JP2007322009A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2007322009A
JP2007322009A JP2006149628A JP2006149628A JP2007322009A JP 2007322009 A JP2007322009 A JP 2007322009A JP 2006149628 A JP2006149628 A JP 2006149628A JP 2006149628 A JP2006149628 A JP 2006149628A JP 2007322009 A JP2007322009 A JP 2007322009A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
internal heat
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006149628A
Other languages
Japanese (ja)
Other versions
JP4787070B2 (en
Inventor
Yuichi Matsumoto
雄一 松元
Masato Tsuboi
政人 坪井
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006149628A priority Critical patent/JP4787070B2/en
Priority to EP07108423A priority patent/EP1862749A3/en
Publication of JP2007322009A publication Critical patent/JP2007322009A/en
Application granted granted Critical
Publication of JP4787070B2 publication Critical patent/JP4787070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of improving performance of a vapor compression type refrigerating cycle by utilizing oil separated by an oil separator and including a small amount of refrigerant, integrating devices in the refrigerating cycle, and solving problems on a space and weight while improving refrigerating performance. <P>SOLUTION: This vapor compression type refrigerating cycle is provided with a second pressure reducing machine for reducing a pressure of the oil separated by the oil separator and including a small amount of refrigerant, and a first internal heat exchanger exchanging heat at least between a refrigerant separated by the oil separator and the oil reduced in pressure by the second pressure reducing machine and including a small amount of refrigerant, and the oil reduced in pressure by the second pressure reducing machine and including a small amount of refrigerant is injected on the way of a compressing process of a compressor after passing through the first internal heat exchanger. A radiator, the oil separator, the pressure reducing machine, the internal heat exchanger and the like can be integrated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクルに関し、とくに、自然系冷媒である二酸化炭素冷媒を使用した場合に、中でも車両用空調装置における冷凍サイクルとして好適な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and more particularly to a vapor compression refrigeration cycle that is particularly suitable as a refrigeration cycle in a vehicle air conditioner when a carbon dioxide refrigerant, which is a natural refrigerant, is used.

環境問題配慮の側面から車両用空調装置においても代替冷媒として二酸化炭素冷媒が提案されている。二酸化炭素冷媒は無毒・不燃性であるが、臨界温度が低く(約31℃)、サイクルの高圧側圧力が超臨界状態(約7.4MPa以上)になる遷臨界サイクル(超臨界冷凍サイクル)となる。一般的に、フロンを使用したものと比較して冷凍成績係数(C.O.P.)が悪いため、これを向上させることが求められている。また、超臨界状態では潤滑油は冷媒と相溶し循環する。そのような状況において特に蒸発器へ潤滑油が流入すると、潤滑油によって熱伝達が阻害され蒸発器能力が低下する。   From the viewpoint of environmental considerations, carbon dioxide refrigerant has been proposed as an alternative refrigerant in vehicle air conditioners. Carbon dioxide refrigerant is non-toxic and non-flammable, but has a low critical temperature (about 31 ° C) and a supercritical cycle (supercritical refrigeration cycle) in which the high pressure on the cycle becomes supercritical (about 7.4 MPa or higher). Become. Generally, since the coefficient of freezing performance (C.O.P.) is lower than that using chlorofluorocarbon, it is required to improve it. In the supercritical state, the lubricating oil is compatible with the refrigerant and circulates. In such a situation, especially when lubricating oil flows into the evaporator, heat transfer is hindered by the lubricating oil, and the evaporator capacity decreases.

図7は、冷媒として二酸化炭素を使用する場合の従来の空調装置における冷凍サイクルの回路構成図である(例えば、特許文献1)。冷凍サイクル100において、101は冷媒を圧縮する圧縮機、102は圧縮機101にて圧縮された冷媒を放熱する放熱器(ガスクーラ)を示している。104は放熱器102からの高圧冷媒を減圧する第一減圧機で、冷媒を減圧した後、蒸発器105により減圧した冷媒を蒸発させる。106は冷媒を気液分離し液相冷媒を貯留するアキュムレータであり、蒸発器105から流出した気液混合冷媒を気液分離した後、気相冷媒を圧縮機101の吸入側へと送る。この圧縮機101の吸入側へ送られる冷媒は、実際には完全に気相とはなっていないので、過熱度を付与して圧縮機101に吸入される気相冷媒が湿らないようにするために、放熱器102出口側冷媒(高圧側冷媒)とアキュムレータ106出口側冷媒(低圧側冷媒)を熱交換させる内部熱交換器103が設けられている。さらに、圧縮機の効率を高め、サイクル全体の消費動力を低減するために、放熱器出口側冷媒を減圧し、減圧した冷媒を気液分離し、分離した気相冷媒を圧縮機の圧縮過程の途中に導くようにした、いわゆるガスインジェクションサイクルとした構成も知られている(例えば、特許文献2)
特開平11−193967号公報 特開平11−63694号公報
FIG. 7 is a circuit configuration diagram of a refrigeration cycle in a conventional air conditioner when carbon dioxide is used as a refrigerant (for example, Patent Document 1). In the refrigeration cycle 100, reference numeral 101 denotes a compressor that compresses refrigerant, and reference numeral 102 denotes a radiator (gas cooler) that radiates the refrigerant compressed by the compressor 101. A first decompressor 104 depressurizes the high-pressure refrigerant from the radiator 102, and after depressurizing the refrigerant, evaporates the refrigerant depressurized by the evaporator 105. An accumulator 106 gas-liquid separates the refrigerant and stores the liquid-phase refrigerant. After the gas-liquid mixed refrigerant flowing out from the evaporator 105 is gas-liquid separated, the gas-phase refrigerant is sent to the suction side of the compressor 101. Since the refrigerant sent to the suction side of the compressor 101 is not actually completely in the gas phase, in order to prevent the gas phase refrigerant sucked into the compressor 101 from getting wet by giving superheat. In addition, an internal heat exchanger 103 for exchanging heat between the radiator 102 outlet-side refrigerant (high-pressure side refrigerant) and the accumulator 106 outlet-side refrigerant (low-pressure side refrigerant) is provided. Furthermore, in order to increase the efficiency of the compressor and reduce the power consumption of the entire cycle, the refrigerant at the outlet side of the radiator is depressurized, the depressurized refrigerant is gas-liquid separated, and the separated gas-phase refrigerant is used in the compression process of the compressor. There is also known a configuration in which a so-called gas injection cycle is guided in the middle (for example, Patent Document 2).
JP 11-193967 A Japanese Patent Laid-Open No. 11-63694

しかしながら、蒸気圧縮式冷凍サイクル中に内部熱交換器や油分離器をそれぞれ個別に設けると、配設機器の数が多くなり、スペース上の問題がある。上述のように二酸化炭素はその物理的性質から高圧側が臨界圧を越える超臨界状態となるため、その圧力に耐えうる材質、構造の検討が必要であり、おのずと機器の材料の厚みが増し、更には重量が増加する傾向にある。そのため、内部熱交換器や油分離器を使用するサイクルは、新たな機器を追加することになるため、車両搭載性が悪い。   However, if the internal heat exchanger and the oil separator are individually provided in the vapor compression refrigeration cycle, the number of devices to be arranged increases, resulting in a space problem. As mentioned above, carbon dioxide is in a supercritical state where the high pressure side exceeds the critical pressure due to its physical properties, so it is necessary to study the material and structure that can withstand the pressure, and the thickness of the equipment material naturally increases, Tends to increase in weight. For this reason, a cycle using an internal heat exchanger or an oil separator adds new equipment, so that the vehicle mountability is poor.

