JP4694365B2 - Pressure reducer module with oil separator - Google Patents

Pressure reducer module with oil separator Download PDF

Info

Publication number
JP4694365B2
JP4694365B2 JP2005372735A JP2005372735A JP4694365B2 JP 4694365 B2 JP4694365 B2 JP 4694365B2 JP 2005372735 A JP2005372735 A JP 2005372735A JP 2005372735 A JP2005372735 A JP 2005372735A JP 4694365 B2 JP4694365 B2 JP 4694365B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure side
oil separator
passage
side refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005372735A
Other languages
Japanese (ja)
Other versions
JP2007170783A (en
Inventor
政人 坪井
謙一 鈴木
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005372735A priority Critical patent/JP4694365B2/en
Priority to EP06126919A priority patent/EP1801521A3/en
Priority to US11/615,247 priority patent/US20070144206A1/en
Publication of JP2007170783A publication Critical patent/JP2007170783A/en
Application granted granted Critical
Publication of JP4694365B2 publication Critical patent/JP4694365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、蒸気圧縮式の冷凍サイクルにおいて、特に自然系冷媒等の超臨界冷凍サイクルでも使用し得るオイルセパレータ付き減圧器モジュールに関する。   The present invention relates to a decompressor module with an oil separator that can be used in a vapor compression refrigeration cycle, particularly in a supercritical refrigeration cycle such as a natural refrigerant.

蒸気圧縮式の冷凍サイクルは、圧縮した冷媒を放熱器にて冷却するとともにその圧縮した冷媒を減圧器にて減圧し、低圧となった冷媒を蒸発器にて蒸発させることにより冷凍能力を得るものが一般的である(例えば、特許文献1)。   The vapor compression refrigeration cycle cools the compressed refrigerant with a radiator, depressurizes the compressed refrigerant with a depressurizer, and evaporates the low-pressure refrigerant with an evaporator to obtain refrigeration capacity. Is common (for example, Patent Document 1).

上記のような蒸気圧縮式の冷凍サイクルにおいては、従来のフロン系冷媒を使用した冷凍サイクルと比べ、二酸化炭素等の自然系冷媒を使用する冷凍サイクルでは、高圧側圧力を冷媒の臨界圧力以上まで上昇させる必要があり、圧縮機の必要動力が大きくなるため、冷凍サイクルの効率が低いという問題がある。冷凍サイクルの効率を高くする方策として、冷凍サイクルを循環する冷媒と圧縮機を潤滑するための潤滑油のうち、蒸発器での熱伝達を妨げる潤滑油を減らすものが考えられる。望ましくは、潤滑油が圧縮機内で循環し、冷凍サイクル内を循環しないほうが、蒸発器の熱伝達を促進でき、結果として冷凍サイクル効率が高くなる。したがって、蒸発器に流入する潤滑油をいかに低減するかが課題となっている。   In the above-described vapor compression refrigeration cycle, compared with the conventional refrigeration cycle using a chlorofluorocarbon refrigerant, in the refrigeration cycle using a natural system refrigerant such as carbon dioxide, the high-pressure side pressure is set to be higher than the critical pressure of the refrigerant. There is a problem that the efficiency of the refrigeration cycle is low because the required power of the compressor becomes large. As a measure for increasing the efficiency of the refrigeration cycle, among the lubricating oil for lubricating the refrigerant circulating in the refrigeration cycle and the compressor, one that reduces the lubricating oil that hinders heat transfer in the evaporator can be considered. Desirably, when the lubricating oil circulates in the compressor and does not circulate in the refrigeration cycle, the heat transfer of the evaporator can be promoted, resulting in higher refrigeration cycle efficiency. Therefore, how to reduce the lubricating oil flowing into the evaporator is a problem.

従来の冷凍サイクルは、例えば図6に示すように構成されており、冷凍サイクル101は、圧縮機102と、圧縮機102から流出する冷媒を冷却する放熱器103と、放熱器103から流出する高温冷媒とアキュームレータ104(気液分離器を兼ねたもの)から流出する低温冷媒の熱交換を行うと共に、高温冷媒と熱交換された低温冷媒を前記圧縮機102に供給する内部熱交換器105と、内部熱交換器105から流出する冷媒を減圧する減圧器106と、減圧器106から流出する冷媒を蒸発させる蒸発器107と、蒸発器107から流出する液相冷媒および気相冷媒の二相冷媒を蓄えると共に、気相冷媒を前記内部熱交換器105に供給するアキュームレータ104を備えたものである。
特開平11−193967号公報
The conventional refrigeration cycle is configured as shown in FIG. 6, for example. The refrigeration cycle 101 includes a compressor 102, a radiator 103 that cools the refrigerant that flows out of the compressor 102, and a high temperature that flows out of the radiator 103. An internal heat exchanger 105 that performs heat exchange between the refrigerant and the low-temperature refrigerant flowing out of the accumulator 104 (also serving as a gas-liquid separator) and supplies the low-temperature refrigerant heat-exchanged with the high-temperature refrigerant to the compressor 102; A decompressor 106 for decompressing the refrigerant flowing out from the internal heat exchanger 105, an evaporator 107 for evaporating the refrigerant flowing out from the decompressor 106, and a two-phase refrigerant of a liquid phase gas and a gas phase refrigerant flowing out from the evaporator 107 The accumulator 104 is provided that stores the gas-phase refrigerant and supplies the gas-phase refrigerant to the internal heat exchanger 105.
JP 11-193967 A

