JP2008275211A - Vapor compression-type refrigerating cycle - Google Patents

Vapor compression-type refrigerating cycle Download PDF

Info

Publication number
JP2008275211A
JP2008275211A JP2007116976A JP2007116976A JP2008275211A JP 2008275211 A JP2008275211 A JP 2008275211A JP 2007116976 A JP2007116976 A JP 2007116976A JP 2007116976 A JP2007116976 A JP 2007116976A JP 2008275211 A JP2008275211 A JP 2008275211A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
liquid separator
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116976A
Other languages
Japanese (ja)
Inventor
Masato Tsuboi
政人 坪井
Yuichi Matsumoto
雄一 松元
Satoshi Kaneko
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2007116976A priority Critical patent/JP2008275211A/en
Publication of JP2008275211A publication Critical patent/JP2008275211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression type refrigerating cycle capable of reducing a flowing-in ratio of a gas-liquid two-phase refrigerant to a refrigerant outflow tube of a gas-liquid separator, and improving stability in dryness of the refrigerant at a gas-liquid separator outlet. <P>SOLUTION: In this refrigerating cycle comprising a compressor, a radiator, a pressure reducer, an evaporator and the gas-liquid separator for separating the refrigerant flowing out from the evaporator into a gas-phase refrigerant and a liquid-phase refrigerant, and allowing the separated gas-phase refrigerant to flow out to a suction side of the compressor, a refrigerant inflow passage for allowing the refrigerant to flow into the gas-liquid separator is formed into the curved shape so that the refrigerant can be centrifugally separated into the gas-phase refrigerant and the liquid-phase refrigerant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二酸化炭素冷媒の使用に好適な蒸気圧縮式冷凍サイクルに関し、特に車両用空調装置における蒸気圧縮式冷凍サイクルに用いて好適な気液分離器の構造に関する。   The present invention relates to a vapor compression refrigeration cycle suitable for use with a carbon dioxide refrigerant, and more particularly to a structure of a gas-liquid separator suitable for use in a vapor compression refrigeration cycle in a vehicle air conditioner.

環境問題への配慮の側面から、車両用空調装置においても代替冷媒として二酸化炭素冷媒が提案されている(例えば、特許文献1)。二酸化炭素冷媒は無毒、不燃性であるが、臨界温度が低く(約31℃)、サイクルの高圧側圧力が超臨界状態(約7.4MPa以上)になる遷臨界サイクル(超臨界冷凍サイクル)となる。一般的に、フロンを使用したものと比較して冷凍成績係数(COP:Coefficient of Performance)が悪いため、これを向上させることが求められている。   From the viewpoint of consideration of environmental problems, carbon dioxide refrigerant has been proposed as an alternative refrigerant in vehicle air conditioners (for example, Patent Document 1). Carbon dioxide refrigerant is non-toxic and non-flammable, but has a low critical temperature (about 31 ° C) and a transcritical cycle (supercritical refrigeration cycle) in which the high pressure side of the cycle becomes supercritical (about 7.4 MPa or higher) . Generally, since the coefficient of performance (COP: Coefficient of Performance) is poor compared to those using chlorofluorocarbon, it is required to improve this.

その一つの手法として、サイクル内に配置した内部熱交換器を用いて放熱器出口側の高圧側冷媒と蒸発器出口側の低圧側冷媒との間で熱交換する方法がある。これにより、高圧側冷媒温度を低減することができ、蒸発器入口側のエンタルピーを低減し、蒸発器における入口側と出口側との間のエンタルピー差を増大させることで、冷凍成績係数の向上を実現している。   As one of the methods, there is a method of exchanging heat between the high-pressure side refrigerant on the radiator outlet side and the low-pressure side refrigerant on the evaporator outlet side using an internal heat exchanger arranged in the cycle. As a result, the refrigerant temperature on the high-pressure side can be reduced, the enthalpy on the inlet side of the evaporator is reduced, and the enthalpy difference between the inlet side and the outlet side in the evaporator is increased, thereby improving the refrigeration coefficient of performance. Realized.

さらに、内部熱交換器の低圧側の前に気液分離器を設置し、外部環境変化による必要冷媒量変動に対応できるようにした構成も知られている。気液分離器はサイクル内冷媒を出し入れする液溜めタンクであり、気相冷媒と液相冷媒とを分離する機能を有する。この気液分離器内において、分離された気相冷媒の流出管の入口を液相冷媒界面(液面)よりも上方に配置することで、気液冷媒を分離して気相冷媒を冷媒流出管より流出させるようにしている。
特公平7−18602号公報
Furthermore, a configuration is also known in which a gas-liquid separator is installed in front of the low pressure side of the internal heat exchanger so that it can cope with fluctuations in the required refrigerant amount due to external environment changes. The gas-liquid separator is a liquid storage tank for taking in and out the refrigerant in the cycle, and has a function of separating the gas-phase refrigerant and the liquid-phase refrigerant. In this gas-liquid separator, the gas-liquid refrigerant is separated and the gas-phase refrigerant flows out of the refrigerant by disposing the inlet of the separated gas-phase refrigerant outlet pipe above the liquid-phase refrigerant interface (liquid surface). It is made to flow out of the pipe.
Japanese Patent Publication No. 7-18602

しかしながら、環境負荷変動時においては蒸気圧縮式冷凍サイクル内における必要冷媒量が増減するため、気液分離器内に貯留される液相冷媒量も増減する。気液分離器への冷媒流入管より気液分離器内部へ流入する気液二相冷媒の層は、気液分離器内に貯留される液相冷媒の液面が上昇すると冷媒流出管の入口近くに形成されることになる。冷媒密度の関係からは、液相冷媒液面の上部には気液二相冷媒層が形成され、最上部に気相冷媒層が形成される。この気液二相冷媒層の範囲内に冷媒流出管の入口が位置していると、気液二相冷媒が冷媒流出管内へと流入してしまい、気液分離器出口における冷媒の乾き度の安定性が低減するという問題がある。この部位で冷媒の乾き度が変化すると、冷凍成績係数の向上が困難となる。   However, when the environmental load fluctuates, the required amount of refrigerant in the vapor compression refrigeration cycle increases and decreases, so the amount of liquid phase refrigerant stored in the gas-liquid separator also increases and decreases. The gas-liquid two-phase refrigerant layer flowing into the gas-liquid separator from the refrigerant inflow pipe to the gas-liquid separator has an inlet of the refrigerant outflow pipe when the liquid level of the liquid-phase refrigerant stored in the gas-liquid separator rises. It will be formed nearby. From the relationship of the refrigerant density, a gas-liquid two-phase refrigerant layer is formed on the upper part of the liquid-phase refrigerant liquid surface, and a gas-phase refrigerant layer is formed on the uppermost part. If the inlet of the refrigerant outflow pipe is located within the range of the gas-liquid two-phase refrigerant layer, the gas-liquid two-phase refrigerant flows into the refrigerant outflow pipe, and the dryness of the refrigerant at the gas-liquid separator outlet is determined. There is a problem that stability is reduced. If the dryness of the refrigerant changes at this site, it is difficult to improve the refrigeration performance coefficient.

そこで本発明の課題は、上記問題点を解決するために、環境負荷変動時においても気液分離器の冷媒流出管へ気液二相冷媒の流入する割合を低減し、気液分離器出口における冷媒の乾き度の安定性を向上した蒸気圧縮式冷凍サイクルを提供することにある。   Accordingly, an object of the present invention is to reduce the ratio of the gas-liquid two-phase refrigerant flowing into the refrigerant outflow pipe of the gas-liquid separator even when the environmental load fluctuates in order to solve the above problems, and at the gas-liquid separator outlet An object of the present invention is to provide a vapor compression refrigeration cycle in which the stability of the dryness of the refrigerant is improved.