また、圧縮機の吸入側へ送られる冷媒に過熱度を付与して圧縮機に吸入される気相冷媒が湿らないようにするために、内部熱交換器で高圧側冷媒と低圧側冷媒との間で熱交換させる場合に、この過熱度を最適に制御することは困難である。低圧側冷媒が温められすぎると、圧縮機の保護と効率向上の面からは必ずしも好ましくない。   Also, in order to give superheat to the refrigerant sent to the suction side of the compressor and prevent the gas-phase refrigerant sucked into the compressor from getting wet, the internal heat exchanger uses a high-pressure side refrigerant and a low-pressure side refrigerant. It is difficult to optimally control the degree of superheating when heat is exchanged between the two. If the low-pressure side refrigerant is heated too much, it is not always preferable from the viewpoint of protecting the compressor and improving efficiency.

本発明の課題は、上記のような問題点に着目し、油分離器により分離された少量の冷媒を含む油を利用し、従来のガスインジェクションサイクルと同等の機能を発揮可能に構成するとともに、この少量の冷媒を含む油との熱交換を介して高圧側冷媒の温度を適度に低減し、それによって高圧側冷媒と低圧側冷媒との熱交換の際に低圧側冷媒が温められすぎないようにして、圧縮機の保護と効率向上の最適なバランスをとることが可能な冷凍サイクルを提供することにある。   The problem of the present invention is to focus on the problems as described above, use oil containing a small amount of refrigerant separated by an oil separator, and configure the same function as a conventional gas injection cycle, The temperature of the high-pressure side refrigerant is moderately reduced through heat exchange with the oil containing a small amount of refrigerant so that the low-pressure side refrigerant is not overheated during the heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant. Thus, it is an object of the present invention to provide a refrigeration cycle capable of achieving an optimal balance between compressor protection and efficiency improvement.

また本発明の課題は、冷凍サイクルにおける放熱器、油分離器、減圧機、内部熱交換器等を一体化可能に構成することで、冷凍能力を向上させつつ、スペース、重量の問題を解決することにある。   Moreover, the subject of this invention solves the problem of a space and weight, improving a refrigerating capacity by comprising so that a heat radiator, an oil separator, a decompressor, an internal heat exchanger, etc. in a refrigerating cycle can be integrated. There is.

上記課題を解決するために、本発明に係る冷凍サイクルは、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を放熱する放熱器と、該放熱器により放熱された冷媒を、冷媒と少量の冷媒を含む油とに分離する油分離器と、該油分離器により分離された冷媒を減圧する第一減圧機と、該第一減圧機により減圧された冷媒を蒸発させる蒸発器と、該蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し気相冷媒のみを前記圧縮機の吸入側へ送るアキュムレータを備えた蒸気圧縮式の冷凍サイクルにおいて、前記油分離器により分離された少量の冷媒を含む油を減圧する第二減圧機と、少なくとも前記油分離器により分離された冷媒と前記第二減圧機により減圧された少量の冷媒を含む油との間で熱交換を行う第一内部熱交換器とを設け、前記第二減圧機により減圧された少量の冷媒を含む油が、前記第一内部熱交換器を通過後、前記圧縮機の圧縮過程の途中にインジェクションされるようにしたことを特徴とするものからなる。   In order to solve the above-described problems, a refrigeration cycle according to the present invention includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant compressed by the compressor, and a refrigerant radiated by the radiator. And an oil separator that separates the oil containing a small amount of refrigerant, a first decompressor that decompresses the refrigerant separated by the oil separator, and an evaporator that evaporates the refrigerant decompressed by the first decompressor In the vapor compression refrigeration cycle having an accumulator that separates the refrigerant flowing out of the evaporator into a gas phase refrigerant and a liquid phase refrigerant and sends only the gas phase refrigerant to the suction side of the compressor, the oil separator Heat exchange between a second pressure reducer that depressurizes oil containing a small amount of separated refrigerant, and at least a refrigerant separated by the oil separator and an oil containing a small amount of refrigerant depressurized by the second pressure reducer A first internal heat exchanger The oil containing a small amount of refrigerant decompressed by the second decompressor is injected during the compression process of the compressor after passing through the first internal heat exchanger. Consists of.

すなわち、油分離器により分離された少量の冷媒を含む油を利用し、これを第二減圧機で減圧した後、油分離器により分離された冷媒との間で熱交換を行わせ、しかる後に圧縮機の圧縮過程の途中にインジェクションすることにより、従来のガスインジェクションサイクルと同等の機能を発揮させ、圧縮機の効率向上、サイクルの消費動力の低減が可能になる。そして、油分離器により分離された冷媒(つまり、高圧側冷媒)と第二減圧機により減圧された少量の冷媒を含む油(中圧)との間の熱交換により、高圧側冷媒の温度を適度に低減し、この高圧側冷媒と圧縮機へと吸入される低圧側冷媒との間で熱交換を行う際に、低圧側冷媒の温度が高くなりすぎないようにして(過熱度が高くなりすぎないようにして)、かつ、湿らないようにして圧縮機に導入しようとする冷媒の温度を、圧縮機保護や効率向上の面から、最適な温度に制御することが可能になる。   That is, using oil containing a small amount of refrigerant separated by the oil separator, reducing the pressure by the second decompressor, and then performing heat exchange with the refrigerant separated by the oil separator, By injecting in the middle of the compression process of the compressor, the same function as the conventional gas injection cycle can be exhibited, and the efficiency of the compressor can be improved and the power consumption of the cycle can be reduced. Then, the temperature of the high-pressure side refrigerant is adjusted by heat exchange between the refrigerant separated by the oil separator (that is, the high-pressure side refrigerant) and the oil (medium pressure) containing a small amount of refrigerant decompressed by the second pressure reducer. When heat is exchanged between the high-pressure side refrigerant and the low-pressure side refrigerant sucked into the compressor, the temperature of the low-pressure side refrigerant should not be too high (the degree of superheat increases). It is possible to control the temperature of the refrigerant to be introduced into the compressor so as not to get wet and to be optimal from the viewpoint of compressor protection and efficiency improvement.