本発明の課題は、上記のような従来技術に鑑み、冷凍サイクル効率が高くなるように、換言すると蒸発器の熱伝達効率が高くなるように、蒸発器に流入する潤滑油を低減すべく、冷凍サイクル内を循環する冷媒と潤滑油のうち、潤滑油のみを蒸発器手前でバイパスさせることができるようにしたオイルセパレータ付き減圧器モジュールを提供することにある。   The problem of the present invention is to reduce the lubricating oil flowing into the evaporator so as to increase the refrigeration cycle efficiency, in other words, to increase the heat transfer efficiency of the evaporator, in view of the conventional technology as described above. An object of the present invention is to provide a pressure reducer module with an oil separator that can bypass only the lubricating oil of refrigerant and lubricating oil circulating in the refrigeration cycle before the evaporator.

加えて、オイルセパレータと減圧器、更にはフィルタをモジュール化することで、冷凍サイクルを構成するときの締結部を減らすことができ、軽量化や低価格化を見込むことが可能なオイルセパレータ付き減圧器モジュールを提供することも課題とする。   In addition, the oil separator, pressure reducer, and filter can be modularized to reduce the number of fastening parts when configuring the refrigeration cycle, and the pressure reduction with the oil separator can be expected to reduce weight and price. Another object is to provide a container module.

上記課題を解決するために、本発明に係るオイルセパレータ付き減圧器モジュールは、減圧した冷媒を蒸発させて吸熱し、その蒸発した冷媒を圧縮機にて吸入圧縮する蒸気圧縮式冷凍サイクルに適用され、前記圧縮機にて圧縮された後、冷却された高圧側冷媒を減圧する減圧器に、前記圧縮機の潤滑油と冷媒を分離するオイルセパレータを一体化し、減圧すべき高圧側冷媒の通路と、前記高圧側冷媒の通路から流出し蒸発器を通過した後の低圧側冷媒の通路とを備え、高圧側冷媒の通路に前記オイルセパレータと減圧器を有し、かつ、該オイルセパレータで分離された潤滑油を前記高圧側冷媒の通路の下方に設けられた低圧側冷媒の通路に導く潤滑油通路を備えたことを特徴とするものからなる。 In order to solve the above problems, a decompressor module with an oil separator according to the present invention is applied to a vapor compression refrigeration cycle in which a decompressed refrigerant is evaporated to absorb heat and the evaporated refrigerant is sucked and compressed by a compressor. An oil separator that separates the lubricating oil and refrigerant of the compressor is integrated with a decompressor that decompresses the cooled high-pressure refrigerant after being compressed by the compressor, and a passage for the high-pressure refrigerant to be decompressed. A passage for the low-pressure side refrigerant after flowing out from the passage for the high-pressure side refrigerant and passing through the evaporator , and having the oil separator and the decompressor in the passage for the high-pressure side refrigerant and separated by the oil separator A lubricating oil passage for guiding the lubricating oil to a low-pressure refrigerant passage provided below the high-pressure refrigerant passage .

このオイルセパレータ付き減圧器モジュールにおいてはこの低圧側冷媒の通路圧縮機の手前形成されてい
In this oil pressure reducer module with a separator, the passage of the low-pressure side refrigerant that is formed in front of the compressor.

更に、上記潤滑油通路によりオイルセパレータから低圧側冷媒の通路に導かれた潤滑油が、低圧側冷媒の通路の出口側へ流れるように、低圧側冷媒の通路が水平方向に対して、その出口側が下になるように傾斜していることが好ましい。すなわち、分離された潤滑油が逆流しないように、重力を利用して低圧側冷媒の通路の出口側へ流れるようにしたものである。   Furthermore, the low-pressure side refrigerant passage extends in the horizontal direction so that the lubricating oil guided from the oil separator to the low-pressure side refrigerant passage by the lubricating oil passage flows to the outlet side of the low-pressure side refrigerant passage. It is preferable to incline so that the side is down. That is, the separated lubricating oil is caused to flow toward the outlet side of the low-pressure side refrigerant passage using gravity so that the lubricating oil does not flow backward.