上記課題を解決するために、本発明に係る蒸気圧縮式冷凍サイクルは、冷媒を吸入圧縮する圧縮機と、該圧縮機により圧縮された冷媒を放熱する放熱器と、該放熱器により放熱された冷媒を減圧する減圧機と、該減圧機により減圧された冷媒を蒸発させる蒸発器と、該蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し分離された気相冷媒を前記圧縮機の吸入側へ流出させる気液分離器とを備えた蒸気圧縮式冷凍サイクルにおいて、前記気液分離器の内部に冷媒を流入させる冷媒流入通路を、内部で冷媒を気相冷媒と液相冷媒とに遠心分離可能な湾曲形状に形成したことを特徴とするものからなる。つまり、冷媒流入通路を形成する冷媒流入管または冷媒流入通路形成体を、湾曲管形状に形成したものである。   In order to solve the above problems, a vapor compression refrigeration cycle according to the present invention includes a compressor that sucks and compresses refrigerant, a radiator that dissipates the refrigerant compressed by the compressor, and heat that is dissipated by the radiator. A decompressor for decompressing the refrigerant, an evaporator for evaporating the refrigerant decompressed by the decompressor, and separating the separated refrigerant into a vapor phase liquid and a liquid phase refrigerant and separating the separated vapor phase refrigerant In a vapor compression refrigeration cycle provided with a gas-liquid separator that flows out to the suction side of the compressor, a refrigerant inflow passage through which the refrigerant flows into the gas-liquid separator, and the refrigerant inside the gas-phase refrigerant and the liquid phase It consists of what was formed in the curved shape which can be separated into a refrigerant | coolant. That is, the refrigerant inflow pipe or the refrigerant inflow passage forming body that forms the refrigerant inflow passage is formed in a curved pipe shape.

このような蒸気圧縮式冷凍サイクルにおいては、蒸発器側から流入される冷媒は、湾曲形状に形成された冷媒流入通路内を通して気液分離器内に流入されるが、該冷媒流入通路内を通過する際に、気相冷媒と液相冷媒とに遠心分離される。より詳しくは、流入されてくる気液二相冷媒の密度差を利用し、湾曲通路構造により冷媒に作用する遠心力により(遠心力に基づく慣性力の差により)、密度の大きい液相冷媒は冷媒流入通路内でより内壁面側に、密度の小さい気相冷媒は冷媒流入通路内でより通路中央部側を通過することになるので、冷媒流入通路内にて気液分離作用が助長される。この冷媒流入通路内を流れた冷媒が、気液分離器の本体内に流入し、気液分離器本来の機能である気液分離作用が働く。したがって、気液分離器全体としての気液分離機能が大幅に高められ、気液二相冷媒の気液分離器からの流出、とくに液相冷媒の流出が抑えられて、気液分離器出口における冷媒の乾き度を安定化することが可能になる。   In such a vapor compression refrigeration cycle, the refrigerant flowing from the evaporator side flows into the gas-liquid separator through the refrigerant inflow passage formed in a curved shape, but passes through the refrigerant inflow passage. In doing so, it is centrifuged into a gas phase refrigerant and a liquid phase refrigerant. More specifically, by utilizing the difference in density of the gas-liquid two-phase refrigerant that flows in, due to the centrifugal force acting on the refrigerant by the curved passage structure (due to the difference in inertial force based on the centrifugal force), The gas-phase refrigerant having a low density passes through the central portion of the refrigerant in the refrigerant inflow passage more toward the inner wall surface side in the refrigerant inflow passage, so that the gas-liquid separation action is promoted in the refrigerant inflow passage. . The refrigerant that has flowed through the refrigerant inflow passage flows into the main body of the gas-liquid separator, and the gas-liquid separation action, which is the original function of the gas-liquid separator, works. Therefore, the gas-liquid separation function as a whole of the gas-liquid separator is greatly enhanced, and the outflow of the gas-liquid two-phase refrigerant from the gas-liquid separator, in particular, the outflow of the liquid-phase refrigerant is suppressed. It becomes possible to stabilize the dryness of the refrigerant.

この本発明に係る蒸気圧縮式冷凍サイクルにおいては、上記冷媒流入通路が、その入口から出口にいくにしたがって通路断面積が大きくなるように形成されている構造とすることができる。このように構成すれば、上記遠心分離作用に加えて、拡管効果により、気液二相冷媒の密度差に基づく慣性力の差により、密度の大きい液相冷媒と密度の小さい気相冷媒との間に通路内速度差を持たせることができ、気液分離作用をさらに助長することが可能になる。したがって、冷媒流入通路内にて一層効率のよい気液分離が行われ、気液分離器全体としての気液分離機能が一層大幅に高められる。   In the vapor compression refrigeration cycle according to the present invention, the refrigerant inflow passage may be formed to have a passage cross-sectional area that increases from the inlet to the outlet. If comprised in this way, in addition to the said centrifugal separation effect | action, by a pipe expansion effect, the difference of the inertia force based on the density difference of a gas-liquid two-phase refrigerant | coolant WHEREIN: A high-density liquid phase refrigerant | coolant and a low-density gaseous-phase refrigerant | coolant are A difference in speed in the passage can be provided between them, and the gas-liquid separation action can be further promoted. Therefore, more efficient gas-liquid separation is performed in the refrigerant inflow passage, and the gas-liquid separation function of the entire gas-liquid separator is further greatly enhanced.

上記冷媒流入通路の湾曲形状としては、例えば、その入口から出口に向かってインボリュート形状またはそれに近い形状である疑似インボリュート形状で延びるように形成することができる。ただし、この形状に限定されず、単なる円弧形状からなる湾曲形状を採用することも可能である。   The curved shape of the refrigerant inflow passage can be formed, for example, so as to extend in an involute shape or a pseudo involute shape that is close to the involute shape from the inlet to the outlet. However, it is not limited to this shape, and it is also possible to adopt a curved shape consisting of a simple arc shape.

また、上記冷媒流入通路の出口は、気液分離器の容器の内周面の周方向に沿う方向に向けて開口されていることが好ましい。このように構成すれば、冷媒流入通路の出口から気液分離器本体内に流入した冷媒は、引き続いて容器の内周面に沿って周方向に流れることができ、それによって遠心分離作用を受けてさらに気液分離機能が高められる。   Moreover, it is preferable that the exit of the said refrigerant | coolant inflow passage is opened toward the direction along the circumferential direction of the internal peripheral surface of the container of a gas-liquid separator. With this configuration, the refrigerant that has flowed into the gas-liquid separator main body from the outlet of the refrigerant inflow passage can subsequently flow in the circumferential direction along the inner peripheral surface of the container, thereby receiving a centrifugal separation action. This further enhances the gas-liquid separation function.

上記気液分離器の内部には、冷媒の気液二相流に対する衝突分離板が設けられていることが好ましい。衝突分離板を設けることにより、気液分離器内の気液二相冷媒中の液相冷媒をこの衝突分離板に衝突させて気相冷媒と分離し、分離された気相冷媒を効率よく気液分離器から流出させることが可能になる。つまり、気液分離器本体内における気液分離性能の向上を併せてはかることが可能になる。とくに、比較的液相冷媒を多く含んだ気液二相冷媒層が形成される低負荷時においては、比重の大きな液相冷媒を衝突分離板に衝突させることにより、効率よく気相冷媒と分離することが可能になる。   It is preferable that a collision separation plate for a gas-liquid two-phase flow of the refrigerant is provided inside the gas-liquid separator. By providing the collision separation plate, the liquid-phase refrigerant in the gas-liquid two-phase refrigerant in the gas-liquid separator collides with the collision separation plate to separate it from the gas-phase refrigerant, and the separated gas-phase refrigerant is efficiently removed. It becomes possible to flow out of the liquid separator. That is, it becomes possible to improve the gas-liquid separation performance in the gas-liquid separator body. In particular, at low loads where a gas-liquid two-phase refrigerant layer containing a relatively large amount of liquid phase refrigerant is formed, it is possible to efficiently separate the gas phase refrigerant from the gas phase refrigerant by colliding the liquid phase refrigerant having a large specific gravity with the collision separation plate. It becomes possible to do.