このような本発明に係る冷凍サイクルにおいては、上記油分離器により分離された冷媒と上記圧縮機の吸入側へ送られる冷媒との間で熱交換を行う第二内部熱交換器を有することが好ましい。この第二内部熱交換器は、従来の内部熱交換器(例えば、図7に示した内部熱交換器103)と同等のものであり、圧縮機の吸入側へ送られる冷媒が湿らないように過熱度を付与するものである。   Such a refrigeration cycle according to the present invention has a second internal heat exchanger that exchanges heat between the refrigerant separated by the oil separator and the refrigerant sent to the suction side of the compressor. preferable. This second internal heat exchanger is equivalent to a conventional internal heat exchanger (for example, the internal heat exchanger 103 shown in FIG. 7), and prevents the refrigerant sent to the suction side of the compressor from getting wet. It gives a degree of superheat.

そして本発明においては、上記第一内部熱交換器と上記第二内部熱交換器を一体に構成することが可能である。また本発明においてはとくに、後述の実施例に示すように、上記放熱器に、上記油分離器と、上記第二減圧機と、上記第一内部熱交換器と、上記第二内部熱交換器を一体に構成することができる。このような一体構成により、実質的に機器の数を低減しつつ冷凍能力を向上させ、車載等の場合のスペース、重量の問題を解決することができる。   In the present invention, the first internal heat exchanger and the second internal heat exchanger can be configured integrally. Further, in the present invention, as shown in the below-described examples, the radiator includes the oil separator, the second pressure reducer, the first internal heat exchanger, and the second internal heat exchanger. Can be configured integrally. With such an integrated configuration, the refrigeration capacity can be improved while substantially reducing the number of devices, and the problem of space and weight in the case of in-vehicle can be solved.

なお、本発明に係る冷凍サイクルにおいては、上記第一減圧機および第二減圧機は冷凍サイクル中の冷媒圧力および/または冷媒温度によって開度を変更できる減圧機からなることが好ましい。これにより、一層最適な制御が可能となる。   In the refrigeration cycle according to the present invention, it is preferable that the first decompressor and the second decompressor comprise a decompressor whose opening degree can be changed according to the refrigerant pressure and / or the refrigerant temperature in the refrigeration cycle. Thereby, more optimal control is possible.

また、このような本発明に係る冷凍サイクルは、超臨界域を含む蒸気圧縮式冷凍サイクルに、とくに冷媒が二酸化炭素からなる場合に好適なものである。また、本発明に係る冷凍サイクルは、とくに車両用空調装置の冷凍サイクルとして用いられる場合に好適なものである。   Such a refrigeration cycle according to the present invention is suitable for a vapor compression refrigeration cycle including a supercritical region, particularly when the refrigerant is made of carbon dioxide. The refrigeration cycle according to the present invention is particularly suitable when used as a refrigeration cycle for a vehicle air conditioner.

本発明に係る冷凍サイクルによれば、油分離器により分離された少量の冷媒を含む油を減圧して有効に利用することで、従来のガスインジェクションサイクルと同等の機能を発揮可能になるととともに、この少量の冷媒を含む油との熱交換を介して高圧側冷媒(油分離器により分離された冷媒)の温度を適度に低減し、それによって高圧側冷媒と低圧側冷媒との熱交換の際に低圧側冷媒が温められすぎないようにして、圧縮機の保護と効率向上の最適なバランスをとることが可能になる。つまり、圧縮機に吸入される低圧側冷媒を最適な過熱度とすることが可能になる。   According to the refrigeration cycle according to the present invention, the oil containing a small amount of refrigerant separated by the oil separator can be effectively used by reducing the pressure, and the same function as the conventional gas injection cycle can be exhibited. The temperature of the high-pressure side refrigerant (refrigerant separated by the oil separator) is moderately reduced through heat exchange with the oil containing a small amount of refrigerant, thereby exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. Therefore, it is possible to achieve an optimal balance between compressor protection and efficiency improvement by preventing the low-pressure side refrigerant from being overheated. That is, the low pressure side refrigerant sucked into the compressor can be set to an optimum degree of superheat.

また、第一内部熱交換器と第二内部熱交換器の一体化、さらには放熱器に、油分離器、第二減圧機、第一内部熱交換器および第二内部熱交換器を一体化するようにすれば、冷凍能力を向上させつつ、重量の問題を解決することが可能になり、さらに、機器および接続部の低減が可能となって冷媒漏洩の防止や搭載性の向上が期待できる。   Also, the first internal heat exchanger and the second internal heat exchanger are integrated, and the oil separator, the second decompressor, the first internal heat exchanger, and the second internal heat exchanger are integrated into the radiator. By doing so, it becomes possible to solve the problem of weight while improving the refrigerating capacity, and further, it is possible to reduce equipment and connection parts, and to expect prevention of refrigerant leakage and improvement of mountability. .

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、自然系冷媒である二酸化炭素を用いた、本発明の一実施態様に係る冷凍サイクルの回路構成図を示している。図1の構成において、10は冷凍サイクル全体を示している。1は冷媒を圧縮する圧縮機で、2は圧縮機1にて圧縮された冷媒を放熱する放熱器(ガスクーラ)である。超臨界状態では潤滑油は冷媒と相溶し循環する。そのような状況において特に蒸発器へ潤滑油が流入すると、潤滑油に熱伝達が阻害され蒸発器能力が低下する。そこで、冷媒中に含まれる油を冷媒と分離する油分離器3を設ける。5は油分離器3によって分離された少量の冷媒を含む油を減圧する第二減圧機であり、減圧した少量の冷媒を含む油を内部熱交換器4に流通し、圧縮機1の圧縮工程の途中に入れることで、ガスインジェクションサイクルを構築している。圧縮途中の冷媒がインジェクションされた油によって冷却されるので、吐出冷媒の温度が高くならず、圧縮機の効率低下も少ない。一方、油分離器3で分離した冷媒(高温高圧の冷媒)は、内部熱交換器4を流通して、第一減圧機6にて減圧される。第一減圧機6にて減圧された冷媒は、蒸発器(エバポレータ)7にて外部の熱交換媒体(例えば、空調装置の空気通路内に送られる空気)によって蒸発される。8は、蒸発器7から流出した冷媒を気液分離し液相冷媒を貯留するアキュームレータであり、分離された気相冷媒(低圧冷媒であり、実際には、若干の液相冷媒との混相冷媒であることが多い。)が内部熱交換器4へ流出され、内部熱交換器4における熱交換により適度な過熱度が付与された後、圧縮機1の吸入側へと送られる。図1における矢印は、冷媒および少量の冷媒を含む油の流れを示している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a circuit configuration diagram of a refrigeration cycle according to an embodiment of the present invention using carbon dioxide which is a natural refrigerant. In the configuration of FIG. 1, reference numeral 10 denotes the entire refrigeration cycle. Reference numeral 1 denotes a compressor that compresses the refrigerant, and reference numeral 2 denotes a radiator (gas cooler) that radiates the refrigerant compressed by the compressor 1. In the supercritical state, the lubricating oil is compatible with the refrigerant and circulates. In such a situation, especially when lubricating oil flows into the evaporator, heat transfer to the lubricating oil is hindered and the evaporator capacity is reduced. Therefore, an oil separator 3 that separates the oil contained in the refrigerant from the refrigerant is provided. Reference numeral 5 denotes a second decompressor that decompresses oil containing a small amount of refrigerant separated by the oil separator 3, and distributes the decompressed oil containing a small amount of refrigerant to the internal heat exchanger 4. The gas injection cycle is built by putting it in the middle. Since the refrigerant in the middle of compression is cooled by the injected oil, the temperature of the discharged refrigerant does not increase and the efficiency of the compressor does not decrease. On the other hand, the refrigerant (high-temperature and high-pressure refrigerant) separated by the oil separator 3 flows through the internal heat exchanger 4 and is decompressed by the first decompressor 6. The refrigerant decompressed by the first decompressor 6 is evaporated by an external heat exchange medium (for example, air sent into an air passage of an air conditioner) in an evaporator (evaporator) 7. 8 is an accumulator that gas-liquid separates the refrigerant flowing out of the evaporator 7 and stores the liquid-phase refrigerant, and is a separated gas-phase refrigerant (a low-pressure refrigerant. Actually, a mixed-phase refrigerant with some liquid-phase refrigerant ) Is flowed out to the internal heat exchanger 4, and after an appropriate degree of superheat is imparted by heat exchange in the internal heat exchanger 4, it is sent to the suction side of the compressor 1. The arrow in FIG. 1 has shown the flow of the oil containing a refrigerant | coolant and a small amount of refrigerant | coolants.

