JP2007315687A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2007315687A
JP2007315687A JP2006146324A JP2006146324A JP2007315687A JP 2007315687 A JP2007315687 A JP 2007315687A JP 2006146324 A JP2006146324 A JP 2006146324A JP 2006146324 A JP2006146324 A JP 2006146324A JP 2007315687 A JP2007315687 A JP 2007315687A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid separation
separation means
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006146324A
Other languages
Japanese (ja)
Other versions
JP4776438B2 (en
Inventor
Kenichi Suzuki
謙一 鈴木
Masato Tsuboi
政人 坪井
Yuichi Matsumoto
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006146324A priority Critical patent/JP4776438B2/en
Priority to EP07108417A priority patent/EP1860390A3/en
Publication of JP2007315687A publication Critical patent/JP2007315687A/en
Application granted granted Critical
Publication of JP4776438B2 publication Critical patent/JP4776438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Abstract

<P>PROBLEM TO BE SOLVED: To reduce costs by integrating a gas-liquid separating means and an expansion means, reducing the number of fastening means, and simplifying a structure of the whole cycle, in a vapor compression type refrigerating cycle provided with a gas injection cycle constitution. <P>SOLUTION: The vapor compression type refrigerating cycle has a compressor 2, a radiator 3, a first pressure reducing means 5 for reducing a pressure of a coolant from the radiator, a first gas-liquid separating means for carrying out gas-liquid separation of the pressure-reduced coolant, a second pressure reducing means 6 for reducing a pressure of the coolant in a liquid phase state separated by the first gas-liquid separating means, an evaporator 8 evaporating the coolant pressure-reduced by the second pressure reducing means, and a second gas-liquid separating means for carrying out gas-liquid separation of the coolant evaporated by the evaporator. The coolant in a gaseous phase state separated by the second gas-liquid separating means is sent into a suction side of the compressor, and the coolant in a gaseous phase state separated by the first gas-liquid separating means is guided to a middle of a compressing process of the compressor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクルに関し、とくに、自然系冷媒である炭酸ガスを用いる場合に、中でも車両用空調装置における冷凍サイクルとして好適な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and more particularly to a vapor compression refrigeration cycle that is particularly suitable as a refrigeration cycle in a vehicle air conditioner when carbon dioxide, which is a natural refrigerant, is used.

車両用空調装置としての蒸気圧縮式冷凍サイクルの冷媒として、自然系冷媒である炭酸ガスを用いている場合においては、外部からの制御信号によって膨張装置の弁開度を制御することで、冷媒の高圧側ラインの圧力を調節する構成が知られている(例えば、特許文献1)。このような冷凍サイクルにおいては、冷凍サイクルの高圧側冷媒温度などを参照することにより冷凍サイクルの成績係数が最適となる高圧側圧力を演算し、高圧側圧力が最適となるように膨張装置の弁開度などを制御するようになっている。   When carbon dioxide, which is a natural refrigerant, is used as a refrigerant in a vapor compression refrigeration cycle as a vehicle air conditioner, by controlling the valve opening of the expansion device using an external control signal, A configuration for adjusting the pressure of the high-pressure side line is known (for example, Patent Document 1). In such a refrigeration cycle, the high pressure side pressure at which the coefficient of performance of the refrigeration cycle is optimal is calculated by referring to the high pressure side refrigerant temperature of the refrigeration cycle, and the valve of the expansion device is adjusted so that the high pressure side pressure is optimal. The opening degree is controlled.

上述のように、高圧側冷媒の温度を参照することにより演算される最適な高圧側圧力となるように電気式の膨張手段などを制御する一方で、蒸発器出口空気温度を調節するために、外部制御式の可変容量圧縮機の容量が制御されており、一般的に熱負荷等の情報から圧縮機の容量制御のための信号が演算される。   As described above, in order to adjust the evaporator outlet air temperature while controlling the electric expansion means and the like so as to obtain an optimum high-pressure side pressure calculated by referring to the temperature of the high-pressure side refrigerant, The capacity of the externally controlled variable capacity compressor is controlled, and generally a signal for controlling the capacity of the compressor is calculated from information such as heat load.

しかしながら、上述の構成による冷凍サイクルでは、冷凍サイクルとしての成績係数は向上するが、圧縮機の動力をあまり低減することはできない。具体的には、外気温度、あるいは、放熱器の出口冷媒温度が冷媒の臨界温度より大幅に高い場合には、前述の高圧側圧力を最適に制御しても、システムの冷凍能力が低下し、また、圧縮機の消費動力は通常負荷(外気温度、あるいは、放熱器の出口冷媒温度が冷媒の臨界温度近辺である場合)に比べ大幅に増加してしまい、システムの成績係数が低下してしまうことがあると考えられる。このような問題に対処するべく、ガスインジェクションサイクル(圧縮機の圧縮工程の途中に気液分離器により分離された気相状態の冷媒を導くようにしたサイクル)が、特許文献2や特許文献3に開示されている。
特開平7−294033号公報 特開平11−63694号公報 特開平10−288411号公報
However, in the refrigeration cycle having the above-described configuration, the coefficient of performance as the refrigeration cycle is improved, but the power of the compressor cannot be reduced much. Specifically, when the outside air temperature or the outlet refrigerant temperature of the radiator is significantly higher than the critical temperature of the refrigerant, the refrigeration capacity of the system is reduced even if the aforementioned high-pressure side pressure is optimally controlled, In addition, the power consumption of the compressor increases significantly compared to the normal load (when the outside air temperature or the radiator outlet refrigerant temperature is close to the critical temperature of the refrigerant), and the coefficient of performance of the system decreases. There seems to be something. In order to deal with such a problem, a gas injection cycle (a cycle in which a refrigerant in a gas phase separated by a gas-liquid separator is introduced in the middle of a compression process of a compressor) is disclosed in Patent Document 2 and Patent Document 3. Is disclosed.
Japanese Patent Laid-Open No. 7-294033 Japanese Patent Laid-Open No. 11-63694 JP-A-10-288411

一般的なガスインジェクションサイクルの冷凍サイクルの構成としては、2つの膨張手段の間に気液分離器を設けるシステムとなる。また、炭酸ガスを利用した冷凍サイクルでは、蒸発器出口冷媒の過熱度を制御することが困難であり、さらに、システムに対する負荷変動に対応するべく、蒸発器出口冷媒を気液分離器により気液分離し、気相冷媒のみを圧縮機吸入側へと流出させる必要がある。また、気液分離器にて分離した気相冷媒を流出する過程では、通常、冷媒中の潤滑油を圧縮機へ戻すためにオイル戻しが必要となるが、気液分離器内では完全に気液二相に分離されているわけではないので、多少湿り蒸気が混入されることが考えられる。このようなことからも、圧縮機への吸入冷媒に過熱度をつける必要がある。さらに、2つの膨張手段と気液分離器等の締結部の増加による冷媒漏洩等も懸念される。   As a configuration of a general gas injection cycle refrigeration cycle, a gas-liquid separator is provided between two expansion means. In addition, in the refrigeration cycle using carbon dioxide gas, it is difficult to control the degree of superheat of the evaporator outlet refrigerant, and the evaporator outlet refrigerant is gas-liquid separated by a gas-liquid separator in order to cope with load fluctuations on the system. It is necessary to separate and flow out only the gas-phase refrigerant to the compressor suction side. In addition, in the process of flowing out the gas-phase refrigerant separated by the gas-liquid separator, it is usually necessary to return the oil to return the lubricating oil in the refrigerant to the compressor. Since it is not separated into two liquid phases, it is conceivable that some wet steam is mixed. For this reason as well, it is necessary to increase the degree of superheat to the refrigerant sucked into the compressor. Further, there is a concern about refrigerant leakage due to an increase in the fastening parts such as the two expansion means and the gas-liquid separator.