この衝突分離板は、上記気液分離器内から上記分離された気相冷媒を流出させる冷媒流出管の気液分離器内における入口部よりも低い位置に配置されていることが好ましい。この配置により、上記の如く衝突分離板によって分離された後の気相冷媒がより効率よく気液分離器から流出されることになる。   The collision separation plate is preferably disposed at a position lower than the inlet portion in the gas-liquid separator of the refrigerant outflow pipe through which the separated gas-phase refrigerant flows out from the gas-liquid separator. With this arrangement, the gas-phase refrigerant after being separated by the collision separation plate as described above flows out of the gas-liquid separator more efficiently.

また、上記衝突分離板には複数の孔が設けられていることが好ましい。この構成により、気液二相冷媒中の液相冷媒を効率よく衝突分離板に衝突させ、かつ、液相冷媒から分離された気相冷媒を複数の孔を通過させて効率よく気液分離器から流出させることが可能になる。   Moreover, it is preferable that the collision separating plate is provided with a plurality of holes. With this configuration, the gas-liquid separator in the gas-liquid two-phase refrigerant efficiently collides with the collision separation plate, and the gas-phase refrigerant separated from the liquid-phase refrigerant passes through the plurality of holes to efficiently perform the gas-liquid separator. It is possible to drain from.

また、上記衝突分離板に設けられた孔の総断面積は、上記冷媒流入通路の断面積または上記気液分離器内から上記分離された気相冷媒を流出させる冷媒流出管の断面積のいずれよりも大きく設定されていることが好ましい。このような構成により、冷媒が衝突分離板の孔を通過する際の圧力損失を相対的に低く抑えておくことが可能になり、気液分離器全体としての圧力損失を低く抑えることが可能になる。   In addition, the total cross-sectional area of the holes provided in the collision separation plate is either the cross-sectional area of the refrigerant inflow passage or the cross-sectional area of the refrigerant outflow pipe through which the separated gas-phase refrigerant flows out from the gas-liquid separator. It is preferable that it is set larger. With such a configuration, it is possible to keep the pressure loss when the refrigerant passes through the hole of the collision separation plate relatively low, and it is possible to keep the pressure loss of the gas-liquid separator as a whole low. Become.

また、上記衝突分離板は、上記気液分離器内に貯留される液相冷媒の液面よりも高い位置に配置されていることが好ましい。貯留される液相冷媒の液面は、負荷等に応じて変動するが、最も高い液面の位置よりも高い位置に配置されていることが好ましい。この構成により、衝突分離板の下方に形成された気液二相冷媒層に対して、衝突分離板により確実に気液分離機能を持たせることができる。   Moreover, it is preferable that the said collision separation board is arrange | positioned in the position higher than the liquid level of the liquid phase refrigerant | coolant stored in the said gas-liquid separator. The liquid level of the stored liquid-phase refrigerant varies depending on the load or the like, but is preferably disposed at a position higher than the highest liquid level position. With this configuration, the gas-liquid two-phase refrigerant layer formed below the collision separation plate can surely have a gas-liquid separation function by the collision separation plate.

また、上記衝突分離板は、気液分離器内における上記冷媒流入通路を形成する配管や気液分離器内から上記分離された気相冷媒を流出させる冷媒流出管を保持している構造とすることができる。例えば、衝突分離板と冷媒流入管や冷媒流出管をろう付けや溶接等により一体化する構造を採用できる。このような構成においては、配管と気液分離器本体との組み付け強度を、衝突分離板を介して増大させることが可能になり、気液分離器全体として信頼性が向上する。   The collision separator plate has a structure that holds a pipe that forms the refrigerant inflow passage in the gas-liquid separator and a refrigerant outflow pipe that allows the separated gas-phase refrigerant to flow out from the gas-liquid separator. be able to. For example, a structure in which the collision separation plate and the refrigerant inflow pipe or the refrigerant outflow pipe are integrated by brazing, welding, or the like can be adopted. In such a configuration, the assembly strength between the pipe and the gas-liquid separator main body can be increased via the collision separator plate, and the reliability of the gas-liquid separator as a whole is improved.

本発明に係る蒸気圧縮式冷凍サイクルは、さらに、上記放熱器により放熱された冷媒と上記気液分離器から流出される冷媒との間で熱交換を行う内部熱交換器を備えている構成とすることができる。サイクル内に内部熱交換器を配置することにより、サイクル内の高圧側冷媒と蒸発器出口側の低圧側冷媒との間の熱交換により、高圧側冷媒温度を低減することができ、蒸発器入口側のエンタルピーを低減し、蒸発器における入口側と出口側との間のエンタルピー差を増大させることで、冷凍成績係数の向上をはかることが可能になる。   The vapor compression refrigeration cycle according to the present invention further includes an internal heat exchanger that exchanges heat between the refrigerant radiated by the radiator and the refrigerant flowing out of the gas-liquid separator; can do. By arranging an internal heat exchanger in the cycle, the high-pressure side refrigerant temperature can be reduced by heat exchange between the high-pressure side refrigerant in the cycle and the low-pressure side refrigerant on the evaporator outlet side. The refrigeration coefficient of performance can be improved by reducing the enthalpy on the side and increasing the enthalpy difference between the inlet side and the outlet side in the evaporator.

本発明に係る蒸気圧縮式冷凍サイクルは、とくに使用冷媒が二酸化炭素である場合に好適なものである。さらに、本発明に係る蒸気圧縮式冷凍サイクルは、とくに、冷凍成績係数の向上の要求が強い車両用空調装置に用いられる冷凍サイクルとして好適なものである。   The vapor compression refrigeration cycle according to the present invention is particularly suitable when the refrigerant used is carbon dioxide. Furthermore, the vapor compression refrigeration cycle according to the present invention is particularly suitable as a refrigeration cycle used in a vehicle air conditioner that is strongly demanded to improve the refrigeration performance coefficient.

本発明に係る蒸気圧縮式冷凍サイクルによれば、気液分離器の冷媒流入通路を湾曲形状とし、その内部で遠心分離作用を働かせて気液分離を行わせ、さらに気液分離器本体内で気液分離を行わせることにより、気液分離器全体としての気液分離機能を大幅に高めることができ、冷媒が気液二相状態にて気液分離器から流出することを抑えることができ、気液分離器出口における冷媒の乾き度を安定化させて、サイクルの冷凍成績係数の向上をはかることができる。冷媒流入通路の断面積変化構成や湾曲形状、冷媒流入通路の出口開口方向を最適化すれば、一層気液分離機能を高めることが可能になり、サイクルの冷凍成績係数の一層の向上をはかることができる。   According to the vapor compression refrigeration cycle according to the present invention, the refrigerant inflow passage of the gas-liquid separator is formed into a curved shape, and the gas-liquid separation is performed by operating the centrifugal separation inside thereof, and further within the gas-liquid separator main body. By performing gas-liquid separation, the gas-liquid separation function of the entire gas-liquid separator can be greatly enhanced, and refrigerant can be prevented from flowing out of the gas-liquid separator in a gas-liquid two-phase state. Further, it is possible to stabilize the dryness of the refrigerant at the gas-liquid separator outlet and improve the cycle refrigeration performance coefficient. By optimizing the cross-sectional area change configuration and curved shape of the refrigerant inflow passage and the outlet opening direction of the refrigerant inflow passage, it becomes possible to further improve the gas-liquid separation function and further improve the refrigeration performance coefficient of the cycle. Can do.