本実施態様においては、上記内部熱交換器4は、本発明における第一内部熱交換器41(油分離器3により分離された冷媒と第二減圧機5により減圧された少量の冷媒を含む油との間で熱交換を行う熱交換器)と第二内部熱交換器42(油分離器3により分離された冷媒と圧縮機1の吸入側へ送られる冷媒との間で熱交換を行う熱交換器)とを一体化した構造に構成されている。つまり、油分離器3により分離した冷媒と、第二減圧機5後の少量の冷媒を含む油と、圧縮機吸入側冷媒とを熱交換する、一体型の内部熱交換器4として設けられている。第二減圧機5通過後の少量の冷媒を含む油は、内部熱交換器4を通過後、圧縮機1の圧縮過程の途中にインジェクションされる。ここで、冷凍サイクル10中の冷媒としては高圧側が超臨界圧力以上となるような、例えば水や炭化水素を用いてもよい。また、冷凍サイクル10は特に車両用空調装置として用いてもよい。   In the present embodiment, the internal heat exchanger 4 includes the first internal heat exchanger 41 according to the present invention (an oil containing a refrigerant separated by the oil separator 3 and a small amount of refrigerant decompressed by the second decompressor 5). Heat that exchanges heat between the refrigerant and the second internal heat exchanger 42 (heat that exchanges heat between the refrigerant separated by the oil separator 3 and the refrigerant sent to the suction side of the compressor 1). The structure is integrated with the exchanger. That is, it is provided as an integrated internal heat exchanger 4 that exchanges heat between the refrigerant separated by the oil separator 3, the oil containing a small amount of refrigerant after the second pressure reducer 5, and the compressor suction side refrigerant. Yes. The oil containing a small amount of refrigerant after passing through the second decompressor 5 is injected during the compression process of the compressor 1 after passing through the internal heat exchanger 4. Here, as the refrigerant in the refrigeration cycle 10, for example, water or hydrocarbon such that the high pressure side becomes equal to or higher than the supercritical pressure may be used. The refrigeration cycle 10 may be used as a vehicle air conditioner.

図2は、図1の回路構成図による一運転状況をモリエル線図上に示したものである。21は二酸化炭素冷媒の飽和気液曲線である。22は臨界温度を通る等温度線を示している。23は臨界圧力を通る等圧力線である。第二減圧機5後の少量の冷媒を含む油が内部熱交換器4を通過後、圧縮機1の圧縮過程の途中にインジェクションされることにより、二段階に圧縮したようなガスインジェクションサイクルが構築されている。   FIG. 2 is a Mollier diagram showing one driving situation according to the circuit configuration diagram of FIG. 21 is a saturated gas-liquid curve of a carbon dioxide refrigerant. Reference numeral 22 denotes an isothermal line passing through the critical temperature. Reference numeral 23 denotes an isobaric line passing through the critical pressure. After the second decompressor 5, oil containing a small amount of refrigerant passes through the internal heat exchanger 4 and is injected in the middle of the compression process of the compressor 1, thereby constructing a gas injection cycle that is compressed in two stages. Has been.

図3は、図1の回路構成図において、各コンポーネントを一体化した場合の構成として示した回路構成図である。図1との違いは、放熱器2(ガスクーラ)と油分離器3と第二減圧機5と内部熱交換器4(第一内部熱交換器41と第二内部熱交換器42の一体化構成)をすべて一体化したガスクーラモジュール31としたことにある。各コンポーネントを一体化することで、車両搭載性を向上させており、かつ、接続部を低減して冷媒の漏洩のおそれを除去している。放熱器2の一方のタンク内に、油分離器3の構成部材として、デミスタ32(繊維状の金属線を編んだ細かい網)を設け、油を分離するものである。その後、デミスタ32の下部に設置した第二減圧機5によりデミスタ32の底部へと分離された少量の冷媒を含む油を減圧し、放熱器2の下部に設けられた内部熱交換器4の第一内部熱交換器41部分へ流通させる。一方、放熱器2を流通する冷媒は、クロスフローとして流通し、放熱器2の下部に設けられた内部熱交換器4へ流通させる。この時、第二減圧機5にて減圧された少量の冷媒を含む油とは、内部熱交換器4の第一内部熱交換器41内にて対向流にて流通させる。さらに、アキュムレータ8から流出した気相冷媒を内部熱交換器4の第二内部熱交換器42部分へ流通させる。アキュムレータ8より流出した気相冷媒(低圧側冷媒)は、放熱器3出口冷媒(つまり、油分離器3で分離後の高圧側冷媒)と、内部熱交換器4の第二内部熱交換器42部分内にて、対向流にて熱交換される。つまり、第二減圧機5にて減圧された少量の冷媒を含む油とアキュムレータ8出口冷媒は並行流となる。高圧側冷媒と低圧側冷媒を対向流とすることで熱交換効率を向上できる。   FIG. 3 is a circuit configuration diagram shown as a configuration when the components are integrated in the circuit configuration diagram of FIG. 1. The difference from FIG. 1 is that the radiator 2 (gas cooler), the oil separator 3, the second pressure reducer 5, and the internal heat exchanger 4 (integrated configuration of the first internal heat exchanger 41 and the second internal heat exchanger 42). ) Are integrated into a gas cooler module 31. By integrating each component, vehicle mountability is improved, and the connection portion is reduced to eliminate the possibility of refrigerant leakage. In one tank of the radiator 2, a demister 32 (a fine mesh knitted with a fibrous metal wire) is provided as a component of the oil separator 3 to separate oil. Thereafter, oil containing a small amount of refrigerant separated to the bottom of the demister 32 is decompressed by the second decompressor 5 installed in the lower part of the demister 32, and the second of the internal heat exchanger 4 provided in the lower part of the radiator 2 is decompressed. It distribute | circulates to one internal heat exchanger 41 part. On the other hand, the refrigerant that circulates in the radiator 2 circulates as a cross flow and circulates to the internal heat exchanger 4 provided in the lower part of the radiator 2. At this time, oil containing a small amount of refrigerant decompressed by the second decompressor 5 is circulated in a counterflow in the first internal heat exchanger 41 of the internal heat exchanger 4. Further, the gas-phase refrigerant that has flowed out of the accumulator 8 is circulated to the second internal heat exchanger 42 portion of the internal heat exchanger 4. The gas-phase refrigerant (low-pressure side refrigerant) flowing out from the accumulator 8 is discharged from the radiator 3 outlet refrigerant (that is, the high-pressure side refrigerant separated by the oil separator 3) and the second internal heat exchanger 42 of the internal heat exchanger 4. Within the part, heat is exchanged in a counterflow. That is, the oil containing a small amount of refrigerant decompressed by the second decompressor 5 and the refrigerant at the outlet of the accumulator 8 are in parallel flow. Heat exchange efficiency can be improved by making the high-pressure side refrigerant and the low-pressure side refrigerant counter flow.