本発明の課題は、ガスインジェクションサイクル構成を備えた蒸気圧縮式冷凍サイクルにおいて、とくに冷媒として自然系冷媒である炭酸ガスを用いた場合について、冷凍能力を良好に維持しつつ、ガスインジェクションサイクルとすることで、圧縮機の効率を向上させるとともに圧縮に要する消費動力の低減をはかり、冷凍サイクル全体としての効率を向上させる一方、とくに、気液分離手段と膨張手段を一体化することで締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を解消することにある。また、圧縮機にインジェクションされる冷媒と圧縮機へ吸入される冷媒とを熱交換させる新規な構成を導入することで、インジェクションされる冷媒を冷却し、一層の高効率化をはかることを課題とする。   An object of the present invention is to provide a gas injection cycle in a vapor compression refrigeration cycle having a gas injection cycle configuration, particularly when carbon dioxide, which is a natural refrigerant, is used as a refrigerant while maintaining a good refrigeration capacity. While improving the efficiency of the compressor and reducing the power consumption required for compression and improving the efficiency of the entire refrigeration cycle, in particular, by integrating the gas-liquid separation means and the expansion means, It is intended to reduce the cost, simplify the structure of the entire cycle, reduce costs, and eliminate concerns such as refrigerant leakage. In addition, the introduction of a new configuration that exchanges heat between the refrigerant injected into the compressor and the refrigerant sucked into the compressor, thereby cooling the injected refrigerant and further improving the efficiency. To do.

上記課題を解決するために、本発明に係る冷凍サイクルは、冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一減圧手段と前記第一気液分離手段とを一体化、または/および、前記第二減圧手段と前記第二気液分離手段とを一体化したことを特徴とするものからなる(第1の形態)。すなわち、減圧手段と気液分離手段との一体化により、締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を除去する。また、基本的に、冷凍サイクルをガスインジェクションサイクルとすることで、圧縮機の効率を向上させるとともに圧縮に要する消費動力の低減をはかり、冷凍サイクル全体としての効率を向上させる。   In order to solve the above problems, a refrigeration cycle according to the present invention includes a compressor that compresses and discharges a refrigerant, a radiator that cools a high-temperature and high-pressure refrigerant compressed by the compressor, and a radiator that is cooled by the radiator. First decompression means for decompressing the refrigerant, first gas-liquid separation means for gas-liquid separation of the refrigerant decompressed by the first decompression means, and liquid-phase refrigerant separated by the first gas-liquid separation means A second decompression means for decompressing, an evaporator for evaporating the refrigerant decompressed by the second decompression means, and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator, The refrigerant in the vapor phase separated by the second gas-liquid separation means flows out to the suction side of the compressor and is compressed by the compressor, and is separated by the first gas-liquid separation means Guiding the refrigerant in the middle of the compression process of the compressor, In a vapor compression refrigeration cycle operable in a critical region, the first decompression unit and the first gas-liquid separation unit are integrated, or / and the second decompression unit and the second gas-liquid separation unit are combined. It consists of what was characterized by integrating (1st form). That is, by integrating the decompression means and the gas-liquid separation means, the fastening portion is reduced, the structure of the entire cycle is simplified and the cost is reduced, and concerns such as refrigerant leakage are eliminated. Basically, by making the refrigeration cycle a gas injection cycle, the efficiency of the compressor is improved and the power consumption required for the compression is reduced, thereby improving the efficiency of the entire refrigeration cycle.

また、本発明に係る冷凍サイクルは、冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒と、前記第二気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒とを熱交換する熱交換手段を設けたことを特徴とするものからなる(第2の形態)。すなわち、圧縮機にインジェクションされる冷媒と圧縮機へ吸入される冷媒とを熱交換させることで、インジェクションされる冷媒を冷却し、インジェクションの効果を増大させて冷凍サイクル全体としての効率を向上させるものである。   The refrigeration cycle according to the present invention includes a compressor that compresses and discharges the refrigerant, a radiator that cools the high-temperature and high-pressure refrigerant that is compressed by the compressor, and a decompressor that depressurizes the refrigerant cooled by the radiator. A first decompression unit, a first gas-liquid separation unit that gas-liquid separates the refrigerant decompressed by the first decompression unit, and a second decompression unit that decompresses the liquid-phase refrigerant separated by the first gas-liquid separation unit Means, an evaporator for evaporating the refrigerant decompressed by the second decompression means, and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator, the second gas-liquid separation The refrigerant in the gas phase state separated by the means flows out to the suction side of the compressor and is compressed by the compressor, and the refrigerant in the gas phase state separated by the first gas-liquid separation means is Operates in the supercritical region, which leads to the middle of the compression process In a gas compression refrigeration cycle, a refrigerant in a gas phase that flows out from the first gas-liquid separation means and reaches the compressor, and a gas-phase refrigerant that flows out from the second gas-liquid separation means and reaches the compressor A heat exchanging means for exchanging heat with the refrigerant is provided (second embodiment). In other words, heat is exchanged between the refrigerant injected into the compressor and the refrigerant sucked into the compressor, thereby cooling the injected refrigerant and increasing the effect of the injection to improve the efficiency of the entire refrigeration cycle. It is.

また、本発明においては、上記第1の形態と第2の形態を組み合わせた構成とすることができる。すなわち、本発明に係る冷凍サイクルは、冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一減圧手段と前記第一気液分離手段とを一体化、または/および、前記第二減圧手段と前記第二気液分離手段とを一体化するとともに、前記第一気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒と、前記第二気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒とを熱交換する熱交換手段を設けたことを特徴とするものからなる(第3の形態)。   Moreover, in this invention, it can be set as the structure which combined the said 1st form and the 2nd form. That is, a refrigeration cycle according to the present invention includes a compressor that compresses and discharges a refrigerant, a radiator that cools a high-temperature and high-pressure refrigerant that is compressed by the compressor, and a decompressor that depressurizes the refrigerant cooled by the radiator. A first decompression unit, a first gas-liquid separation unit that gas-liquid separates the refrigerant decompressed by the first decompression unit, and a second decompression unit that decompresses the liquid-phase refrigerant separated by the first gas-liquid separation unit Means, an evaporator for evaporating the refrigerant decompressed by the second decompression means, and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator, the second gas-liquid separation The refrigerant in the gas phase state separated by the means flows out to the suction side of the compressor and is compressed by the compressor, and the refrigerant in the gas phase state separated by the first gas-liquid separation means is Operates in the supercritical region, which leads to the middle of the compression process In the vapor compression refrigeration cycle, the first decompression means and the first gas-liquid separation means are integrated, and / or the second decompression means and the second gas-liquid separation means are integrated, Heat that exchanges heat between the refrigerant in the gas phase that flows out from the first gas-liquid separation means and reaches the compressor, and the refrigerant in the gas phase that flows out from the second gas-liquid separation means and reaches the compressor It consists of what is characterized by providing the exchange means (3rd form).

このような本発明に係る冷凍サイクルにおいては、上記第一気液分離手段と上記第二気液分離手段が一体に組み付けられている構成を採ることができる。これにより、一層、締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を除去することができる。   In such a refrigeration cycle according to the present invention, the first gas-liquid separation means and the second gas-liquid separation means can be integrally assembled. As a result, the number of fastening parts can be further reduced, the structure of the entire cycle can be simplified and the cost can be reduced, and concerns such as refrigerant leakage can be eliminated.