また、気液分離器内に衝突分離板を設け、その構成、配置、気液分離器内配管との取り合い等を最適化することにより、冷媒の気液分離性能をさらに高めることができ、液相冷媒の流出をより効率よく抑えて、サイクルの冷凍成績係数のさらなる向上をはかることができる。さらに、内部熱交換器を併設することにより、さらに冷凍成績係数の向上をはかることが可能になる。   In addition, by providing a collision separation plate in the gas-liquid separator and optimizing its configuration, arrangement, piping with the gas-liquid separator piping, etc., the gas-liquid separation performance of the refrigerant can be further enhanced. The outflow of the phase refrigerant can be suppressed more efficiently, and the refrigeration coefficient of performance of the cycle can be further improved. Furthermore, it is possible to further improve the refrigeration performance coefficient by providing an internal heat exchanger.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
まず、図1に、例えば車両用空調装置における、一般的な蒸気圧縮式冷凍サイクルの回路構成の一例を示す。図1に示す構成において、1は冷媒を吸入圧縮する圧縮機、2は圧縮機1にて圧縮された冷媒を外部の熱交換媒体によって放熱する放熱器(ガスクーラ)を示している。放熱器2にて放熱した冷媒を更に冷却する(高圧側)内部熱交換器3と、冷却された冷媒を減圧する減圧機4と、減圧した冷媒を蒸発させる蒸発器5と、蒸発器5から流出した冷媒を気相冷媒と液相冷媒とに分離し分離された気相冷媒を(低圧側)内部熱交換器3へ流出させる気液分離器6が設けられている。これら機器が、順次、冷凍回路11にて接続されている。図1における矢印は冷媒の流れ方向を示している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 shows an example of a circuit configuration of a general vapor compression refrigeration cycle in a vehicle air conditioner, for example. In the configuration shown in FIG. 1, reference numeral 1 denotes a compressor that sucks and compresses refrigerant, and 2 denotes a radiator (gas cooler) that radiates the refrigerant compressed by the compressor 1 using an external heat exchange medium. From the internal heat exchanger 3 that further cools the refrigerant radiated by the radiator 2 (high pressure side), the decompressor 4 that decompresses the cooled refrigerant, the evaporator 5 that evaporates the decompressed refrigerant, and the evaporator 5 A gas-liquid separator 6 is provided for separating the separated refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and causing the separated gas-phase refrigerant (low-pressure side) to flow out to the internal heat exchanger 3. These devices are sequentially connected by the refrigeration circuit 11. The arrows in FIG. 1 indicate the flow direction of the refrigerant.

このような蒸気圧縮式冷凍サイクルにおいては、内部熱交換器3は二酸化炭素冷媒のようにサイクル運転時の高圧側冷媒圧力が超臨界状態になる遷臨界サイクルでは、高圧側冷媒圧力を低減できる。これは、高圧側冷媒と低圧側冷媒とを熱交換することで、高圧側冷媒温度を低減できるからである。さらに、高圧側冷媒温度を低減できることから、蒸発器5の入口側のエンタルピーを低減でき、蒸発器5における入口、出口間のエンタルピー差を増大させることにより、冷凍成績係数の向上が期待できる。しかしながら、内部熱交換器3は高圧側冷媒温度を低下できるというメリットがある反面、圧縮機1の吸入側冷媒温度を上昇させてしまう。圧縮機1の圧縮行程では、理論的には冷媒は等エントロピー変化するが、圧縮機1の吸入側冷媒温度が上昇すると、モリエル線図における等エントロピー線の傾きが小さくなるため、圧縮機1の吸入側冷媒温度が低い時と比べて圧縮機1の動力が増加するというデメリットも併せ持つ。   In such a vapor compression refrigeration cycle, the internal heat exchanger 3 can reduce the high-pressure side refrigerant pressure in a transcritical cycle in which the high-pressure side refrigerant pressure during the cycle operation is in a supercritical state, such as carbon dioxide refrigerant. This is because the high-pressure side refrigerant temperature can be reduced by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. Furthermore, since the high-pressure side refrigerant temperature can be reduced, the enthalpy on the inlet side of the evaporator 5 can be reduced, and by increasing the enthalpy difference between the inlet and outlet in the evaporator 5, an improvement in the refrigeration performance coefficient can be expected. However, the internal heat exchanger 3 has the merit that the high-pressure side refrigerant temperature can be lowered, but increases the suction-side refrigerant temperature of the compressor 1. In the compression stroke of the compressor 1, the refrigerant theoretically changes in isentropy, but when the refrigerant temperature on the suction side of the compressor 1 rises, the slope of the isentropic line in the Mollier diagram becomes smaller. It also has a demerit that the power of the compressor 1 increases compared to when the suction side refrigerant temperature is low.

また、二酸化炭素のような高圧側冷媒圧力が高い冷媒を使用する場合には、耐圧性の確保等の問題から高圧側に液溜めタンクを設けることが難しい。また、圧縮機起動時等に多量の液冷媒が圧縮機へ吸入されることを防止するためには、圧縮機への冷媒吸入側に液溜めタンクが設けられることが好ましく、その性能は圧縮機の信頼性に大きく影響する。よって、低圧側に上記のように気液分離器6を設置するのが一般的である。本発明はこの気液分離器6の改良を介してサイクル全体の冷凍成績係数の向上を目指すものである。   Further, when a refrigerant having a high pressure on the high-pressure side, such as carbon dioxide, is used, it is difficult to provide a liquid storage tank on the high-pressure side due to problems such as ensuring pressure resistance. Further, in order to prevent a large amount of liquid refrigerant from being sucked into the compressor at the time of starting the compressor, it is preferable to provide a liquid reservoir tank on the refrigerant suction side to the compressor. It greatly affects the reliability. Therefore, it is common to install the gas-liquid separator 6 on the low pressure side as described above. The present invention aims to improve the refrigeration performance coefficient of the entire cycle through the improvement of the gas-liquid separator 6.

本発明におけるこの気液分離器6の改良をより容易に理解するために、まず、比較対象として、従来の冷凍サイクルにて用いられていた気液分離器の構造の一例を、図2を参照して説明する。図2においては、気液分離器の内部構造を示す符号については、比較のため、後述の本発明の実施例における内部構造を示す符号と同一の符号を使用している。   In order to understand the improvement of the gas-liquid separator 6 in the present invention more easily, first, as an object for comparison, an example of the structure of the gas-liquid separator used in the conventional refrigeration cycle is shown in FIG. To explain. In FIG. 2, the same reference numerals as the reference numerals indicating the internal structure of an embodiment of the present invention to be described later are used for comparison with reference numerals indicating the internal structure of the gas-liquid separator.

図2において、気液分離器6は外部環境変化による必要冷媒量変動に対応できるように構成されている。気液分離器6は、サイクル内冷媒を出し入れする液溜めタンクであり、冷媒流出管22の入口を液相冷媒層26の液面よりも上部に配置することで、気液冷媒を分離して気相冷媒を冷媒流出管22より流出させる機器である。また、気液分離器6内に冷媒とともに流入する潤滑油を最下層のオイル層27として貯留し、そこから冷媒流出管22を介して圧縮機1へ返油する。実際には、オイル分離器等を用いても、冷媒から潤滑油を100%分離することは難しく、冷媒中に溶け込んだ潤滑油が冷凍サイクル内を循環する。   In FIG. 2, the gas-liquid separator 6 is configured to be able to cope with a necessary refrigerant amount fluctuation due to a change in the external environment. The gas-liquid separator 6 is a liquid storage tank for taking in and out the refrigerant in the cycle, and by separating the gas-liquid refrigerant by disposing the inlet of the refrigerant outflow pipe 22 above the liquid surface of the liquid phase refrigerant layer 26. It is a device that causes the gas-phase refrigerant to flow out from the refrigerant outflow pipe 22. Further, the lubricating oil that flows into the gas-liquid separator 6 together with the refrigerant is stored as the lowermost oil layer 27, and is returned to the compressor 1 through the refrigerant outflow pipe 22 from there. Actually, even if an oil separator or the like is used, it is difficult to separate 100% of the lubricating oil from the refrigerant, and the lubricating oil dissolved in the refrigerant circulates in the refrigeration cycle.

気液分離器6上面に蒸発器5の出口冷媒配管と接続された冷媒流入管21(冷媒流入通路)が設けてあり、ここから気液分離器6内に冷媒および潤滑油が流入する。流入した冷媒および潤滑油は、その比重の差によって比重の大きい潤滑油が底部にオイル層27として溜まり、次に比重の大きな液相冷媒がオイル層27の上部に液相冷媒層26として形成、貯留される。さらにその上部に気液二相冷媒層28が位置し、最も比重の小さな気相冷媒が最上部に気相冷媒層25として形成され、冷媒流出管22より気相冷媒層25の気相冷媒が流出する。その際、オイル戻し孔24より少量の潤滑油が吸い上げられ、気液分離器6内に溜まった潤滑油が内部熱交換器3を経て、圧縮機1へと返油される。冷媒流入管21および冷媒流出管22は気液分離器本体としての耐圧容器23に収容されている。図示は省略するが、オイル戻し孔24はその断面積が小さく、冷凍サイクル中の不純物が詰まる恐れがあるので、フィルタを付けておくことが好ましい。   A refrigerant inflow pipe 21 (refrigerant inflow passage) connected to the outlet refrigerant pipe of the evaporator 5 is provided on the upper surface of the gas-liquid separator 6, from which refrigerant and lubricating oil flow into the gas-liquid separator 6. Due to the difference in specific gravity, the inflowing refrigerant and lubricating oil accumulate the lubricating oil having a large specific gravity as the oil layer 27 at the bottom, and the liquid refrigerant having the next large specific gravity is formed as the liquid phase refrigerant layer 26 at the top of the oil layer 27. Stored. Further, a gas-liquid two-phase refrigerant layer 28 is located on the upper part, the gas phase refrigerant having the smallest specific gravity is formed as the gas phase refrigerant layer 25 on the uppermost part, and the gas phase refrigerant in the gas phase refrigerant layer 25 is transferred from the refrigerant outflow pipe 22. leak. At that time, a small amount of lubricating oil is sucked up from the oil return hole 24, and the lubricating oil accumulated in the gas-liquid separator 6 is returned to the compressor 1 through the internal heat exchanger 3. The refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 are accommodated in a pressure vessel 23 as a gas-liquid separator body. Although illustration is omitted, since the oil return hole 24 has a small cross-sectional area and may be clogged with impurities in the refrigeration cycle, it is preferable to attach a filter.

このような従来の気液分離器6に対し、本発明で改良された、本発明の一実施例に係る気液分離器20の構造を図3に示す。基本的には図2で説明した通り、気液分離器20の本体上面に蒸発器5の出口冷媒配管と接続された冷媒流入通路としての冷媒流入管21が設けてあり、ここから気液分離器20内に冷媒および潤滑油が流入する。流入した冷媒および潤滑油は、その比重の差によって比重の大きい潤滑油が底部のオイル層27に溜まり、次に比重の大きな液相冷媒がオイル層27の上部に液相冷媒層26として形成、貯留される。さらにその上部に気液二相冷媒層28が位置し、最も比重の小さな気相冷媒が最上部に気相冷媒層25として形成され、冷媒流出管22より気相冷媒層25の気相冷媒が流出する。その際、オイル戻し孔24より少量の潤滑油が吸い上げられ、気液分離器20内に溜まった潤滑油が内部熱交換器3を経て、圧縮機1へと返油される。冷媒流入管21および冷媒流出管22は気液分離器本体としての耐圧容器23に収容されている。この場合にも、図示は省略するが、オイル戻し孔24はその断面積が小さく、冷凍サイクル中の不純物が詰まる恐れがあるので、フィルタを付けておくことが好ましい。なお、図3における矢印は冷媒の流れを示している。   FIG. 3 shows a structure of a gas-liquid separator 20 according to an embodiment of the present invention, which is improved by the present invention with respect to such a conventional gas-liquid separator 6. Basically, as described in FIG. 2, a refrigerant inflow pipe 21 as a refrigerant inflow passage connected to the outlet refrigerant pipe of the evaporator 5 is provided on the upper surface of the main body of the gas-liquid separator 20, from which gas-liquid separation is performed. Refrigerant and lubricating oil flow into the vessel 20. Due to the difference in specific gravity, the inflowing refrigerant and lubricating oil accumulate lubricating oil having a large specific gravity in the bottom oil layer 27, and then a liquid refrigerant having the next largest specific gravity is formed as a liquid phase refrigerant layer 26 on the oil layer 27. Stored. Furthermore, a gas-liquid two-phase refrigerant layer 28 is located on the upper part, the gas phase refrigerant having the smallest specific gravity is formed as the gas phase refrigerant layer 25 at the uppermost part, and the gas phase refrigerant in the gas phase refrigerant layer 25 is transferred from the refrigerant outflow pipe 22. leak. At that time, a small amount of lubricating oil is sucked up from the oil return hole 24, and the lubricating oil accumulated in the gas-liquid separator 20 is returned to the compressor 1 through the internal heat exchanger 3. The refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 are accommodated in a pressure vessel 23 as a gas-liquid separator body. In this case as well, although not shown, the oil return hole 24 has a small cross-sectional area and may be clogged with impurities in the refrigeration cycle, so it is preferable to attach a filter. In addition, the arrow in FIG. 3 has shown the flow of the refrigerant | coolant.

上記冷媒流入通路としての冷媒流入管21は、その入口から出口29に向けて、通路内部で冷媒を気相冷媒と液相冷媒とに遠心分離可能な湾曲形状に形成されており、湾曲形状としては、例えば、入口から出口29に向けてインボリュート曲線に沿う形状となるように形成されている。また、本実施例では、冷媒流入通路としての冷媒流入管21の通路断面積が、入口から出口29にいくにしたがって大きくなるように形成されている。さらに、冷媒流入通路としての冷媒流入管21の出口29は、図3(A)に示すように、気液分離器本体としての耐圧容器23の内周面の周方向に沿う方向に向けて開口されている。   The refrigerant inflow pipe 21 as the refrigerant inflow passage is formed in a curved shape capable of centrifuging the refrigerant into a gas phase refrigerant and a liquid phase refrigerant inside the passage from the inlet to the outlet 29. Is formed to have a shape along an involute curve from the inlet toward the outlet 29, for example. In this embodiment, the passage cross-sectional area of the refrigerant inflow pipe 21 as the refrigerant inflow passage is formed so as to increase from the inlet to the outlet 29. Furthermore, the outlet 29 of the refrigerant inflow pipe 21 as the refrigerant inflow passage is opened toward the direction along the circumferential direction of the inner peripheral surface of the pressure vessel 23 as the gas-liquid separator body, as shown in FIG. Has been.