第一減圧機6、第二減圧機5としては、圧力および/または温度によって開度が変更できる膨張機構を用いるのが好ましい。   As the first pressure reducer 6 and the second pressure reducer 5, it is preferable to use an expansion mechanism whose opening degree can be changed by pressure and / or temperature.

また、放熱器2(ガスクーラ)と油分離器3と第二減圧機5と内部熱交換器4を一体化してガスクーラモジュール31とすることによって、放熱器2(ガスクーラ)入口冷媒によって、ガスクーラモジュール31全体に伝熱し、そこから内部熱交換器4における中圧側および低圧側に伝熱し、中圧側および低圧側冷媒の過熱度が上昇する。この場合、過熱度上昇により、圧縮機効率が減少してしまわないように、ガスクーラモジュール31において、放熱器2(ガスクーラ)部分と内部熱交換器4部分の間に空隙を設ける等して放熱器2部分から内部熱交換器4部分への伝熱を妨げるようにするのが好ましい。あるいは、放熱器2部分と内部熱交換器4部分とを断熱材等で分離してもよい。   Further, by integrating the radiator 2 (gas cooler), the oil separator 3, the second decompressor 5, and the internal heat exchanger 4 into the gas cooler module 31, the gas cooler module 31 is made by the refrigerant at the radiator 2 (gas cooler) inlet. Heat is transferred to the whole, from which heat is transferred to the medium pressure side and the low pressure side in the internal heat exchanger 4, and the superheat degree of the medium pressure side and low pressure side refrigerant is increased. In this case, in the gas cooler module 31, a radiator is provided between the radiator 2 (gas cooler) portion and the internal heat exchanger 4 portion so that the compressor efficiency does not decrease due to an increase in the degree of superheat. It is preferable to prevent heat transfer from the two parts to the internal heat exchanger 4 part. Alternatively, the radiator 2 portion and the internal heat exchanger 4 portion may be separated by a heat insulating material or the like.

図4((A)、(B)、(C)、(D))は、図3で示したガスクーラモジュール31を三角法にて示した外観形状図である。正面図は図3で説明した通りだが、上面図、側面図、下面図を追加してある。正面図において、ガスクーラモジュール31下部の内部熱交換器4部分は車両前面風があたらなくてもよい組み付け状態とすることもできる。すなわち、放熱器2部分の面積を最大限とりつつ、それに内部熱交換器4を組み付けた設計としてもよい。   FIG. 4 ((A), (B), (C), (D)) is an external shape diagram showing the gas cooler module 31 shown in FIG. The front view is the same as described in FIG. 3, but a top view, a side view, and a bottom view are added. In the front view, the internal heat exchanger 4 at the lower part of the gas cooler module 31 can be in an assembled state in which the front wind of the vehicle may not be present. That is, it is good also as a design which assembled | attached the internal heat exchanger 4 to it, taking the maximum area of the heat radiator 2 part.

図5は、ガスクーラモジュール31の内部熱交換器4の横断面形状((A)、(B)、(C)、(D))および出入口端末形状((E)、(F))を例示している。図5(A)に示す横断面形状51は、3重管構造の内部熱交換器となっている。図5(B)に示す横断面形状52は、配管の中を3つの部屋に均一に分けた構造とし、それぞれの部屋に、高圧冷媒、中圧冷媒、低圧冷媒を流通させるものである。図5(C)に示す横断面形状53は、配管の中を3つの部屋に不均一に分けた構造とし、それぞれの部屋に、高圧冷媒、中圧冷媒、低圧冷媒を流通させるものである。図5(D)に示す横断面形状54は、扁平管の積層構造とし、各扁平管内の流路にそれぞれ高圧冷媒、中圧冷媒、低圧冷媒を流通させるものである。図5(E)、(F)に示す出入口端末形状では、3重管横断面形状51の構造の内部熱交換器を用いた時の、それぞれの冷媒の出入口を示したものである。55は高圧側冷媒端末で、56は低圧側冷媒端末、57は中圧側冷媒端末を、それぞれ示している。高圧側冷媒は低圧側冷媒と熱交換するのは従来通りだが、最外面に中圧側冷媒を流通させる事によって、従来の2重管タイプの内部熱交換器と比べて、低圧側出口冷媒が温まりすぎることがなくなり、圧縮機吸入冷媒の過熱度を低減できる。   FIG. 5 illustrates the cross-sectional shape ((A), (B), (C), (D)) and the inlet / outlet terminal shape ((E), (F)) of the internal heat exchanger 4 of the gas cooler module 31. ing. A cross-sectional shape 51 shown in FIG. 5A is an internal heat exchanger having a triple pipe structure. The cross-sectional shape 52 shown in FIG. 5 (B) has a structure in which the inside of the pipe is uniformly divided into three rooms, and high-pressure refrigerant, medium-pressure refrigerant, and low-pressure refrigerant are circulated in each room. A cross-sectional shape 53 shown in FIG. 5C has a structure in which the inside of a pipe is divided into three rooms nonuniformly, and a high-pressure refrigerant, a medium-pressure refrigerant, and a low-pressure refrigerant are circulated in each room. A cross-sectional shape 54 shown in FIG. 5 (D) has a laminated structure of flat tubes, and allows high-pressure refrigerant, medium-pressure refrigerant, and low-pressure refrigerant to flow through the flow passages in each flat tube. The inlet / outlet terminal shapes shown in FIGS. 5 (E) and 5 (F) show the inlet / outlet of each refrigerant when an internal heat exchanger having a triple tube cross-sectional shape 51 is used. Reference numeral 55 denotes a high-pressure side refrigerant terminal, 56 denotes a low-pressure side refrigerant terminal, and 57 denotes an intermediate-pressure side refrigerant terminal. The high-pressure side refrigerant exchanges heat with the low-pressure side refrigerant as usual, but by circulating the medium-pressure side refrigerant on the outermost surface, the low-pressure side outlet refrigerant warms compared to the conventional double pipe type internal heat exchanger. Therefore, the degree of superheat of the refrigerant sucked by the compressor can be reduced.