また、上記第一気液分離手段、上記第二気液分離手段、上記第一減圧手段、上記第二減圧手段がすべて一体に組み付けられている構成とすることもできる。これにより、より一層、締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を除去することができる。   Further, the first gas-liquid separation means, the second gas-liquid separation means, the first pressure reduction means, and the second pressure reduction means may all be integrally assembled. As a result, the fastening portion can be further reduced, the structure of the entire cycle can be simplified and the cost can be reduced, and concerns such as refrigerant leakage can be eliminated.

このように一体化された構成においては、例えば後述の図2にも示すように、上記第一気液分離手段と上記第二気液分離手段が一体の容器として形成されるとともに、上記第一減圧手段は上記放熱器から上記第一気液分離手段への流入口から上記第一気液分離手段内への流入口に至るまでの冷媒流路に組み付けられ、上記第二減圧手段は、上記第一気液分離手段からの液相状態の冷媒の流出口から前記蒸発器に至るまでの冷媒の流通経路に設けられる構成を採用できる。これにより、一体化部分を効率よくコンパクトに構成することができる。   In such an integrated configuration, for example, as shown in FIG. 2 described later, the first gas-liquid separation means and the second gas-liquid separation means are formed as an integral container, and the first gas-liquid separation means The decompression means is assembled in the refrigerant flow path from the inlet from the radiator to the first gas-liquid separation means to the inlet into the first gas-liquid separation means, and the second decompression means is the above-mentioned It is possible to adopt a configuration provided in the refrigerant flow path from the liquid-phase refrigerant outlet from the first gas-liquid separation means to the evaporator. Thereby, an integrated part can be comprised compactly efficiently.

このような構成においては、上記第一気液分離手段からの液相状態の冷媒の流出口から上記蒸発器に至るまでの冷媒の流通経路の一部を構成する冷媒流路は、上記第二気液分離手段内の冷媒貯留空間を通過する構成とすることができる。さらに、この流通経路の一部を構成する冷媒流路は、上記第二気液分離手段内の冷媒貯留空間を通過し、かつ、上記第二気液分離手段内にて分離され貯留される液相状態の冷媒に接触するように形成されている構成とすることもできる。   In such a configuration, the refrigerant flow path forming a part of the refrigerant flow path from the liquid-phase refrigerant outlet from the first gas-liquid separation means to the evaporator is It can be set as the structure which passes through the refrigerant | coolant storage space in a gas-liquid separation means. Further, the refrigerant flow path constituting a part of the flow path passes through the refrigerant storage space in the second gas-liquid separation means and is separated and stored in the second gas-liquid separation means. It can also be set as the structure currently formed so that the refrigerant | coolant of a phase state may be contacted.

さらに前述の一体化された構成においては、例えば後述の図6にも示すように、上記第一気液分離手段と上記第二気液分離手段が一体の容器として形成されるとともに、上記第一減圧手段は上記放熱器から上記第一気液分離手段への流入口から上記第一気液分離手段内への流入口に至るまでの冷媒流路に組み付けられ、上記第一気液分離手段から上記第二減圧手段に至る冷媒の流通経路は、上記第二気液分離手段内の冷媒貯留空間を通過する構成とすることができる。さらに、この第一気液分離手段から上記第二減圧手段に至る冷媒の流通経路は、上記第二気液分離手段内の冷媒貯留空間を通過し、かつ、上記第二気液分離手段内にて分離され貯留される液相状態の冷媒に接触するように形成されている構成とすることもできる。   Further, in the above-described integrated configuration, for example, as shown in FIG. 6 described later, the first gas-liquid separation means and the second gas-liquid separation means are formed as an integral container, and the first gas-liquid separation means The decompression means is assembled in the refrigerant flow path from the inlet from the radiator to the first gas-liquid separation means to the inlet to the first gas-liquid separation means, and from the first gas-liquid separation means The refrigerant flow path leading to the second decompression means may be configured to pass through the refrigerant storage space in the second gas-liquid separation means. Further, the refrigerant flow path from the first gas-liquid separation means to the second decompression means passes through the refrigerant storage space in the second gas-liquid separation means and enters the second gas-liquid separation means. It can also be configured to be in contact with a liquid phase refrigerant separated and stored.

このような本発明に係る冷凍サイクルは、超臨界域を含む冷凍サイクルに、とくに冷媒が二酸化炭素からなる場合に好適なものである。また、本発明に係る冷凍サイクルは、とくに車両用空調装置の冷凍サイクルとして用いられる場合に好適なものである。   Such a refrigeration cycle according to the present invention is suitable for a refrigeration cycle including a supercritical region, particularly when the refrigerant is made of carbon dioxide. The refrigeration cycle according to the present invention is particularly suitable when used as a refrigeration cycle for a vehicle air conditioner.

本発明に係る冷凍サイクルによれば、ガスインジェクションサイクルとすることで、圧縮機の効率を向上させ、圧縮に要する消費動力の低減をはかりつつ、減圧手段と気液分離手段との一体化により、締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を除去することができる。また、圧縮機にインジェクションされる冷媒と圧縮機へ吸入される冷媒とを熱交換させることで、インジェクションされる冷媒を冷却し、インジェクションの効果を増大させて冷凍サイクル全体としての効率を向上させることができる。第1の形態と第2の形態を組み合わせることで、これら両効果を併せて奏することができる。   According to the refrigeration cycle according to the present invention, the gas injection cycle improves the efficiency of the compressor and reduces the power consumption required for compression, while integrating the decompression means and the gas-liquid separation means, The fastening portion can be reduced, the structure of the entire cycle can be simplified and the cost can be reduced, and concerns such as refrigerant leakage can be eliminated. Further, heat exchange between the refrigerant injected into the compressor and the refrigerant sucked into the compressor cools the injected refrigerant and increases the effect of the injection, thereby improving the efficiency of the entire refrigeration cycle. Can do. By combining the first form and the second form, both of these effects can be achieved.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
実施例1
図1は、車両用空調用に、自然系冷媒である炭酸ガスを用いた冷凍サイクル装置の機械的な構成部分全体を示しており、送風機10を備えた通風路11に対して冷凍サイクル1が設けられている。まず、この冷凍サイクル1の作動について説明する。圧縮機2により圧縮された冷媒は、放熱器3へと導かれ、放熱器用送風機4等を用いて外部の流体(例えば、空気)と熱交換される。放熱器3により冷却され放熱器3から流出した冷媒は第一減圧手段としての第一膨張装置5として設けられたオリフィスにより減圧される。減圧された冷媒は、第一気液分離手段と第二気液分離手段とが一体化された気液分離器モジュール7内の第一の気液分離器室(第一気液分離手段)により、液相冷媒と気相冷媒とに分離される。分離された液相冷媒は、第二減圧手段としての第二膨張装置6として設けられたオリフィスにより減圧され、減圧された冷媒は蒸発器8へと導かれ、外部の流体(例えば、通風路11内の空気)と熱交換される。蒸発器8から流出した冷媒は、気液分離器モジュール7内の第二の気液分離器室(第二気液分離手段)により、液相冷媒と気相冷媒とに分離される。分離された液相冷媒は気液分離器モジュール7内に貯留され、気相冷媒は気液分離器モジュール7から排出され、圧縮機2へと流入され圧縮される。さらに、気液分離器モジュール7内の第一の気液分離器室から流出した気相冷媒が、気液分離器モジュール7内の第二の気液分離器室から流出した気相冷媒によって熱交換器9にて冷却され、圧縮機2へと(圧縮機2の圧縮工程の途中へと)インジェクションされるものである。この冷凍サイクル1の圧縮機2は、固定容量圧縮機または容量可変圧縮機とされ、その駆動源は、車両のエンジンであっても、エンジン以外の駆動源であってもよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
Example 1
FIG. 1 shows the entire mechanical components of a refrigeration cycle apparatus using carbon dioxide, which is a natural refrigerant, for vehicle air conditioning. The refrigeration cycle 1 is connected to a ventilation path 11 provided with a blower 10. Is provided. First, the operation of the refrigeration cycle 1 will be described. The refrigerant compressed by the compressor 2 is guided to the radiator 3 and exchanges heat with an external fluid (for example, air) using the radiator blower 4 or the like. The refrigerant cooled by the radiator 3 and flowing out of the radiator 3 is decompressed by an orifice provided as a first expansion device 5 as a first decompression means. The decompressed refrigerant is supplied to the first gas-liquid separator chamber (first gas-liquid separator) in the gas-liquid separator module 7 in which the first gas-liquid separator and the second gas-liquid separator are integrated. The liquid phase refrigerant and the gas phase refrigerant are separated. The separated liquid phase refrigerant is depressurized by an orifice provided as a second expansion device 6 as a second depressurization means, and the depressurized refrigerant is guided to the evaporator 8 to be connected to an external fluid (for example, the ventilation path 11). Heat exchange with the air inside. The refrigerant flowing out of the evaporator 8 is separated into a liquid-phase refrigerant and a gas-phase refrigerant by a second gas-liquid separator chamber (second gas-liquid separation means) in the gas-liquid separator module 7. The separated liquid-phase refrigerant is stored in the gas-liquid separator module 7, and the gas-phase refrigerant is discharged from the gas-liquid separator module 7, flows into the compressor 2, and is compressed. Further, the gas-phase refrigerant flowing out from the first gas-liquid separator chamber in the gas-liquid separator module 7 is heated by the gas-phase refrigerant flowing out from the second gas-liquid separator chamber in the gas-liquid separator module 7. It is cooled by the exchanger 9 and injected into the compressor 2 (in the middle of the compression process of the compressor 2). The compressor 2 of the refrigeration cycle 1 is a fixed capacity compressor or a variable capacity compressor, and the drive source thereof may be a vehicle engine or a drive source other than the engine.