このように冷媒流入通路が湾曲形状に形成されるとともに、その入口から出口にいくにしたがって通路断面積が大きくなるように形成されることで、この冷媒流入通路内にて、遠心分離作用により気液二相冷媒の気相冷媒と液相冷媒の分離促進をはかることができる。これは気液二相冷媒の密度差を利用したもので、密度の小さい気相冷媒は通路中央部側を流れるとともに通路断面積に変化に伴って液相冷媒との間で速度差が生じ、密度の大きい液相冷媒は遠心力による慣性力で通路内壁面側を流れるとともに通路断面積の変化に伴って気相冷媒との間で速度差が生じ、気液の分離が促進される。このように分離されて冷媒流入管21の出口29から気液分離器本体内に流入した冷媒は、耐圧容器23の円周方向に沿って流れることにより、遠心分離作用を受け、さらに気相冷媒と液相冷媒の分離がはかられ、液相冷媒は液相冷媒層26へ、気相冷媒は気相冷媒層25へと流れる。これにより、液相冷媒は耐圧容器23の下層に滞留し、気相冷媒は衝突分離板30の細孔31を通過した後気相冷媒層25を形成し、そこから冷媒流出管22を通して気液分離器20の外へ流出する。その結果、気液分離器20全体として極めて効率のよい気液分離が行われ、液相冷媒、気液二相冷媒の流出が抑えられて、気液分離器20の出口部における冷媒の乾き度が安定し、サイクルの冷凍成績係数が向上される。   In this way, the refrigerant inflow passage is formed in a curved shape, and the cross-sectional area of the passage is increased from the inlet to the outlet, so that air is separated in the refrigerant inflow passage by centrifugal action. The separation of the gas-phase refrigerant and the liquid-phase refrigerant of the liquid two-phase refrigerant can be promoted. This utilizes the density difference between the gas-liquid two-phase refrigerant, and the low-density gas-phase refrigerant flows through the center of the passage and changes in speed with the liquid-phase refrigerant as the passage cross-sectional area changes. The liquid refrigerant having a high density flows on the inner wall surface side of the passage due to the inertial force due to the centrifugal force, and a speed difference is generated between the gas-phase refrigerant and the change in the cross-sectional area of the passage, thereby promoting gas-liquid separation. The refrigerant separated in this way and flowing into the gas-liquid separator main body from the outlet 29 of the refrigerant inflow pipe 21 flows along the circumferential direction of the pressure-resistant vessel 23, thereby undergoing a centrifugal separation action, and further the gas-phase refrigerant. And the liquid-phase refrigerant are separated, the liquid-phase refrigerant flows to the liquid-phase refrigerant layer 26, and the gas-phase refrigerant flows to the gas-phase refrigerant layer 25. As a result, the liquid-phase refrigerant stays in the lower layer of the pressure-resistant vessel 23, and the gas-phase refrigerant forms the gas-phase refrigerant layer 25 after passing through the pores 31 of the collision separation plate 30, and from there through the refrigerant outflow pipe 22. It flows out of the separator 20. As a result, the gas-liquid separator 20 as a whole performs extremely efficient gas-liquid separation, the outflow of the liquid-phase refrigerant and the gas-liquid two-phase refrigerant is suppressed, and the dryness of the refrigerant at the outlet of the gas-liquid separator 20 Is stabilized and the refrigeration performance coefficient of the cycle is improved.

また本実施例では、気液分離器20内部の液層冷媒層26の液面よりも高い位置に衝突分離板30が設けられており、衝突分離板30には複数の細孔31が設けられている。細孔31の総断面積は、冷媒流入管21または冷媒流出管22の断面積のいずれよりも大きく設定されている。特に、低負荷時の冷媒状態として気液分離器20内に流入する冷媒の乾き度が小さいため、比較的液相冷媒を多く含んだ冷媒が気液二相冷媒層28を形成するが、衝突分離板30に細孔31を設けたことにより、比重の大きな液相冷媒は衝突分離板30の壁面に衝突し、気相冷媒が細孔31を通過して、気相冷媒と液相冷媒がそれぞれに分離される。このとき、衝突分離板30は液相冷媒層26の液面よりも上方に位置しているので、衝突分離板30の気液分離性能は安定して発揮される。このように衝突分離板30を設けておくことにより、上述の湾曲形状の冷媒流入通路による働きと合わせて、より効率的な気液冷媒の分離が可能となり、サイクル安定性を向上できる。また、衝突分離板30の細孔31の総断面積を、冷媒流入管21または冷媒流出管22の断面積のいずれよりも大きく設定しておくことにより、冷媒が衝突分離板30の細孔31を通過する際の圧力損失を低く抑えることができ、気液分離器20内における圧力損失全体を低く抑えることが可能になる。なお、衝突分離板30に設ける細孔31の形状は円形に限定されるものではない。また、衝突分離板30に設ける細孔31の位置も特に限定されるものではない。   In this embodiment, the collision separation plate 30 is provided at a position higher than the liquid level of the liquid refrigerant layer 26 inside the gas-liquid separator 20, and the collision separation plate 30 is provided with a plurality of pores 31. ing. The total cross-sectional area of the pores 31 is set larger than either the cross-sectional area of the refrigerant inflow pipe 21 or the refrigerant outflow pipe 22. In particular, since the dryness of the refrigerant flowing into the gas-liquid separator 20 as a refrigerant state at a low load is small, the refrigerant containing a relatively large amount of liquid-phase refrigerant forms the gas-liquid two-phase refrigerant layer 28, but the collision By providing the pores 31 in the separation plate 30, the liquid phase refrigerant having a large specific gravity collides with the wall surface of the collision separation plate 30, the gas phase refrigerant passes through the pores 31, and the gas phase refrigerant and the liquid phase refrigerant are separated. Separated into each. At this time, since the collision separation plate 30 is located above the liquid surface of the liquid-phase refrigerant layer 26, the gas-liquid separation performance of the collision separation plate 30 is stably exhibited. By providing the collision separation plate 30 in this manner, it becomes possible to more efficiently separate the gas-liquid refrigerant in combination with the function of the curved refrigerant inflow passage described above, and to improve cycle stability. Further, by setting the total cross-sectional area of the pores 31 of the collision separation plate 30 to be larger than any of the cross-sectional areas of the refrigerant inflow pipe 21 or the refrigerant outflow pipe 22, the refrigerant can pass through the pores 31 of the collision separation plate 30. The pressure loss at the time of passing through can be kept low, and the entire pressure loss in the gas-liquid separator 20 can be kept low. The shape of the pores 31 provided in the collision separation plate 30 is not limited to a circle. Further, the positions of the pores 31 provided in the collision separation plate 30 are not particularly limited.

衝突分離板30は、例えば、予め、冷媒流入管21、冷媒流出管22が貫通する穴を開けておき、衝突分離板30と冷媒流入管21および冷媒流出管22をろう付けまたは溶接等により衝突分離板30と一体化しておくことが可能である。このように一体化しておけば、配管と気液分離器20本体(耐圧容器23)との組付け強度が増すこととなり、製品の信頼性向上に寄与できる。   For example, the collision separation plate 30 has a hole through which the refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 penetrate in advance, and the collision separation plate 30, the refrigerant inflow pipe 21, and the refrigerant outflow pipe 22 collide by brazing or welding. It can be integrated with the separation plate 30. If integrated in this way, the assembly strength between the pipe and the gas-liquid separator 20 main body (pressure vessel 23) increases, which can contribute to the improvement of product reliability.

このように、本発明の蒸気圧縮式冷凍サイクルに用いる気液分離器20においては、冷媒流入管21の湾曲構造、さらには拡管構造により、気液分離器本体内に流入する冷媒を入口部で気液分離し、さらに本体内で気液分離できるようにしたので、冷媒流出管22内には気液二相冷媒が混じりにくくなり、気液分離器20内で分離された気相冷媒が効率よく気液分離器20から流出され、気液分離器出口冷媒乾き度を安定化することができ、サイクルの冷凍成績係数を向上できる。   As described above, in the gas-liquid separator 20 used in the vapor compression refrigeration cycle of the present invention, the refrigerant flowing into the gas-liquid separator main body is introduced at the inlet by the curved structure of the refrigerant inflow pipe 21 and further the pipe expansion structure. Since the gas-liquid separation is performed and the gas-liquid separation can be performed in the main body, the gas-liquid two-phase refrigerant is less likely to be mixed in the refrigerant outflow pipe 22, and the gas-phase refrigerant separated in the gas-liquid separator 20 is efficient. The gas-liquid separator 20 often flows out, the gas-liquid separator outlet refrigerant dryness can be stabilized, and the refrigeration performance coefficient of the cycle can be improved.