図6は、上記ガスクーラモジュール31の断面をより詳細に示した図である。圧縮機1より流入した冷媒は放熱器2(ガスクーラ)部分のチューブ61内を流通し、フィン62を通して放熱している。チューブ61を流通して第一タンク63から第二タンク64に到達した冷媒は、第二タンク64内に設けられたデミスタ32によって油が捕捉され、冷媒のみ再びチューブ61を流通して第一タンク63に入る。第一タンク63に入った冷媒は、放熱器2から内部熱交換器4へと第一タンク63内の通路を通って流通する。一方、第二タンク64に設けられたデミスタ32によって捕捉された油は第二減圧機5によって減圧され、第二タンク64内の通路を通って内部熱交換器4へと流通する。同時に、アキュムレータ8から流出した冷媒が内部熱交換器4を流通して圧縮機1吸入側へ入る。この時、放熱器2出口側冷媒の高圧側冷媒と、第二減圧機5通過後の少量の冷媒を含む油(中圧側冷媒)とアキュムレータ8出口側冷媒の低圧側冷媒間で、内部熱交換器4(例えば、扁平管構造)にて熱交換される。   FIG. 6 is a view showing the cross section of the gas cooler module 31 in more detail. The refrigerant flowing in from the compressor 1 circulates in the tube 61 in the radiator 2 (gas cooler) portion and radiates heat through the fins 62. The refrigerant that has circulated through the tube 61 and reached the second tank 64 from the first tank 63 is captured by the demister 32 provided in the second tank 64, and only the refrigerant circulates through the tube 61 again. Enter 63. The refrigerant that has entered the first tank 63 flows from the radiator 2 to the internal heat exchanger 4 through a passage in the first tank 63. On the other hand, the oil captured by the demister 32 provided in the second tank 64 is decompressed by the second decompressor 5 and flows to the internal heat exchanger 4 through the passage in the second tank 64. At the same time, the refrigerant flowing out of the accumulator 8 flows through the internal heat exchanger 4 and enters the compressor 1 suction side. At this time, internal heat exchange is performed between the high pressure side refrigerant of the radiator 2 outlet side refrigerant, the oil (medium pressure side refrigerant) containing a small amount of refrigerant after passing through the second decompressor 5 and the low pressure side refrigerant of the accumulator 8 outlet side refrigerant. Heat is exchanged in a vessel 4 (for example, a flat tube structure).

なお、ガスクーラ内の冷媒流通方法としては、クロスフローまたはカウンターフローのいずれの形態としてもよい。   In addition, as a refrigerant | coolant distribution method in a gas cooler, it is good also as any form of a cross flow or a counterflow.

このように、本発明に係る蒸気圧縮式冷凍サイクルによれば、油分離器3により分離した冷媒と油を用い、放熱器出口側冷媒と、減圧した少量の冷媒を含む油を一体化構造の内部熱交換器4にて熱交換することで、高圧側冷媒温度の低減をはかっている。さらに、低圧側冷媒を内部熱交換器4に流通させることで、低圧側冷媒を温め、圧縮機吸入冷媒が湿らないようにしている。この場合、低圧側冷媒を温めるのに、高圧側冷媒を用いるものの、中圧側冷媒と熱交換させているため、従来のように高圧側冷媒と低圧側冷媒のみの間で熱交換していた場合に比べ、低圧側冷媒温度の上昇を適度に低減でき、圧縮機に吸入される低圧側冷媒を圧縮機保護と共に効率を考慮した最適な過熱度とすることができる。   Thus, according to the vapor compression refrigeration cycle according to the present invention, the refrigerant and oil separated by the oil separator 3 are used, and the radiator outlet side refrigerant and the oil containing a small amount of the reduced pressure refrigerant are integrated. By exchanging heat with the internal heat exchanger 4, the high-pressure side refrigerant temperature is reduced. Furthermore, the low-pressure side refrigerant is circulated through the internal heat exchanger 4 to warm the low-pressure side refrigerant so that the compressor suction refrigerant does not get wet. In this case, although the high-pressure side refrigerant is used to warm the low-pressure side refrigerant, heat exchange is performed with the intermediate-pressure side refrigerant, so that heat exchange is performed only between the high-pressure side refrigerant and the low-pressure side refrigerant as in the past. As compared with the above, the rise in the low-pressure side refrigerant temperature can be moderately reduced, and the low-pressure side refrigerant sucked into the compressor can be set to an optimum superheat degree considering the efficiency together with the compressor protection.

一方、減圧した少量の冷媒を含む油を内部熱交換器4に流通後、圧縮機1の圧縮工程の途中に導入することで、圧縮工程の効率を向上させている。   On the other hand, the efficiency of a compression process is improved by introduce | transducing the oil containing a small amount of pressure-reduced refrigerant | coolants to the internal heat exchanger 4, and introducing in the middle of the compression process of the compressor 1. FIG.

さらに、放熱器2、油分離器3、第二減圧機5、内部熱交換器4を一体化したことで、冷凍能力を向上させつつ、スペース、重量の問題を解決でき、更に機器及び接続部の低減が可能となり、冷媒漏洩や設置性の向上が期待できる。   Furthermore, by integrating the radiator 2, the oil separator 3, the second pressure reducer 5, and the internal heat exchanger 4, the problem of space and weight can be solved while improving the refrigerating capacity, and the equipment and connection part Can be reduced, and leakage of refrigerant and improvement of installation can be expected.

本発明に係る冷凍サイクルは、超臨界域で作動可能なあらゆる蒸気圧縮式冷凍サイクルに適用でき、とくに、自然系冷媒である炭酸ガスを用いた冷凍サイクル、中でも車両用空調装置における冷凍サイクルとして好適なものである。   The refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle that can operate in the supercritical region, and is particularly suitable as a refrigeration cycle using carbon dioxide gas, which is a natural refrigerant, particularly as a refrigeration cycle in a vehicle air conditioner. Is something.

本発明の一実施態様に係る冷凍サイクルの回路構成図である。It is a circuit block diagram of the refrigerating cycle which concerns on one embodiment of this invention. 図1の冷凍サイクルにおけるモリエル線図である。FIG. 2 is a Mollier diagram in the refrigeration cycle of FIG. 1. 放熱器と内部熱交換器を一体化したガスクーラモジュールの例を示す冷凍サイクルの回路構成図である。It is a circuit block diagram of the refrigerating cycle which shows the example of the gas cooler module which integrated the heat radiator and the internal heat exchanger. 図3のガスクーラモジュールを三角法にて示した外観形状図であり、(A)は正面図、(B)は上面図、(C)は側面図、(D)は下面図である。It is the external appearance figure which showed the gas cooler module of FIG. 3 by the trigonometric method, (A) is a front view, (B) is a top view, (C) is a side view, (D) is a bottom view. 図3のガスクーラモジュールにおける内部熱交換器の断面形状の例を示した横断面図((A)、(B)、(C)、(D))および出入口端末形状の例を示した概略構成図(E)および縦断面図(F)である。3 is a cross-sectional view ((A), (B), (C), (D)) showing an example of the cross-sectional shape of the internal heat exchanger in the gas cooler module of FIG. 3, and a schematic configuration diagram showing an example of the shape of the inlet / outlet terminal It is (E) and a longitudinal cross-sectional view (F). 図3のガスクーラモジュールのより詳細な構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the more detailed structure of the gas cooler module of FIG. 従来の冷凍サイクルの回路構成図である。It is a circuit block diagram of the conventional refrigerating cycle.

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 油分離器
4 内部熱交換器
5 第二減圧機
6 第一減圧機
7 蒸発器
8 アキュムレータ
10 冷凍サイクル
21 飽和気液曲線
22 等温度線
23 等圧力線
31 ガスクーラモジュール
32 デミスタ
41 第一内部熱交換器
42 第二内部熱交換器
51 3重管構造の断面形状
52 均一構造の断面形状
53 不均一構造の断面形状
54 扁平管構造の断面形状
55 高圧側冷媒端末
56 低圧側冷媒端末
57 中圧側冷媒端末
61 チューブ
62 フィン
63 第一タンク
64 第二タンク
1 Compressor
2 radiator
3 Oil separator
4 Internal heat exchanger
5 Second decompressor
6 First decompressor
7 Evaporator
8 Accumulator 10 Refrigeration cycle 21 Saturated gas-liquid curve 22 Isothermal line 23 Isobaric line 31 Gas cooler module 32 Demister 41 First internal heat exchanger 42 Second internal heat exchanger 51 Cross section shape of triple tube structure 52 Cross section of uniform structure Shape 53 Cross-sectional shape of non-uniform structure 54 Cross-sectional shape of flat tube structure 55 High-pressure side refrigerant terminal 56 Low-pressure side refrigerant terminal 57 Medium-pressure side refrigerant terminal 61 Tube 62 Fin 63 First tank 64 Second tank

Claims (7)

冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を放熱する放熱器と、該放熱器により放熱された冷媒を、冷媒と少量の冷媒を含む油とに分離する油分離器と、該油分離器により分離された冷媒を減圧する第一減圧機と、該第一減圧機により減圧された冷媒を蒸発させる蒸発器と、該蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し気相冷媒のみを前記圧縮機の吸入側へ送るアキュムレータを備えた蒸気圧縮式の冷凍サイクルにおいて、前記油分離器により分離された少量の冷媒を含む油を減圧する第二減圧機と、少なくとも前記油分離器により分離された冷媒と前記第二減圧機により減圧された少量の冷媒を含む油との間で熱交換を行う第一内部熱交換器とを設け、前記第二減圧機により減圧された少量の冷媒を含む油が、前記第一内部熱交換器を通過後、前記圧縮機の圧縮過程の途中にインジェクションされるようにしたことを特徴とする冷凍サイクル。   A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant compressed by the compressor; an oil separator that separates the refrigerant dissipated by the radiator into refrigerant and oil containing a small amount of refrigerant; A first pressure reducer that depressurizes the refrigerant separated by the oil separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; In a vapor compression refrigeration cycle having an accumulator for separating only the gas-phase refrigerant to the suction side of the compressor and depressurizing the oil containing a small amount of refrigerant separated by the oil separator And a first internal heat exchanger that exchanges heat between at least the refrigerant separated by the oil separator and the oil containing a small amount of refrigerant decompressed by the second decompressor, and Oil containing a small amount of refrigerant decompressed by the machine Wherein after passing through the first internal heat exchanger, a refrigeration cycle, characterized in that it has to be injected in the middle of the compression process of the compressor. 前記油分離器により分離された冷媒と前記圧縮機の吸入側へ送られる冷媒との間で熱交換を行う第二内部熱交換器を有する、請求項1に記載の冷凍サイクル。   The refrigeration cycle according to claim 1, further comprising a second internal heat exchanger that exchanges heat between the refrigerant separated by the oil separator and the refrigerant sent to the suction side of the compressor. 前記第一内部熱交換器と前記第二内部熱交換器が一体に構成されている、請求項2に記載の冷凍サイクル。   The refrigeration cycle according to claim 2, wherein the first internal heat exchanger and the second internal heat exchanger are integrally formed. 前記放熱器に、前記油分離器と、前記第二減圧機と、前記第一内部熱交換器と、前記第二内部熱交換器が一体に構成されている、請求項2または3に記載の冷凍サイクル。   The said heat separator, said 2nd pressure reduction machine, said 1st internal heat exchanger, and said 2nd internal heat exchanger are comprised integrally in the said heat radiator. Refrigeration cycle. 前記第一減圧機および第二減圧機は冷凍サイクル中の冷媒圧力および/または冷媒温度によって開度を変更できる減圧機からなる、請求項1〜4のいずれかに記載の冷凍サイクル。   5. The refrigeration cycle according to claim 1, wherein each of the first pressure reducer and the second pressure reducer includes a pressure reducer whose opening degree can be changed according to a refrigerant pressure and / or a refrigerant temperature in the refrigeration cycle. 冷凍サイクルに使用する冷媒が二酸化炭素である、請求項1〜5のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 5, wherein the refrigerant used in the refrigeration cycle is carbon dioxide. 車両用空調装置の冷凍サイクルとして用いられる、請求項1〜6のいずれかに記載の冷凍サイクル。   The refrigeration cycle according to any one of claims 1 to 6, which is used as a refrigeration cycle of a vehicle air conditioner.
JP2006149628A 2006-05-30 2006-05-30 Refrigeration cycle Expired - Fee Related JP4787070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006149628A JP4787070B2 (en) 2006-05-30 2006-05-30 Refrigeration cycle
EP07108423A EP1862749A3 (en) 2006-05-30 2007-05-17 Vapor Compression Refrigeration Cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149628A JP4787070B2 (en) 2006-05-30 2006-05-30 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2007322009A true JP2007322009A (en) 2007-12-13
JP4787070B2 JP4787070B2 (en) 2011-10-05

Family

ID=38514187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149628A Expired - Fee Related JP4787070B2 (en) 2006-05-30 2006-05-30 Refrigeration cycle

Country Status (2)

Country Link
EP (1) EP1862749A3 (en)
JP (1) JP4787070B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046590A1 (en) * 2008-09-10 2010-03-11 Bayerische Motoren Werke Aktiengesellschaft Vehicle air-conditioning system, has switching element for changing heat transfer capacity, and bypass for bypassing of fluid connection, so that transferred thermal capacity is reduced to zero
KR20140112611A (en) * 2013-03-11 2014-09-24 주식회사 두원공조 Cooling system for vehicle
JP2014185811A (en) * 2013-03-22 2014-10-02 Fujitsu General Ltd Refrigeration cycle device
JP2020159665A (en) * 2019-03-28 2020-10-01 東プレ株式会社 Refrigerating device and operation method for refrigerating device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353765B2 (en) 2008-02-20 2016-05-31 Trane International Inc. Centrifugal compressor assembly and method
US8037713B2 (en) 2008-02-20 2011-10-18 Trane International, Inc. Centrifugal compressor assembly and method
US7975506B2 (en) 2008-02-20 2011-07-12 Trane International, Inc. Coaxial economizer assembly and method
US7856834B2 (en) 2008-02-20 2010-12-28 Trane International Inc. Centrifugal compressor assembly and method
JP5180680B2 (en) * 2008-05-20 2013-04-10 サンデン株式会社 Refrigeration cycle
JP5119060B2 (en) * 2008-06-27 2013-01-16 サンデン株式会社 Refrigeration cycle
FR2960632B1 (en) * 2010-05-31 2013-05-17 Valeo Systemes Thermiques INTERNAL HEAT EXCHANGER HAVING THREE FLUID CIRCULATION PATHWAYS
EP2568247B1 (en) * 2011-09-07 2019-04-10 LG Electronics Inc. Air conditioner
US10168069B2 (en) * 2014-11-04 2019-01-01 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3742069B1 (en) * 2019-05-21 2024-03-20 Carrier Corporation Refrigeration apparatus and use thereof
CN111059806B (en) * 2019-09-16 2022-01-18 江苏奥利维尔环境设备有限公司 Air conditioner host with oil separation function, air conditioner system and oil separation method
US20230375236A1 (en) * 2020-11-04 2023-11-23 Mitsubishi Electric Corporation Refrigeration Cycle Apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602179U (en) * 1983-06-20 1985-01-09 三洋電機株式会社 heat exchange equipment
JP2000274890A (en) * 1999-03-18 2000-10-06 Nippon Soken Inc Supercritical cycle
JP2001174102A (en) * 1999-12-13 2001-06-29 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003021409A (en) * 2001-07-10 2003-01-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2003148814A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Refrigerating machine
JP2004092933A (en) * 2002-08-29 2004-03-25 Zexel Valeo Climate Control Corp Refrigeration cycle
JP2004239543A (en) * 2003-02-07 2004-08-26 Japan Climate Systems Corp Air conditioner for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439178B2 (en) * 1993-12-28 2003-08-25 三菱電機株式会社 Refrigeration cycle device
EP0924478A3 (en) * 1997-12-15 2000-03-22 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
JP2000046420A (en) * 1998-07-31 2000-02-18 Zexel Corp Refrigeration cycle
JP4718716B2 (en) * 2001-05-01 2011-07-06 三菱重工業株式会社 Gas cooler and in-vehicle air conditioner
TWI301188B (en) * 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
JP4459776B2 (en) * 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602179U (en) * 1983-06-20 1985-01-09 三洋電機株式会社 heat exchange equipment
JP2000274890A (en) * 1999-03-18 2000-10-06 Nippon Soken Inc Supercritical cycle
JP2001174102A (en) * 1999-12-13 2001-06-29 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003021409A (en) * 2001-07-10 2003-01-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2003148814A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Refrigerating machine
JP2004092933A (en) * 2002-08-29 2004-03-25 Zexel Valeo Climate Control Corp Refrigeration cycle
JP2004239543A (en) * 2003-02-07 2004-08-26 Japan Climate Systems Corp Air conditioner for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046590A1 (en) * 2008-09-10 2010-03-11 Bayerische Motoren Werke Aktiengesellschaft Vehicle air-conditioning system, has switching element for changing heat transfer capacity, and bypass for bypassing of fluid connection, so that transferred thermal capacity is reduced to zero
KR20140112611A (en) * 2013-03-11 2014-09-24 주식회사 두원공조 Cooling system for vehicle
KR102086378B1 (en) * 2013-03-11 2020-03-10 주식회사 두원공조 Cooling system for vehicle
JP2014185811A (en) * 2013-03-22 2014-10-02 Fujitsu General Ltd Refrigeration cycle device
JP2020159665A (en) * 2019-03-28 2020-10-01 東プレ株式会社 Refrigerating device and operation method for refrigerating device

Also Published As

Publication number Publication date
EP1862749A3 (en) 2008-12-24
JP4787070B2 (en) 2011-10-05
EP1862749A2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4787070B2 (en) Refrigeration cycle
JP6022156B2 (en) Vehicle capacitors
RU2472078C2 (en) Refrigeration systems and method of cold generation
JP4897298B2 (en) Gas-liquid separator module
JP4776438B2 (en) Refrigeration cycle
JP2007162988A (en) Vapor compression refrigerating cycle
JP2008249209A (en) Refrigerating device
JP2007178072A (en) Air conditioner for vehicle
JP4971877B2 (en) Refrigeration cycle
TWI571606B (en) A refrigeration unit using a triple tube heat exchanger
JP5636871B2 (en) Refrigeration equipment
JP2007303709A (en) Refrigerating cycle
JP2009024939A (en) Refrigerant tank and heat pump system
EP2048456B1 (en) Refrigeration device
KR101271355B1 (en) Heat pump system using two step heat pump unit
CN104697232A (en) A heat pump system
JP4897464B2 (en) Vapor compression refrigeration cycle
JP4352327B2 (en) Ejector cycle
EP1843109A2 (en) Cooling System
JP4326004B2 (en) Air conditioner
JP2009250495A (en) Air conditioner
JP5402164B2 (en) Refrigeration cycle equipment
CN105783331A (en) Heat efficient recovery device for air source water chilling unit
JP2004101144A (en) Internal heat exchanger for vapor compression type refrigerator
KR200259324Y1 (en) Refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees