JP2008051474A - Supercritical refrigerating cycle device - Google Patents

Supercritical refrigerating cycle device Download PDF

Info

Publication number
JP2008051474A
JP2008051474A JP2006231233A JP2006231233A JP2008051474A JP 2008051474 A JP2008051474 A JP 2008051474A JP 2006231233 A JP2006231233 A JP 2006231233A JP 2006231233 A JP2006231233 A JP 2006231233A JP 2008051474 A JP2008051474 A JP 2008051474A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
low
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231233A
Other languages
Japanese (ja)
Inventor
Hiromi Ota
宏已 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006231233A priority Critical patent/JP2008051474A/en
Publication of JP2008051474A publication Critical patent/JP2008051474A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical refrigerating cycle device capable of preventing the fall of a coefficient of performance even under a change in the operating state of an evaporator. <P>SOLUTION: The vapor compression type supercritical refrigerating cycle device wherein high pressure in a refrigerating cycle becomes the critical pressure of a refrigerant or higher, is provided with a plurality of high pressure side branch passages 121, 122 branching off on the refrigerant lower reaches of a radiator 120; a plurality of pressure reducers 131, 132 reducing the pressure of a refrigerant flowing in the plurality of high pressure side branch passages 121, 122; a plurality of evaporators 141, 142 evaporating the refrigerant flowing out of the plurality of pressure reducers 131, 132 to flow out to the compressor 110 side; and a plurality of internal heat exchangers 171, 172 exchanging heat between a high pressure refrigerant flowing from a branch point A of the high pressure side branch passages 121, 122 out of the plurality of high pressure side branch passages 121, 122 to the plurality of pressure reducers 131, 132, and a low pressure refrigerant flowing out of the plurality of evaporators 141, 142. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば二酸化炭素(CO)等のように、高圧側の冷媒圧力が超臨界状態となる冷媒を用い、複数の蒸発器を備える超臨界冷凍サイクル装置に関するものである。 The present invention relates to a supercritical refrigeration cycle apparatus including a plurality of evaporators using a refrigerant whose refrigerant pressure on the high pressure side is in a supercritical state, such as carbon dioxide (CO 2 ).

従来、超臨界冷凍サイクル装置として、例えば特許文献1(特許文献1中の図5)に示されるように、冷媒を臨界圧力を超える圧力まで昇圧可能とする圧縮機と、圧縮機で圧縮された冷媒を冷却する放熱器と、放熱器出口側の冷媒圧力を放熱器出口側の冷媒温度に基づいて決定される所定圧力に制御する膨張装置と、並列に配設されて膨張装置で減圧された冷媒を蒸発させる第1、第2の蒸発器とが環状に接続されてサイクルを形成し、サイクルの途中に、放熱器から膨張装置へ導かれる高圧冷媒と、蒸発器から圧縮機へ導かれる低圧冷媒との間で熱交換する内部熱交換器が設けられたものが知られている。
特開2005‐106318号公報
Conventionally, as a supercritical refrigeration cycle apparatus, for example, as shown in Patent Document 1 (FIG. 5 in Patent Document 1), a compressor capable of increasing the pressure of the refrigerant to a pressure exceeding the critical pressure, and the compressor compressed by the compressor A radiator that cools the refrigerant, an expansion device that controls the refrigerant pressure on the radiator outlet side to a predetermined pressure that is determined based on the refrigerant temperature on the radiator outlet side, and a decompressor that is disposed in parallel and decompressed by the expansion device The first and second evaporators that evaporate the refrigerant are connected in a ring to form a cycle, and in the middle of the cycle, a high-pressure refrigerant that is led from the radiator to the expansion device, and a low-pressure that is led from the evaporator to the compressor A device provided with an internal heat exchanger for exchanging heat with a refrigerant is known.
JP-A-2005-106318

しかしながら、上記のような超臨界冷凍サイクル装置においては、以下のような問題がある。   However, the supercritical refrigeration cycle apparatus as described above has the following problems.

複数の蒸発器を有する場合では、冷媒が流れている蒸発器の数により冷媒流量が大きく変わるため、内部熱交換器での熱交換量や、圧縮機吐出後の吐出温度が変化する。   In the case of having a plurality of evaporators, the flow rate of the refrigerant varies greatly depending on the number of evaporators through which the refrigerant flows, so that the heat exchange amount in the internal heat exchanger and the discharge temperature after discharge of the compressor change.

例えば、高圧圧力が同一であれば、複数の蒸発器に冷媒を流している場合に比べて、一つの蒸発器に冷媒を流している場合は、蒸発器での冷媒蒸発量が少ないため、圧縮機の吸入圧力が低くなり冷媒流量も少ない。このため、放熱器の出口冷媒温度(=内部熱交換器の高圧側入口冷媒温度)と、内部熱交換器の低圧側入口冷媒温度との温度差が大きくなり、また、冷媒流量は少ないために、内部熱交換器による圧縮機の吸入冷媒の過熱度が大きくなり、圧縮機吐出後の吐出温度も高くなってしまう。   For example, if the high pressure is the same, when the refrigerant is flowing through one evaporator, the amount of refrigerant evaporated in the evaporator is small compared to when the refrigerant is flowing through multiple evaporators. The suction pressure of the machine is low and the refrigerant flow rate is low. For this reason, the temperature difference between the outlet refrigerant temperature of the radiator (= high-pressure inlet refrigerant temperature of the internal heat exchanger) and the low-pressure inlet refrigerant temperature of the internal heat exchanger is large, and the refrigerant flow rate is small. The degree of superheat of the refrigerant sucked into the compressor by the internal heat exchanger increases, and the discharge temperature after discharge from the compressor also increases.

逆に、複数の蒸発器に冷媒を流している場合は、蒸発器での冷媒蒸発量が多くなり、圧縮機の吸入圧力が高くなり冷媒流量も増加する。このため、放熱器の出口冷媒温度(=内部熱交換器の高圧側入口冷媒温度)と、内部熱交換器の低圧側入口冷媒温度との温度差が小さくなり、また、冷媒流量も多いため、圧縮機の吸入冷媒の過熱度が小さくなり、圧縮機吐出後の吐出温度が低くなってしまう。   Conversely, when the refrigerant is flowing through a plurality of evaporators, the amount of refrigerant evaporated in the evaporators increases, the suction pressure of the compressor increases, and the refrigerant flow rate increases. For this reason, the temperature difference between the outlet refrigerant temperature of the radiator (= high-pressure inlet refrigerant temperature of the internal heat exchanger) and the low-pressure inlet refrigerant temperature of the internal heat exchanger is small, and the refrigerant flow rate is also large. The degree of superheat of the refrigerant sucked by the compressor becomes small, and the discharge temperature after discharge from the compressor becomes low.

超臨界冷凍サイクル装置においては、内部熱交換器の性能(熱交換量)を大きくして圧縮機の吸入冷媒の過熱度を高くすると成績係数(COP)も向上するが、冷媒の吐出温度は、高圧部品の許容温度以下にする必要がある。内部熱交換器の性能は、吐出温度が許容温度を超えないように吐出温度が最も高くなる、一つの蒸発器に冷媒を流している条件で決める必要があるが、複数の蒸発器に冷媒を流している場合には、上記のように圧縮機の吸入冷媒の過熱度が小さくなり、吐出温度が低くなってしまう。このため、吐出温度の許容上限温度で作動させた場合に比較してCOPが低い状態で運転されてしまう。   In the supercritical refrigeration cycle apparatus, the coefficient of performance (COP) is improved when the superheat degree of the refrigerant sucked into the compressor is increased by increasing the performance (heat exchange amount) of the internal heat exchanger, but the refrigerant discharge temperature is It must be below the allowable temperature of high-pressure parts. The performance of the internal heat exchanger must be determined based on the condition that the discharge temperature is the highest so that the discharge temperature does not exceed the allowable temperature, and the refrigerant is flowing through one evaporator. When flowing, the degree of superheat of the refrigerant sucked in the compressor becomes small as described above, and the discharge temperature becomes low. For this reason, it will drive | operate in the state where COP is low compared with the case where it operates by the allowable upper limit temperature of discharge temperature.

本発明の目的は、上記問題に鑑み、蒸発器の運転状態の変化に対しても成績係数(COP)の低下を防止可能とする超臨界冷凍サイクル装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a supercritical refrigeration cycle apparatus that can prevent a decrease in coefficient of performance (COP) even when the operating state of an evaporator changes.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、冷凍サイクル内における高圧圧力が冷媒の臨界圧以上になる蒸気圧縮式の超臨界冷凍サイクル装置において、冷媒を吸入して圧縮する圧縮機(110)と、圧縮機(110)から吐出される冷媒の放熱を行う放熱器(120)と、放熱器(120)の冷媒下流側で分岐する複数の高圧側分岐流路(121、122)と、複数の高圧側分岐流路(121、122)を流れる冷媒をそれぞれ減圧する複数の減圧器(131、132)と、複数の減圧器(131、132)から流出される冷媒をそれぞれ蒸発させて圧縮機(110)側に流出させる複数の蒸発器(141、142)と、複数の高圧側分岐流路(121、122)のうち、高圧側分岐流路(121、122)の分岐点(A)から複数の減圧器(131、132)までのそれぞれの間を流れる高圧冷媒と複数の蒸発器(141、142)から流出される低圧冷媒との間で熱交換する複数の内部熱交換器(171、172)とを備えることを特徴としている。   According to the first aspect of the present invention, in the vapor compression supercritical refrigeration cycle apparatus in which the high pressure in the refrigeration cycle is equal to or higher than the critical pressure of the refrigerant, the compressor (110) that sucks and compresses the refrigerant, and the compressor A radiator (120) that radiates the refrigerant discharged from (110), a plurality of high-pressure side branch channels (121, 122) that branch on the refrigerant downstream side of the radiator (120), and a plurality of high-pressure side branches A plurality of decompressors (131, 132) for decompressing the refrigerant flowing through the flow paths (121, 122), respectively, and a refrigerant flowing out from the plurality of decompressors (131, 132) are evaporated to compress (110) side. Among the plurality of evaporators (141, 142) that flow out to the bottom and the plurality of high-pressure side branch channels (121, 122), a plurality of decompressors from the branch point (A) of the high-pressure side branch channel (121, 122) (131, 1 2) including a plurality of internal heat exchangers (171, 172) for exchanging heat between the high-pressure refrigerant flowing between each of up to 2) and the low-pressure refrigerant flowing out from the plurality of evaporators (141, 142). It is a feature.

これにより、複数の蒸発器(141、142)のそれぞれに対応するように複数の内部熱交換器(171、172)を配設した形で作動させることができるので、複数の蒸発器(141、142)の運転状態(冷媒を流している蒸発器(141、142)の数)によらず、圧縮機(110)の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルの成績係数(COP)が低下してしまうのを防止することができる。   Accordingly, since the plurality of internal heat exchangers (171, 172) can be operated so as to correspond to each of the plurality of evaporators (141, 142), the plurality of evaporators (141, 142) can be operated. 142), regardless of the operation state (the number of evaporators (141, 142) in which the refrigerant is flowing), the refrigerant sucked into the compressor (110) can always have a stable degree of superheat, and the refrigeration cycle The coefficient of performance (COP) can be prevented from decreasing.

上記請求項1に記載の発明において、請求項2に記載の発明のように、複数の蒸発器(141、142)からそれぞれ流出される冷媒を集合させて、気液分離する気液分離器(150)と、気液分離器(150)の冷媒下流側で分岐して、再び圧縮機(110)に合流する複数の低圧側分岐流路(161、162)とを設けて、複数の内部熱交換器(171、172)で熱交換される低圧冷媒として、複数の低圧側分岐流路(161、162)をそれぞれ流れる冷媒とすることができる。   In the first aspect of the present invention, as in the second aspect of the present invention, a gas-liquid separator that collects the refrigerants flowing out from the plurality of evaporators (141, 142) and separates them into a gas-liquid separator ( 150) and a plurality of low-pressure side branch flow paths (161, 162) branched at the refrigerant downstream side of the gas-liquid separator (150) and joined again to the compressor (110) to provide a plurality of internal heat The low-pressure refrigerant that exchanges heat with the exchangers (171, 172) can be refrigerants that respectively flow through the plurality of low-pressure side branch channels (161, 162).

また、請求項1に記載の発明において、請求項3に記載の発明のように、複数の蒸発器(141、142)からそれぞれ流出される冷媒を集合させて圧縮機(110)に流入させる低圧側集合流路(163)を設けて、複数の内部熱交換器(171、172)で熱交換される低圧冷媒として、低圧側集合流路(163)を順次流れる冷媒としても良い。   Further, in the first aspect of the invention, as in the third aspect of the invention, the low pressures that collect the refrigerants respectively flowing out from the plurality of evaporators (141, 142) and flow into the compressor (110). It is good also as a refrigerant | coolant which provides a side aggregate flow path (163) and flows through a low pressure side collective flow path (163) sequentially as a low pressure refrigerant | coolant heat-exchanged with a some internal heat exchanger (171,172).

また、請求項1に記載の発明において、請求項4に記載の発明のように、複数の蒸発器(141、142)からそれぞれ流出される冷媒を集合させて圧縮機(110)に流入させる低圧側集合流路(163)を設け、複数の内部熱交換器(171、172)は、高圧冷媒が流通する複数の高圧流路(171a、172a)と、低圧冷媒が流通する一つの低圧流路(171b)とを一体的に備えるようにして、低圧流路(171b)に低圧側集合流路(163)を流れる冷媒が流通するようにしても良い。   Further, in the first aspect of the invention, as in the fourth aspect of the invention, the low pressure that collects the refrigerants flowing out from the plurality of evaporators (141, 142) and flows into the compressor (110). A side collective channel (163) is provided, and the plurality of internal heat exchangers (171, 172) are a plurality of high-pressure channels (171a, 172a) through which high-pressure refrigerant flows, and one low-pressure channel through which low-pressure refrigerant flows. (171b) may be integrally provided so that the refrigerant flowing through the low-pressure channel (163) flows through the low-pressure channel (171b).

そして、請求項4に記載の内部熱交換器(171、172)は、請求項5に記載の発明のように、一つの低圧流路(171b)の周囲を、複数の高圧流路(171a、172a)が囲むように、あるいは、一つの低圧流路(171b)に複数の高圧流路(171a、172a)が並べられて形成されるものとすることができる。   And, the internal heat exchanger (171, 172) according to claim 4 has a plurality of high-pressure channels (171a, 171b) around one low-pressure channel (171b) as in the invention according to claim 5. 172a) or a plurality of high-pressure channels (171a, 172a) arranged side by side in one low-pressure channel (171b).

また、請求項6に記載の発明では、冷凍サイクル内における高圧圧力が冷媒の臨界圧以上になる蒸気圧縮式の超臨界冷凍サイクル装置において、冷媒を吸入して圧縮する圧縮機(110)と、圧縮機(110)から吐出される冷媒の放熱を行う放熱器(120)と、放熱器(120)から流出される冷媒を減圧する減圧器(131)と、減圧器(131)の冷媒下流側で分岐する複数の低圧側分岐流路(121b、122b)と、複数の低圧側分岐流路(121b、122b)を流れる冷媒をそれぞれ蒸発させて圧縮機(110)側に流出させる複数の蒸発器(141、142)と、放熱器(120)から減圧器(131)までの間を流れる高圧冷媒と複数の蒸発器(141、142)から流出される低圧冷媒との間で熱交換する複数の内部熱交換器(171、172)とを備え、複数の内部熱交換器(171、172)は、低圧冷媒が流通する複数の低圧流路(171b,172b)と、高圧冷媒が流通する一つの高圧流路(171a)とを一体的に備えることを特徴としている。   Further, in the invention according to claim 6, in the vapor compression supercritical refrigeration cycle apparatus in which the high pressure in the refrigeration cycle is equal to or higher than the critical pressure of the refrigerant, a compressor (110) that sucks and compresses the refrigerant; A radiator (120) that radiates the refrigerant discharged from the compressor (110), a decompressor (131) that decompresses the refrigerant that flows out of the radiator (120), and a refrigerant downstream side of the decompressor (131) And a plurality of evaporators that evaporate the refrigerant flowing through the plurality of low-pressure side branch flow paths (121b, 122b) and the plurality of low-pressure side branch flow paths (121b, 122b) and flow out to the compressor (110) side. (141, 142) and a plurality of high-pressure refrigerants flowing between the radiator (120) and the decompressor (131) and a plurality of low-pressure refrigerants flowing out from the plurality of evaporators (141, 142). internal And a plurality of internal heat exchangers (171, 172), a plurality of low-pressure channels (171b, 172b) through which the low-pressure refrigerant flows, and a single high-pressure flow through which the high-pressure refrigerant flows. The road (171a) is integrally provided.

これにより、請求項4に記載の発明に対して、減圧器(131)の使用数を削減して、また、複数の高圧側分岐流路(121、122)の設定を不要として、複数の蒸発器(141、142)の運転状態(冷媒を流している蒸発器(141、142)の数)によらず、圧縮機(110)の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルの成績係数(COP)が低下してしまうのを防止することができる。   Thereby, with respect to the invention described in claim 4, the number of decompressors (131) used is reduced, and the setting of the plurality of high-pressure side branch channels (121, 122) is unnecessary, and a plurality of evaporations are performed. Regardless of the operation state of the compressors (141, 142) (the number of evaporators (141, 142) in which the refrigerant is flowing), the refrigerant sucked into the compressor (110) can always have a stable degree of superheat. It is possible to prevent the coefficient of performance (COP) of the refrigeration cycle from being lowered.

請求項6に記載の発明における内部熱交換器(171、172)は、請求項7に記載の発明のように、一つの高圧流路(171a)の周囲を、複数の低圧流路(171b、172b)が囲むように、あるいは、一つの高圧流路(171a)に複数の低圧流路(171b、172b)が並べられて形成されるものとすることができる。   The internal heat exchangers (171, 172) in the invention described in claim 6 are, as in the invention described in claim 7, a plurality of low-pressure channels (171b, 171b) around one high-pressure channel (171a). 172b) or a plurality of low-pressure channels (171b, 172b) arranged in one high-pressure channel (171a).

請求項1に記載の発明において、請求項8に記載の発明のように、複数の蒸発器(141、142)から流出される冷媒は、それぞれ圧縮機(110)側で合流するようにして、複数の内部熱交換器(171、172)のそれぞれにおける高圧冷媒および低圧冷媒は、複数の蒸発器(141、142)のそれぞれにおける高圧冷媒および低圧冷媒が対応するように形成することができる。   In the invention described in claim 1, as in the invention described in claim 8, the refrigerants flowing out from the plurality of evaporators (141, 142) are combined on the compressor (110) side, respectively. The high-pressure refrigerant and low-pressure refrigerant in each of the plurality of internal heat exchangers (171, 172) can be formed so that the high-pressure refrigerant and low-pressure refrigerant in each of the plurality of evaporators (141, 142) correspond to each other.

請求項9に記載の発明では、複数の蒸発器(141、142)のうち、少なくも一つの蒸発器(141)の冷媒下流側に、冷媒の気液を分離する気液分離器(150)が設けられたことを特徴としている。   In the invention according to claim 9, the gas-liquid separator (150) for separating the gas-liquid of the refrigerant to the downstream side of the refrigerant of at least one of the evaporators (141, 142). Is featured.

これにより、圧縮機(110)に対する液相冷媒の流出を無くすことができるので、圧縮機(110)における液圧縮を確実に防止することができる。   Thereby, since the outflow of the liquid-phase refrigerant with respect to a compressor (110) can be eliminated, the liquid compression in a compressor (110) can be prevented reliably.

請求項10に記載の発明では、内部熱交換器(171、172)の熱交換後の低圧冷媒の過熱度が、減圧器(132)によって所定値となるように制御されるようにしたことを特徴としている。   In the invention described in claim 10, the degree of superheat of the low-pressure refrigerant after heat exchange of the internal heat exchangers (171, 172) is controlled to be a predetermined value by the pressure reducer (132). It is a feature.

これにより、蒸発器(141、142)の冷媒出口部における過熱度を小さくすることができるので、蒸発器(141、142)における冷房性能を向上させることができると共に、吹出し温度の分布を低減することができる。更に、圧縮機(110)に吸入される冷媒の過熱度を直接的に制御できるので、複数の蒸発器(141、142)の運転状態の違いによる成績係数(COP)のバラツキを小さくすることができる。   Thereby, since the superheat degree in the refrigerant | coolant exit part of an evaporator (141, 142) can be made small, while being able to improve the cooling performance in an evaporator (141, 142), distribution of blowing temperature is reduced. be able to. Further, since the superheat degree of the refrigerant sucked into the compressor (110) can be directly controlled, it is possible to reduce the variation in the coefficient of performance (COP) due to the difference in the operation state of the plurality of evaporators (141, 142). it can.

請求項10に記載の発明における減圧器(132)は、請求項11に記載の発明のように、熱交換後の低圧冷媒の過熱度に応じて、弁開度を調節して冷媒の減圧をする機械式の制御弁(132)とすることができる。   According to the tenth aspect of the present invention, the decompressor (132) adjusts the valve opening degree according to the degree of superheat of the low-pressure refrigerant after the heat exchange, as in the case of the eleventh aspect. A mechanical control valve (132).

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について、図1を用いて説明する。本実施形態に係る超臨界冷凍サイクル装置(以下、冷凍サイクル装置)100は、複数の蒸発器141、142を備えた蒸気圧縮式の冷凍サイクル装置であり、その一例として自動車などに用いられるデュアルタイプの車両用空調装置に適用したものを説明する。また、この冷凍サイクル装置100では、冷媒としては二酸化炭素(CO)を用いており、高圧圧力が臨界圧力以上となる超臨界冷凍サイクルとなっている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. A supercritical refrigeration cycle apparatus (hereinafter referred to as a refrigeration cycle apparatus) 100 according to the present embodiment is a vapor compression refrigeration cycle apparatus including a plurality of evaporators 141 and 142, and a dual type used for an automobile or the like as an example. What is applied to the vehicle air conditioner will be described. Further, in the refrigeration cycle apparatus 100, carbon dioxide (CO 2 ) is used as the refrigerant, and a supercritical refrigeration cycle in which the high pressure is equal to or higher than the critical pressure is achieved.

冷凍サイクル装置100は、図1に示すように、圧縮機110、放熱器120、膨張弁131、132、蒸発器141、142、アキュムレータ150、内部熱交換器171、172等が順次接続されて構成されている。   As shown in FIG. 1, the refrigeration cycle apparatus 100 is configured by sequentially connecting a compressor 110, a radiator 120, expansion valves 131 and 132, evaporators 141 and 142, an accumulator 150, internal heat exchangers 171 and 172, and the like. Has been.

圧縮機110は、冷媒を吸入圧縮して、高温高圧冷媒として後述する放熱器120側に吐出する流体機械であり、図示しない制御装置(ECU)によってその作動が制御される。冷媒は、圧縮機110によって臨界圧力以上となるように圧縮される。尚、圧縮機110としては、一回転当たりの吐出容量を変更可能として吐出量を調整する可変容量型のものや、一回転当たりの吐出容量は所定値に固定されているが、ON−OFF作動による作動比率によって吐出量を調整する固定容量型のもの等が使用される。   The compressor 110 is a fluid machine that sucks and compresses refrigerant and discharges the refrigerant as a high-temperature and high-pressure refrigerant to the radiator 120 described later, and its operation is controlled by a control device (ECU) (not shown). The refrigerant is compressed by the compressor 110 so as to be equal to or higher than the critical pressure. The compressor 110 may be a variable displacement type that adjusts the discharge amount so that the discharge capacity per rotation can be changed, or the discharge capacity per rotation is fixed to a predetermined value, but the ON-OFF operation A fixed displacement type that adjusts the discharge amount according to the operation ratio is used.

放熱器120は、上記の圧縮機110から吐出された高温高圧冷媒の放熱を行う高圧側熱交換器である。放熱器120には、送風ファン120aが設けられており、放熱器120は、圧縮機110より吐出された高温高圧冷媒と、送風機120aによる送風空気(あるいは車両の走行時の走行風)との間で熱交換し、冷媒を冷却する。尚、送風ファン120aは、例えば、モータ駆動による電動ファン、エンジン駆動によるエンジンファン、油圧モータ駆動による油圧モータファン等で構成することができる。   The radiator 120 is a high-pressure side heat exchanger that radiates heat of the high-temperature and high-pressure refrigerant discharged from the compressor 110. The radiator 120 is provided with a blower fan 120a, and the radiator 120 is between the high-temperature and high-pressure refrigerant discharged from the compressor 110 and the air blown by the blower 120a (or running wind when the vehicle is running). Heat is exchanged in order to cool the refrigerant. The blower fan 120a can be configured by, for example, an electric fan driven by a motor, an engine fan driven by an engine, a hydraulic motor fan driven by a hydraulic motor, or the like.

放熱器120の冷媒下流側には、Aを分岐点として、第1高圧側分岐流路121と、第2高圧側分岐流路122との2つの流路が形成されている。そして、各高圧側分岐流路121、122の途中には、高圧制御膨張弁131とスーパーヒート膨張弁132とが設けられている。   On the downstream side of the refrigerant of the radiator 120, two flow paths are formed with a first high-pressure side branch flow path 121 and a second high-pressure side branch flow path 122 with A as a branch point. A high-pressure control expansion valve 131 and a superheat expansion valve 132 are provided in the middle of the high-pressure side branch flow paths 121 and 122.

高圧制御膨張弁131は、第1減圧器を成すものであり、ここでは、放熱器120の出口側冷媒温度を感温部で検出し、冷凍サイクルの成績係数(以下、COP)が最適(最大)となる高圧圧力に制御すると共に、後述する第1蒸発器141に向けて冷媒を減圧膨張させる機械式の膨張弁としている。尚、高圧制御膨張弁131は、上記の機械式の他に、ECUによって電気的に制御される電気式膨張弁としても良い。   The high-pressure control expansion valve 131 constitutes a first pressure reducer. Here, the refrigerant temperature at the outlet side of the radiator 120 is detected by the temperature sensing unit, and the coefficient of performance (hereinafter, COP) of the refrigeration cycle is optimal (maximum). ), And a mechanical expansion valve that decompresses and expands the refrigerant toward the first evaporator 141 described later. The high-pressure control expansion valve 131 may be an electric expansion valve that is electrically controlled by the ECU in addition to the mechanical type described above.

スーパーヒート制御弁132は、第2減圧器を成すものであり、ここでは、後述する第2蒸発器142の出口側冷媒温度と第2蒸発器142内の冷媒圧力を検出して第2蒸発器142の出口側冷媒の過熱度(スーパーヒート量)を所定の過熱度に制御する機械式の膨張弁(機械式の制御弁)としている。スーパーヒート制御弁132は、冷凍サイクル内において高圧制御膨張弁131と並列に配置される関係にある。   The superheat control valve 132 constitutes a second pressure reducer. Here, the outlet side refrigerant temperature of the second evaporator 142 and the refrigerant pressure in the second evaporator 142 are detected to detect the second evaporator. 142 is a mechanical expansion valve (mechanical control valve) that controls the degree of superheat (superheat amount) of the outlet side refrigerant at a predetermined degree of superheat. The superheat control valve 132 has a relationship of being arranged in parallel with the high-pressure control expansion valve 131 in the refrigeration cycle.

第2高圧側分岐流路122において、上記スーパーヒート制御弁132の冷媒上流側には、ECUによって開閉制御される電磁弁122aが設けられている。電磁弁122aは、開閉することによって、放熱器120から流出されて、第2高圧側分岐流路122を流れてきた冷媒が第2蒸発器142側に流入することを許容する場合と、阻止する場合とを切替え自在とする弁である。   In the second high-pressure side branch flow path 122, an electromagnetic valve 122 a that is controlled to be opened and closed by the ECU is provided on the refrigerant upstream side of the superheat control valve 132. The electromagnetic valve 122a opens and closes to block the case where the refrigerant that has flowed out of the radiator 120 and has flowed through the second high-pressure side branch flow path 122 is allowed to flow into the second evaporator 142 side. It is a valve that can switch between cases.

第1蒸発器141は、高圧側制御膨張弁131によって減圧膨張された液冷媒を蒸発させる第1の低圧側熱交換器であり、第1高圧側分岐流路121の高圧側制御膨張弁131の冷媒下流側に接続されている。第1蒸発器141は、第1ブロワ141aによって送風される送風空気から吸熱して液冷媒を蒸発させる。送風空気は、冷媒から熱を奪われて冷却されると共に除湿されて、冷房風として車室内前方側から前部座席の乗員に向けて送風されるようになっている。   The first evaporator 141 is a first low-pressure side heat exchanger that evaporates the liquid refrigerant decompressed and expanded by the high-pressure side control expansion valve 131, and the first evaporator 141 of the high-pressure side control expansion valve 131 of the first high-pressure side branch flow path 121. It is connected to the refrigerant downstream side. The first evaporator 141 absorbs heat from the blown air blown by the first blower 141a and evaporates the liquid refrigerant. The blown air is cooled while deprived of heat from the refrigerant and dehumidified, and is sent as air-conditioning air from the front side of the passenger compartment toward the passenger in the front seat.

第2蒸発器142は、スーパーヒート膨張弁132によって減圧膨張された液冷媒を流出側において所定過熱度を持って蒸発させる第2の低圧側熱交換器であり、第2高圧側分岐流路122のスーパーヒート膨張弁132の冷媒下流側に接続されている。第2蒸発器142は、第2ブロワ141aによって送風される送風空気から吸熱して液冷媒を蒸発させる。送風空気は、冷媒から熱を奪われて冷却されると共に除湿されて、冷房風として車室内後方側から後部座席の乗員に向けて送風されるようになっている。   The second evaporator 142 is a second low-pressure side heat exchanger that evaporates the liquid refrigerant decompressed and expanded by the superheat expansion valve 132 with a predetermined superheat degree on the outflow side. The superheat expansion valve 132 is connected to the refrigerant downstream side. The second evaporator 142 absorbs heat from the blown air blown by the second blower 141a and evaporates the liquid refrigerant. The blown air is cooled while deprived of heat from the refrigerant and dehumidified, and is blown as a cooling wind from the rear side of the passenger compartment toward the passenger in the rear seat.

第1蒸発器141、第2蒸発器142から流出される冷媒は、合流(集合)されてアキュムレータ150に流入されるようになっている。アキュムレータ150は、冷凍サイクル中の余剰冷媒を蓄えると共に、両蒸発器141、142から流入される冷媒を、液相冷媒と気相冷媒とに分離する気液分離器である。アキュムレータ150は、各蒸発器141、142の冷媒下流側と、後述する第1、第2内部熱交換器171、172との間に配置されている。   The refrigerant flowing out from the first evaporator 141 and the second evaporator 142 is merged (collected) and flows into the accumulator 150. The accumulator 150 is a gas-liquid separator that accumulates surplus refrigerant in the refrigeration cycle and separates the refrigerant flowing in from both the evaporators 141 and 142 into a liquid phase refrigerant and a gas phase refrigerant. The accumulator 150 is disposed between the refrigerant downstream sides of the evaporators 141 and 142 and first and second internal heat exchangers 171 and 172 described later.

アキュムレータ150の冷媒下流側には、一端分岐すると共に、再び合流して圧縮機110の吸入側に接続される第1低圧側分岐流路161と第2低圧側分岐流路162との2つの流路が形成されている。   Two flows of the first low-pressure side branch flow path 161 and the second low-pressure side branch flow path 162 that are branched once at the refrigerant downstream of the accumulator 150 and are joined again and connected to the suction side of the compressor 110. A road is formed.

そして、第1高圧側分岐流路121と第1低圧側分岐流路161との間に第1内部熱交換器171が設けられ、また、第2高圧側分岐流路122と第2低圧側分岐流路162との間に第2内部熱交換器172が設けられている。   A first internal heat exchanger 171 is provided between the first high pressure side branch flow path 121 and the first low pressure side branch flow path 161, and the second high pressure side branch flow path 122 and the second low pressure side branch flow path 161 are provided. A second internal heat exchanger 172 is provided between the flow path 162.

第1内部熱交換器171は、第1高圧側分岐流路121を流通する高圧冷媒と、第1低圧側分岐流路161を流通する低圧冷媒との間で熱交換する熱交換器である。第1内部熱交換器171は、高圧冷媒が流れる高圧流路171aと低圧冷媒が流れる低圧流路171bとの2つの流路を備え、両流路171a、172bが近接するように配設された熱交換器として形成されている。   The first internal heat exchanger 171 is a heat exchanger that exchanges heat between the high-pressure refrigerant that flows through the first high-pressure side branch flow path 121 and the low-pressure refrigerant that flows through the first low-pressure side branch flow path 161. The first internal heat exchanger 171 includes two channels, a high-pressure channel 171a through which a high-pressure refrigerant flows and a low-pressure channel 171b through which a low-pressure refrigerant flows, and is disposed so that both the channels 171a and 172b are close to each other. It is formed as a heat exchanger.

また、第2内部熱交換器172は、上記第1内部熱交換器171と同様に、第2高圧側分岐流路122を流通する高圧冷媒と、第2低圧側分岐流路162を流通する低圧冷媒との間で熱交換する熱交換器である。第2内部熱交換器172は、高圧冷媒が流れる高圧流路172aと低圧冷媒が流れる低圧流路172bとの2つの流路を備え、両流路172a、172bが近接するように配設された熱交換器として形成されている。   Similarly to the first internal heat exchanger 171, the second internal heat exchanger 172 has a high-pressure refrigerant flowing through the second high-pressure side branch flow path 122 and a low-pressure flowing through the second low-pressure side branch flow path 162. It is a heat exchanger that exchanges heat with a refrigerant. The second internal heat exchanger 172 includes two flow paths, a high-pressure flow path 172a through which high-pressure refrigerant flows and a low-pressure flow path 172b through which low-pressure refrigerant flows, and is disposed so that both flow paths 172a and 172b are close to each other. It is formed as a heat exchanger.

次に、上記構成に基づく冷凍サイクル装置100の作動について説明する。   Next, the operation of the refrigeration cycle apparatus 100 based on the above configuration will be described.

まず、第1、第2蒸発器141、142を共に作動させる場合は、図示しないECUによって電磁弁122aが開かれる。   First, when both the first and second evaporators 141 and 142 are operated, the electromagnetic valve 122a is opened by an ECU (not shown).

圧縮機110の作動によって冷媒は高温高圧に圧縮されて放熱器120に吐出される。放熱器120は、送風ファン120aによる送風空気によって冷媒を冷却する。放熱器120から流出される冷媒は、分岐点Aにおいて第1高圧側分岐流路121と、第2高圧側分岐流路122とに分かれて流れる。第1高圧側分岐流路121を流通する高圧冷媒は、第1内部熱交換器171の高圧流路171aを経て、高圧制御膨張弁131によって高圧圧力が所定圧力に維持されつつ、減圧膨張されて第1蒸発器141に至る。   The refrigerant is compressed to a high temperature and a high pressure by the operation of the compressor 110 and discharged to the radiator 120. The radiator 120 cools the refrigerant by the air blown by the blower fan 120a. The refrigerant flowing out of the radiator 120 flows into the first high pressure side branch flow path 121 and the second high pressure side branch flow path 122 at the branch point A. The high-pressure refrigerant flowing through the first high-pressure side branch channel 121 passes through the high-pressure channel 171a of the first internal heat exchanger 171 and is decompressed and expanded while maintaining the high pressure at a predetermined pressure by the high-pressure control expansion valve 131. It reaches the first evaporator 141.

また、分岐点Aから第2高圧側分岐流路122を流通する高圧冷媒は、第2内部熱交換器172の高圧流路172a、電磁弁122aを経て、スーパーヒート膨張弁132によって減圧膨張されて第2蒸発器142に至る。   The high-pressure refrigerant flowing from the branch point A through the second high-pressure side branch flow path 122 is decompressed and expanded by the superheat expansion valve 132 via the high-pressure flow path 172a and the electromagnetic valve 122a of the second internal heat exchanger 172. It reaches the second evaporator 142.

各蒸発器141、142は、第1、第2ブロワ141a、142aからの送風空気から吸熱して、低圧冷媒を蒸発させると共に、その時の蒸発潜熱によって送風空気を冷却する。第2蒸発器142においては、スーパーヒート膨張弁132によって、出口側冷媒の過熱度が所定過熱度に維持される。   Each evaporator 141, 142 absorbs heat from the blown air from the first and second blowers 141a, 142a, evaporates the low-pressure refrigerant, and cools the blown air with latent heat of vaporization at that time. In the second evaporator 142, the superheat expansion valve 132 maintains the degree of superheat of the outlet side refrigerant at a predetermined degree of superheat.

そして、各蒸発器141、142から流出された低圧冷媒は、アキュムレータ150で気液分離されて、気相冷媒が流出されて第1低圧側分岐流路161、第2低圧側分岐流路162を流れる。   The low-pressure refrigerant that has flowed out of each of the evaporators 141 and 142 is gas-liquid separated by the accumulator 150, and the gas-phase refrigerant is discharged to flow through the first low-pressure side branching channel 161 and the second low-pressure side branching channel 162. Flowing.

第1内部熱交換器171において、第1高圧側分岐流路121から高圧流路171aに流入する高圧冷媒と、第1低圧側分岐流路161から低圧流路171bに流入する低圧冷媒とが流れる。高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。そして、冷却された高圧冷媒は高圧制御膨張弁131に至り、過熱された低圧冷媒は圧縮機110に吸入される。   In the first internal heat exchanger 171, the high-pressure refrigerant flowing from the first high-pressure side branch flow path 121 to the high-pressure flow path 171a and the low-pressure refrigerant flowing from the first low-pressure side branch flow path 161 to the low-pressure flow path 171b flow. . The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. The cooled high-pressure refrigerant reaches the high-pressure control expansion valve 131, and the overheated low-pressure refrigerant is sucked into the compressor 110.

また、第2内部熱交換器172において、第2高圧側分岐流路122から高圧流路172aに流入する高圧冷媒と、第2低圧側分岐流路162から低圧流路172bに流入する低圧冷媒とが流れる。高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。そして、冷却された高圧冷媒は電磁弁122aを経てスーパーヒート膨張弁132に至り、過熱された低圧冷媒は圧縮機110に吸入される。   In the second internal heat exchanger 172, high-pressure refrigerant that flows from the second high-pressure side branch flow path 122 to the high-pressure flow path 172a, and low-pressure refrigerant that flows from the second low-pressure side branch flow path 162 to the low-pressure flow path 172b Flows. The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. Then, the cooled high-pressure refrigerant reaches the superheat expansion valve 132 through the electromagnetic valve 122a, and the overheated low-pressure refrigerant is sucked into the compressor 110.

次に、第1蒸発器141を作動させて、第2蒸発器142は作動させない場合は、図示しないECUによって電磁弁122aが閉じられる。この時は、放熱器120から流出されて第2高圧側分岐流路122に流入した冷媒は、電磁弁122aによって停止され、第2内部熱交換器172の高圧流路172a、および第2蒸発器142での冷媒流れが阻止される。   Next, when the first evaporator 141 is operated and the second evaporator 142 is not operated, the electromagnetic valve 122a is closed by an ECU (not shown). At this time, the refrigerant flowing out of the radiator 120 and flowing into the second high-pressure side branch flow path 122 is stopped by the electromagnetic valve 122a, and the high-pressure flow path 172a of the second internal heat exchanger 172 and the second evaporator. The refrigerant flow at 142 is blocked.

よって、放熱器120から流出された冷媒は、第1高圧側分岐流路121を流通して、第1蒸発器141で蒸発され、アキュムレータ150を経て、第1、第2低圧側分岐流路161、162を流れ、圧縮機110に戻る。つまり、第1内部熱交換器171、第1蒸発器141が作状態となり、第2蒸発器142は非作動状態となる。   Therefore, the refrigerant that has flowed out of the radiator 120 flows through the first high-pressure side branch flow path 121, is evaporated by the first evaporator 141, passes through the accumulator 150, and passes through the first and second low-pressure side branch flow paths 161. , 162 and return to the compressor 110. That is, the 1st internal heat exchanger 171 and the 1st evaporator 141 will be in an operation state, and the 2nd evaporator 142 will be in a non-operating state.

このように、本実施形態では、2つの蒸発器141、142に対応するように各高圧側分岐流路121、122、各低圧側分岐流路161、162を設けると共に、それぞれの分岐流路121、122、161、162を流通する冷媒間の熱交換を行なう2つの内部熱交換器171、172を設けるようにしている。これにより、2つの蒸発器141、142のそれぞれに対応するように2つの内部熱交換器171、172を作動させることができるので、2つの蒸発器141、142の運転状態(冷媒を流している蒸発器141、142の数)によらず、圧縮機110の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルのCOPが低下してしまうのを防止することができる。   As described above, in the present embodiment, the high-pressure branch channels 121 and 122 and the low-pressure branch channels 161 and 162 are provided so as to correspond to the two evaporators 141 and 142, and the branch channels 121 are provided. , 122, 161, 162 are provided with two internal heat exchangers 171, 172 that perform heat exchange between refrigerants. As a result, the two internal heat exchangers 171 and 172 can be operated so as to correspond to the two evaporators 141 and 142, respectively. Therefore, the operating state of the two evaporators 141 and 142 (the refrigerant is flowing). Regardless of the number of evaporators 141 and 142, it is possible to always give a stable degree of superheat to the refrigerant sucked in the compressor 110, and to prevent the COP of the refrigeration cycle from being lowered.

(第2実施形態)
本発明の第2実施形態を図2に示す。第2実施形態は、上記第1実施形態に対して、第1減圧器としての高圧側制御膨張弁131、および第2減圧器としてのスーパーヒート膨張弁132をそれぞれ、所定開度に設定されたオリフィス(固定絞り)131a、132aに変更している。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. In the second embodiment, the high-pressure side control expansion valve 131 serving as the first pressure reducer and the superheat expansion valve 132 serving as the second pressure reducer are respectively set to a predetermined opening with respect to the first embodiment. Orifices (fixed restrictors) 131a and 132a are changed.

また、第1、第2低圧側分岐流路161、162を1つの低圧側集合流路163として形成すると共に、各内部熱交換器171,172の低圧流路171b、172bは、低圧側集合流路163において、アキュムレータ150と圧縮機110との間に直列に接続されるようにして、アキュムレータ150→第2内部熱交換器172→第1内部熱交換器171→圧縮機110の順に冷媒が流れる構成としている。   In addition, the first and second low-pressure side branch channels 161 and 162 are formed as one low-pressure side collective channel 163, and the low-pressure channels 171b and 172b of the internal heat exchangers 171 and 172 are the low-pressure side collective flow. In line 163, the refrigerant flows in the order of accumulator 150 → second internal heat exchanger 172 → first internal heat exchanger 171 → compressor 110 so as to be connected in series between accumulator 150 and compressor 110. It is configured.

これにより、第1、第2減圧器を簡素なものにすることができ、低圧側集合流路163の分岐部、合流部を減らすことができるので、低コストでの対応が可能となる。   As a result, the first and second pressure reducers can be simplified, and the branching section and the joining section of the low-pressure side collecting flow path 163 can be reduced. Therefore, it is possible to cope with the low cost.

尚、第1実施形態に対して、スーパーヒート膨張弁132側のみをオリフィス132aに変更したものとしても良い。   In addition, it is good also as what changed only the superheat expansion valve 132 side into the orifice 132a with respect to 1st Embodiment.

(第3実施形態)
本発明の第3実施形態を図3〜図5に示す。第3実施形態は、上記第1実施形態に対して、第1減圧器としてBox型高圧制御弁131bを用いると共に、冷媒流路を変更して、2つの内部熱交換器171、172を一体的に形成した内部熱交換器171Aとしたものである。
(Third embodiment)
A third embodiment of the present invention is shown in FIGS. The third embodiment integrates the two internal heat exchangers 171 and 172 with respect to the first embodiment by using a box type high pressure control valve 131b as a first pressure reducer and changing the refrigerant flow path. The internal heat exchanger 171A is formed.

Box型高圧制御弁131bは、感温部131cと弁体部131dとが一体的に形成されたものであり、放熱器120から流出される高温高圧冷媒がまず感温部131cを通り、後述する内部熱交換器171A(高圧流路171a)を流通した後に再び弁体部131dを流通するようにしたものである。Box型高圧制御弁131bの感温部131cは、両高圧側分岐流路121、122の分岐点Aの冷媒下流側に設けられている。   The Box-type high-pressure control valve 131b is formed integrally with a temperature sensing part 131c and a valve body part 131d, and the high-temperature and high-pressure refrigerant flowing out from the radiator 120 first passes through the temperature sensing part 131c and will be described later. The valve body 131d is circulated again after flowing through the internal heat exchanger 171A (high-pressure channel 171a). The temperature sensing part 131c of the Box type high pressure control valve 131b is provided on the refrigerant downstream side of the branch point A of both the high pressure side branch flow paths 121 and 122.

尚、感温部131cは、ダイヤフラムを挟む2つの圧力室内を備えるものであり、ダイヤフラムは冷媒温度に応じて発生する2つの圧力室間の圧力バランスによって変位するようになっている。弁体部131は上記ダイヤフラムに接続されており、ダイヤフラムの変位に応じて変位する事で弁開度を変化させるようになっている。   The temperature sensing part 131c includes two pressure chambers sandwiching the diaphragm, and the diaphragm is displaced by a pressure balance between the two pressure chambers generated according to the refrigerant temperature. The valve body 131 is connected to the diaphragm, and the valve opening degree is changed by being displaced according to the displacement of the diaphragm.

冷凍サイクルとしての冷媒流路は、以下のように変更している。即ち、第1蒸発器141の冷媒下流側をアキュムレータ150に接続している。また、第2蒸発器142の冷媒下流側をアキュムレータ150の流出側と合流させて、以下、一つの低圧集合流路163として圧縮機110に接続されるようにしている。   The refrigerant flow path as the refrigeration cycle is changed as follows. That is, the refrigerant downstream side of the first evaporator 141 is connected to the accumulator 150. In addition, the refrigerant downstream side of the second evaporator 142 is joined with the outflow side of the accumulator 150 so as to be connected to the compressor 110 as one low pressure collecting channel 163 hereinafter.

内部熱交換器171Aは、図4、図5に示すように、内管173および外管174を備え、両管173、174が円周方向に並ぶ複数のリブ175によって接続された二重管をベースに形成されるようにしている。二重管の中央部には、外管174の長手方向を仕切る仕切り部176が形成されている。よって、内管173、外管174、仕切り部176によって、内部熱交換器171Aには大きく3つの内部空間が形成されている。1つは、内管173の内部に形成される空間であり、これを低圧流路171bとしている。2つ目、3つ目は、内管173の長手方向において仕切り部176を境にして内管173と外管174との間に形成される空間であり、一方(図4中の右側)を高圧流路171aとし、他方(図4中の左側)を高圧流路172aとしている。即ち、内部熱交換器171Aは、一つの低圧流路171bの長手方向に複数の高圧流路171a、172aが並ぶように形成されている。   As shown in FIGS. 4 and 5, the internal heat exchanger 171A includes an inner tube 173 and an outer tube 174, and a double tube in which both tubes 173 and 174 are connected by a plurality of ribs 175 arranged in the circumferential direction. It is formed on the base. A partition portion 176 that partitions the longitudinal direction of the outer tube 174 is formed at the center of the double tube. Therefore, the inner pipe 173, the outer pipe 174, and the partition portion 176 form three internal spaces in the internal heat exchanger 171A. One is a space formed inside the inner pipe 173, which is used as a low-pressure channel 171b. The second and third are spaces formed between the inner tube 173 and the outer tube 174 with the partition portion 176 as a boundary in the longitudinal direction of the inner tube 173, and one (right side in FIG. 4) is formed. A high pressure channel 171a is provided, and the other (left side in FIG. 4) is a high pressure channel 172a. That is, the internal heat exchanger 171A is formed such that a plurality of high-pressure channels 171a and 172a are arranged in the longitudinal direction of one low-pressure channel 171b.

そして、高圧流路171aの長手方向の両端部側には、この高圧流路171aにそれぞれ連通する高圧流入部177aと高圧流出部177bとが形成されている。また、同様に、高圧流路172aの長手方向の両端部側には、この高圧流路172aにそれぞれ連通する高圧流入部178aと高圧流出部178bとが形成されている。更に、低圧流路171bの長手方向の両端部側には、この内部流路171bにそれぞれ連通する低圧流入部179aと低圧流出部179bとが形成されている。   And the high-pressure inflow part 177a and the high-pressure outflow part 177b which are each connected to this high-pressure channel 171a are formed in the both-ends side of the longitudinal direction of the high-pressure channel 171a. Similarly, a high-pressure inflow portion 178a and a high-pressure outflow portion 178b that respectively communicate with the high-pressure channel 172a are formed on both ends in the longitudinal direction of the high-pressure channel 172a. Furthermore, a low pressure inflow portion 179a and a low pressure outflow portion 179b that respectively communicate with the internal flow channel 171b are formed on both ends in the longitudinal direction of the low pressure flow channel 171b.

高圧流入部177aは放熱器120(Box型高圧制御弁131bの感温部131c側)に接続され、高圧流出部177bは第1蒸発器141(Box型高圧制御弁131bの弁体部131d側)に接続されている。また、高圧流入部178aは放熱器120に接続され、高圧流出部178bはスーパーヒート膨張弁132(第2蒸発器142側)に接続されている。更に、低圧流入部179aはアキュムレータ150に接続され、低圧流出部179bは圧縮機110に接続されている。   The high pressure inflow portion 177a is connected to the radiator 120 (the temperature sensing portion 131c side of the Box type high pressure control valve 131b), and the high pressure outflow portion 177b is the first evaporator 141 (the valve body portion 131d side of the Box type high pressure control valve 131b). It is connected to the. The high pressure inflow portion 178a is connected to the radiator 120, and the high pressure outflow portion 178b is connected to the superheat expansion valve 132 (on the second evaporator 142 side). Further, the low pressure inflow portion 179 a is connected to the accumulator 150, and the low pressure outflow portion 179 b is connected to the compressor 110.

本実施形態では、第1、第2蒸発器141、142を共に作動させる場合(電磁弁122a開の場合)は、内部熱交換器171Aにおいて、第1高圧側分岐流路121から高圧流路171aに高圧冷媒が流入し、また、第2高圧側分岐流路122から高圧流路172aに高圧冷媒が流入する。更に、低圧側集合流路163から低圧流路171bに低圧冷媒が流入する。そして、高圧流路171a、および高圧流路172aの高圧冷媒と低圧流路171bの低圧冷媒との間で熱交換が成される。つまり、内部熱交換器171Aは、高圧流路171a、172aに対応する2つの独立した熱交換器として機能する。そして、高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。冷却された高圧冷媒はBox型高圧制御弁131b、スーパーヒート膨張弁132に至り、過熱された低圧冷媒は圧縮機110に吸入される。   In the present embodiment, when both the first and second evaporators 141 and 142 are operated (when the electromagnetic valve 122a is opened), the internal heat exchanger 171A has the first high-pressure side branch channel 121 to the high-pressure channel 171a. The high-pressure refrigerant flows into the high-pressure flow path 172a from the second high-pressure side branch flow path 122. Further, the low-pressure refrigerant flows from the low-pressure side collecting channel 163 into the low-pressure channel 171b. Then, heat exchange is performed between the high-pressure refrigerant in the high-pressure channel 171a and the high-pressure channel 172a and the low-pressure refrigerant in the low-pressure channel 171b. That is, the internal heat exchanger 171A functions as two independent heat exchangers corresponding to the high-pressure channels 171a and 172a. The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. The cooled high-pressure refrigerant reaches the Box type high-pressure control valve 131b and the superheat expansion valve 132, and the overheated low-pressure refrigerant is sucked into the compressor 110.

次に、第1蒸発器141を作動させて、第2蒸発器142は作動させない場合は、内部熱交換器171Aにおいて、第1高圧側分岐流路121から高圧流路171aに高圧冷媒が流入する。更に、第1蒸発器141を通過した分の冷媒が、低圧側集合流路163から低圧流路171bに流入する。そして、高圧流路171aの高圧冷媒と低圧流路171bの低圧冷媒との間で熱交換が成される。高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。冷却された高圧冷媒はBox型高圧制御弁131bに至り、過熱された低圧冷媒は圧縮機110に吸入される。   Next, when the first evaporator 141 is operated and the second evaporator 142 is not operated, the high-pressure refrigerant flows from the first high-pressure side branch channel 121 to the high-pressure channel 171a in the internal heat exchanger 171A. . Further, the refrigerant that has passed through the first evaporator 141 flows from the low-pressure side collective flow path 163 into the low-pressure flow path 171b. Then, heat exchange is performed between the high-pressure refrigerant in the high-pressure channel 171a and the low-pressure refrigerant in the low-pressure channel 171b. The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. The cooled high-pressure refrigerant reaches the Box type high-pressure control valve 131b, and the overheated low-pressure refrigerant is sucked into the compressor 110.

本実施形態も第1実施形態と同様に、2つの蒸発器141、142のそれぞれに対応するように内部熱交換器171Aで熱交換することができるので、2つの蒸発器141、142の運転状態(冷媒を流している蒸発器141、142の数)によらず、圧縮機110の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルのCOPが低下してしまうのを防止することができる。   Similarly to the first embodiment, this embodiment can also exchange heat with the internal heat exchanger 171A so as to correspond to each of the two evaporators 141 and 142. Therefore, the operating state of the two evaporators 141 and 142 Regardless of (the number of evaporators 141 and 142 in which refrigerant is flowing), it is possible to always give a stable degree of superheat to the refrigerant sucked in the compressor 110, and the COP of the refrigeration cycle is reduced. Can be prevented.

また、上記第1実施形態に対して、蒸発器141、142の下流側となる冷媒流路を分岐させる必要がなく(低圧側分岐流路161、162を廃止して低圧側集合流路163として形成)、分岐部、合流部を廃止して、シンプルな冷媒配管とすることができる。   Further, it is not necessary to branch the refrigerant flow path downstream of the evaporators 141 and 142 with respect to the first embodiment (the low pressure side branch flow paths 161 and 162 are abolished as the low pressure side collective flow path 163). Formation), the branching section, and the joining section can be abolished to make a simple refrigerant pipe.

また、上記低圧側集合流路163の形成に伴って、内部熱交換器171Aを一体的に構成することができ、内部熱交換器の簡素化、および搭載性を向上させることができる。   In addition, along with the formation of the low-pressure side collective flow path 163, the internal heat exchanger 171A can be integrally configured, and the simplification and mountability of the internal heat exchanger can be improved.

また、第1減圧器としてBox型高圧制御弁131bとしており、高圧制御膨張弁131に対して、シンプルな構成とすることができる。   Further, a Box-type high pressure control valve 131b is used as the first pressure reducer, and a simple configuration can be achieved with respect to the high pressure control expansion valve 131.

尚、Box型高圧制御弁131の感温部131cは、両高圧側分岐流路121、122の分岐点Aの冷媒下流側に設けるようにしたが、分岐点Aの冷媒上流側に設けるようにしても良い。   The temperature sensing part 131c of the Box type high pressure control valve 131 is provided on the refrigerant downstream side of the branch point A of the high pressure side branch passages 121 and 122, but is provided on the refrigerant upstream side of the branch point A. May be.

(第4実施形態)
本発明の第4実施形態を図6、図7に示す。第4実施形態は、上記第3実施形態に対して内部熱交換器171Aの構造を変更して、内部熱交換器171Bとしたものである。
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIGS. 4th Embodiment changes the structure of internal heat exchanger 171A with respect to the said 3rd Embodiment, and is set as internal heat exchanger 171B.

内部熱交換器171Bは、3つの断面扁平状のチューブを重ね合わせることで形成されるようにしている。チューブは、例えば押出し成形によって、内部が複数の空間に区画されたものとなっており、断面扁平状の長辺側の面が互いに接触するように接合されている。3つのチューブのうち、真ん中のチューブが低圧流路171bを形成しており、外側の2つのチューブがそれぞれ高圧流路171a、172aを形成している。即ち、一つの低圧流路171bの周囲が、2つの高圧流路171a、172aによって囲まれるように(ここでは挟まれるように)して形成されている。   The internal heat exchanger 171B is formed by stacking three tubes having a flat cross section. The inside of the tube is partitioned into a plurality of spaces by, for example, extrusion molding, and is joined so that the long side surfaces with a flat cross section are in contact with each other. Of the three tubes, the middle tube forms a low-pressure channel 171b, and the two outer tubes form high-pressure channels 171a and 172a, respectively. That is, the periphery of one low-pressure channel 171b is formed so as to be surrounded by two high-pressure channels 171a and 172a (so as to be sandwiched here).

各チューブの長手方向の端部側には、ジョイントが接合されて、チューブ内部に対する流入部、流出部が形成されている。具体的には、高圧流路171aの一端側に第1高圧流入部177aが形成され、他端側に第1高圧流出部177bが形成されている。また、高圧流路172aの一端側に第2高圧流入部178aが形成され、他端側に第2高圧流出部178bが形成されている。更に、低圧流路171bの一端側に低圧流出部179bが形成され、他端側に低圧流入部179aが形成されている。各流入部177a、178a、179a、各流出部177b、178b、179bの相手側は、上記第3実施形態と同一である。   A joint is joined to an end portion side in the longitudinal direction of each tube to form an inflow portion and an outflow portion with respect to the inside of the tube. Specifically, a first high-pressure inflow portion 177a is formed on one end side of the high-pressure channel 171a, and a first high-pressure outflow portion 177b is formed on the other end side. In addition, a second high-pressure inflow portion 178a is formed on one end side of the high-pressure channel 172a, and a second high-pressure outflow portion 178b is formed on the other end side. Furthermore, a low-pressure outflow portion 179b is formed on one end side of the low-pressure channel 171b, and a low-pressure inflow portion 179a is formed on the other end side. The other side of each inflow portion 177a, 178a, 179a and each outflow portion 177b, 178b, 179b is the same as that in the third embodiment.

第4実施形態の冷凍サイクル装置100の作動は上記第3実施形態と同じであり、これにより、上記第3実施形態と同一の効果を得ることができる。   The operation of the refrigeration cycle apparatus 100 of the fourth embodiment is the same as that of the third embodiment, whereby the same effect as that of the third embodiment can be obtained.

(第5実施形態)
本発明の第5実施形態を図8に示す。第5実施形態は、上記第3実施形態に対して、冷媒流路を変更して、内部熱交換器171Aに代えて内部熱交換器171Bを採用したものである。
(Fifth embodiment)
A fifth embodiment of the present invention is shown in FIG. The fifth embodiment is different from the third embodiment in that the refrigerant flow path is changed and an internal heat exchanger 171B is adopted instead of the internal heat exchanger 171A.

冷凍サイクルとしての冷媒流路は、以下のように変更している。即ち、放熱器120の冷媒下流側を第1、第2高圧側分岐流路121、122に代えて、1つの高圧冷媒流路123としており、高圧冷媒流路123の冷媒下流側に高圧制御膨張弁131を設けている。そして、高圧冷媒流路123における高圧制御膨張弁131の冷媒下流側を、三方流量調整弁124の一つの流路口に接続している。また、三方流量調整弁124の残り2つの流路口には、それぞれ第1低圧側分岐流路121bと第2低圧側分岐流路122bとが接続されるようにしている。第1、第2低圧側分岐流路121b、122bは、冷媒下流側(内部熱交換器171Bと圧縮機110との間)で合流されて、低圧側集合流路163として形成され、低圧側集合流路163の冷媒下流側が圧縮機110の冷媒吸入側に接続されている。   The refrigerant flow path as the refrigeration cycle is changed as follows. That is, the refrigerant downstream side of the radiator 120 is replaced with the first and second high-pressure side branch channels 121 and 122 as one high-pressure refrigerant channel 123, and the high-pressure controlled expansion is performed on the refrigerant downstream side of the high-pressure refrigerant channel 123. A valve 131 is provided. The refrigerant downstream side of the high-pressure control expansion valve 131 in the high-pressure refrigerant flow path 123 is connected to one flow path opening of the three-way flow rate adjustment valve 124. Further, the remaining two flow path ports of the three-way flow control valve 124 are connected to the first low pressure side branch flow path 121b and the second low pressure side branch flow path 122b, respectively. The first and second low-pressure side branch flow paths 121b and 122b are merged on the refrigerant downstream side (between the internal heat exchanger 171B and the compressor 110) to form a low-pressure side collective flow path 163. The refrigerant downstream side of the flow path 163 is connected to the refrigerant suction side of the compressor 110.

尚、三方流量調整弁124は、図示しないECUによって第1、第2低圧側分岐流路121b、122bに対する弁開度が調整される弁であり、この三方流量調整弁124によって、高圧側冷媒流路123から各低圧側分岐流路121b、122bへ流れる冷媒量が調整(分配)されるようになっている。   The three-way flow rate adjustment valve 124 is a valve whose valve opening degree is adjusted with respect to the first and second low-pressure side branch passages 121b and 122b by an ECU (not shown). The amount of refrigerant flowing from the passage 123 to the low-pressure side branch passages 121b and 122b is adjusted (distributed).

第1低圧側分岐流路121bには、第1蒸発器141、アキュムレータ150が順に配設されており、また、第2低圧側分岐流路122bには、第2蒸発器142が配設されている。   A first evaporator 141 and an accumulator 150 are sequentially arranged in the first low pressure side branch flow path 121b, and a second evaporator 142 is arranged in the second low pressure side branch flow path 122b. Yes.

内部熱交換器171Bは、一つの高圧流路171aと、2つの低圧流路171b、172bとを備える熱交換器としており、高圧流路171aを挟むように(囲むように)2つの低圧流路171b、172bが配設されて一体的に形成されている。   The internal heat exchanger 171B is a heat exchanger including one high-pressure channel 171a and two low-pressure channels 171b and 172b, and two low-pressure channels so as to sandwich (enclose) the high-pressure channel 171a. 171b and 172b are disposed and integrally formed.

高圧流路171aには放熱器120から高圧制御膨張弁131の間で高圧冷媒流路123を流れる冷媒が流通し、低圧流路171bには第1蒸発器141→アキュムレータ150から流出して第1低圧側分岐流路121bを流れる冷媒が流通し、低圧流路172bには第2蒸発器142から流出して第2低圧側分岐流路122bを流れる冷媒が流通するようにしている。   The refrigerant flowing through the high-pressure refrigerant channel 123 flows from the radiator 120 to the high-pressure control expansion valve 131 through the high-pressure channel 171a, and flows out from the first evaporator 141 → accumulator 150 into the low-pressure channel 171b. The refrigerant flowing through the low pressure side branch flow path 121b flows, and the refrigerant flowing out of the second evaporator 142 and flowing through the second low pressure side branch flow path 122b flows through the low pressure flow path 172b.

本実施形態では、第1、第2蒸発器141、142を共に作動させる場合は、三方流量調整弁124の弁開度が調整されて、第1、第2蒸発器141、142側が共に開くように、且つ両弁開度の比率が所定値に設定される。圧縮機110から吐出される高温高圧の冷媒は、放熱器120→高圧冷媒流路123→高圧制御膨張弁131→三方流量調整弁124に至る。三方流量調整弁124で冷媒は分配されて、一方は第1蒸発器141→アキュムレータ150(第1低圧側分岐流路121b)を流れ、他方は第2蒸発器142(第2低圧側分岐流路122b)を流れ、低圧側集合流路163で合流して、圧縮機110に吸入される。   In the present embodiment, when both the first and second evaporators 141 and 142 are operated, the valve opening degree of the three-way flow rate adjustment valve 124 is adjusted so that both the first and second evaporators 141 and 142 are opened. In addition, the ratio of both valve openings is set to a predetermined value. The high-temperature and high-pressure refrigerant discharged from the compressor 110 reaches the radiator 120 → the high-pressure refrigerant flow path 123 → the high-pressure control expansion valve 131 → the three-way flow rate adjustment valve 124. The refrigerant is distributed by the three-way flow control valve 124, one flows through the first evaporator 141 → accumulator 150 (first low-pressure side branch flow path 121b), and the other flows through the second evaporator 142 (second low-pressure side branch flow path). 122 b), merged in the low-pressure side collecting flow path 163, and sucked into the compressor 110.

内部熱交換器171Bにおいて、高圧冷媒流路123から高圧流路171aに高圧冷媒が流入する。また、アキュムレータ150(第1蒸発器141)下流側の第1低圧側分岐流路121bから低圧流路171bに低圧冷媒が流入する。更に、第2蒸発器142下流側の第2低圧側分岐流路122bから低圧流路172bに低圧冷媒が流入する。そして、高圧流路171aの高圧冷媒と低圧流路171b、172bの低圧冷媒との間で熱交換が成される。つまり、内部熱交換器171Bは、低圧流路171b、172bに対応する2つの独立した熱交換器として機能する。そして、高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。冷却された高圧冷媒は高圧制御膨張弁131に至り、過熱された低圧冷媒は圧縮機110に吸入される。   In the internal heat exchanger 171B, the high-pressure refrigerant flows from the high-pressure refrigerant channel 123 into the high-pressure channel 171a. Further, the low-pressure refrigerant flows into the low-pressure channel 171b from the first low-pressure side branch channel 121b on the downstream side of the accumulator 150 (first evaporator 141). Further, the low pressure refrigerant flows from the second low pressure side branch flow path 122b downstream of the second evaporator 142 into the low pressure flow path 172b. Then, heat exchange is performed between the high-pressure refrigerant in the high-pressure channel 171a and the low-pressure refrigerant in the low-pressure channels 171b and 172b. That is, the internal heat exchanger 171B functions as two independent heat exchangers corresponding to the low pressure channels 171b and 172b. The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. The cooled high-pressure refrigerant reaches the high-pressure control expansion valve 131, and the overheated low-pressure refrigerant is sucked into the compressor 110.

次に、第1蒸発器141を作動させて、第2蒸発器142は作動させない場合は、三方流量調整弁124の弁開度が調整されて、第2蒸発器142側が閉じられて、第1蒸発器141側が所定の弁開度となるように設定される。つまり、第2低圧側分岐流路122b、第2蒸発器142への冷媒流れが阻止される。   Next, when the first evaporator 141 is operated and the second evaporator 142 is not operated, the valve opening degree of the three-way flow rate adjustment valve 124 is adjusted, the second evaporator 142 side is closed, and the first evaporator 142 is closed. It is set so that the evaporator 141 side has a predetermined valve opening. That is, the refrigerant flow to the second low-pressure side branch flow path 122b and the second evaporator 142 is blocked.

圧縮機110から吐出される高温高圧の冷媒は、放熱器120→高圧冷媒流路123→高圧制御膨張弁131→三方流量調整弁124→第1蒸発器141→アキュムレータ150(第1低圧側分岐流路121b)→低圧側集合流路163を流れ、圧縮機110に吸入される。   The high-temperature and high-pressure refrigerant discharged from the compressor 110 is the radiator 120 → the high-pressure refrigerant flow path 123 → the high-pressure control expansion valve 131 → the three-way flow control valve 124 → the first evaporator 141 → the accumulator 150 (first low-pressure side branch flow) Channel 121 b) → flows through the low-pressure side collecting channel 163 and is sucked into the compressor 110.

内部熱交換器171Bにおいて、高圧冷媒流路123から高圧流路171aに高圧冷媒が流入する。また、アキュムレータ150(第1蒸発器141)下流側の第1低圧側分岐流路121bから低圧流路171bに低圧冷媒が流入する。そして、高圧流路171aの高圧冷媒と低圧流路171bの低圧冷媒との間で熱交換が成される。そして、高圧冷媒は低圧冷媒によって冷却(過冷却)され、また低圧冷媒は高圧冷媒によって過熱される。冷却された高圧冷媒は高圧制御膨張弁131に至り、過熱された低圧冷媒は圧縮機110に吸入される。   In the internal heat exchanger 171B, the high-pressure refrigerant flows from the high-pressure refrigerant channel 123 into the high-pressure channel 171a. Further, the low-pressure refrigerant flows into the low-pressure channel 171b from the first low-pressure side branch channel 121b on the downstream side of the accumulator 150 (first evaporator 141). Then, heat exchange is performed between the high-pressure refrigerant in the high-pressure channel 171a and the low-pressure refrigerant in the low-pressure channel 171b. The high-pressure refrigerant is cooled (supercooled) by the low-pressure refrigerant, and the low-pressure refrigerant is superheated by the high-pressure refrigerant. The cooled high-pressure refrigerant reaches the high-pressure control expansion valve 131, and the overheated low-pressure refrigerant is sucked into the compressor 110.

これにより、第3実施形態と同様に、2つの蒸発器141、142のそれぞれに対応するように内部熱交換器171Bで熱交換することができるので、2つの蒸発器141、142の運転状態(冷媒を流している蒸発器141、142の数)によらず、圧縮機110の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルのCOPが低下してしまうのを防止することができる。   As a result, as in the third embodiment, heat exchange can be performed in the internal heat exchanger 171B so as to correspond to the two evaporators 141 and 142, so that the operating states of the two evaporators 141 and 142 ( Regardless of the number of evaporators 141 and 142 that are flowing refrigerant), the refrigerant sucked into the compressor 110 can always have a stable degree of superheat, and the COP of the refrigeration cycle is prevented from being lowered. can do.

また、第3実施形態に対して、減圧器(131b、132→131)の使用数を削減でき、また、複数の高圧側分岐流路(121、122)の設定を不要として、分岐部を削減して低コストなシステムとすることができる。   Further, compared to the third embodiment, the number of decompressors (131b, 132 → 131) can be reduced, and the setting of a plurality of high-pressure side branch channels (121, 122) is not required, and the number of branch portions is reduced. Thus, a low-cost system can be obtained.

(第6実施形態)
本発明の第6実施形態を図9に示す。第6実施形態は、上記第1実施形態に対して、第1減圧器としてBox型高圧制御弁131b(第3実施形態と同一)を採用し、第2減圧器としてオリフィス132aを採用し、各蒸発器141、142の冷媒下流側の流路を変更して、各内部熱交換器171、172を形成するようにしたものである。
(Sixth embodiment)
A sixth embodiment of the present invention is shown in FIG. The sixth embodiment employs a Box-type high pressure control valve 131b (same as the third embodiment) as a first pressure reducer and an orifice 132a as a second pressure reducer, compared to the first embodiment. The internal heat exchangers 171 and 172 are formed by changing the flow path on the refrigerant downstream side of the evaporators 141 and 142.

各蒸発器141、142の冷媒下流側の流路は、それぞれ圧縮機110に向けて並列で延びており、圧縮機110の手前で合流して接続されている。そして、第1蒸発器141の冷媒下流側と圧縮機110との間には、アキュムレータ150と第1内部熱交換器171とが順に配設されている。また、第2蒸発器142の冷媒下流側と圧縮機110との間には、第2内部熱交換器172が配設されている。   The flow paths on the refrigerant downstream side of the evaporators 141 and 142 respectively extend in parallel toward the compressor 110, and are joined and connected before the compressor 110. And between the refrigerant | coolant downstream side of the 1st evaporator 141, and the compressor 110, the accumulator 150 and the 1st internal heat exchanger 171 are arrange | positioned in order. Further, a second internal heat exchanger 172 is disposed between the refrigerant downstream side of the second evaporator 142 and the compressor 110.

本実施形態では、冷凍サイクル装置100の作動時に、第1蒸発器141に流入される冷媒と、第1蒸発器141から流出される冷媒とによって第1内部熱交換器171で熱交換が行なわれる。また、第2蒸発器142に流入される冷媒と、第2蒸発器142から流出される冷媒とによって第2内部熱交換器172で熱交換が行なわれる。   In the present embodiment, when the refrigeration cycle apparatus 100 is operated, heat is exchanged in the first internal heat exchanger 171 by the refrigerant flowing into the first evaporator 141 and the refrigerant flowing out of the first evaporator 141. . Further, heat exchange is performed in the second internal heat exchanger 172 by the refrigerant flowing into the second evaporator 142 and the refrigerant flowing out of the second evaporator 142.

よって、各蒸発器141、142のそれぞれに完全に対応するように、即ち、それぞれに専用となる2つの内部熱交換器171、172を作動させることができるので、2つの蒸発器141、142の運転状態(冷媒を流している蒸発器141、142の数)によらず、圧縮機110の吸入冷媒に対して常に安定した過熱度を持たせることができ、冷凍サイクルのCOPが低下してしまうのを防止することができる。   Therefore, the two internal heat exchangers 171 and 172 can be operated to completely correspond to each of the evaporators 141 and 142, that is, each of the evaporators 141 and 142 can be operated. Regardless of the operating state (the number of evaporators 141 and 142 in which refrigerant is flowing), the refrigerant sucked in the compressor 110 can always have a stable degree of superheat, and the COP of the refrigeration cycle is reduced. Can be prevented.

また、第2蒸発器142の冷媒下流側流路においては、アキュムレータ150を通らずに直接圧縮機110に接続されるようにしているので、第2内部熱交換器172を車両のエンジンルームに配置する必要がなく、車両の床下や、図10に示すように、第2蒸発器142の近傍に配置することができる。このため、第2内部熱交換器172を狭隘なエンジンルームに配置する必要がなく、搭載性を向上させることができる。   Further, since the refrigerant downstream flow path of the second evaporator 142 is directly connected to the compressor 110 without passing through the accumulator 150, the second internal heat exchanger 172 is disposed in the engine room of the vehicle. There is no need to do this, and it can be arranged under the floor of the vehicle or in the vicinity of the second evaporator 142 as shown in FIG. For this reason, it is not necessary to arrange | position the 2nd internal heat exchanger 172 in a narrow engine room, and mountability can be improved.

また、車両により後席用の冷凍サイクルユニットの有無がある場合も、後席用ユニットの関連機器をエンジンルーム以外にコンパクトに搭載することができるため、エンジンルーム内の変更点を少なくすることができ、搭載設計が容易となる。   Also, even if there is a refrigeration cycle unit for the rear seats depending on the vehicle, the related equipment for the rear seat unit can be mounted compactly in addition to the engine room, so the number of changes in the engine room can be reduced. This makes mounting design easy.

尚、第2内部熱交換器172の冷媒下流側を、アキュムレータ150と第1内部熱交換器171との間に接続するようにしても良い。   The refrigerant downstream side of the second internal heat exchanger 172 may be connected between the accumulator 150 and the first internal heat exchanger 171.

(第7実施形態)
本発明の第7実施形態を図11に示す。第7実施形態は、上記第6実施形態に対して、第1減圧器としてBox型高圧制御弁131bに代えて高圧制御膨張弁131(第1実施形態と同一)を採用し、第2減圧器としてオリフィス132aに代えてスーパーヒート膨張弁132(第1実施形態と同一)を採用したものである。スーパーヒート膨張弁132の感温部は、第2蒸発器142の冷媒下流側と第2内部熱交換器172との間に配置されるようにしている。
(Seventh embodiment)
A seventh embodiment of the present invention is shown in FIG. The seventh embodiment adopts a high pressure control expansion valve 131 (same as the first embodiment) as the first pressure reducer instead of the Box type high pressure control valve 131b, and the second pressure reducer. The superheat expansion valve 132 (same as in the first embodiment) is used instead of the orifice 132a. The temperature sensing part of the superheat expansion valve 132 is arranged between the refrigerant downstream side of the second evaporator 142 and the second internal heat exchanger 172.

本実施形態では、第2蒸発器142の冷媒量変動が大きい場合でも、冷媒量を適切に調整することができる。また、第2蒸発器142の冷媒下流側の過熱度が安定するため、運転状態によるCOPのバラツキも小さくすることができる。   In the present embodiment, the refrigerant amount can be appropriately adjusted even when the refrigerant amount fluctuation of the second evaporator 142 is large. In addition, since the degree of superheat on the downstream side of the refrigerant in the second evaporator 142 is stabilized, the variation in COP due to the operating state can be reduced.

(第8実施形態)
本発明の第8実施形態を図12に示す。第8実施形態は、上記第7実施形態に対して、基本構成は同一とするも、減圧器における感温部の位置を変更したものとしている。
(Eighth embodiment)
FIG. 12 shows an eighth embodiment of the present invention. In the eighth embodiment, the basic configuration is the same as that in the seventh embodiment, but the position of the temperature sensing unit in the decompressor is changed.

即ち、高圧制御膨張弁131の感温部は、合流点Aと第1内部熱交換器171との間に配置している。また、スーパーヒート膨張弁132の感温部は、第2内部熱交換器172の冷媒下流側に配置している。尚、電磁弁122aは、第2高圧側分岐流路122において、第2内部熱交換器172の冷媒上流側に配置している。   That is, the temperature sensing part of the high-pressure control expansion valve 131 is disposed between the junction A and the first internal heat exchanger 171. Further, the temperature sensing part of the superheat expansion valve 132 is disposed on the refrigerant downstream side of the second internal heat exchanger 172. The electromagnetic valve 122 a is disposed on the refrigerant upstream side of the second internal heat exchanger 172 in the second high-pressure side branch flow path 122.

これにより、第2蒸発器の冷媒出口部における過熱度を小さくすることができるので、第2蒸発器142における冷房性能を向上させることができると共に、吹出し温度の分布を低減することができる。更に、圧縮機110に吸入される冷媒(第2内部熱交換器172の出口冷媒)の過熱度を直接的に制御できるので、複数の蒸発器141、142の運転状態の違いによるCOPのバラツキを小さくすることができる。   Thereby, since the superheat degree in the refrigerant | coolant exit part of a 2nd evaporator can be made small, while the cooling performance in the 2nd evaporator 142 can be improved, distribution of blowing temperature can be reduced. Furthermore, since the degree of superheat of the refrigerant sucked into the compressor 110 (the outlet refrigerant of the second internal heat exchanger 172) can be directly controlled, the variation in COP due to the difference in the operating state of the plurality of evaporators 141 and 142 can be reduced. Can be small.

(その他の実施形態)
上記各実施形態においては、冷媒として二酸化炭素を用いた超臨界冷凍サイクルについて説明したが、二酸化炭素の他に、例えば、エチレン、エタン、酸化窒素等の超臨界域で使用される冷媒を用いても良い。
(Other embodiments)
In each of the above embodiments, a supercritical refrigeration cycle using carbon dioxide as a refrigerant has been described. In addition to carbon dioxide, for example, a refrigerant used in a supercritical region such as ethylene, ethane, or nitrogen oxide is used. Also good.

また、各実施形態では、2つの蒸発器141,142、2つの内部熱交換器171、172を備える構成としているが、それぞれ3つ以上の蒸発器、内部熱交換器を備える冷凍サイクル装置にも適用しても良い。例えば、3つの蒸発器を備える装置の場合には、そのうちの1つの蒸発器に流れる冷媒流量を制御する高圧制御膨張弁と、残りの2つの蒸発器に流れる冷媒流量を制御するスーパーヒート膨張弁とを備える構成とすれば良い。   Moreover, in each embodiment, although it is set as the structure provided with the two evaporators 141 and 142 and the two internal heat exchangers 171 and 172, it also exists in the refrigerating cycle apparatus provided with three or more evaporators and an internal heat exchanger, respectively. It may be applied. For example, in the case of an apparatus including three evaporators, a high-pressure control expansion valve that controls the flow rate of refrigerant flowing through one of the evaporators, and a superheat expansion valve that controls the flow rate of refrigerant flowing through the remaining two evaporators And a configuration including

また、各内部熱交換器171、172によって、圧縮機110に吸入される冷媒に過熱度を持たせることができるので、冷凍サイクル中の気液分離器150は廃止したものとしても良い。   In addition, since the internal heat exchangers 171 and 172 can give the superheat degree to the refrigerant sucked into the compressor 110, the gas-liquid separator 150 in the refrigeration cycle may be abolished.

第1実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 1st Embodiment. 第2実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 2nd Embodiment. 第3実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 3rd Embodiment. 図3における内部熱交換器を示す断面図である。It is sectional drawing which shows the internal heat exchanger in FIG. 図4におけるA−A部を示す断面図である。It is sectional drawing which shows the AA part in FIG. 第4実施形態における内部熱交換器を示す外観斜視図である。It is an external appearance perspective view which shows the internal heat exchanger in 4th Embodiment. 図6におけるB−B部を示す断面図である。It is sectional drawing which shows the BB part in FIG. 第5実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 5th Embodiment. 第6実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 6th Embodiment. 図9における超臨界冷凍サイクル装置の車両搭載状態を示す斜視図である。It is a perspective view which shows the vehicle mounting state of the supercritical refrigeration cycle apparatus in FIG. 第7実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 7th Embodiment. 第8実施形態における超臨界冷凍サイクル装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the supercritical refrigeration cycle apparatus in 8th Embodiment.

符号の説明Explanation of symbols

100 超臨界冷凍サイクル装置
110 圧縮機
120 放熱器
121 第1高圧側分岐流路(高圧側分岐流路)
121b 第1低圧側分岐流路(低圧側分岐流路)
122 第2高圧側分岐流路(高圧側分岐流路)
122b 第2低圧側分岐流路(低圧側分岐流路)
131 高圧制御膨張弁(第1減圧器)
132 スーパーヒート膨張弁(第2減圧器、機械式の制御弁)
141 第1蒸発器(蒸発器)
142 第2蒸発器(蒸発器)
150 アキュムレータ(気液分離器)
161 第1低圧側分岐流路(低圧側分岐流路)
162 第2低圧側分岐流路(低圧側分岐流路)
163 低圧側集合流路
171 第1内部熱交換器(内部熱交換器)
171a 高圧流路
171b、172b 低圧流路
172 第2内部熱交換器(内部熱交換器)
100 Supercritical refrigeration cycle apparatus 110 Compressor 120 Radiator 121 First high-pressure side branch flow path (high-pressure side branch flow path)
121b First low pressure side branch flow path (low pressure side branch flow path)
122 2nd high pressure side branch flow path (high pressure side branch flow path)
122b Second low pressure side branch flow path (low pressure side branch flow path)
131 High-pressure control expansion valve (first pressure reducer)
132 Superheat expansion valve (second pressure reducer, mechanical control valve)
141 First evaporator (evaporator)
142 Second evaporator (evaporator)
150 Accumulator (gas-liquid separator)
161 First low pressure side branch flow path (low pressure side branch flow path)
162 Second low pressure side branch flow path (low pressure side branch flow path)
163 Low pressure side collective flow path 171 First internal heat exchanger (internal heat exchanger)
171a High pressure flow path 171b, 172b Low pressure flow path 172 Second internal heat exchanger (internal heat exchanger)

Claims (11)

冷凍サイクル内における高圧圧力が冷媒の臨界圧以上になる蒸気圧縮式の超臨界冷凍サイクル装置であって、
前記冷媒を吸入して圧縮する圧縮機(110)と、
前記圧縮機(110)から吐出される冷媒の放熱を行う放熱器(120)と、
前記放熱器(120)の冷媒下流側で分岐する複数の高圧側分岐流路(121、122)と、
複数の前記高圧側分岐流路(121、122)を流れる冷媒をそれぞれ減圧する複数の減圧器(131、132)と、
複数の前記減圧器(131、132)から流出される冷媒をそれぞれ蒸発させて前記圧縮機(110)側に流出させる複数の蒸発器(141、142)と、
複数の前記高圧側分岐流路(121、122)のうち、前記高圧側分岐流路(121、122)の分岐点(A)から複数の前記減圧器(131、132)までのそれぞれの間を流れる高圧冷媒と複数の前記蒸発器(141、142)から流出される低圧冷媒との間で熱交換する複数の内部熱交換器(171、172)とを備えることを特徴とする超臨界冷凍サイクル装置。
A vapor compression supercritical refrigeration cycle apparatus in which the high pressure in the refrigeration cycle is equal to or higher than the critical pressure of the refrigerant,
A compressor (110) for sucking and compressing the refrigerant;
A radiator (120) for radiating the refrigerant discharged from the compressor (110);
A plurality of high-pressure side branch channels (121, 122) branching on the refrigerant downstream side of the radiator (120);
A plurality of pressure reducers (131, 132) that respectively depressurize the refrigerant flowing through the plurality of high-pressure side branch channels (121, 122);
A plurality of evaporators (141, 142) that evaporate the refrigerant flowing out from the plurality of pressure reducers (131, 132) and flow out to the compressor (110) side;
Among a plurality of the high-pressure side branch flow paths (121, 122), between the branch points (A) of the high-pressure side branch flow paths (121, 122) to the plurality of decompressors (131, 132). A supercritical refrigeration cycle comprising a plurality of internal heat exchangers (171, 172) for exchanging heat between flowing high-pressure refrigerant and low-pressure refrigerant flowing out from the plurality of evaporators (141, 142). apparatus.
複数の前記蒸発器(141、142)からそれぞれ流出される冷媒を集合させて、気液分離する気液分離器(150)と、
前記気液分離器(150)の冷媒下流側で分岐して、再び前記圧縮機(110)に合流する複数の低圧側分岐流路(161、162)とを備え、
複数の前記内部熱交換器(171、172)で熱交換される前記低圧冷媒は、複数の前記低圧側分岐流路(161、162)をそれぞれ流れる冷媒としたことを特徴とする請求項1に記載の超臨界冷凍サイクル装置。
A gas-liquid separator (150) for collecting the refrigerant respectively flowing out from the plurality of evaporators (141, 142) and separating the refrigerant,
A plurality of low-pressure side branch flow paths (161, 162) branched at the refrigerant downstream side of the gas-liquid separator (150) and joined again to the compressor (110),
The low-pressure refrigerant that is heat-exchanged by the plurality of internal heat exchangers (171, 172) is a refrigerant that flows through the plurality of low-pressure side branch channels (161, 162), respectively. The supercritical refrigeration cycle apparatus described.
複数の前記蒸発器(141、142)からそれぞれ流出される冷媒を集合させて前記圧縮機(110)に流入させる低圧側集合流路(163)を備え、
複数の前記内部熱交換器(171、172)で熱交換される前記低圧冷媒は、前記低圧側集合流路(163)を順次流れる冷媒としたことを特徴とする請求項1に記載の超臨界冷凍サイクル装置。
A low-pressure side collective flow path (163) for collecting refrigerant flowing out from the plurality of evaporators (141, 142) and flowing into the compressor (110);
The supercritical fluid according to claim 1, wherein the low-pressure refrigerant heat-exchanged by the plurality of internal heat exchangers (171, 172) is a refrigerant that sequentially flows through the low-pressure side collecting flow path (163). Refrigeration cycle equipment.
複数の前記蒸発器(141、142)からそれぞれ流出される冷媒を集合させて前記圧縮機(110)に流入させる低圧側集合流路(163)を備え、
複数の前記内部熱交換器(171、172)は、前記高圧冷媒が流通する複数の高圧流路(171a、172a)と、前記低圧冷媒が流通する一つの低圧流路(171b)とを一体的に備え、
前記低圧流路(171b)には、前記低圧側集合流路(163)を流れる冷媒が流通することを特徴とする請求項1に記載の超臨界冷凍サイクル装置。
A low-pressure side collective flow path (163) for collecting refrigerant flowing out from the plurality of evaporators (141, 142) and flowing into the compressor (110);
The plurality of internal heat exchangers (171, 172) are integrally formed with a plurality of high-pressure channels (171a, 172a) through which the high-pressure refrigerant flows and one low-pressure channel (171b) through which the low-pressure refrigerant flows. In preparation for
2. The supercritical refrigeration cycle apparatus according to claim 1, wherein a refrigerant flowing through the low pressure side collecting flow path (163) flows through the low pressure flow path (171 b).
前記内部熱交換器(171、172)は、一つの前記低圧流路(171b)の周囲を、複数の前記高圧流路(171a、172a)が囲むように、あるいは、一つの前記低圧流路(171b)に複数の前記高圧流路(171a、172a)が並べられて形成されたことを特徴とする請求項4に記載の超臨界冷凍サイクル装置。   The internal heat exchangers (171 and 172) are arranged so that a plurality of the high-pressure channels (171a and 172a) surround the one low-pressure channel (171b), or one low-pressure channel ( The supercritical refrigeration cycle apparatus according to claim 4, wherein a plurality of the high-pressure flow paths (171a, 172a) are arranged in 171b). 冷凍サイクル内における高圧圧力が冷媒の臨界圧以上になる蒸気圧縮式の超臨界冷凍サイクル装置であって、
前記冷媒を吸入して圧縮する圧縮機(110)と、
前記圧縮機(110)から吐出される冷媒の放熱を行う放熱器(120)と、
前記放熱器(120)から流出される冷媒を減圧する減圧器(131)と、
前記減圧器(131)の冷媒下流側で分岐する複数の低圧側分岐流路(121b、122b)と、
複数の前記低圧側分岐流路(121b、122b)を流れる冷媒をそれぞれ蒸発させて前記圧縮機(110)側に流出させる複数の蒸発器(141、142)と、
前記放熱器(120)から前記減圧器(131)までの間を流れる高圧冷媒と複数の前記蒸発器(141、142)から流出される低圧冷媒との間で熱交換する複数の内部熱交換器(171、172)とを備え、
複数の前記内部熱交換器(171、172)は、前記低圧冷媒が流通する複数の低圧流路(171b,172b)と、前記高圧冷媒が流通する一つの高圧流路(171a)とを一体的に備えることを特徴とする超臨界冷凍サイクル装置。
A vapor compression supercritical refrigeration cycle apparatus in which the high pressure in the refrigeration cycle is equal to or higher than the critical pressure of the refrigerant,
A compressor (110) for sucking and compressing the refrigerant;
A radiator (120) for radiating the refrigerant discharged from the compressor (110);
A decompressor (131) for decompressing the refrigerant flowing out of the radiator (120);
A plurality of low-pressure side branch channels (121b, 122b) branching on the refrigerant downstream side of the pressure reducer (131);
A plurality of evaporators (141, 142) that evaporate the refrigerant flowing through the plurality of low-pressure side branch channels (121b, 122b) and flow out to the compressor (110) side;
A plurality of internal heat exchangers for exchanging heat between the high-pressure refrigerant flowing from the radiator (120) to the decompressor (131) and the low-pressure refrigerant flowing out from the plurality of evaporators (141, 142). (171, 172),
The plurality of internal heat exchangers (171, 172) integrate a plurality of low-pressure channels (171b, 172b) through which the low-pressure refrigerant flows and one high-pressure channel (171a) through which the high-pressure refrigerant flows. A supercritical refrigeration cycle apparatus comprising:
前記内部熱交換器(171、172)は、一つの前記高圧流路(171a)の周囲を、複数の前記低圧流路(171b、172b)が囲むように、あるいは、一つの前記高圧流路(171a)に複数の前記低圧流路(171b、172b)が並べられて形成されたことを特徴とする請求項6に記載の超臨界冷凍サイクル装置。   The internal heat exchangers (171 and 172) are arranged so that a plurality of the low-pressure channels (171b and 172b) surround the one high-pressure channel (171a), or one high-pressure channel ( The supercritical refrigeration cycle apparatus according to claim 6, wherein a plurality of the low-pressure flow paths (171b, 172b) are arranged side by side in 171a). 複数の前記蒸発器(141、142)から流出される冷媒は、それぞれ前記圧縮機(110)側で合流するようになっており、
複数の前記内部熱交換器(171、172)のそれぞれにおける前記高圧冷媒および前記低圧冷媒は、複数の前記蒸発器(141、142)のそれぞれにおける前記高圧冷媒および前記低圧冷媒が対応するように形成されたことを特徴とする請求項1に記載の超臨界冷凍サイクル装置。
Refrigerants flowing out from the plurality of evaporators (141, 142) are joined together on the compressor (110) side,
The high-pressure refrigerant and the low-pressure refrigerant in each of the plurality of internal heat exchangers (171, 172) are formed so that the high-pressure refrigerant and the low-pressure refrigerant in each of the plurality of evaporators (141, 142) correspond to each other. The supercritical refrigeration cycle apparatus according to claim 1, wherein
複数の前記蒸発器(141、142)のうち、少なくも一つの蒸発器(141)の冷媒下流側に、前記冷媒の気液を分離する気液分離器(150)が設けられたことを特徴とする請求項3〜請求項8のいずれか1つに記載の超臨界冷凍サイクル装置。   Among the plurality of evaporators (141, 142), a gas-liquid separator (150) for separating gas and liquid of the refrigerant is provided on the refrigerant downstream side of at least one evaporator (141). The supercritical refrigeration cycle apparatus according to any one of claims 3 to 8. 前記内部熱交換器(172)の熱交換後の前記低圧冷媒の過熱度が、前記減圧器(132)によって所定値となるように制御されるようにしたことを特徴とする請求項1〜請求項9のいずれか1つに記載の超臨界冷凍サイクル装置。   The superheat degree of the low-pressure refrigerant after heat exchange of the internal heat exchanger (172) is controlled so as to become a predetermined value by the decompressor (132). Item 12. The supercritical refrigeration cycle apparatus according to any one of Items 9. 前記減圧器(132)は、前記熱交換後の低圧冷媒の過熱度に応じて、弁開度を調節して前記冷媒の減圧をする機械式の制御弁(132)としたことを特徴とする請求項10に記載の超臨界冷凍サイクル装置。   The pressure reducer (132) is a mechanical control valve (132) for adjusting the valve opening degree to reduce the pressure of the refrigerant according to the degree of superheat of the low-pressure refrigerant after the heat exchange. The supercritical refrigeration cycle apparatus according to claim 10.
JP2006231233A 2006-08-28 2006-08-28 Supercritical refrigerating cycle device Pending JP2008051474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231233A JP2008051474A (en) 2006-08-28 2006-08-28 Supercritical refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231233A JP2008051474A (en) 2006-08-28 2006-08-28 Supercritical refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2008051474A true JP2008051474A (en) 2008-03-06

Family

ID=39235698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231233A Pending JP2008051474A (en) 2006-08-28 2006-08-28 Supercritical refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2008051474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960632A1 (en) * 2010-05-31 2011-12-02 Valeo Systemes Thermiques Internal heat exchanger for air conditioning loop of motor vehicle, has circulation paths managed between coolant inlets inside exchanger and coolant outlets outside exchanger, where circulation paths include respective triggering units
JP2012127606A (en) * 2010-12-17 2012-07-05 Mitsubishi Electric Corp Refrigeration air conditioner
WO2014049928A1 (en) * 2012-09-25 2014-04-03 株式会社デンソー Refrigeration cycle device
DE102012224484A1 (en) * 2012-12-28 2014-07-03 Behr Gmbh & Co. Kg Air conditioning apparatus for motor vehicle, performs fluid supply from upper branch to lower branch using fluid inlet and fluid return from lower branch to upper branch using fluid outlet
DE102016220474A1 (en) * 2016-10-19 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Cooling device for a motor vehicle, as well as motor vehicle with such a cooling device
WO2023119482A1 (en) * 2021-12-22 2023-06-29 三菱電機株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186765A (en) * 1985-02-13 1986-08-20 株式会社デンソー Refrigeration cycle device
JP2006097972A (en) * 2004-09-29 2006-04-13 Denso Corp Accumulator refrigerating cycle
WO2006087004A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Control of a refrigeration circuit with an internal heat exchanger
JP2008074388A (en) * 2006-08-22 2008-04-03 Calsonic Kansei Corp Air conditioner for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186765A (en) * 1985-02-13 1986-08-20 株式会社デンソー Refrigeration cycle device
JP2006097972A (en) * 2004-09-29 2006-04-13 Denso Corp Accumulator refrigerating cycle
WO2006087004A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Control of a refrigeration circuit with an internal heat exchanger
JP2008530500A (en) * 2005-02-18 2008-08-07 キャリア コーポレイション Control of cooling circuit with internal heat exchanger
JP2008074388A (en) * 2006-08-22 2008-04-03 Calsonic Kansei Corp Air conditioner for vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960632A1 (en) * 2010-05-31 2011-12-02 Valeo Systemes Thermiques Internal heat exchanger for air conditioning loop of motor vehicle, has circulation paths managed between coolant inlets inside exchanger and coolant outlets outside exchanger, where circulation paths include respective triggering units
JP2012127606A (en) * 2010-12-17 2012-07-05 Mitsubishi Electric Corp Refrigeration air conditioner
WO2014049928A1 (en) * 2012-09-25 2014-04-03 株式会社デンソー Refrigeration cycle device
JP2014066410A (en) * 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
US9694646B2 (en) 2012-09-25 2017-07-04 Denso Corporation Refrigeration cycle device
DE102012224484A1 (en) * 2012-12-28 2014-07-03 Behr Gmbh & Co. Kg Air conditioning apparatus for motor vehicle, performs fluid supply from upper branch to lower branch using fluid inlet and fluid return from lower branch to upper branch using fluid outlet
DE102016220474A1 (en) * 2016-10-19 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Cooling device for a motor vehicle, as well as motor vehicle with such a cooling device
US11186136B2 (en) 2016-10-19 2021-11-30 Bayerische Motoren Werke Aktiengesellschaft Cooling apparatus for a motor vehicle, and motor vehicle having such a cooling apparatus
WO2023119482A1 (en) * 2021-12-22 2023-06-29 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US7467525B1 (en) Supercritical refrigeration cycle system
US6516628B2 (en) Refrigerant cycle system with hot-gas bypass structure
US7520142B2 (en) Ejector type refrigerating cycle
US7367202B2 (en) Refrigerant cycle device with ejector
CN101545690B (en) Refrigerant cycle device
US8099978B2 (en) Evaporator unit
US9696070B2 (en) Flow rate adjustment valve for refrigeration cycle
CN103597296B (en) Kind of refrigeration cycle
WO2009087733A1 (en) Refrigeration cycle device and four-way valve
JP3931899B2 (en) Ejector cycle
US11391499B2 (en) Heat pump cycle device and valve device
JP4776438B2 (en) Refrigeration cycle
JP2005308384A (en) Ejector cycle
CN109477668B (en) Refrigeration cycle device
JP2002243374A (en) Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2008051474A (en) Supercritical refrigerating cycle device
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
JP2018077003A (en) Refrigeration cycle device
JP4952830B2 (en) Ejector refrigeration cycle
WO2007102345A1 (en) Refrigeration device
JP2019100644A (en) Refrigeration cycle device
JP2008281338A (en) Ejector cycle
JP2008261512A (en) Ejector type refrigerating cycle
JP6891711B2 (en) Combined heat exchanger
JP2008281254A (en) Refrigerating cycle device and air conditioning device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308