図2は、実施例1としての気液分離器モジュール7の詳細な構成を示している。気液分離器モジュール7としての冷媒貯留容器100は、その内部において、第一気液分離手段としての第一気液分離器室101と、第二気液分離手段としての第二気液分離器室105とに分けられている。どちらの気液分離器室においても、気相、液相冷媒を分離する機能を有するものである。放熱器3からの冷媒は、高圧冷媒流入口112より流入し、第一膨張装置102により減圧され、中圧冷媒流入口103より第一気液分離器室101内へと流入し、中圧の気相、液相冷媒に分離される。第一気液分離器室101により分離された中圧気相冷媒が、中圧冷媒流路104を通り中圧冷媒流出口114から流出する。さらに、分離された中圧液相冷媒117は、第二膨張装置106により減圧され、第二気液分離器室105内の冷媒貯留空間を通過し貯留された液相冷媒118 に接するように設けられた冷媒配管107を流通した後、低圧冷媒流出口116より蒸発器8へと流出する。なお、第二減圧手段としての第二膨張装置106は、第一気液分離器室101からの冷媒流出口120 から蒸発器8に至る冷媒の流通経路に設けられればよいが、本実施例では冷媒流出口120 直後に設けられている。蒸発器8から流出した気液二相冷媒は、低圧冷媒流入口113より、第一気液分離器室101を貫通して延びる冷媒配管108を流通し、第二気液分離器室105内へと流入し、低圧の気相、液相冷媒に分離される。分離された低圧液相冷媒118 が第二気液分離器室105内下部に貯留され、流入した冷媒内の冷凍サイクルの潤滑油としてのオイルが第二気液分離器室105の底部にオイル119として溜まり、低圧気相冷媒は、冷媒排出管109より圧縮機2の吸入側へと排出されるものである。冷媒排出管109の下部に配置されるオイル戻し孔111から第二気液分離器室105底部に溜まるオイル119が吸入され、低圧気相冷媒とともに冷媒排出管109から低圧冷媒流出口115を通して圧縮機2へと送出される。また、ディフューザ110は、低圧冷媒流入口113を通り冷媒流入配管108より流入した気液二相冷媒が、冷媒排出管109へ直接流入するのを防止するものである。ここで、オイルと液相冷媒とは、図示するように完全には分離することはなく、実際には、オイル内に液相冷媒も多少含まれていると考えられる。   FIG. 2 shows a detailed configuration of the gas-liquid separator module 7 as the first embodiment. The refrigerant storage container 100 as the gas-liquid separator module 7 includes therein a first gas-liquid separator chamber 101 as a first gas-liquid separator and a second gas-liquid separator as a second gas-liquid separator. It is divided into chamber 105. Both gas-liquid separator chambers have a function of separating a gas phase and a liquid phase refrigerant. The refrigerant from the radiator 3 flows in from the high-pressure refrigerant inlet 112, is decompressed by the first expansion device 102, flows into the first gas-liquid separator chamber 101 from the intermediate-pressure refrigerant inlet 103, and has an intermediate pressure. Separated into gas phase and liquid phase refrigerant. The medium pressure gas phase refrigerant separated by the first gas-liquid separator chamber 101 flows out from the medium pressure refrigerant outlet 114 through the medium pressure refrigerant flow path 104. Further, the separated intermediate-pressure liquid phase refrigerant 117 is decompressed by the second expansion device 106, passes through the refrigerant storage space in the second gas-liquid separator chamber 105, and is in contact with the stored liquid-phase refrigerant 118. After flowing through the refrigerant pipe 107, the refrigerant flows out from the low-pressure refrigerant outlet 116 to the evaporator 8. The second expansion device 106 as the second decompression means may be provided in the refrigerant flow path from the refrigerant outlet 120 to the evaporator 8 from the first gas-liquid separator chamber 101, but in this embodiment, It is provided immediately after the refrigerant outlet 120. The gas-liquid two-phase refrigerant that has flowed out of the evaporator 8 flows through the refrigerant pipe 108 that extends through the first gas-liquid separator chamber 101 from the low-pressure refrigerant inlet 113 and enters the second gas-liquid separator chamber 105. And is separated into a low-pressure gas-phase and liquid-phase refrigerant. The separated low-pressure liquid-phase refrigerant 118 is stored in the lower part of the second gas-liquid separator chamber 105, and the oil as lubricating oil of the refrigeration cycle in the refrigerant that has flowed in is oil 119 at the bottom of the second gas-liquid separator chamber 105. The low-pressure gas-phase refrigerant is discharged from the refrigerant discharge pipe 109 to the suction side of the compressor 2. Oil 119 collected at the bottom of the second gas-liquid separator chamber 105 is sucked from an oil return hole 111 arranged at the lower part of the refrigerant discharge pipe 109, and is compressed together with the low-pressure gas-phase refrigerant through the low-pressure refrigerant outlet 115 from the refrigerant discharge pipe 109. 2 is sent out. The diffuser 110 prevents the gas-liquid two-phase refrigerant that has flowed from the refrigerant inflow pipe 108 through the low-pressure refrigerant inlet 113 from directly flowing into the refrigerant discharge pipe 109. Here, the oil and the liquid refrigerant are not completely separated as shown in the figure, and it is considered that the oil actually contains some liquid refrigerant.

図3は、実施例1における熱交換器9に適用可能な二重管構造の熱交換器の一例を示したものである。この熱交換器9として利用される二重管200は、内側の流通経路201に、第一気液分離器室101で分離された気相冷媒が通過し、外側の流通経路202には、第二気液分離器室105から流出する気相冷媒が通過するようになっており、両者の間で熱交換されて、第一気液分離器室101で分離され、圧縮機2へとインジェクションされる気相冷媒が冷却される。   FIG. 3 shows an example of a heat exchanger having a double tube structure applicable to the heat exchanger 9 in the first embodiment. In the double pipe 200 used as the heat exchanger 9, the gas-phase refrigerant separated in the first gas-liquid separator chamber 101 passes through the inner circulation path 201, and the outer circulation path 202 passes through the second circulation path 202. The gas-phase refrigerant flowing out of the two gas-liquid separator chamber 105 passes through, exchanges heat between them, is separated in the first gas-liquid separator chamber 101, and is injected into the compressor 2. The gas phase refrigerant is cooled.

図4は、実施例1としての冷凍サイクル作動状態を表すモリエル線図を示したものである。横軸がエンタルピ、縦軸が圧力を示している。   FIG. 4 is a Mollier diagram showing the operation state of the refrigeration cycle as the first embodiment. The horizontal axis indicates enthalpy and the vertical axis indicates pressure.

上記のような実施例1においては、第一気液分離手段、上記第二気液分離手段、上記第一減圧手段、上記第二減圧手段がすべて一体に組み付けられた構成の気液分離器モジュール7とされることにより、締結部の低減をはかり、サイクル全体の構造を簡素化、低コスト化するとともに、冷媒漏洩等の懸念を除去することができる。また、熱交換器9により、圧縮機2にインジェクションされる冷媒と圧縮機2へ吸入される冷媒とを熱交換させることで、圧縮機2へとインジェクションされる気相冷媒を冷却できるので、インジェクションの効果を増大させて冷凍サイクル全体としての効率を向上させることができる。   In the first embodiment as described above, the first gas-liquid separator, the second gas-liquid separator, the first pressure-reducing means, and the second pressure-reducing means are all assembled integrally. By being set to 7, it is possible to reduce the fastening portion, simplify the structure of the entire cycle, reduce the cost, and eliminate concerns such as refrigerant leakage. Further, the heat exchanger 9 can cool the gas-phase refrigerant injected into the compressor 2 by exchanging heat between the refrigerant injected into the compressor 2 and the refrigerant sucked into the compressor 2. Thus, the efficiency of the entire refrigeration cycle can be improved.

実施例2
図5に、実施例2に係る炭酸ガスを用いた冷凍サイクル装置の機械的な構成部分全体を示す。この実施例2に係る冷凍サイクルは、図1の冷凍サイクルと基本的な構成は同一である。但し、この実施例2に係る冷凍サイクルでは、気液分離器内の第二膨張装置6の組込み位置が異なっているものである。この作用としては、図6により説明される。
Example 2
FIG. 5 shows the entire mechanical components of the refrigeration cycle apparatus using carbon dioxide gas according to the second embodiment. The refrigeration cycle according to the second embodiment has the same basic configuration as the refrigeration cycle of FIG. However, in the refrigeration cycle according to the second embodiment, the installation position of the second expansion device 6 in the gas-liquid separator is different. This operation will be described with reference to FIG.

図6は、実施例2における気液分離器モジュール7の詳細な構成図である。気液分離器モジュール7は、冷媒貯留容器100として、その内部において、実施例1と同様に、第一気液分離器室101と、第二気液分離器室105とに分かれる。どちらの気液分離器室においても、気相、液相冷媒を分離する機能を有するものである。放熱器3からの冷媒は、高圧冷媒流入口112より流入し、第一膨張装置102により減圧され、中圧冷媒流入口103より第一気液分離器室101へと流入し、中圧の気相、液相冷媒に分離される。第一気液分離器室101により分離された中圧気相冷媒が中圧冷媒流路104を通り中圧冷媒流出口114から流出する。さらに、分離された中圧液相冷媒117は、冷媒配管107を流通し、第二膨張装置106により減圧され、低圧冷媒流出口116より蒸発器8へと流出する。その際に、冷媒配管107は、図示のように低圧液相冷媒118に一部接触しており、冷媒配管107内部に流れる冷媒の冷却が可能となる。また、冷媒配管107は、第二気液分離器室105内の気相冷媒とも熱交換することも可能であることから、この冷媒配管内を流れる冷媒は、第二気液分離器室105内の気相冷媒及び液相冷媒によって冷却され冷凍効果の増大をはかることができる。また、蒸発器8から流出した気液二相冷媒は冷媒流入口113より冷媒配管108を流通し、第二気液分離器室105へと流入し、低圧の気相、液相冷媒に分離され、分離された低圧液相冷媒118が第二気液分離器室105内下部に貯留され、流入した冷媒内の冷凍サイクルの潤滑油としてのオイルが第二気液分離器室105の底部にオイル119として溜まり、気相冷媒は、冷媒排出管109より圧縮機2へと排出されるものである。冷媒排出管109の下部に配置されるオイル戻し孔111から第二気液分離器室105底部に溜まるオイル119が吸入され、低圧気相冷媒とともに冷媒排出管109から圧縮機2へと送出される。また、ディフューザ110は、低圧冷媒流入口113を通り冷媒流入配管108より流入した気液二相冷媒が、冷媒排出管109へ直接流入するのを防止するものである。ここで、オイルと液相冷媒とは、図示するように完全には分離することはなく、実際には、オイル内に液相冷媒も多少含まれていると考えられる。また、この実施例2においては、冷媒配管107にフィンなどの熱交換を促進するものを設けてもよい。   FIG. 6 is a detailed configuration diagram of the gas-liquid separator module 7 in the second embodiment. The gas-liquid separator module 7 is divided into a first gas-liquid separator chamber 101 and a second gas-liquid separator chamber 105 inside the refrigerant storage container 100 as in the first embodiment. Both gas-liquid separator chambers have a function of separating a gas phase and a liquid phase refrigerant. The refrigerant from the radiator 3 flows in from the high-pressure refrigerant inlet 112, is depressurized by the first expansion device 102, flows into the first gas-liquid separator chamber 101 from the intermediate-pressure refrigerant inlet 103, and has a medium-pressure gas. Phase and liquid phase refrigerant. The medium-pressure gas-phase refrigerant separated by the first gas-liquid separator chamber 101 flows out from the medium-pressure refrigerant outlet 114 through the medium-pressure refrigerant channel 104. Further, the separated medium pressure liquid phase refrigerant 117 flows through the refrigerant pipe 107, is depressurized by the second expansion device 106, and flows out from the low pressure refrigerant outlet 116 to the evaporator 8. At that time, the refrigerant pipe 107 is partially in contact with the low-pressure liquid-phase refrigerant 118 as shown in the figure, so that the refrigerant flowing inside the refrigerant pipe 107 can be cooled. In addition, since the refrigerant pipe 107 can also exchange heat with the gas-phase refrigerant in the second gas-liquid separator chamber 105, the refrigerant flowing in the refrigerant pipe is not contained in the second gas-liquid separator chamber 105. It is cooled by the gas-phase refrigerant and liquid-phase refrigerant, and the refrigeration effect can be increased. Further, the gas-liquid two-phase refrigerant flowing out of the evaporator 8 flows through the refrigerant pipe 108 from the refrigerant inlet 113 and flows into the second gas-liquid separator chamber 105, where it is separated into a low-pressure gas phase and liquid-phase refrigerant. The separated low-pressure liquid-phase refrigerant 118 is stored in the lower part of the second gas-liquid separator chamber 105, and the oil as lubricating oil of the refrigeration cycle in the refrigerant that has flowed in is oil at the bottom of the second gas-liquid separator chamber 105. The gas-phase refrigerant is accumulated as 119 and is discharged from the refrigerant discharge pipe 109 to the compressor 2. Oil 119 accumulated at the bottom of the second gas-liquid separator chamber 105 is sucked from an oil return hole 111 disposed at the lower part of the refrigerant discharge pipe 109 and is sent out from the refrigerant discharge pipe 109 to the compressor 2 together with the low-pressure gas-phase refrigerant. . The diffuser 110 prevents the gas-liquid two-phase refrigerant that has flowed from the refrigerant inflow pipe 108 through the low-pressure refrigerant inlet 113 from directly flowing into the refrigerant discharge pipe 109. Here, the oil and the liquid refrigerant are not completely separated as shown in the figure, and it is considered that the oil actually contains some liquid refrigerant. In the second embodiment, the refrigerant pipe 107 may be provided with a fin or the like that promotes heat exchange.

図7は、実施例2としての冷凍サイクル作動状態を表すモリエル線図を示したものである。図4に示した実施例1におけるモリエル線図に比べ、図7に示すように、一部過冷却域が現れる。   FIG. 7 is a Mollier diagram showing the operating state of the refrigeration cycle as the second embodiment. Compared with the Mollier diagram in Example 1 shown in FIG. 4, a partial supercooling region appears as shown in FIG.

このように、上記各実施例によれば、冷媒として自然系冷媒である炭酸ガスを用いた蒸気圧縮式冷凍サイクルのにおいて、ガスインジェクションサイクルとすることで、圧縮機2の効率を向上させ、圧縮に要する消費動力の低減をはかることができる。また、気液分離器と膨張機構を一体化することで(一体化した気液分離器モジュール7とすることで)、締結部の低減が可能となり、構造の簡素化、コスト低減をはかることができるとともに、冷媒漏洩の懸念を除去することができる。また、圧縮機2にインジェクションされる冷媒と圧縮機2へ吸入される冷媒とを熱交換させることで、インジェクションされる冷媒を冷却させることができ、インジェクションの効果を向上させることができる。   As described above, according to each of the above embodiments, in the vapor compression refrigeration cycle using carbon dioxide gas which is a natural refrigerant as the refrigerant, the efficiency of the compressor 2 is improved by using the gas injection cycle to compress the refrigerant. It is possible to reduce the power consumption required. Further, by integrating the gas-liquid separator and the expansion mechanism (by using the integrated gas-liquid separator module 7), the fastening portion can be reduced, and the structure can be simplified and the cost can be reduced. In addition, the concern about refrigerant leakage can be eliminated. Moreover, the refrigerant | coolant injected by the compressor 2 and the refrigerant | coolant suck | inhaled by the compressor 2 can be heat-exchanged, the refrigerant | coolant injected can be cooled, and the effect of injection can be improved.

本発明に係る冷凍サイクルは、超臨界域で作動可能なあらゆる蒸気圧縮式冷凍サイクルに適用でき、とくに、自然系冷媒である炭酸ガスを用いた冷凍サイクル、中でも車両用空調装置における冷凍サイクルとして好適なものである。   The refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle that can operate in the supercritical region, and is particularly suitable as a refrigeration cycle using carbon dioxide gas, which is a natural refrigerant, particularly as a refrigeration cycle in a vehicle air conditioner. Is something.

本発明の実施例1に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on Example 1 of this invention. 実施例1における気液分離器モジュールの縦断面図である。It is a longitudinal cross-sectional view of the gas-liquid separator module in Example 1. FIG. 実施例1における熱交換手段としての熱交換器の一例を示す二重管式熱交換器斜視図である。It is a double-pipe heat exchanger perspective view which shows an example of the heat exchanger as a heat exchange means in Example 1. FIG. 実施例1におけるモリエル線図である。1 is a Mollier diagram in Example 1. FIG. 本発明の実施例2に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on Example 2 of this invention. 実施例2における気液分離器モジュールの縦断面図である。It is a longitudinal cross-sectional view of the gas-liquid separator module in Example 2. 実施例2におけるモリエル線図である。6 is a Mollier diagram in Example 2. FIG.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱器
4 放熱器用送風機
5 第一減圧手段としての第一膨張装置
6 第二減圧手段としての第二膨張装置
7 気液分離器モジュール
8 蒸発器
9 熱交換手段としての熱交換器
10 送風機
11 通風路
100 冷媒貯留容器
101 第一気液分離手段としての第一気液分離器室
102 第一減圧手段としての第一膨張装置
103 中圧冷媒流入口
104 中圧冷媒流路
105 第二気液分離手段としての第二気液分離器室
106 第二減圧手段としての第二膨張装置
107 冷媒配管
108 冷媒配管
109 冷媒排出管
110 ディフューザ
111 オイル戻し孔
112 高圧冷媒流入口
113 低圧冷媒流入口
114 中圧冷媒流出口
115 低圧冷媒流出口
116 低圧冷媒流出口
117 中圧液相冷媒
118 低圧液相冷媒
119 オイル
120 冷媒流出口
200 熱交換器として利用される二重管
201 内側の流通経路
202 外側の流通経路
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Fan for radiator 5 First expansion device 6 as first decompression means Second expansion device 7 as second decompression means Gas-liquid separator module 8 Evaporator 9 Heat exchange means Heat exchanger
10 Blower
11 Ventilation path
100 Refrigerant storage container
101 First gas-liquid separator chamber as first gas-liquid separator
102 First expansion device as first decompression means
103 Medium pressure refrigerant inlet
104 Medium pressure refrigerant flow path
105 Second gas-liquid separator chamber as second gas-liquid separation means
106 Second expansion device as second decompression means
107 Refrigerant piping
108 Refrigerant piping
109 Refrigerant discharge pipe
110 Diffuser
111 Oil return hole
112 High-pressure refrigerant inlet
113 Low-pressure refrigerant inlet
114 Medium pressure refrigerant outlet
115 Low pressure refrigerant outlet
116 Low-pressure refrigerant outlet
117 Medium pressure liquid phase refrigerant
118 Low pressure liquid phase refrigerant
119 oil
120 Refrigerant outlet
200 Double pipe used as heat exchanger
201 Inside distribution channel
202 Outer distribution channel

Claims (12)

冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一減圧手段と前記第一気液分離手段とを一体化、または/および、前記第二減圧手段と前記第二気液分離手段とを一体化したことを特徴とする冷凍サイクル。   A compressor that compresses and discharges the refrigerant; a radiator that cools the high-temperature and high-pressure refrigerant compressed by the compressor; a first decompression unit that decompresses the refrigerant cooled by the radiator; and the first decompression unit The first gas-liquid separation means for gas-liquid separation of the refrigerant decompressed by the above, the second decompression means for decompressing the liquid-phase refrigerant separated by the first gas-liquid separation means, and the decompression by the second decompression means A vapor-phase refrigerant separated by the second gas-liquid separation means, having an evaporator for evaporating the produced refrigerant and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator Is discharged to the suction side of the compressor and compressed by the compressor, and the gas-phase refrigerant separated by the first gas-liquid separation means is guided to the middle of the compression process of the compressor. In the vapor compression refrigeration cycle Integrated with the first gas-liquid separation means and the first pressure reducing means, and / or, the refrigerating cycle, characterized in that integrated with the second pressure reducing means and said second gas-liquid separation means. 冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒と、前記第二気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒とを熱交換する熱交換手段を設けたことを特徴とする冷凍サイクル。   A compressor that compresses and discharges the refrigerant; a radiator that cools the high-temperature and high-pressure refrigerant compressed by the compressor; a first decompression unit that decompresses the refrigerant cooled by the radiator; and the first decompression unit The first gas-liquid separation means for gas-liquid separation of the refrigerant decompressed by the above, the second decompression means for decompressing the liquid-phase refrigerant separated by the first gas-liquid separation means, and the decompression by the second decompression means A vapor-phase refrigerant separated by the second gas-liquid separation means, having an evaporator for evaporating the produced refrigerant and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator Is discharged to the suction side of the compressor and compressed by the compressor, and the gas-phase refrigerant separated by the first gas-liquid separation means is guided to the middle of the compression process of the compressor. In the vapor compression refrigeration cycle Heat exchange for exchanging heat between the gas-phase refrigerant flowing out of the first gas-liquid separation means and reaching the compressor and the gas-phase refrigerant flowing out of the second gas-liquid separation means and reaching the compressor A refrigeration cycle comprising means. 冷媒を圧縮し吐出する圧縮機と、該圧縮機により圧縮された高温高圧の冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する第一減圧手段と、該第一減圧手段により減圧された冷媒を気液分離する第一気液分離手段と、該第一気液分離手段により分離された液相状態の冷媒を減圧する第二減圧手段と、該第二減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器により蒸発された冷媒を気液分離する第二気液分離手段とを有し、該第二気液分離手段により分離された気相状態の冷媒を前記圧縮機の吸入側へと流出させて前記圧縮機により圧縮させるとともに、前記第一気液分離手段により分離された気相状態の冷媒を前記圧縮機の圧縮工程の途中へ導く、超臨界域で作動可能な蒸気圧縮式冷凍サイクルにおいて、前記第一減圧手段と前記第一気液分離手段とを一体化、または/および、前記第二減圧手段と前記第二気液分離手段とを一体化するとともに、前記第一気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒と、前記第二気液分離手段から流出し前記圧縮機へと至る気相状態の冷媒とを熱交換する熱交換手段を設けたことを特徴とする冷凍サイクル。   A compressor that compresses and discharges the refrigerant; a radiator that cools the high-temperature and high-pressure refrigerant compressed by the compressor; a first decompression unit that decompresses the refrigerant cooled by the radiator; and the first decompression unit The first gas-liquid separation means for gas-liquid separation of the refrigerant decompressed by the above, the second decompression means for decompressing the liquid-phase refrigerant separated by the first gas-liquid separation means, and the decompression by the second decompression means A vapor-phase refrigerant separated by the second gas-liquid separation means, having an evaporator for evaporating the produced refrigerant and a second gas-liquid separation means for gas-liquid separation of the refrigerant evaporated by the evaporator Is discharged to the suction side of the compressor and compressed by the compressor, and the gas-phase refrigerant separated by the first gas-liquid separation means is guided to the middle of the compression process of the compressor. In the vapor compression refrigeration cycle The first decompression means and the first gas-liquid separation means are integrated, and / or the second decompression means and the second gas-liquid separation means are integrated, and the first gas-liquid separation means flows out. And a heat exchanging means for exchanging heat between the refrigerant in a gas phase reaching the compressor and the refrigerant in a gas phase flowing out from the second gas-liquid separation means and reaching the compressor. Refrigeration cycle to be. 前記第一気液分離手段と前記第二気液分離手段が一体に組み付けられていることを特徴とする、請求項1〜3のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 3, wherein the first gas-liquid separation means and the second gas-liquid separation means are assembled together. 前記第一気液分離手段、前記第二気液分離手段、前記第一減圧手段、前記第二減圧手段がすべて一体に組み付けられていることを特徴とする、請求項1〜4のいずれかに記載の冷凍サイクル。   The said 1st gas-liquid separation means, said 2nd gas-liquid separation means, said 1st pressure reduction means, and said 2nd pressure reduction means are all assembled | attached integrally, The any one of Claims 1-4 characterized by the above-mentioned. The refrigeration cycle described. 前記第一気液分離手段と前記第二気液分離手段が一体の容器として形成されるとともに、前記第一減圧手段は前記放熱器から前記第一気液分離手段への流入口から前記第一気液分離手段内への流入口に至るまでの冷媒流路に組み付けられ、前記第二減圧手段は、前記第一気液分離手段からの液相状態の冷媒の流出口から前記蒸発器に至るまでの冷媒の流通経路に設けられることを特徴とする、請求項5に記載の冷凍サイクル。   The first gas-liquid separation means and the second gas-liquid separation means are formed as an integral container, and the first decompression means is connected to the first gas through the inlet from the radiator to the first gas-liquid separation means. The second pressure reducing means is assembled to the refrigerant flow path leading to the inlet into the gas-liquid separation means, and the second pressure reducing means reaches the evaporator from the liquid-phase refrigerant outlet from the first gas-liquid separation means. The refrigeration cycle according to claim 5, wherein the refrigeration cycle is provided in a refrigerant flow path up to. 前記第一気液分離手段からの液相状態の冷媒の流出口から前記蒸発器に至るまでの冷媒の流通経路の一部を構成する冷媒流路は、前記第二気液分離手段内の冷媒貯留空間を通過することを特徴とする、請求項6に記載の冷凍サイクル。   The refrigerant flow path constituting a part of the refrigerant flow path from the liquid-phase refrigerant outlet from the first gas-liquid separation means to the evaporator is the refrigerant in the second gas-liquid separation means The refrigeration cycle according to claim 6, wherein the refrigeration cycle passes through the storage space. 前記流通経路の一部を構成する冷媒流路は、前記第二気液分離手段内の冷媒貯留空間を通過し、かつ、前記第二気液分離手段内にて分離され貯留される液相状態の冷媒に接触するように形成されていることを特徴とする、請求項7に記載の冷凍サイクル。   The refrigerant flow path that constitutes a part of the flow path passes through the refrigerant storage space in the second gas-liquid separation means and is separated and stored in the second gas-liquid separation means The refrigeration cycle according to claim 7, wherein the refrigeration cycle is formed in contact with the refrigerant. 前記第一気液分離手段と前記第二気液分離手段が一体の容器として形成されるとともに、前記第一減圧手段は前記放熱器から前記第一気液分離手段への流入口から前記第一気液分離手段内への流入口に至るまでの冷媒流路に組み付けられ、前記第一気液分離手段から前記第二減圧手段に至る冷媒の流通経路は、前記第二気液分離手段内の冷媒貯留空間を通過することを特徴とする、請求項5に記載の冷凍サイクル。   The first gas-liquid separation means and the second gas-liquid separation means are formed as an integral container, and the first decompression means is connected to the first gas through the inlet from the radiator to the first gas-liquid separation means. The refrigerant flow path assembled from the first gas-liquid separation means to the second decompression means is assembled in the refrigerant flow path leading to the inflow port into the gas-liquid separation means. The refrigeration cycle according to claim 5, wherein the refrigeration cycle passes through the refrigerant storage space. 前記第一気液分離手段から前記第二減圧手段に至る冷媒の流通経路は、前記第二気液分離手段内の冷媒貯留空間を通過し、かつ、前記第二気液分離手段内にて分離され貯留される液相状態の冷媒に接触するように形成されていることを特徴とする、請求項9に記載の冷凍サイクル。   The refrigerant flow path from the first gas-liquid separation means to the second pressure reduction means passes through the refrigerant storage space in the second gas-liquid separation means and is separated in the second gas-liquid separation means. The refrigeration cycle according to claim 9, wherein the refrigeration cycle is formed so as to be in contact with a liquid-phase refrigerant stored and stored. 前記冷媒が二酸化炭素からなることを特徴とする、請求項1〜10のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to claim 1, wherein the refrigerant is carbon dioxide. 車両用空調装置の冷凍サイクルとして用いることを特徴とする、請求項1〜11のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to claim 1, wherein the refrigeration cycle is used as a refrigeration cycle of a vehicle air conditioner.
JP2006146324A 2006-05-26 2006-05-26 Refrigeration cycle Expired - Fee Related JP4776438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006146324A JP4776438B2 (en) 2006-05-26 2006-05-26 Refrigeration cycle
EP07108417A EP1860390A3 (en) 2006-05-26 2007-05-17 Vapor compression refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146324A JP4776438B2 (en) 2006-05-26 2006-05-26 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2007315687A true JP2007315687A (en) 2007-12-06
JP4776438B2 JP4776438B2 (en) 2011-09-21

Family

ID=38515416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146324A Expired - Fee Related JP4776438B2 (en) 2006-05-26 2006-05-26 Refrigeration cycle

Country Status (2)

Country Link
EP (1) EP1860390A3 (en)
JP (1) JP4776438B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093051A (en) * 2010-10-28 2012-05-17 Fuji Koki Corp Gas-liquid separator for heat pump and injection type heat pump system
JP2013148229A (en) * 2012-01-17 2013-08-01 Calsonic Kansei Corp Gas-liquid separator and air conditioning device for vehicle
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve
WO2020208736A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Refrigeration cycle device
WO2022004158A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Refrigeration cycle device
US11754321B2 (en) * 2018-03-27 2023-09-12 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327651B2 (en) 2009-07-07 2012-12-11 Hamilton Sundstrand Corporation Transcritical fluid cooling for aerospace applications
US10234181B2 (en) 2013-11-18 2019-03-19 Carrier Corporation Flash gas bypass evaporator
CN104034100B (en) * 2014-06-05 2016-08-24 珠海格力节能环保制冷技术研究中心有限公司 Flash vessel and there is the air conditioning system of this flash vessel
CN104154687B (en) * 2014-08-22 2016-08-24 珠海格力电器股份有限公司 Flash evaporation and the air-conditioning with this flash evaporation
JP6587602B2 (en) * 2016-12-27 2019-10-09 株式会社不二工機 Refrigerant container
CN117553364B (en) * 2024-01-09 2024-04-02 深圳中集天达吉荣航空制冷有限公司 Aircraft ground air conditioning system based on phase change cold accumulation and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397654A (en) * 1977-02-07 1978-08-26 Toshiba Corp Air conditioner
JPS56105258A (en) * 1980-01-28 1981-08-21 Hitachi Ltd Refrigerating cycle
JPS6243280A (en) * 1985-08-20 1987-02-25 Sanyo Electric Co Ltd Recording and reproducing device for video signal
JP2004028460A (en) * 2002-06-26 2004-01-29 Denso Corp Vapor compression type refrigerator
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH127367A (en) * 1927-07-02 1928-08-16 Escher Wyss Maschf Ag Refrigeration system with multi-stage compression and multi-stage evaporation of the refrigerant.
US1860447A (en) * 1928-07-21 1932-05-31 York Ice Machinery Corp Refrigeration
US1840955A (en) * 1929-01-14 1932-01-12 Baker Ice Machine Co Inc Refrigeration system
DE884503C (en) * 1943-11-12 1953-07-27 Linde S Eismaschinen Akt Ges G Method for operating compression refrigeration machines
US2500688A (en) * 1948-08-24 1950-03-14 Edward P Kellie Refrigerating apparatus
DE800974C (en) * 1949-08-19 1950-12-18 Linde Eismasch Ag Control device for the refrigerant in refrigeration systems
US3022638A (en) * 1959-05-06 1962-02-27 Carrier Corp Controls for refrigeration apparatus
JPS55158458A (en) * 1979-05-24 1980-12-09 Hitachi Ltd Gassliquid separator for refrigeration cycle
US4341086A (en) * 1980-10-06 1982-07-27 Clarion Co., Ltd. Refrigeration system
JPH10132394A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Freezer
JP2000035251A (en) * 1998-07-17 2000-02-02 Zexel Corp Three layers separator in cooling cycle
JP2000046420A (en) * 1998-07-31 2000-02-18 Zexel Corp Refrigeration cycle
JP2001221517A (en) * 2000-02-10 2001-08-17 Sharp Corp Supercritical refrigeration cycle
FR2855254B1 (en) * 2003-05-23 2007-04-06 Valeo Climatisation AIR CONDITIONING DEVICE, ESPECIALLY FOR A MOTOR VEHICLE, COMPRISING A LOOP WITH LIQUID / GAS SEPARATION
JP2005076914A (en) * 2003-08-28 2005-03-24 Tgk Co Ltd Refrigeration cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397654A (en) * 1977-02-07 1978-08-26 Toshiba Corp Air conditioner
JPS56105258A (en) * 1980-01-28 1981-08-21 Hitachi Ltd Refrigerating cycle
JPS6243280A (en) * 1985-08-20 1987-02-25 Sanyo Electric Co Ltd Recording and reproducing device for video signal
JP2004028460A (en) * 2002-06-26 2004-01-29 Denso Corp Vapor compression type refrigerator
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093051A (en) * 2010-10-28 2012-05-17 Fuji Koki Corp Gas-liquid separator for heat pump and injection type heat pump system
JP2013148229A (en) * 2012-01-17 2013-08-01 Calsonic Kansei Corp Gas-liquid separator and air conditioning device for vehicle
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve
US11754321B2 (en) * 2018-03-27 2023-09-12 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system
WO2020208736A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Refrigeration cycle device
JPWO2020208736A1 (en) * 2019-04-10 2021-10-21 三菱電機株式会社 Refrigeration cycle equipment
WO2022004158A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Refrigeration cycle device
JP7439658B2 (en) 2020-06-30 2024-02-28 株式会社デンソー Refrigeration cycle equipment

Also Published As

Publication number Publication date
EP1860390A2 (en) 2007-11-28
JP4776438B2 (en) 2011-09-21
EP1860390A3 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4776438B2 (en) Refrigeration cycle
JP4897298B2 (en) Gas-liquid separator module
EP1813887B1 (en) Air conditioning device
US7320228B2 (en) Refrigerant cycle apparatus
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4626531B2 (en) Ejector refrigeration cycle
US6658888B2 (en) Method for increasing efficiency of a vapor compression system by compressor cooling
JP2007155229A (en) Vapor compression type refrigerating cycle
EP1628088A2 (en) Refrigerant cycle apparatus
JP4923838B2 (en) Ejector refrigeration cycle
JP2008032336A (en) Two-stage expansion refrigeration apparatus
JP2007263383A (en) Refrigerating device
US7694529B2 (en) Refrigerant cycle device with ejector
JP2006071268A (en) Refrigerating plant
JPH1194380A (en) Refrigeration cycle
JP5018724B2 (en) Ejector refrigeration cycle
JP2007322009A (en) Refrigerating cycle
JP2008249209A (en) Refrigerating device
KR101204105B1 (en) Refrigeration device
JP4442237B2 (en) Air conditioner
JP4971877B2 (en) Refrigeration cycle
JP4952830B2 (en) Ejector refrigeration cycle
JP2007303709A (en) Refrigerating cycle
JP2007263390A (en) Refrigerating cycle device
JP2008051474A (en) Supercritical refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4776438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees