
四路切換弁(13)を通って低段圧縮機(11)に吸入され
る。The liquid refrigerant in the gas-liquid separator (16) is further reduced in pressure by the first expansion valve (15), flows into the outdoor heat exchanger (14), exchanges heat with outdoor air, and evaporates. The evaporated refrigerant is
It is sucked into the low-stage compressor (11) through the four-way switching valve (13).
【0054】その後の動作は、冷房運転時と同様であ
る。つまり、低段圧縮機(11)は、吸入した冷媒を中間
圧にまで圧縮する。一方、高段圧縮機(12)は、低段圧
縮機(11)の吐出冷媒と気液分離器(16)からのガス冷
媒とを吸入し、高圧にまで圧縮する。以上の動作を繰り
返してヒートポンプサイクル動作を行い、室内を暖房す
る。The subsequent operation is the same as in the cooling operation. That is, the low-stage compressor (11) compresses the sucked refrigerant to an intermediate pressure. On the other hand, the high-stage compressor (12) sucks the refrigerant discharged from the low-stage compressor (11) and the gas refrigerant from the gas-liquid separator (16) and compresses them to a high pressure. The above operation is repeated to perform a heat pump cycle operation to heat the room.
【0055】上記の冷房及び暖房運転時には、実施形態
1と同様に、気液分離器(16)から高段圧縮機(12)へ
冷凍機油を送る動作が行われる。つまり、気液分離器
(16)に貯留する冷凍機油は、中間圧のガス冷媒と共に
インジェクション管(40)を流れ、高段圧縮機(12)に
供給される。During the cooling and heating operations, as in the first embodiment, an operation of sending refrigeration oil from the gas-liquid separator (16) to the high-stage compressor (12) is performed. That is, the refrigerating machine oil stored in the gas-liquid separator (16) flows through the injection pipe (40) together with the intermediate-pressure gas refrigerant, and is supplied to the high-stage compressor (12).
【0056】[0056]
【発明のその他の実施の形態】上記実施形態1,2で
は、室外熱交換器(14)を凝縮器とし、室内熱交換器
(18)を蒸発器として冷房運転を行うようにしている
が、これに代えて、室外熱交換器(14)を蒸発器とし、
室内熱交換器(18)を凝縮器として暖房運転を行うよう
にしてもよい。Other Embodiments In the first and second embodiments, the cooling operation is performed by using the outdoor heat exchanger (14) as a condenser and the indoor heat exchanger (18) as an evaporator. Instead, the outdoor heat exchanger (14) is an evaporator,
A heating operation may be performed using the indoor heat exchanger (18) as a condenser.
【図1】実施形態1に係る冷媒回路の配管系統図であ
る。FIG. 1 is a piping diagram of a refrigerant circuit according to a first embodiment.
【図2】実施形態1に係る冷媒回路の要部拡大図であ
る。FIG. 2 is an enlarged view of a main part of the refrigerant circuit according to the first embodiment.
【図3】実施形態1の変形例に係る冷媒回路の要部拡大
図である。FIG. 3 is an enlarged view of a main part of a refrigerant circuit according to a modification of the first embodiment.
【図4】実施形態2に係る冷媒回路の要部拡大図であ
る。FIG. 4 is an enlarged view of a main part of a refrigerant circuit according to a second embodiment.
【図5】実施形態2の変形例に係る冷媒回路の要部拡大
図である。FIG. 5 is an enlarged view of a main part of a refrigerant circuit according to a modification of the second embodiment.
【図6】実施形態3に係る冷媒回路の要部拡大図であ
る。FIG. 6 is an enlarged view of a main part of a refrigerant circuit according to a third embodiment.
(10) 冷媒回路 (11) 低段圧縮機 (12) 高段圧縮機 (16) 気液分離器 (30) 本体部 (40) インジェクション管(油回収手段) (41) 内部管路 (42) 底管路部 (43) 油孔 (10) Refrigerant circuit (11) Low-stage compressor (12) High-stage compressor (16) Gas-liquid separator (30) Main body (40) Injection pipe (oil recovery means) (41) Internal pipeline (42) Bottom line (43) Oil hole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲塚 徹 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tohru Inazuka 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries, Ltd. Sakai Plant Kanaoka Plant
Claims (4)
あって、 複数の圧縮機(11,12)と中間圧の冷媒を気液分離する
気液分離器(16)とを有する冷媒回路(10)と、 上記気液分離器(16)に貯留する冷凍機油を高段側の高
段圧縮機(12)へ供給する油回収手段(40)とを備えて
いる冷凍装置。A refrigeration system for performing a multistage compression refrigeration cycle, comprising: a refrigerant circuit (10) having a plurality of compressors (11, 12) and a gas-liquid separator (16) for gas-liquid separation of intermediate-pressure refrigerant. ), And an oil recovery means (40) for supplying refrigerating machine oil stored in the gas-liquid separator (16) to the high-stage high-stage compressor (12).
あって、 低段圧縮機(11)と高段圧縮機(12)と中間圧の冷媒を
気液分離する気液分離器(16)とを有する冷媒回路(1
0)と、 上記気液分離器(16)に貯留する冷凍機油を高段圧縮機
(12)へ供給する油回収手段(40)とを備えている冷凍
装置。2. A refrigeration system for performing a two-stage compression refrigeration cycle, comprising a low-stage compressor (11), a high-stage compressor (12), and a gas-liquid separator (16) for gas-liquid separation of an intermediate-pressure refrigerant. And a refrigerant circuit (1
0) and an oil recovery means (40) for supplying refrigerating machine oil stored in the gas-liquid separator (16) to the high-stage compressor (12).
て、 油回収手段(40)は、気液分離器(16)からガス冷媒と
共に冷凍機油を高段圧縮機(12)の吸入側に供給するイ
ンジェクション管(40)によって構成されている冷凍装
置。3. The refrigerating apparatus according to claim 1, wherein the oil recovery means (40) supplies the refrigerating machine oil from the gas-liquid separator (16) together with the gas refrigerant to the suction side of the high-stage compressor (12). A refrigeration system composed of an injection pipe (40).
0)の内部空間に開口してガス冷媒を吸い込む内部管路
(41)に形成される一方、 上記内部管路(41)は、上記本体部(30)の内部空間の
底部に位置し且つ油孔(43)が形成された底管路部(4
2)を備え、上記本体部(30)に貯留する冷凍機油を上
記油孔(43)から吸い込むように構成されている冷凍装
置。4. The refrigeration apparatus according to claim 3, wherein the gas-liquid separator (16) includes a container-shaped main body (30), and one end of an injection pipe (40) is connected to the main body (3).
0) is formed in an internal conduit (41) that opens into the internal space of the main body (30) and sucks gas refrigerant, while the internal conduit (41) is located at the bottom of the internal space of the main body (30) and Bottom conduit (4
A refrigerating apparatus comprising 2) and configured to suck refrigerating machine oil stored in the main body (30) from the oil hole (43).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11229695A JP2001056157A (en) | 1999-08-16 | 1999-08-16 | Refrigerating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11229695A JP2001056157A (en) | 1999-08-16 | 1999-08-16 | Refrigerating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001056157A true JP2001056157A (en) | 2001-02-27 |
Family
ID=16896267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11229695A Pending JP2001056157A (en) | 1999-08-16 | 1999-08-16 | Refrigerating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001056157A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005052467A1 (en) * | 2003-11-28 | 2005-06-09 | Mitsubishi Denki Kabushiki Kaisha | Freezer and air contitioner |
WO2007063798A1 (en) * | 2005-11-30 | 2007-06-07 | Daikin Industries, Ltd. | Freezing apparatus |
EP1795835A2 (en) * | 2005-12-12 | 2007-06-13 | Sanden Corporation | Vapor compression refrigerating system |
WO2010035419A1 (en) * | 2008-09-26 | 2010-04-01 | ダイキン工業株式会社 | Refrigerating apparatus |
WO2013117187A3 (en) * | 2012-02-09 | 2013-11-21 | Viessmann Werke Gmbh & Co. Kg | Heat pump apparatus |
JP2014016078A (en) * | 2012-07-06 | 2014-01-30 | Daikin Ind Ltd | Heat pump |
CN103697627A (en) * | 2013-12-24 | 2014-04-02 | 上海理工大学 | Double-temperature condensing two-stage compressing heat pump system |
JP2016087223A (en) * | 2014-11-07 | 2016-05-23 | 株式会社東芝 | Drying machine |
WO2020191991A1 (en) * | 2019-03-25 | 2020-10-01 | 南京天加环境科技有限公司 | Improved gas-liquid separator |
WO2022209735A1 (en) | 2021-03-29 | 2022-10-06 | ダイキン工業株式会社 | Heat source unit and refrigeration device |
US12123629B2 (en) | 2021-03-29 | 2024-10-22 | Daikin Industries, Ltd. | Heat source unit and refrigeration device having low-stage and high-stage compressors with four-way switching valve |
-
1999
- 1999-08-16 JP JP11229695A patent/JP2001056157A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7752857B2 (en) | 2003-11-28 | 2010-07-13 | Mitsubishi Denki Kabushiki Kaisha | Refrigerator and air conditioner |
WO2005052467A1 (en) * | 2003-11-28 | 2005-06-09 | Mitsubishi Denki Kabushiki Kaisha | Freezer and air contitioner |
US7526924B2 (en) | 2003-11-28 | 2009-05-05 | Mitsubishi Denki Kabushiki Kaisha | Refrigerator and air conditioner |
KR100854206B1 (en) * | 2003-11-28 | 2008-08-26 | 미쓰비시덴키 가부시키가이샤 | Freezer and air conditioner |
WO2007063798A1 (en) * | 2005-11-30 | 2007-06-07 | Daikin Industries, Ltd. | Freezing apparatus |
US7918106B2 (en) | 2005-11-30 | 2011-04-05 | Daikin Industries, Ltd. | Refrigeration system |
CN101313184B (en) * | 2005-11-30 | 2010-09-29 | 大金工业株式会社 | Freezing apparatus |
AU2006320054B2 (en) * | 2005-11-30 | 2009-12-03 | Daikin Industries, Ltd. | Refrigeration system |
KR100952037B1 (en) | 2005-11-30 | 2010-04-07 | 다이킨 고교 가부시키가이샤 | Freezing apparatus |
EP1795835A3 (en) * | 2005-12-12 | 2008-10-08 | Sanden Corp | Vapor compression refrigerating system |
EP1795835A2 (en) * | 2005-12-12 | 2007-06-13 | Sanden Corporation | Vapor compression refrigerating system |
JP2010101613A (en) * | 2008-09-26 | 2010-05-06 | Daikin Ind Ltd | Refrigerating apparatus |
WO2010035419A1 (en) * | 2008-09-26 | 2010-04-01 | ダイキン工業株式会社 | Refrigerating apparatus |
WO2013117187A3 (en) * | 2012-02-09 | 2013-11-21 | Viessmann Werke Gmbh & Co. Kg | Heat pump apparatus |
JP2014016078A (en) * | 2012-07-06 | 2014-01-30 | Daikin Ind Ltd | Heat pump |
CN103697627A (en) * | 2013-12-24 | 2014-04-02 | 上海理工大学 | Double-temperature condensing two-stage compressing heat pump system |
CN103697627B (en) * | 2013-12-24 | 2015-12-30 | 上海理工大学 | Double-temperature refrigerator coagulates two stages of compression heat pump |
JP2016087223A (en) * | 2014-11-07 | 2016-05-23 | 株式会社東芝 | Drying machine |
WO2020191991A1 (en) * | 2019-03-25 | 2020-10-01 | 南京天加环境科技有限公司 | Improved gas-liquid separator |
WO2022209735A1 (en) | 2021-03-29 | 2022-10-06 | ダイキン工業株式会社 | Heat source unit and refrigeration device |
US12123629B2 (en) | 2021-03-29 | 2024-10-22 | Daikin Industries, Ltd. | Heat source unit and refrigeration device having low-stage and high-stage compressors with four-way switching valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100846567B1 (en) | Refrigerating apparatus | |
US6722156B2 (en) | Refrigeration system | |
US20060101845A1 (en) | Compressor oil recovering apparatus and multi-unit air conditioner equiped with the same | |
US7918106B2 (en) | Refrigeration system | |
EP2357427A1 (en) | Refrigeration device | |
US7464563B2 (en) | Air-conditioner having a dual-refrigerant cycle | |
EP3312526A1 (en) | Refrigeration cycle device | |
CA2352297A1 (en) | Refrigerant cycle system with hot-gas bypass structure | |
WO2001022008A1 (en) | Multi-stage compression refrigerating device | |
US6826924B2 (en) | Heat pump apparatus | |
EP1589302A1 (en) | Pressure equalizer of compressor of air conditioner | |
JP2001056157A (en) | Refrigerating device | |
JP2011214753A (en) | Refrigerating device | |
KR20110097367A (en) | Chiller | |
CN215675591U (en) | Air conditioner heat pump system | |
JP2013024447A (en) | Refrigerating device | |
US20100326125A1 (en) | Refrigeration system | |
JP2001056156A (en) | Air conditioning apparatus | |
CN217952738U (en) | Economizer and air conditioner refrigerating system | |
CN108626916B (en) | Condenser for compression type refrigerator | |
JP2000346474A (en) | Refrigerator | |
JP5145943B2 (en) | Refrigeration equipment | |
CN109442778B (en) | Air Conditioning System | |
JP2001349629A (en) | Heat pump device | |
KR100710368B1 (en) | Multi-type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090929 |