また、気液分離器20内に衝突分離板30を設けることにより、特に、比較的液相冷媒を多く含んだ冷媒が気液二相冷媒層28を形成する低負荷時においては、比重の大きな液相冷媒を衝突分離板30に壁面に衝突させて気相冷媒と効率よく分離させることができ、冷媒流入通路の湾曲構造と合わせてより効率的に冷媒の気液分離が可能となってサイクル安定性を向上できる。また、衝突分離板30に設けた細孔31の総断面積を冷媒流入管21または冷媒流出管22の断面積のいずれよりも大きく設定することにより、冷媒が衝突分離板30の細孔31を通過する際の圧力損失を低減でき、気液分離器20全体としての圧力損失の低減をはかることができる。   Further, by providing the collision separation plate 30 in the gas-liquid separator 20, the specific gravity is large particularly at low load when the refrigerant containing a relatively large amount of liquid-phase refrigerant forms the gas-liquid two-phase refrigerant layer 28. The liquid phase refrigerant can collide with the wall surface of the collision separation plate 30 to be efficiently separated from the gas phase refrigerant, and the gas-liquid separation of the refrigerant can be performed more efficiently in combination with the curved structure of the refrigerant inflow passage. Stability can be improved. Further, by setting the total cross-sectional area of the pores 31 provided in the collision separation plate 30 to be larger than either the cross-sectional area of the refrigerant inflow pipe 21 or the refrigerant outflow pipe 22, the refrigerant causes the pores 31 of the collision separation plate 30 to be formed. The pressure loss at the time of passing can be reduced, and the pressure loss of the gas-liquid separator 20 as a whole can be reduced.

また、衝突分離板30に予め、冷媒流入管21、冷媒流出管22が貫通する穴を開けているので、衝突分離板30と冷媒流入管21および冷媒流出管22を一体化することが可能となり、各配管と気液分離器本体との組付け強度を増大させて、製品としての気液分離器20の信頼性を向上できる。さらに、冷媒流入管21および冷媒流出管22はともに気液分離器本体の上面側にあるので、車両用空調装置の冷媒として二酸化炭素を用いた場合、装置の小型化、搭載性の向上が期待できる。   Moreover, since the holes through which the refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 penetrate are formed in the collision separation plate 30 in advance, the collision separation plate 30, the refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 can be integrated. The assembly strength of each pipe and the gas-liquid separator main body can be increased to improve the reliability of the gas-liquid separator 20 as a product. Furthermore, since the refrigerant inflow pipe 21 and the refrigerant outflow pipe 22 are both on the upper surface side of the gas-liquid separator main body, when carbon dioxide is used as the refrigerant of the vehicle air conditioner, it is expected that the apparatus will be downsized and mounted. it can.

本発明に係る冷凍サイクルにおける気液分離器の改良構造は、あらゆる蒸気圧縮式冷凍サイクルに適用可能であり、とくに二酸化炭素冷媒を使用した車両用空調装置における蒸気圧縮式冷凍サイクルに用いて好適なものである。   The improved structure of the gas-liquid separator in the refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle, and is particularly suitable for use in a vapor compression refrigeration cycle in a vehicle air conditioner using a carbon dioxide refrigerant. Is.

一般的な蒸気圧縮式冷凍サイクルの一例を示す機器系統図である。It is an equipment distribution diagram showing an example of a general vapor compression refrigeration cycle. 比較のために示した従来の気液分離器の構造の一例を示し、(B)は縦断面図、(A)は図(B)のA−A線に沿う横断面図である。An example of the structure of the conventional gas-liquid separator shown for the comparison is shown, (B) is a longitudinal sectional view, and (A) is a transverse sectional view taken along line AA of FIG. (B). 本発明の一実施例に係る気液分離器の構造を示し、(B)は縦断面図、(A)は図(B)のA−A線に沿う横断面図である。The structure of the gas-liquid separator which concerns on one Example of this invention is shown, (B) is a longitudinal cross-sectional view, (A) is a cross-sectional view which follows the AA line of figure (B).

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 内部熱交換器
4 減圧機
5 蒸発器
6、20 気液分離器
11 冷凍回路
21 冷媒流入通路としての冷媒流入管
22 冷媒流出管
23 耐圧容器
24 オイル戻し孔
25 気相冷媒層
26 液相冷媒層
27 オイル層
28 気液二相冷媒層
29 冷媒流入通路の出口
30 衝突分離板
31 細孔(孔)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Internal heat exchanger 4 Pressure reducer 5 Evaporator 6, 20 Gas-liquid separator 11 Refrigerating circuit 21 Refrigerant inflow pipe 22 as refrigerant inflow passage Refrigerant outflow pipe 23 Pressure vessel 24 Oil return hole 25 Gas phase Refrigerant layer 26 Liquid-phase refrigerant layer 27 Oil layer 28 Gas-liquid two-phase refrigerant layer 29 Outlet 30 of refrigerant inflow passage Collision separation plate 31 Fine pore (hole)

Claims (14)

冷媒を吸入圧縮する圧縮機と、該圧縮機により圧縮された冷媒を放熱する放熱器と、該放熱器により放熱された冷媒を減圧する減圧機と、該減圧機により減圧された冷媒を蒸発させる蒸発器と、該蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し分離された気相冷媒を前記圧縮機の吸入側へ流出させる気液分離器とを備えた蒸気圧縮式冷凍サイクルにおいて、前記気液分離器の内部に冷媒を流入させる冷媒流入通路を、内部で冷媒を気相冷媒と液相冷媒とに遠心分離可能な湾曲形状に形成したことを特徴とする蒸気圧縮式冷凍サイクル。   A compressor that sucks and compresses the refrigerant; a radiator that dissipates the refrigerant compressed by the compressor; a decompressor that decompresses the refrigerant dissipated by the radiator; and evaporates the refrigerant decompressed by the decompressor A vapor compression type equipped with an evaporator and a gas-liquid separator that separates the refrigerant flowing out of the evaporator into a gas phase refrigerant and a liquid phase refrigerant and causes the separated gas phase refrigerant to flow out to the suction side of the compressor In the refrigeration cycle, the vapor compression passage characterized in that the refrigerant inflow passage through which the refrigerant flows into the gas-liquid separator is formed in a curved shape capable of separating the refrigerant into a gas phase refrigerant and a liquid phase refrigerant. Refrigeration cycle. 前記冷媒流入通路が、その入口から出口にいくにしたがって通路断面積が大きくなるように形成されている、請求項1に記載の蒸気圧縮式冷凍サイクル。   2. The vapor compression refrigeration cycle according to claim 1, wherein the refrigerant inflow passage is formed so that a cross-sectional area of the passage increases from an inlet to an outlet thereof. 前記冷媒流入通路が、その入口から出口に向かってインボリュート形状またはそれに近い疑似インボリュート形状で延びている、請求項1または2に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 1 or 2, wherein the refrigerant inflow passage extends in an involute shape or a pseudo-involute shape close to the inlet from the inlet to the outlet. 前記冷媒流入通路の出口が、前記気液分離器の容器の内周面の周方向に沿う方向に向けて開口されている、請求項1〜3のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 3, wherein an outlet of the refrigerant inflow passage is opened in a direction along a circumferential direction of an inner peripheral surface of a container of the gas-liquid separator. 前記気液分離器の内部に、冷媒の気液二相流に対する衝突分離板が設けられている、請求項1〜4のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 4, wherein a collision separation plate for a gas-liquid two-phase flow of refrigerant is provided inside the gas-liquid separator. 前記衝突分離板は、前記気液分離器内から前記分離された気相冷媒を流出させる冷媒流出管の気液分離器内における入口部よりも低い位置に配置されている、請求項5に記載の蒸気圧縮式冷凍サイクル。   The said collision separation board is arrange | positioned in the position lower than the inlet_port | entrance part in the gas-liquid separator of the refrigerant | coolant outflow pipe which flows out the isolate | separated gaseous-phase refrigerant | coolant from the said gas-liquid separator. Vapor compression refrigeration cycle. 前記衝突分離板には複数の孔が設けられている、請求項5または6に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 5 or 6, wherein the collision separation plate is provided with a plurality of holes. 前記衝突分離板に設けられた孔の総断面積は、前記冷媒流入通路の断面積または前記気液分離器内から前記分離された気相冷媒を流出させる冷媒流出管の断面積のいずれよりも大きく設定されている、請求項7に記載の蒸気圧縮式冷凍サイクル。   The total cross-sectional area of the holes provided in the collision separation plate is larger than either the cross-sectional area of the refrigerant inflow passage or the cross-sectional area of the refrigerant outflow pipe for allowing the separated gas-phase refrigerant to flow out from the gas-liquid separator. The vapor compression refrigeration cycle according to claim 7, which is set to be large. 前記衝突分離板は、前記気液分離器内に貯留される液相冷媒の液面よりも高い位置に配置されている、請求項5〜8のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 5 to 8, wherein the collision separation plate is disposed at a position higher than a liquid level of a liquid phase refrigerant stored in the gas-liquid separator. 前記衝突分離板は、前記気液分離器内における前記冷媒流入通路を形成する配管を保持している、請求項5〜9のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 5 to 9, wherein the collision separation plate holds a pipe that forms the refrigerant inflow passage in the gas-liquid separator. 前記衝突分離板は、前記気液分離器内における前記気液分離器内から前記分離された気相冷媒を流出させる冷媒流出管を保持している、請求項5〜10のいずれかに記載の蒸気圧縮式冷凍サイクル。   The said collision separation board is holding | maintaining the refrigerant | coolant outflow tube which flows out the isolate | separated gaseous-phase refrigerant | coolant from the inside of the said gas-liquid separator in the said gas-liquid separator. Vapor compression refrigeration cycle. さらに、前記放熱器により放熱された冷媒と前記気液分離器から流出される冷媒との間で熱交換を行う内部熱交換器を備えている、請求項1〜11のいずれかに記載の蒸気圧縮式冷凍サイクル。   Furthermore, the vapor | steam in any one of Claims 1-11 provided with the internal heat exchanger which performs heat exchange between the refrigerant | coolant thermally radiated by the said heat radiator, and the refrigerant | coolant which flows out out of the said gas-liquid separator. Compression refrigeration cycle. 前記冷媒が二酸化炭素である、請求項1〜12のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 12, wherein the refrigerant is carbon dioxide. 車両用空調装置に用いられる冷凍サイクルからなる、請求項1〜13のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 13, comprising a refrigeration cycle used in a vehicle air conditioner.
JP2007116976A 2007-04-26 2007-04-26 Vapor compression-type refrigerating cycle Pending JP2008275211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116976A JP2008275211A (en) 2007-04-26 2007-04-26 Vapor compression-type refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116976A JP2008275211A (en) 2007-04-26 2007-04-26 Vapor compression-type refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2008275211A true JP2008275211A (en) 2008-11-13

Family

ID=40053373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116976A Pending JP2008275211A (en) 2007-04-26 2007-04-26 Vapor compression-type refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2008275211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109634B1 (en) 2011-12-16 2012-01-31 인제대학교 산학협력단 Accumulator embedded with honeycomb type heat exchanger
WO2012026496A1 (en) * 2010-08-25 2012-03-01 三菱電機株式会社 Refrigerant compressor equipped with accumulator and vapor compression-type refrigeration cycle device
CN102967093A (en) * 2012-12-17 2013-03-13 北京德能恒信科技有限公司 Two-phase flow liquid storage flow stabilizer
JP2014092353A (en) * 2012-11-07 2014-05-19 Fuji Koki Corp Accumulator
CN103836853A (en) * 2012-11-21 2014-06-04 珠海格力电器股份有限公司 Gas-liquid separator and air conditioning system with same
CN104713279A (en) * 2013-12-12 2015-06-17 浙江三花制冷集团有限公司 Gas-liquid separator and refrigeration system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471949Y1 (en) * 1969-06-24 1972-01-24
JPS48113045U (en) * 1972-03-28 1973-12-25
JPS5526329U (en) * 1978-08-09 1980-02-20
JPS56170663U (en) * 1980-05-21 1981-12-16
JPH03125873A (en) * 1989-10-09 1991-05-29 Nippondenso Co Ltd Room cooling device
JP2000088402A (en) * 1998-07-13 2000-03-31 Showa Alum Corp Accumulator
JP2000234825A (en) * 1999-02-15 2000-08-29 Daikin Ind Ltd Degassing diverter and air conditioner
JP2002267290A (en) * 2001-03-06 2002-09-18 Mitsubishi Heavy Ind Ltd Refrigerating machine
JP2006214700A (en) * 2005-02-07 2006-08-17 Denso Corp Accumulator
JP2007071511A (en) * 2005-09-09 2007-03-22 Calsonic Kansei Corp Accumulator structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471949Y1 (en) * 1969-06-24 1972-01-24
JPS48113045U (en) * 1972-03-28 1973-12-25
JPS5526329U (en) * 1978-08-09 1980-02-20
JPS56170663U (en) * 1980-05-21 1981-12-16
JPH03125873A (en) * 1989-10-09 1991-05-29 Nippondenso Co Ltd Room cooling device
JP2000088402A (en) * 1998-07-13 2000-03-31 Showa Alum Corp Accumulator
JP2000234825A (en) * 1999-02-15 2000-08-29 Daikin Ind Ltd Degassing diverter and air conditioner
JP2002267290A (en) * 2001-03-06 2002-09-18 Mitsubishi Heavy Ind Ltd Refrigerating machine
JP2006214700A (en) * 2005-02-07 2006-08-17 Denso Corp Accumulator
JP2007071511A (en) * 2005-09-09 2007-03-22 Calsonic Kansei Corp Accumulator structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026496A1 (en) * 2010-08-25 2012-03-01 三菱電機株式会社 Refrigerant compressor equipped with accumulator and vapor compression-type refrigeration cycle device
JP5518200B2 (en) * 2010-08-25 2014-06-11 三菱電機株式会社 Refrigerant compressor with attached accumulator and vapor compression refrigeration cycle apparatus
KR101109634B1 (en) 2011-12-16 2012-01-31 인제대학교 산학협력단 Accumulator embedded with honeycomb type heat exchanger
JP2014092353A (en) * 2012-11-07 2014-05-19 Fuji Koki Corp Accumulator
CN103836853A (en) * 2012-11-21 2014-06-04 珠海格力电器股份有限公司 Gas-liquid separator and air conditioning system with same
CN103836853B (en) * 2012-11-21 2016-07-06 珠海格力电器股份有限公司 A kind of gas-liquid separator and there is its air conditioning system
CN102967093A (en) * 2012-12-17 2013-03-13 北京德能恒信科技有限公司 Two-phase flow liquid storage flow stabilizer
CN104713279A (en) * 2013-12-12 2015-06-17 浙江三花制冷集团有限公司 Gas-liquid separator and refrigeration system

Similar Documents

Publication Publication Date Title
JP5539996B2 (en) Liquid and vapor separation in a transcritical refrigerant cycle.
EP2676085B1 (en) Liquid vapor phase separation apparatus
JP4897298B2 (en) Gas-liquid separator module
JP2007162988A (en) Vapor compression refrigerating cycle
KR100613505B1 (en) Cooling cycle apparatus
KR101890107B1 (en) Apparatus for separating oil of a refrigerant-oil mixture and for cooling the oil, and for cooling and/or liquefying the refrigerant in a refrigerant circuit
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP2010181090A (en) Gas liquid separator and refrigerating cycle device mounted with the same
JP2016056966A (en) Turbo refrigerator
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JPH1019421A (en) Refrigerating cycle and accumulator used for the cycle
JP2008057807A (en) Refrigerating cycle, and air conditioner and refrigerator using the same
JP2007057156A (en) Refrigeration cycle
JP4899641B2 (en) Mixed fluid separator
JP4694365B2 (en) Pressure reducer module with oil separator
JP2009300021A (en) Refrigerating cycle device
JP4897464B2 (en) Vapor compression refrigeration cycle
JP2008202810A (en) Refrigerating cycle device
JP5921718B2 (en) Refrigeration cycle equipment
JP2008304077A (en) Ejector type refrigerating cycle
JP2008267718A (en) Vapor compression type refrigerating cycle
JP2009008349A (en) Gas-liquid separator
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP2010243095A (en) Refrigerating cycle device and gas-liquid separator
JP4897561B2 (en) Vapor compression refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410