更に、高圧側冷媒の通路の入口から出口の間に、異物が通過することを防止するためのフィルタを備えていることも好ましい。   Furthermore, it is also preferable to provide a filter for preventing foreign substances from passing between the inlet and the outlet of the high-pressure side refrigerant passage.

また、上記減圧器は、冷凍サイクル状態に関する情報に基づいて減圧度合が決定される機構を有することが好ましい。   Moreover, it is preferable that the said pressure reduction device has a mechanism in which a pressure reduction degree is determined based on the information regarding a refrigerating cycle state.

また、本発明に係るオイルセパレータ付き減圧器モジュールにおいては、高圧側冷媒の通路を形成するための高圧側冷媒入口部と、高圧側冷媒出口部と、低圧側冷媒の通路を形成するための低圧側冷媒入口部と、低圧側冷媒出口部とが、一つのブロック構造体内に形成されていることも好ましい形態である。とくに、オイルセパレータ付き減圧器モジュールを単一の部品として、例えば蒸発器に直接、装脱着できる構造を有することが好ましい。   Further, in the decompressor module with an oil separator according to the present invention, the high pressure side refrigerant inlet portion for forming the high pressure side refrigerant passage, the high pressure side refrigerant outlet portion, and the low pressure for forming the low pressure side refrigerant passage. It is also a preferred embodiment that the side refrigerant inlet portion and the low pressure side refrigerant outlet portion are formed in one block structure. In particular, it is preferable that the decompressor module with an oil separator has a structure that can be directly attached to and detached from the evaporator, for example, as a single component.

このような本発明に係るオイルセパレータ付き減圧器モジュールは、とくに自然系冷媒である二酸化炭素を使用した冷凍サイクルに用いて好適なものである。   Such a pressure reducer module with an oil separator according to the present invention is particularly suitable for use in a refrigeration cycle that uses carbon dioxide, which is a natural refrigerant.

また、本発明に係るオイルセパレータ付き減圧器モジュールは、とくに上記蒸気圧縮式冷凍サイクルが車両用空調装置の冷凍サイクルからなる場合に好適なものである。   The decompressor module with an oil separator according to the present invention is particularly suitable when the vapor compression refrigeration cycle includes a refrigeration cycle of a vehicle air conditioner.

本発明に係るオイルセパレータ付き減圧器モジュールによれば、オイルセパレータを一体化した減圧器モジュールとすることにより、蒸発器手前で冷凍サイクル内を循環する潤滑油を容易にバイパスさせることができるようになる。これにより、蒸発器における冷媒と空気の熱交換効率の向上と冷媒圧力損失の低減を達成することができ、冷凍能力の向上が図れる。ひいては、圧縮機の冷媒吐出量を低減でき、圧縮機の省動力化が図れ、冷凍サイクルの効率向上を見込むことができる。   According to the decompressor module with an oil separator according to the present invention, by using the decompressor module integrated with the oil separator, it is possible to easily bypass the lubricating oil circulating in the refrigeration cycle before the evaporator. Become. Thereby, the improvement of the heat exchange efficiency of the refrigerant | coolant and air in an evaporator and reduction of a refrigerant | coolant pressure loss can be achieved, and the improvement of a refrigerating capacity can be aimed at. As a result, the refrigerant discharge amount of the compressor can be reduced, the power of the compressor can be saved, and the efficiency improvement of the refrigeration cycle can be expected.

また、オイルセパレータと減圧器、更にはフィルタをモジュール化することで、冷凍サイクルを構成するときの締結部を減らすことができ、軽量化や低価格化も見込むことができる。   In addition, by modularizing the oil separator, the pressure reducer, and the filter, it is possible to reduce the number of fastening parts when configuring the refrigeration cycle, and to expect weight reduction and price reduction.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係るオイルセパレータ付き減圧器モジュールを備えた蒸気圧縮式冷凍サイクルを示している。図1に示す冷凍サイクル1は、圧縮機2と、圧縮機2で圧縮された高温高圧の冷媒を放熱させる放熱器3と、オイルセパレータ付き減圧器モジュール4と、オイルセパレータ付き減圧器モジュール4の減圧器で減圧された低圧の冷媒を蒸発させる蒸発器5と、冷媒の気液分離器6と、放熱器3からの冷媒と気液分離器6からの冷媒との間で熱交換させる内部熱交換器7とを備えている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a vapor compression refrigeration cycle provided with a decompressor module with an oil separator according to an embodiment of the present invention. The refrigeration cycle 1 shown in FIG. 1 includes a compressor 2, a radiator 3 that radiates high-temperature and high-pressure refrigerant compressed by the compressor 2, a decompressor module 4 with an oil separator, and a decompressor module 4 with an oil separator. The evaporator 5 that evaporates the low-pressure refrigerant decompressed by the decompressor, the gas-liquid separator 6 of the refrigerant, and the internal heat that exchanges heat between the refrigerant from the radiator 3 and the refrigerant from the gas-liquid separator 6. And an exchanger 7.

冷凍サイクル1を循環している潤滑油を含む冷媒の流れにおける、特にオイルセパレータ付き減圧器モジュール4への流入および流出経路を、図2および図3に示す例に基づいて説明する。この例においては、オイルセパレータ付き減圧器モジュール4への冷媒流入および流出経路は、内部熱交換器7から流出した潤滑油を含む冷媒が、図2の高圧側冷媒入口8から流入し、冷媒のみ高圧側冷媒出口9へ流出し、蒸発器5へと流出する。次に蒸発器5から流出する冷媒が、低圧側冷媒入口10から流入し、高圧側で分離された潤滑油とともに低圧側冷媒出口11から流出する。高圧側冷媒通路19と低圧側冷媒通路20とは、ブロック状のモジュール本体18内に形成されており、オイルセパレータ付き減圧器モジュール4全体が単一の部品として、取り扱い、装脱着できるようになっている。   The inflow and outflow paths to the decompressor module 4 with an oil separator in the flow of the refrigerant including the lubricating oil circulating in the refrigeration cycle 1 will be described based on the examples shown in FIGS. In this example, the refrigerant inflow and outflow paths to the decompressor module 4 with an oil separator are such that the refrigerant containing lubricating oil that has flowed out of the internal heat exchanger 7 flows from the high-pressure side refrigerant inlet 8 in FIG. It flows out to the high-pressure side refrigerant outlet 9 and flows out to the evaporator 5. Next, the refrigerant flowing out of the evaporator 5 flows in from the low pressure side refrigerant inlet 10 and flows out from the low pressure side refrigerant outlet 11 together with the lubricating oil separated on the high pressure side. The high-pressure side refrigerant passage 19 and the low-pressure side refrigerant passage 20 are formed in the block-shaped module main body 18 so that the entire decompressor module 4 with an oil separator can be handled, installed and detached as a single component. ing.

例えば、図4のモリエル線図にあるように、高圧側入口冷媒が液相状態で運転される冷凍サイクルについて説明する。オイルセパレータ付き減圧器モジュール4内の冷媒および潤滑油の経路については、先ず冷凍サイクル1内を循環してきた異物を保持するフィルタ15を通過し、次にオイルセパレータ12内に流入しオイルセパレータ12内を撹拌、旋回するように冷媒および潤滑油が流れる。このとき潤滑油のほうが冷媒よりも密度が大きいため、図2のオイルセパレータ12内を旋回流動する冷媒および潤滑油は遠心分離により密度の大きい潤滑油がオイルセパレータ12内の側面壁側に集合し、更に重力により底面付近に停滞する。一方、液冷媒はオイルセパレータ12内のパイプ内を通ってオイルセパレータ出口から流出し、減圧器13により減圧され二相状態となってオイルセパレータ付き減圧器モジュール4の高圧側冷媒出口9から流出する。減圧器13は、本実施例では可変減圧器に構成されており、減圧可動部16とバネ17により減圧度を調整可能となっている。すなわち、図2に示した例では、図4のモリエル線図におけるA点あるいはその近傍で潤滑油の分離を行っていることになる。   For example, as shown in the Mollier diagram of FIG. 4, a refrigeration cycle in which the high-pressure side inlet refrigerant is operated in a liquid phase will be described. The refrigerant and lubricating oil paths in the pressure reducer module 4 with an oil separator are first passed through a filter 15 that holds foreign matter circulated in the refrigeration cycle 1, and then flows into the oil separator 12 to enter the oil separator 12. The refrigerant and the lubricating oil flow so as to be swirled and swirled. At this time, since the density of the lubricating oil is higher than that of the refrigerant, the refrigerant and the lubricating oil swirling in the oil separator 12 in FIG. 2 are concentrated on the side wall side in the oil separator 12 by centrifugal separation. Furthermore, it stagnates near the bottom due to gravity. On the other hand, the liquid refrigerant flows out of the oil separator outlet through the pipe in the oil separator 12, is decompressed by the decompressor 13 to become a two-phase state, and flows out from the high-pressure side refrigerant outlet 9 of the decompressor module 4 with the oil separator. . The decompressor 13 is configured as a variable decompressor in the present embodiment, and the degree of decompression can be adjusted by the decompression movable portion 16 and the spring 17. That is, in the example shown in FIG. 2, the lubricating oil is separated at point A in the Mollier diagram of FIG. 4 or in the vicinity thereof.

オイルセパレータ12内の底面付近に停滞した潤滑油は、高圧側冷媒通路19から低圧側冷媒通路20へ潤滑油通路14を通って高低圧の差圧により搬出され、低圧側冷媒と共に低圧側冷媒出口11から流出する。したがって、この分離された潤滑油は、実質的に、図1に示したように蒸発器5をバイパスして気液分離器6、圧縮機2へと送られることになる。なお、上記潤滑油通路14は、高圧側冷媒が低圧側冷媒通路20に容易に流出できないように、かつ、潤滑油だけが高圧側冷媒通路19から低圧側冷媒通路20へと流出されやすいように、細孔形状となっている。また、潤滑油通路14から流出された潤滑油が低圧側冷媒入口10から蒸発器5へ流出(逆流)しないように、低圧側冷媒通路20は入口10から出口11に向かって水平方向に対して傾斜されている。   The lubricating oil stagnating near the bottom surface in the oil separator 12 is carried out from the high-pressure side refrigerant passage 19 to the low-pressure side refrigerant passage 20 through the lubricating oil passage 14 by high-low pressure differential pressure, and together with the low-pressure side refrigerant, the low-pressure side refrigerant outlet. 11 flows out. Therefore, the separated lubricating oil is substantially sent to the gas-liquid separator 6 and the compressor 2 by bypassing the evaporator 5 as shown in FIG. The lubricating oil passage 14 prevents the high-pressure side refrigerant from easily flowing out into the low-pressure side refrigerant passage 20 and allows only lubricating oil to easily flow out from the high-pressure side refrigerant passage 19 into the low-pressure side refrigerant passage 20. The pore shape. Further, the low pressure side refrigerant passage 20 is directed from the inlet 10 to the outlet 11 in the horizontal direction so that the lubricating oil flowing out from the lubricating oil passage 14 does not flow out (reverse flow) from the low pressure side refrigerant inlet 10 to the evaporator 5. It is inclined.

図5は、他の実施例を示しており、オイルセパレータの前に減圧器が配置されている例を示している。各部の符号は、図2で用いた符号と共通のものを使用している。冷媒と潤滑油の流れを説明すると、オイルセパレータ付き減圧器モジュール4の高圧側冷媒入口8から冷媒および潤滑油が流入し、減圧器13にて減圧された後、オイルセパレータ12内へ流入し、冷媒と潤滑油が分離される。分離された冷媒はオイルセパレータ12内のパイプ内を通ってオイルセパレータ出口から高圧側冷媒出口9へ流出し、他方、潤滑油はオイルセパレータ12内の底面付近に停滞し、高圧側冷媒通路19から低圧側冷媒通路20へ潤滑油通路14を通って流下し、低圧側冷媒と共に低圧側冷媒出口11から流出する。すなわち、図5に示した例では、図4のモリエル線図におけるB点あるいはその近傍で潤滑油の分離を行っていることになる。   FIG. 5 shows another embodiment, and shows an example in which a decompressor is arranged in front of the oil separator. The reference numerals of the respective parts are the same as those used in FIG. The flow of the refrigerant and the lubricating oil will be described. The refrigerant and the lubricating oil flow in from the high-pressure side refrigerant inlet 8 of the decompressor module 4 with the oil separator, and after being decompressed by the decompressor 13, flow into the oil separator 12. Refrigerant and lubricating oil are separated. The separated refrigerant flows through the pipe in the oil separator 12 and flows out from the oil separator outlet to the high-pressure side refrigerant outlet 9, while the lubricating oil stagnates near the bottom surface in the oil separator 12 and passes through the high-pressure side refrigerant passage 19. It flows down to the low-pressure side refrigerant passage 20 through the lubricating oil passage 14 and flows out from the low-pressure side refrigerant outlet 11 together with the low-pressure side refrigerant. That is, in the example shown in FIG. 5, the lubricating oil is separated at or near point B in the Mollier diagram of FIG.

上記減圧器13は、冷凍サイクル状態に関する情報に基づいて減圧度合が決定される機構を有することが好ましい。冷凍サイクル状態とは、例えば減圧器の入口と出口の冷媒圧力差である。図2における減圧器13は、減圧可動部16が減圧器13の入口冷媒圧力とバネ17の押し力の釣り合いにより可動することで、冷媒流路断面積が変化し、減圧度合を調節する機構を有する。   The decompressor 13 preferably has a mechanism for determining the degree of decompression based on information related to the refrigeration cycle state. The refrigeration cycle state is, for example, the refrigerant pressure difference between the inlet and outlet of the decompressor. The decompressor 13 in FIG. 2 has a mechanism for adjusting the degree of decompression by changing the refrigerant flow path cross-sectional area by moving the decompression movable part 16 by the balance between the inlet refrigerant pressure of the decompressor 13 and the pressing force of the spring 17. Have.

ここで、減圧器の減圧度合調節機構は冷凍サイクルの冷媒圧力、冷媒温度等から、減圧度合を一義的に決定するものでもよい。また、減圧度合調節機構にソレノイドバルブを付加し、冷凍サイクルに設けた冷媒圧力、冷媒温度、蒸発器出口空気温度等による情報に基づいて減圧度合が決定されるものでもよい。   Here, the decompression degree adjusting mechanism of the decompressor may uniquely determine the decompression degree from the refrigerant pressure, the refrigerant temperature, or the like of the refrigeration cycle. Further, a solenoid valve may be added to the depressurization degree adjusting mechanism, and the depressurization degree may be determined based on information based on refrigerant pressure, refrigerant temperature, evaporator outlet air temperature, etc. provided in the refrigeration cycle.

また、オイルセパレータ付き減圧器モジュール4の本体部分は、高圧側冷媒の通路を形成するための高圧側冷媒入口部と、高圧側冷媒出口部と、低圧側冷媒の通路を形成するための低圧側冷媒入口部と、低圧側冷媒出口部とを一つの構造体に配置することで、これに繋がれる配管の接続を容易にすることが可能である。   Further, the main body portion of the decompressor module 4 with an oil separator includes a high pressure side refrigerant inlet portion for forming a high pressure side refrigerant passage, a high pressure side refrigerant outlet portion, and a low pressure side for forming a low pressure side refrigerant passage. By arranging the refrigerant inlet part and the low-pressure side refrigerant outlet part in one structure, it is possible to easily connect the pipes connected thereto.

本発明に係るオイルセパレータ付き減圧器モジュールは、冷媒を圧縮膨張させる蒸気圧縮式の冷凍サイクル、特に自然系冷媒である二酸化炭素を冷媒として使用する冷凍サイクルに好適なものであり、車両用空調装置の冷凍サイクルに用いて好適なものである。   The decompressor module with an oil separator according to the present invention is suitable for a vapor compression refrigeration cycle that compresses and expands a refrigerant, particularly a refrigeration cycle that uses carbon dioxide, which is a natural refrigerant, as a refrigerant. It is suitable for use in the refrigeration cycle.

本発明の一実施態様に係るオイルセパレータ付き減圧器モジュールを備えた蒸気圧縮式冷凍サイクルの機器系統図である。It is an equipment distribution diagram of a vapor compression refrigeration cycle provided with a decompressor module with an oil separator concerning one embodiment of the present invention. 図1の冷凍サイクルに使用されるオイルセパレータ付き減圧器モジュールの構造例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structural example of the decompressor module with an oil separator used for the refrigerating cycle of FIG. 図2のA−A線に沿うオイルセパレータ付き減圧器モジュールの横断面図である。It is a cross-sectional view of the pressure-reducer module with an oil separator which follows the AA line of FIG. 図1の冷凍サイクルのモリエル線図である。FIG. 2 is a Mollier diagram of the refrigeration cycle of FIG. 1. 図1の冷凍サイクルに使用されるオイルセパレータ付き減圧器モジュールの別の構造例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another structural example of the decompressor module with an oil separator used for the refrigerating cycle of FIG. 従来の蒸気圧縮式冷凍サイクルの機器系統図である。It is an equipment distribution diagram of a conventional vapor compression refrigeration cycle.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱器
4 オイルセパレータ付き減圧器モジュール
5 蒸発器
6 気液分離器
7 内部熱交換器
8 高圧側冷媒入口
9 高圧側冷媒出口
10 低圧側冷媒入口
11 低圧側冷媒出口
12 オイルセパレータ
13 減圧器
14 潤滑油通路
15 フィルタ
16 減圧可動部
17 バネ
18 モジュール本体
19 高圧側冷媒通路
20 低圧側冷媒通路
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Pressure reducer module with oil separator 5 Evaporator 6 Gas-liquid separator 7 Internal heat exchanger 8 High pressure side refrigerant inlet 9 High pressure side refrigerant outlet 10 Low pressure side refrigerant inlet 11 Low pressure side refrigerant outlet 12 Oil separator 13 Pressure reducing device 14 Lubricating oil passage 15 Filter 16 Pressure reducing movable portion 17 Spring 18 Module body 19 High pressure side refrigerant passage 20 Low pressure side refrigerant passage

Claims (7)

減圧した冷媒を蒸発させて吸熱し、その蒸発した冷媒を圧縮機にて吸入圧縮する蒸気圧縮式冷凍サイクルに適用され、前記圧縮機にて圧縮された後、冷却された高圧側冷媒を減圧する減圧器に、前記圧縮機の潤滑油と冷媒を分離するオイルセパレータを一体化し、減圧すべき高圧側冷媒の通路と、前記高圧側冷媒の通路から流出し蒸発器を通過した後の低圧側冷媒の通路とを備え、高圧側冷媒の通路に前記オイルセパレータと減圧器を有し、かつ、該オイルセパレータで分離された潤滑油を前記高圧側冷媒の通路の下方に設けられた低圧側冷媒の通路に導く潤滑油通路を備えたことを特徴とするオイルセパレータ付き減圧器モジュール。 This is applied to a vapor compression refrigeration cycle in which the decompressed refrigerant is evaporated to absorb heat, and the evaporated refrigerant is sucked and compressed by a compressor. After being compressed by the compressor, the cooled high-pressure refrigerant is decompressed. An oil separator for separating the lubricating oil and refrigerant of the compressor is integrated with the decompressor, and the low-pressure refrigerant after flowing out of the high-pressure refrigerant passage and the high-pressure refrigerant passage after passing through the evaporator Of the low pressure side refrigerant provided in the passage of the high pressure side refrigerant, the oil separator and the pressure reducer, and the lubricating oil separated by the oil separator provided below the passage of the high pressure side refrigerant. A decompressor module with an oil separator, comprising a lubricating oil passage leading to the passage . 更に、前記潤滑油通路によりオイルセパレータから低圧側冷媒の通路に導かれた潤滑油が、低圧側冷媒の通路の出口側へ流れるように、低圧側冷媒の通路が水平方向に対して、その出口側が下になるように傾斜していることを特徴とする、請求項に記載のオイルセパレータ付き減圧器モジュール。 Furthermore, the low-pressure side refrigerant passage is at its outlet in the horizontal direction so that the lubricating oil guided from the oil separator to the low-pressure side refrigerant passage by the lubricating oil passage flows to the outlet side of the low-pressure side refrigerant passage. 2. The decompressor module with an oil separator according to claim 1 , wherein the decompressor module is inclined so that the side faces downward. 更に、高圧側冷媒の通路の入口から出口の間に、異物が通過することを防止するためのフィルタを備えたことを特徴とする、請求項1または2に記載のオイルセパレータ付き減圧器モジュール。 Furthermore, between the outlet from the inlet of the passage of the high-pressure side refrigerant, foreign matter characterized by comprising a filter for preventing the passing pressure reducer module with oil separator according to claim 1 or 2. 前記減圧器が冷凍サイクル状態に関する情報に基づいて減圧度合が決定される機構を有することを特徴とする、請求項1〜のいずれかに記載のオイルセパレータ付き減圧器モジュール。 The decompressor module with an oil separator according to any one of claims 1 to 3 , wherein the decompressor has a mechanism in which a degree of decompression is determined based on information on a refrigeration cycle state. 高圧側冷媒の通路を形成するための高圧側冷媒入口部と、高圧側冷媒出口部と、低圧側冷媒の通路を形成するための低圧側冷媒入口部と、低圧側冷媒出口部とが、一つのブロック構造体内に形成されていることを特徴とする、請求項1〜のいずれかに記載のオイルセパレータ付き減圧器モジュール。 A high-pressure side refrigerant inlet part for forming a high-pressure side refrigerant passage, a high-pressure side refrigerant outlet part, a low-pressure side refrigerant inlet part for forming a low-pressure side refrigerant path, and a low-pressure side refrigerant outlet part The decompressor module with an oil separator according to any one of claims 1 to 4 , wherein the decompressor module is formed in one block structure. 前記冷媒が二酸化炭素からなる、請求項1〜のいずれかに記載のオイルセパレータ付き減圧器モジュール。 The decompressor module with an oil separator according to any one of claims 1 to 5 , wherein the refrigerant is made of carbon dioxide. 前記蒸気圧縮式冷凍サイクルが車両用空調装置の冷凍サイクルからなる、請求項1〜のいずれかに記載のオイルセパレータ付き減圧器モジュール。 The decompressor module with an oil separator according to any one of claims 1 to 6 , wherein the vapor compression refrigeration cycle includes a refrigeration cycle of a vehicle air conditioner.
JP2005372735A 2005-12-26 2005-12-26 Pressure reducer module with oil separator Expired - Fee Related JP4694365B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005372735A JP4694365B2 (en) 2005-12-26 2005-12-26 Pressure reducer module with oil separator
EP06126919A EP1801521A3 (en) 2005-12-26 2006-12-21 Pressure reduce module with oil seperator
US11/615,247 US20070144206A1 (en) 2005-12-26 2006-12-22 Pressure reducer module with oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372735A JP4694365B2 (en) 2005-12-26 2005-12-26 Pressure reducer module with oil separator

Publications (2)

Publication Number Publication Date
JP2007170783A JP2007170783A (en) 2007-07-05
JP4694365B2 true JP4694365B2 (en) 2011-06-08

Family

ID=37891789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372735A Expired - Fee Related JP4694365B2 (en) 2005-12-26 2005-12-26 Pressure reducer module with oil separator

Country Status (3)

Country Link
US (1) US20070144206A1 (en)
EP (1) EP1801521A3 (en)
JP (1) JP4694365B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008047447B4 (en) 2007-09-19 2019-03-14 Denso Corporation Oil separator and refrigerant compressor with this
US9989280B2 (en) * 2008-05-02 2018-06-05 Heatcraft Refrigeration Products Llc Cascade cooling system with intercycle cooling or additional vapor condensation cycle
JP5083106B2 (en) * 2008-08-05 2012-11-28 株式会社デンソー Expansion valve and vapor compression refrigeration cycle provided with the same
DE102016107194A1 (en) * 2016-04-19 2017-10-19 OET GmbH Separator device for separating a fluid, in particular a lubricant from a coolant fluid
CN109373645B (en) * 2018-10-31 2020-12-01 上海爱斯达克汽车空调系统有限公司 Air-supplementing enthalpy-increasing heat pump system with throttling multi-port expansion valve, vehicle and method
KR102548358B1 (en) * 2020-09-07 2023-06-28 한온시스템 주식회사 Vapor injection module and heat pump system using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122473A (en) * 1989-10-05 1991-05-24 Toyota Autom Loom Works Ltd Vaporizing pressure regulating valve for freezing device
JPH0571670A (en) * 1991-09-12 1993-03-23 Nippondenso Co Ltd Expansion valve
JPH07332806A (en) * 1994-04-12 1995-12-22 Nippondenso Co Ltd Refrigerator
JPH109719A (en) * 1996-06-18 1998-01-16 Nippon Soken Inc Pressure reducing device for freezing cycle
JP2001355955A (en) * 2001-05-11 2001-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2003240366A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Refrigerating air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341086A (en) * 1980-10-06 1982-07-27 Clarion Co., Ltd. Refrigeration system
EP0837291B1 (en) * 1996-08-22 2005-01-12 Denso Corporation Vapor compression type refrigerating system
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
KR20030081454A (en) * 2001-02-21 2003-10-17 마츠시타 덴끼 산교 가부시키가이샤 Refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122473A (en) * 1989-10-05 1991-05-24 Toyota Autom Loom Works Ltd Vaporizing pressure regulating valve for freezing device
JPH0571670A (en) * 1991-09-12 1993-03-23 Nippondenso Co Ltd Expansion valve
JPH07332806A (en) * 1994-04-12 1995-12-22 Nippondenso Co Ltd Refrigerator
JPH109719A (en) * 1996-06-18 1998-01-16 Nippon Soken Inc Pressure reducing device for freezing cycle
JP2001355955A (en) * 2001-05-11 2001-12-26 Matsushita Refrig Co Ltd Refrigerator
JP2003240366A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Refrigerating air conditioner

Also Published As

Publication number Publication date
EP1801521A3 (en) 2008-02-13
US20070144206A1 (en) 2007-06-28
EP1801521A2 (en) 2007-06-27
JP2007170783A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4897298B2 (en) Gas-liquid separator module
US7320228B2 (en) Refrigerant cycle apparatus
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
JP2007162988A (en) Vapor compression refrigerating cycle
EP1628088A2 (en) Refrigerant cycle apparatus
JP4694365B2 (en) Pressure reducer module with oil separator
AU749518B2 (en) Refrigerating device
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
JP2007155229A (en) Vapor compression type refrigerating cycle
JP2007315687A (en) Refrigerating cycle
JP5049889B2 (en) Refrigeration equipment
JP2016056966A (en) Turbo refrigerator
JP2008249209A (en) Refrigerating device
CN113124581B (en) Turbo refrigerator
JPH1019421A (en) Refrigerating cycle and accumulator used for the cycle
WO2013146415A1 (en) Heat pump-type heating device
JP2008275211A (en) Vapor compression-type refrigerating cycle
EP2787314A1 (en) Double-pipe heat exchanger and air conditioner using same
JP2009300021A (en) Refrigerating cycle device
WO2019142919A1 (en) Cyclone refrigeration device, cyclone coolness/heat recovery unit, and heat pump system provided with said cyclone refrigeration device or cyclone coolness/heat recovery unit
JP4897464B2 (en) Vapor compression refrigeration cycle
JP2011149636A (en) Air conditioner
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP2009228972A (en) Refrigerating device
JP6149485B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees