JP3439178B2 - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JP3439178B2
JP3439178B2 JP2000193121A JP2000193121A JP3439178B2 JP 3439178 B2 JP3439178 B2 JP 3439178B2 JP 2000193121 A JP2000193121 A JP 2000193121A JP 2000193121 A JP2000193121 A JP 2000193121A JP 3439178 B2 JP3439178 B2 JP 3439178B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
accumulator
refrigeration cycle
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000193121A
Other languages
Japanese (ja)
Other versions
JP2001027460A (en
Inventor
雅弘 中山
孝行 吉田
勝 小西
多佳志 岡崎
利秀 幸田
善久 木藤良
敦史 枝吉
修 森本
雅夫 永野
智彦 河西
嘉裕 隅田
等 飯島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05334283A priority Critical patent/JP3104513B2/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2000193121A priority patent/JP3439178B2/en
Publication of JP2001027460A publication Critical patent/JP2001027460A/en
Application granted granted Critical
Publication of JP3439178B2 publication Critical patent/JP3439178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】この発明は、空気調和機あるいは
冷凍機に使用されるアキュムレータに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accumulator used in an air conditioner or a refrigerator.
【0002】また、この発明は、圧縮機、凝縮器、減圧
装置、蒸発器およびアキュムレータを順次冷媒配管で接
続した冷凍サイクル装置に関するものである。
The present invention also relates to a refrigeration cycle apparatus in which a compressor, a condenser, a pressure reducing device, an evaporator and an accumulator are sequentially connected by a refrigerant pipe.
【0003】また、この発明は、圧縮機、四方弁、室内
熱交換器、逆止弁、レシーバ、減圧装置、室外熱交換器
及びアキュムレータを順次冷媒配管で接続した冷凍サイ
クル装置に関するものである。
The present invention also relates to a refrigeration cycle apparatus in which a compressor, a four-way valve, an indoor heat exchanger, a check valve, a receiver, a pressure reducing device, an outdoor heat exchanger and an accumulator are sequentially connected by a refrigerant pipe.
【0004】[0004]
【従来の技術】一般の冷凍サイクルは図9に示す如く、
圧縮機(14)、凝縮器(15)、減圧器(16)、蒸発器(17)、ア
キュムレータ(18)を配管により環状に連結することによ
り構成されている。例えば特公昭57−17187号お
よび特公昭62−52230号公報に記述された周知の
アキュムレータ(18)は図10に示すように、筒状密閉容
器(1)の中間部に吸入配管(2)が、底部に吐出配管(7)が
それぞれ取り付けられている。吐出配管(7)は、一方の
開口が筒状密閉容器(1)に突出され、かつ筒状密閉容器
(1)を貫通する付近に小孔(8)が設けられている。
2. Description of the Related Art A general refrigeration cycle is as shown in FIG.
The compressor (14), the condenser (15), the pressure reducer (16), the evaporator (17), and the accumulator (18) are annularly connected by piping. For example, as shown in FIG. 10, a well-known accumulator (18) described in JP-B-57-17187 and JP-B-62-52230 has a suction pipe (2) at an intermediate portion of a cylindrical closed container (1). , And discharge pipes (7) are attached to the bottoms. The discharge pipe (7) has one opening protruding into the cylindrical closed container (1) and has a cylindrical closed container.
A small hole (8) is provided near the through hole (1).
【0005】従来のアキュムレータは、以上のように構
成されているので、筒状密閉容器(1)の底部に溜った潤
滑油および冷媒液の混合液体は、小孔(8)より吐出配管
(7)に吸入されて圧縮機(14)に送られる。
Since the conventional accumulator is constructed as described above, the mixed liquid of the lubricating oil and the refrigerant liquid accumulated at the bottom of the cylindrical closed container (1) is discharged from the small hole (8) through the discharge pipe.
It is sucked into (7) and sent to the compressor (14).
【0006】また、一般に冷凍サイクル装置において、
アキュムレータは圧縮機吸入側の手前に設けられ、気液
混合冷媒を気液分離し、圧縮機が液冷媒を吸入するのを
防止すると共に、冷媒と一緒に流れている圧縮機の潤滑
油をアキュムレータ内に滞留させることなく、円滑に圧
縮機に返すことが要求される。従来の冷凍サイクルは図
11に示すように、圧縮機(51)、凝縮器(52)、減圧装置
(53)、蒸発器(54)、アキュムレータ(55)を順次冷媒配管
で接続したものであり、例えば、実開昭59−1080
4号公報に掲載されたアキュムレータ(55)は図12に示
すように、冷媒吸入管(56)および冷媒吐出管(57)を備
え、この冷媒吐出管(57)に油戻し管(58)を設け、さらに
このアキュムレータ(55)内に液冷媒を加熱するための加
熱装置(60)および液レベルを検知する検知装置(63)を備
えた構成となっている。
In general, in a refrigeration cycle device,
The accumulator is installed in front of the compressor suction side, separates the gas-liquid mixed refrigerant into gas and liquid, prevents the compressor from sucking the liquid refrigerant, and collects the lubricating oil of the compressor flowing with the refrigerant. It is required to smoothly return it to the compressor without retaining it inside. As shown in FIG. 11, the conventional refrigeration cycle includes a compressor (51), a condenser (52), and a pressure reducing device.
(53), an evaporator (54), and an accumulator (55) are sequentially connected by a refrigerant pipe.
As shown in FIG. 12, the accumulator (55) disclosed in Japanese Patent Publication No. 4 includes a refrigerant suction pipe (56) and a refrigerant discharge pipe (57), and an oil return pipe (58) is provided in the refrigerant discharge pipe (57). The accumulator (55) is provided with a heating device (60) for heating the liquid refrigerant and a detection device (63) for detecting the liquid level.
【0007】このような従来の冷凍サイクル装置におい
て、湿った状態の冷媒が吸入管(56)から流入した場合、
アキュムレータ(55)の底部に液冷媒が溜り込み、吐出管
(57)からは、ガス冷媒のみが流出する。アキュムレータ
(55)の底部には潤滑油も溜まり込み、液冷媒と溶け合
い、潤滑油と液冷媒の混合流体が油戻し管(58)から吐出
管(57)に吸入され、圧縮機摺動部の潤滑を行っている。
そしてアキュムレータ(55)内の液レベルが一定値以上に
上昇すると、レベル検知装置(63)によりこれを検知し、
加熱装置(60)により液冷媒が加熱され、ガス冷媒とな
り、吐出管(57)より圧縮機に吸入されていく。
In such a conventional refrigeration cycle apparatus, when a moist refrigerant flows in through the suction pipe (56),
Liquid refrigerant accumulates at the bottom of the accumulator (55) and the discharge pipe
From (57), only the gas refrigerant flows out. accumulator
Lubricating oil also collects at the bottom of (55) and melts with the liquid refrigerant, and the mixed fluid of lubricating oil and liquid refrigerant is sucked into the discharge pipe (57) from the oil return pipe (58) to lubricate the compressor sliding parts. It is carried out.
And when the liquid level in the accumulator (55) rises above a certain level, this is detected by the level detection device (63),
The liquid refrigerant is heated by the heating device (60), becomes a gas refrigerant, and is sucked into the compressor through the discharge pipe (57).
【0008】また、従来のもう一つの冷凍サイクルは、
図13に示すように、圧縮機(71)、四方弁(72)、室内熱
交換器(73)、逆止弁(74a)(74b)、レシーバ(75)、減圧装
置(76a)(76b)、室外熱交換器(77)、アキュムレータ(78)
を順次冷媒配管により機能的に接続したものである。
Another conventional refrigeration cycle is
As shown in FIG. 13, a compressor (71), a four-way valve (72), an indoor heat exchanger (73), check valves (74a) (74b), a receiver (75), a pressure reducing device (76a) (76b). , Outdoor heat exchanger (77), accumulator (78)
Are sequentially connected functionally by a refrigerant pipe.
【0009】このような従来の冷凍サイクル装置におい
て、圧縮機(71)を正常に作動させるために必要な潤滑油
はアキュムレータ(78)より供給している。潤滑油はアキ
ュムレータ(78)内において冷媒と溶け合って存在し、液
冷媒との混合流体としてアキュムレータの底部に溜ま
り、アキュムレータの吐出管に設けられた油戻し孔より
冷凍サイクルに戻り、圧縮機に送られ、圧縮機摺動部の
潤滑が行われる。
In such a conventional refrigeration cycle apparatus, the lubricating oil required to normally operate the compressor (71) is supplied from the accumulator (78). Lubricating oil exists in the accumulator (78) in the form of a mixture with the refrigerant and accumulates at the bottom of the accumulator as a mixed fluid with the liquid refrigerant, and returns to the refrigeration cycle from the oil return hole provided in the discharge pipe of the accumulator and is sent to the compressor. Thus, the sliding parts of the compressor are lubricated.
【0010】[0010]
【発明が解決しようとする課題】図10に示すような従
来のアキュムレータは、圧縮機の吸入側の手前に設けら
れ、圧縮機内に冷媒液が流入するのを防止すると共に、
潤滑油が円滑に流入することが要求されるが、冷媒液よ
りも比重の小さい潤滑油を使用した場合、湿った状態の
冷媒ガスが吸入管(2)を経て筒状密閉容器(1)内に流入し
た際、筒状密閉容器(1)の底部に溜まった混合液は、上
部に潤滑油、下部に冷媒液と層別されるため、小孔(8)
から冷媒液のみが吸入され、潤滑油が圧縮機に戻らなく
なり、圧縮機の摩耗等により、破損する等の問題があっ
た。
A conventional accumulator as shown in FIG. 10 is provided in front of the suction side of the compressor to prevent refrigerant liquid from flowing into the compressor.
The lubricating oil is required to flow in smoothly, but when using a lubricating oil with a specific gravity smaller than that of the refrigerant liquid, the refrigerant gas in a damp state passes through the suction pipe (2) and inside the cylindrical closed container (1). When mixed in, the mixed liquid accumulated at the bottom of the cylindrical closed container (1) is layered with the lubricating oil in the upper part and the refrigerant liquid in the lower part, so the small holes (8)
However, there is a problem that only the refrigerant liquid is sucked in from the compressor, the lubricating oil cannot return to the compressor, and the compressor is damaged due to wear or the like.
【0011】また、図11に示すような従来の冷凍サイ
クル装置を構成する図12に示すようなアキュムレータ
(55)では、アキュムレータ(55)の底部に溜まる液冷媒と
潤滑油の混合液は両者の比重の関係上、上層部に潤滑油
の豊富な層が、下層部には液冷媒の豊富な層が溜まりや
すく、油戻し管(58)の上下方向の位置によっては、油戻
し管(58)より液冷媒のみを吸入し、潤滑油が圧縮機に戻
らず摩耗により圧縮機の損傷を引き起すおそれがあっ
た。上記の説明では、アキュムレータ(55)は冷媒と潤滑
油が互いに溶け合うことを前提としているが、潤滑油に
冷媒が全く溶けない場合には、アキュムレータ(55)内で
冷媒と潤滑油は完全に分離してしまい、両者の比重の関
係で潤滑油は液冷媒の上層側に溜まり込むことになり、
油戻し管(58)の位置に潤滑油がない限り潤滑油は圧縮機
に戻らずアキュムレータ(55)内に潤滑油が滞留し、圧縮
機の損傷を引き起すおそれがあった。
Further, an accumulator as shown in FIG. 12 which constitutes a conventional refrigeration cycle apparatus as shown in FIG.
In (55), the mixed liquid of liquid refrigerant and lubricating oil that accumulates at the bottom of the accumulator (55) has a layer rich in lubricating oil in the upper layer and a layer rich in liquid refrigerant in the lower layer because of the specific gravity of both. May easily collect, and depending on the vertical position of the oil return pipe (58), only the liquid refrigerant may be sucked from the oil return pipe (58), and the lubricating oil may not return to the compressor, causing damage to the compressor due to wear. was there. In the above description, the accumulator (55) is based on the premise that the refrigerant and the lubricating oil are mutually soluble, but when the refrigerant is not completely dissolved in the lubricating oil, the refrigerant and the lubricating oil are completely separated in the accumulator (55). Due to the specific gravity of both, the lubricating oil will accumulate in the upper layer side of the liquid refrigerant,
Unless there was lubricating oil at the position of the oil return pipe (58), the lubricating oil did not return to the compressor, and the lubricating oil remained in the accumulator (55), possibly causing damage to the compressor.
【0012】また、図13に示すような従来の冷凍サイ
クル装置を構成するアキュムレータにおいても上記と全
く同様に潤滑油が圧縮機に戻らず、圧縮機の損傷を引き
起すおそれがあった。
Also in the accumulator which constitutes the conventional refrigeration cycle apparatus as shown in FIG. 13, the lubricating oil does not return to the compressor in the same manner as described above, which may cause damage to the compressor.
【0013】この発明は、上記のような問題点を解消す
るためになされたもので、潤滑油と冷媒とが相溶する場
合又は潤滑油に冷媒が全く溶けない場合でもアキュムレ
ータ内に潤滑油を滞留させることなく、冷媒ガスと潤滑
油を効率良く圧縮機に吸入させ、潤滑不全を防ぐことに
より、圧縮機の信頼性を確保し、圧縮機の破損を防止す
るアキュムレータ及び冷凍サイクル装置を提供すること
を目的とするものである。
The present invention has been made in order to solve the above-mentioned problems, and the lubricating oil is stored in the accumulator even when the lubricating oil and the refrigerant are compatible with each other or when the refrigerant is completely insoluble in the lubricating oil. (EN) An accumulator and a refrigeration cycle device that ensure the reliability of a compressor and prevent damage to the compressor by efficiently sucking refrigerant gas and lubricating oil into the compressor without causing retention and preventing lubrication failure. That is the purpose.
【0014】[0014]
【課題を解決するための手段】請求項1の発明に係る冷
凍サイクル装置は、圧縮機、凝縮器、減圧装置、蒸発器
およびアキュムレータを順次冷媒配管で接続し、上記ア
キュムレータの底部に調整弁を介して圧縮機吸入側に
冷媒より比重が小さい潤滑油を注入する吐出配管を接続
した冷凍サイクル装置において、上記アキュムレータ底
部を加熱する加熱装置、上記アキュムレータの液面レベ
ルを検出する液面レベル検出器、上記アキュムレータ内
の冷媒温度を検出する冷媒温度検出器、および上記アキ
ュムレータ内の冷媒飽和温度を検出する冷媒飽和温度検
出器を設け、上記液面レベル検出器の所定レベル以上の
検出に応じ上記加熱装置を動作させ、上記冷媒温度検出
器の検出温度が上記冷媒飽和温度検出器の検出温度より
高くなったときに上記加熱装置の動作を終了させるとと
もに、上記調整弁を一定時間開き、アキュムレータの底
部に溜まり込んだ潤滑油のみを圧縮機に吸入するように
したことを主要な構成としている。
In the refrigeration cycle apparatus according to the invention of claim 1, a compressor, a condenser, a pressure reducing device, an evaporator and an accumulator are sequentially connected by a refrigerant pipe, and a regulating valve is provided at the bottom of the accumulator. Liquid to the compressor suction side through
In a refrigeration cycle device connected to a discharge pipe for injecting lubricating oil having a smaller specific gravity than a refrigerant, a heating device for heating the bottom of the accumulator, a liquid level detector for detecting the liquid level of the accumulator, and a refrigerant temperature in the accumulator. A refrigerant temperature detector for detecting, and a refrigerant saturation temperature detector for detecting the refrigerant saturation temperature in the accumulator, operating the heating device in response to the detection of a predetermined level or more of the liquid level detector, the refrigerant together to terminate the operation of the heating device when the temperature detected by the temperature detector is higher than the detection temperature of the refrigerant saturation temperature detector, open a predetermined time the control valve, the bottom of the accumulator
The main structure is that only the lubricating oil accumulated in the section is sucked into the compressor .
【0015】請求項2の発明に係る冷凍サイクル装置
は、請求項1の構成に加え、冷凍サイクルを構成する凝
縮器と減圧装置の間に液溜め装置を備えたものである。
A refrigeration cycle apparatus according to a second aspect of the present invention is, in addition to the configuration of the first aspect, provided with a liquid storage device between a condenser and a decompression device constituting the refrigeration cycle.
【0016】請求項3の発明に係る冷凍サイクル装置
は、圧縮機、凝縮器、レシーバ、第1の減圧装置、蒸発
器およびアキュムレータを順次冷媒配管で接続した冷凍
サイクル装置において、上記レシーバの下部を貫通し、
かつアキュムレータの吐出側である圧縮機吸入側に接続
する吐出配管を設け、この吐出配管のレシーバと圧縮機
吸入側の間に第2の減圧装置を設け、上記第2の減圧装
置の吐出側の配管と、上記凝縮器及び蒸発器と上記レシ
ーバとを接続する配管とを熱交換させ、上記第2の減圧
装置の開度調整により、上記レシーバからの液冷媒を
記第2の減圧装置を介して上記圧縮機吸入側に合流する
までにガス冷媒とし潤滑油と共に上記圧縮機に戻すよう
にしたことを主要な構成としている。
A refrigeration cycle apparatus according to a third aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, a receiver, a first pressure reducing device, an evaporator and an accumulator are sequentially connected by a refrigerant pipe. Penetrate,
Further, a discharge pipe connected to the compressor suction side which is the discharge side of the accumulator is provided, and a second pressure reducing device is provided between the receiver of this discharge pipe and the compressor suction side, and the discharge side of the second pressure reducing device is provided. The pipe and the pipe connecting the condenser and the evaporator to the receiver are heat-exchanged, and the opening degree of the second decompression device is adjusted to remove the liquid refrigerant from the receiver. The main configuration is that the gas refrigerant is returned to the compressor together with lubricating oil by the time of joining the compressor suction side through the pressure reducing device.
【0017】請求項4の発明に係る冷凍サイクル装置
は、請求項3の構成において、第2の減圧装置として温
度式膨張弁を使用し、この温度式膨張弁の吐出側配管部
に感温筒を取り付けたものである。
According to a fourth aspect of the present invention, in the refrigeration cycle apparatus according to the third aspect, a temperature type expansion valve is used as the second pressure reducing device, and a temperature sensing tube is provided in the discharge side piping portion of the temperature type expansion valve. Is attached.
【0018】請求項5の発明に係る冷凍サイクル装置
は、請求項3の構成において、第2の減圧装置として電
子膨張弁を使用し、この電子膨張弁の吐出側配管部と熱
交換直後の配管とに温度センサを取り付け、これらによ
る検出温度差が所定値以上となるように、上記電子膨張
弁を開度調整するようにしたことを主要な構成としてい
る。
According to a fifth aspect of the present invention, in the refrigeration cycle apparatus of the third aspect, an electronic expansion valve is used as the second pressure reducing device, and a pipe immediately after heat exchange with the discharge side pipe portion of the electronic expansion valve. The main configuration is that a temperature sensor is attached to the and, and the opening degree of the electronic expansion valve is adjusted so that the temperature difference detected by them becomes a predetermined value or more.
【0019】請求項6の発明に係る冷凍サイクル装置
は、請求項1〜5の何れかの構成において、液冷媒と溶
解しない冷凍サイクル用潤滑油を用いたことを主要な構
成としている。
A refrigeration cycle apparatus according to a sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects, a refrigeration cycle lubricating oil that does not dissolve in the liquid refrigerant is used.
【0020】[0020]
【作用】請求項1の発明に係る冷凍サイクル装置は、液
面レベル検出器、冷媒飽和温度検出器および冷媒温度検
出器を設け、これらの検出器の検知信号により加熱装置
および弁を動作させることにより、圧縮機に確実に潤滑
油を戻すことができる。
In the refrigeration cycle apparatus according to the present invention, a liquid level detector, a refrigerant saturation temperature detector and a refrigerant temperature detector are provided, and the heating device and the valve are operated by the detection signals of these detectors. As a result, the lubricating oil can be reliably returned to the compressor.
【0021】請求項2の発明に係る冷凍サイクル装置
は、請求項1の発明に係る作用の他、液溜め装置に余剰
冷媒を溜めることにより、冷媒量の調整を行うものであ
る。
The refrigeration cycle apparatus according to a second aspect of the present invention is, in addition to the function according to the first aspect of the present invention, for adjusting the amount of refrigerant by accumulating excess refrigerant in the liquid sump device.
【0022】請求項3の発明に係る冷凍サイクル装置
は、レシーバより第2の減圧装置を介して圧縮機吸入側
に吐出配管を設け、この吐出配管の第2の減圧装置の吐
出側の配管と、上記凝縮器及び蒸発器と上記レシーバと
を接続する配管とを熱交換させ、上記第2の減圧装置の
開度調整により、上記レシーバから上記第2の減圧装置
を介して上記圧縮機吸入側に合流するまでにガス冷媒と
なるようにしたことにより、圧縮機に一部の冷媒が気化
して潤滑油と共に供給されるものである。
In the refrigeration cycle apparatus according to the invention of claim 3, a discharge pipe is provided from the receiver to the compressor suction side via the second pressure reducing device, and the discharge pipe is connected to the discharge side pipe of the second pressure reducing device. , Heat exchange between the condenser and the evaporator and a pipe connecting the receiver, and by adjusting the opening degree of the second pressure reducing device, the compressor suction side from the receiver via the second pressure reducing device. Since it becomes a gas refrigerant by the time it joins, a part of the refrigerant is vaporized and supplied with the lubricating oil to the compressor.
【0023】請求項4の発明に係る冷凍サイクル装置
は、請求項3の発明に係る作用を温度式膨張弁の作動に
より、一層適正ならしめるものである。
In the refrigeration cycle apparatus according to the invention of claim 4, the operation according to the invention of claim 3 is made more appropriate by the operation of the thermal expansion valve.
【0024】請求項5の発明に係る冷凍サイクル装置
は、請求項3の発明に係る作用を温度センサによる電子
膨張弁の作動により一層適正ならしめるものである。
In the refrigeration cycle apparatus according to the invention of claim 5, the operation according to the invention of claim 3 is made more appropriate by the operation of the electronic expansion valve by the temperature sensor.
【0025】請求項6の発明に係る冷凍サイクル装置
は、請求項1〜5の発明に係る冷凍サイクル装置におい
て、液冷媒と溶解しない冷凍サイクル用潤滑油が気化し
た冷媒とともに圧縮機に戻されるのである。
A refrigeration cycle apparatus according to a sixth aspect of the present invention is the refrigeration cycle apparatus according to the first to fifth aspects, wherein the refrigeration cycle lubricating oil that does not dissolve with the liquid refrigerant is returned to the compressor together with the vaporized refrigerant. is there.
【0026】[0026]
【実施例】実施例1. 以下、この発明の一実施例を図に基づいて説明する。図
11に示す従来例と同一部分については、同一符号を付
す。図1はこの発明における冷凍サイクルの冷媒回路を
示す図であり、圧縮機(51)、凝縮器(52)、減圧装置(5
3)、蒸発器(54)およびアキュムレータ(55)を順次冷媒配
管で接続し、アキュムレータ(55)の底部に圧縮機吸入側
に接続される配管(59)を有する回路を形成している。ま
た図2は、この発明におけるアキュムレータの内部を示
す説明図である。このアキュムレータ(55)は、冷媒吸入
管(56)および冷媒吐出管(57)を備え、その底部に加熱装
置(60)を設け、さらにアキュムレータ(55)の底部に圧縮
機吸入側に接続する吐出配管(59)を設けている。また、
この吐出配管(59)には弁(61)を備え、かつ、アキュムレ
ータ(55)に液面レベル検出器(63)、冷媒飽和温度検出器
(64)および冷媒温度検出器(65)を備えている。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. The same parts as those in the conventional example shown in FIG. 11 are designated by the same reference numerals. FIG. 1 is a diagram showing a refrigerant circuit of a refrigeration cycle according to the present invention, which includes a compressor (51), a condenser (52) and a pressure reducing device (5
3), the evaporator (54) and the accumulator (55) are sequentially connected by a refrigerant pipe, and a circuit having a pipe (59) connected to the compressor suction side is formed at the bottom of the accumulator (55). FIG. 2 is an explanatory view showing the inside of the accumulator according to the present invention. The accumulator (55) includes a refrigerant suction pipe (56) and a refrigerant discharge pipe (57), a heating device (60) is provided at the bottom of the accumulator (55), and a discharge connected to the compressor suction side at the bottom of the accumulator (55). Piping (59) is provided. Also,
The discharge pipe (59) is equipped with a valve (61), and the accumulator (55) has a liquid level detector (63) and a refrigerant saturation temperature detector.
(64) and a refrigerant temperature detector (65).
【0027】次に、図2におけるアキュムレータの作用
について説明する。冷凍サイクル運転中に湿った状態の
冷媒がアキュムレータ(55)の吸入管(56)から流入した場
合、アキュムレータ(55)内で気液分離され吐出管(57)か
らはガス冷媒が流出していき、アキュムレータ(55)の底
部には液冷媒と潤滑油が溜まり込む。液冷媒と潤滑油が
溶け合う場合は両者の比重の関係で上層部に潤滑油の豊
富な層が、下層部に液冷媒の豊富な層が溜まり込む。ま
た、液冷媒と潤滑油が溶け合わない場合には両者の比重
の関係で潤滑油が上層部に、液冷媒が下層部に分離して
溜まり込む。この時アキュムレータ(55)の底部に設けた
加熱装置(60)を用いて冷媒を冷媒飽和温度以上に十分に
加熱してやることにより下層部に留まり込んだ液冷媒が
蒸発してガス化し、吐出管(57)より圧縮機に吸入され、
アキュムレータ(55)には液冷媒が存在しなくなり潤滑油
のみがアキュムレータ(55)底部に溜まり込む。この後ア
キュムレータ(55)底部に設けた圧縮機吸入側に接続する
吐出配管(59)上の弁(61)を開くことにより、アキュムレ
ータ(55)底部に溜まり込んだ潤滑油が圧縮機に吸入され
ていく。この一連の動作をアキュムレータ(55)に設けた
液面レベル検出器(63)と冷媒飽和温度検出器(64)および
冷媒温度検出器(65)からの検知信号により制御してやれ
ば、アキュムレータ(55)内に溜まり込んだ潤滑油の圧縮
機への戻しを一括して制御することができ、圧縮機損傷
の原因となる液冷媒の吸入および潤滑油不足を回避し、
圧縮機の信頼性を確保することが可能となる。
Next, the operation of the accumulator in FIG. 2 will be described. During the refrigeration cycle operation, when a moist refrigerant flows in through the suction pipe (56) of the accumulator (55), gas-liquid is separated in the accumulator (55) and gas refrigerant flows out through the discharge pipe (57). Liquid refrigerant and lubricating oil accumulate in the bottom of the accumulator (55). When the liquid refrigerant and the lubricating oil are melted, the layer rich in lubricating oil accumulates in the upper layer and the layer rich in liquid refrigerant accumulates in the lower layer due to the specific gravity of the two. When the liquid refrigerant and the lubricating oil do not dissolve in each other, the lubricating oil separates and collects in the upper layer portion and the liquid refrigerant in the lower layer portion due to the specific gravity of the two. At this time, by using a heating device (60) provided at the bottom of the accumulator (55) to sufficiently heat the refrigerant to a temperature equal to or higher than the refrigerant saturation temperature, the liquid refrigerant retained in the lower layer is vaporized and gasified, and the discharge pipe ( 57) was inhaled into the compressor from
The liquid refrigerant does not exist in the accumulator (55), and only the lubricating oil accumulates at the bottom of the accumulator (55). Then, by opening the valve (61) on the discharge pipe (59) connected to the compressor suction side provided at the bottom of the accumulator (55), the lubricating oil accumulated at the bottom of the accumulator (55) is sucked into the compressor. To go. If this series of operations is controlled by detection signals from the liquid level detector (63) provided in the accumulator (55), the refrigerant saturation temperature detector (64) and the refrigerant temperature detector (65), the accumulator (55) It is possible to collectively control the return of the lubricating oil that has accumulated inside the compressor to the compressor, avoid the suction of liquid refrigerant and the lack of lubricating oil that cause damage to the compressor,
It is possible to ensure the reliability of the compressor.
【0028】なお図2においては、アキュムレータ(55)
内に加熱装置(60)を収容した例を示したが、この加熱装
置(60)はアキュムレータ(55)の外側底部に設け、外部か
ら加熱する構造としてもよい。また、この加熱装置(60)
の熱源としては、電気ヒータや圧縮機の吐出ガスを用い
ても同様の効果が得られる。
In FIG. 2, the accumulator (55)
An example in which the heating device (60) is housed is shown, but the heating device (60) may be provided on the outer bottom portion of the accumulator (55) and heated from the outside. Also, this heating device (60)
The same effect can be obtained by using an electric heater or a gas discharged from the compressor as the heat source.
【0029】以上の一連の動作を図3のフローチャート
にて説明する。冷凍サイクル装置の運転開始一定時間経
過後、液面レベル検出器(63)によりアキュムレータ(55)
内の液面レベル検知を開始する。以後液面レベルの検知
は連続して行う必要はなく、あるサンプリングタイム毎
に行えばよい。液面レベルが設定値より高いときは、加
熱装置(60)をONすることにより、アキュムレータ(55)
内に溜まり込んだ液冷媒を加熱し、冷媒のガス化を促進
させる。その後アキュムレータ(55)内の圧力により変化
する冷媒飽和温度および冷媒温度の検知を検知器(64)お
よび(65)にて開始する。その後冷媒温度が冷媒飽和温度
より高くなった場合、すなわち過熱蒸気となった時液冷
媒のガス化が終了したものと判断し、加熱装置をOFF
する。この状態ではアキュムレータ(55)底部に潤滑油が
溜まり込んでいるので、弁(61)を開くことにより、潤滑
油が圧縮機に吸入されていく。そしてある一定時間経過
後、弁(61)を閉じて潤滑油を圧縮機に戻す一連の動作が
終了する。なお、液面レベルを検知する時間間隔および
弁(61)を開閉する時間間隔については、アキュムレータ
の容量や加熱装置の加熱容量等によって異なるので、あ
らかじめ試験等によって時間間隔を求めておき実機に適
用すればよい。また、弁(61)を電磁弁とすれば、弁(61)
開閉のタイミングを液面レベル検出器(63)からの検知信
号によって電気的に制御することができ、より制御性の
よいシステムを提供することができる。このようにし
て、アキュムレータ(55)内に溜まり込んだ潤滑油を強制
的に圧縮機に吸入させることにより、液冷媒と潤滑油が
溶け合わない場合でも、アキュムレータ(55)内に潤滑油
が溜まり込むことなく圧縮機に確実に潤滑油を戻すこと
が可能となり、圧縮機損傷の原因となる液冷媒の吸入お
よび潤滑油不足を回避し圧縮機の信頼性を確保すること
ができる。
The above series of operations will be described with reference to the flowchart of FIG. After a certain period of time has passed since the start of the operation of the refrigeration cycle device, the liquid level detector (63) is used
The liquid level detection inside is started. After that, it is not necessary to continuously detect the liquid surface level, but it may be performed at a certain sampling time. When the liquid level is higher than the set value, turn on the heating device (60) to turn on the accumulator (55).
The liquid refrigerant accumulated inside is heated to promote the gasification of the refrigerant. After that, the detectors (64) and (65) start detecting the refrigerant saturation temperature and the refrigerant temperature, which change depending on the pressure in the accumulator (55). After that, when the refrigerant temperature becomes higher than the refrigerant saturation temperature, that is, when it becomes superheated vapor, it is judged that the gasification of the liquid refrigerant has ended, and the heating device is turned off.
To do. In this state, since the lubricating oil has accumulated in the bottom of the accumulator (55), the lubricating oil is sucked into the compressor by opening the valve (61). After a certain period of time, the valve (61) is closed and the series of operations for returning the lubricating oil to the compressor is completed. The time interval for detecting the liquid level and the time interval for opening / closing the valve (61) differ depending on the capacity of the accumulator, the heating capacity of the heating device, etc. do it. If the valve (61) is a solenoid valve, the valve (61)
The opening / closing timing can be electrically controlled by the detection signal from the liquid level detector (63), and a system with better controllability can be provided. In this way, by forcibly sucking the lubricating oil accumulated in the accumulator (55) into the compressor, the lubricating oil will accumulate in the accumulator (55) even if the liquid refrigerant and the lubricating oil do not mix. It is possible to reliably return the lubricating oil to the compressor without inserting it, and it is possible to avoid the suction of the liquid refrigerant and the lack of the lubricating oil that cause damage to the compressor, and to ensure the reliability of the compressor.
【0030】実施例2.図4は、この発明の実施例2に
関する冷凍サイクルの冷媒回路を示す図である。この実
施例においても、図11に示す従来例や図1に示す実施
例1と同一または相当する部分については、同一符号を
付し、重複説明を省略する。図4と実施例1を示す図1
との異なる点は、凝縮器(52)と減圧装置(53)の間に液溜
め装置(62)を設けた点にあり、アキュムレータ内に溜ま
り込んだ冷媒や潤滑油を圧縮機に戻す動作については、
実施例1と全く同様である。アキュムレータ(55)は気液
分離機能、返油機能の他に余剰冷媒を溜込む機能も要求
される。この実施例においても実施例1と同様にアキュ
ムレータ(55)の底部に備えた加熱装置(60)をオンするこ
とにより、アキュムレータ(55)底部から配管(59)を通し
て圧縮機に潤滑油を戻す機能をもつが、この時アキュム
レータ(55)に溜まり込んだ余剰の液冷媒は、アキュムレ
ータ(55)に備えた加熱装置(60)をオンすることにより、
ガス化し冷凍サイクル中に戻っていくが、このままの状
態では冷凍サイクルは冷媒過剰の状態となる。したがっ
て液溜め装置(62)にこの余剰冷媒を溜めることにより、
冷凍サイクルは適正な冷媒量で運転され、かつアキュム
レータ(55)内に潤滑油が溜まり込むことなく圧縮機に確
実に潤滑油を戻すことが可能となり、圧縮機損傷の原因
となる液冷媒の吸入および潤滑油不足を回避し圧縮機の
信頼性を確保することができる。
Example 2. FIG. 4 is a diagram showing a refrigerant circuit of a refrigeration cycle according to Embodiment 2 of the present invention. Also in this embodiment, the same or corresponding parts as those of the conventional example shown in FIG. 11 or the first embodiment shown in FIG. FIG. 4 and FIG. 1 showing the first embodiment.
Is different from the condenser (52) and the decompression device (53) between the liquid storage device (62) is provided, about the operation of returning the refrigerant and lubricating oil accumulated in the accumulator to the compressor Is
This is exactly the same as in Example 1. The accumulator (55) is required to have a gas-liquid separation function and an oil return function, as well as a function to store excess refrigerant. In this embodiment as well, the function of returning the lubricating oil from the bottom of the accumulator (55) to the compressor through the pipe (59) is turned on by turning on the heating device (60) provided at the bottom of the accumulator (55) as in the first embodiment. However, the excess liquid refrigerant accumulated in the accumulator (55) at this time, by turning on the heating device (60) provided in the accumulator (55),
Although it gasifies and returns to the refrigeration cycle, the refrigeration cycle is in an excessive refrigerant state in this state. Therefore, by storing this excess refrigerant in the liquid storage device (62),
The refrigeration cycle operates with an appropriate amount of refrigerant, and it is possible to reliably return the lubricating oil to the compressor without the lubricating oil accumulating in the accumulator (55), and the suction of liquid refrigerant that causes damage to the compressor. Also, it is possible to avoid the lack of lubricating oil and ensure the reliability of the compressor.
【0031】実施例3 5はこの発明の実施例3に関する冷凍サイクルの冷媒
回路を示す図であり、圧縮機(71)、四方弁(72)、室内熱
交換器(73)、逆止弁(74a)(74b)、レシーバ(75)、第1の
減圧装置(76a)(76b)、室外熱交換器(77)、アキュムレー
タ(78)を冷媒配管で接続し、レシーバ(75)の下部を貫通
し、アキュムレータ(78)の吐出側と圧縮機吸入側との間
に接続する吐出配管を有し、レシーバ(75)と圧縮機吸入
側の間に第2の減圧装置(79)を備え、さらにレシーバ(7
5)から第2の減圧装置(79)を介して圧縮機吸入側に接続
する吐出配管上において、第2の減圧装置と圧縮機吸入
側の間に室内熱交換器(73)および室外熱交換器(77)から
レシーバ(75)に通じる配管と熱交換する熱交換器(80a)
(80b)を設けた回路を形成している。
[0031] Example 3. Figure 5 is a diagram showing the refrigerant circuit of the related that the refrigeration cycle to a third embodiment of the present invention, the compressor (71), the four-way valve (72), the indoor heat exchanger (73), a check valve (74a) ( 74b), receiver (75), first pressure reducing device (76a) (76b), outdoor heat exchanger (77), accumulator (78) are connected by a refrigerant pipe, penetrate the lower part of the receiver (75), accumulator A discharge pipe connected between the discharge side of (78) and the suction side of the compressor, and a second pressure reducing device (79) provided between the receiver (75) and the suction side of the compressor. In addition, the receiver (7
The indoor heat exchanger (73) and the outdoor heat exchanger are provided between the second pressure reducing device and the compressor suction side on the discharge pipe connected from 5) to the compressor suction side via the second pressure reducing device (79). Heat exchanger (80a) for exchanging heat with the pipe leading from the vessel (77) to the receiver (75)
A circuit including (80b) is formed.
【0032】以下、図5における冷凍サイクル装置の作
用について説明する。レシーバ(75)と室内熱交換器(73)
および室外熱交換器(77)をつなぐ配管を流れる冷媒の状
態は高圧の液で、冷房または暖房運転においても状態は
変らないため、以下、暖房運転のもとで説明する。室内
熱交換器(73)から吐出し、逆止弁(74a)を通って、高圧
状態の冷媒が潤滑油と共にレシーバ(75)に流入する。レ
シーバは圧縮機吸入側と減圧装置(79)を介して冷媒配管
で接続されており、レシーバ(75)における圧力と圧縮機
吸入側の圧力の差に応じて、一部の流体がこの配管に吸
入される。この流体は潤滑油と冷媒が溶け合う場合には
両者の混合したもの、潤滑油と冷媒が溶け合わない場合
には潤滑油と液冷媒が分離したものである。吸入された
流体中の冷媒は、この減圧装置(79)を通過するときに、
減圧されて断熱膨張し、一部の冷媒が気化して、気液混
合冷媒となって、潤滑油と共に圧縮機(71)の吸入側に送
られる。このとき、冷媒は配管上の減圧装置(79)により
一部が気化し、気液混合状態となっているが、配管上の
熱交換器(80a)(80b)において、熱を吸収して全て気化
し、ガス状となって潤滑油と共に圧縮機に戻る。
The operation of the refrigeration cycle apparatus shown in FIG. 5 will be described below. Receiver (75) and indoor heat exchanger (73)
The state of the refrigerant flowing through the pipe connecting the outdoor heat exchanger (77) is a high-pressure liquid, and the state does not change during cooling or heating operation. Therefore, it will be described below under heating operation. The refrigerant in the high pressure state is discharged from the indoor heat exchanger (73), passes through the check valve (74a), and flows into the receiver (75) together with the lubricating oil. The receiver is connected to the compressor suction side via a pressure reducing device (79) through a refrigerant pipe, and some fluid flows into this pipe depending on the difference between the pressure at the receiver (75) and the pressure at the compressor suction side. Inhaled. This fluid is a mixture of both when the lubricating oil and the refrigerant are soluble, and is a mixture of the lubricating oil and the liquid refrigerant when the lubricating oil and the refrigerant are insoluble. Refrigerant in the sucked fluid, when passing through this pressure reducing device (79),
It is decompressed and adiabatically expanded, and a part of the refrigerant is vaporized to become a gas-liquid mixed refrigerant, which is sent to the suction side of the compressor (71) together with the lubricating oil. At this time, the refrigerant is partially vaporized by the decompression device (79) on the pipe and is in a gas-liquid mixed state, but in the heat exchangers (80a) (80b) on the pipe, all the heat is absorbed by the heat. It vaporizes, becomes gaseous, and returns to the compressor together with the lubricating oil.
【0033】このように、潤滑油と冷媒が溶け合わない
場合でも、またアキュムレータ(78)において一部の潤滑
油が滞留した場合でも、レシーバ(75)から圧縮機吸入側
に接続する吐出配管を通し、熱交換により冷媒を全て気
化して潤滑油を送ることにより、圧縮機への潤滑油の供
給が円滑になり、潤滑油不足による圧縮機の損傷が回避
でき、圧縮機の信頼性を確保することができる。
As described above, even when the lubricating oil and the refrigerant do not dissolve in each other, or when a part of the lubricating oil stays in the accumulator (78), the discharge pipe connected to the compressor suction side from the receiver (75) is connected. Through the heat exchange, the refrigerant is completely vaporized and the lubricating oil is sent, so that the lubricating oil can be supplied smoothly to the compressor, and damage to the compressor due to lack of lubricating oil can be avoided, ensuring reliability of the compressor. can do.
【0034】実施例4.図6は、この発明の実施例4に
関する冷凍サイクルの冷媒回路を示す図である。実施例
3と同一部分については同一符号を付し重複説明を省略
し、実施例3と同様に暖房運転のもとで説明する。図6
と実施例3を示す図5の異なる点は、減圧装置(79)の代
りに温度膨張弁(83)を設け、かつこの温度膨張弁を制御
するために、熱交換器(80b)の吐出側の配管に管温筒(8
4)を設けたところにある。
Example 4. FIG. 6 is a diagram showing a refrigerant circuit of a refrigeration cycle according to Embodiment 4 of the present invention. The same parts as those in the third embodiment will be designated by the same reference numerals, duplicate description will be omitted, and the description will be given under the heating operation as in the third embodiment. Figure 6
5 showing Embodiment 3 is that a temperature expansion valve (83) is provided in place of the pressure reducing device (79), and in order to control this temperature expansion valve, the discharge side of the heat exchanger (80b) is For the pipe of
It is in the place where 4) is provided.
【0035】この実施例と実施例3の動作上の異なる点
は、圧縮機(71)に潤滑油と共に吸入される冷媒の温度を
温度式膨張弁(83)により制御する点である。この冷媒の
圧縮機(71)に吸入される冷媒の温度を制御することによ
り、アキュムレータ(78)を通って圧縮機(71)に吸入され
る冷媒との圧力の差を小さくし、吸入圧力の急激な低下
を防止し、かつ潤滑油不足を解消し、圧縮機の信頼性を
確保することができる。
The operational difference between this embodiment and the third embodiment is that the temperature of the refrigerant sucked into the compressor (71) together with the lubricating oil is controlled by the thermal expansion valve (83). By controlling the temperature of the refrigerant sucked into the compressor (71) of this refrigerant, the difference in pressure with the refrigerant sucked into the compressor (71) through the accumulator (78) is reduced, and the suction pressure The reliability of the compressor can be secured by preventing a sharp drop and eliminating the lack of lubricating oil.
【0036】実施例5.図7は、この発明の実施例4に
関する冷凍サイクルの冷媒回路を示す図である。図7と
実施例4を示す図6との異なる点は、温度式膨張弁(83)
の代りに電子膨張弁(81)を設け、さらに、この電子膨張
弁(81)を制御するために、電子膨張弁(81)の存在する吐
出配管と、熱交換器(80b)の吐出側の配管に温度センサ
(82a)(82b)をそれぞれ設けたところにある。
Example 5. FIG. 7: is a figure which shows the refrigerant circuit of the refrigerating cycle regarding Example 4 of this invention. The difference between FIG. 7 and FIG. 6 showing the fourth embodiment is that the temperature type expansion valve (83) is used.
An electronic expansion valve (81) is provided instead of the above, and in order to control this electronic expansion valve (81), the discharge pipe in which the electronic expansion valve (81) exists and the discharge side of the heat exchanger (80b) Temperature sensor in piping
(82a) and (82b) are provided respectively.
【0037】この実施例と実施例4の動作上の異なる点
は、圧縮機(71)に潤滑油と共に吸入される冷媒の過熱度
を電子膨張弁(81)により制御する点である。図8はこの
冷媒の過熱度の制御を示すフローチャートである。この
冷媒の過熱度の制御は温度センサ(82a)(82b)の温度差か
ら冷媒の過熱度を算出し、適正な過熱度(ほぼ3℃〜5
℃程度)になるように電子膨張弁(81)の絞りを制御する
もので、アキュムレータ(78)を通って圧縮機(71)に吸入
される冷媒との圧力の差をさらに小さくし、吸入圧力の
急激な低下を防止し、かつ潤滑油不足を解消し、圧縮機
の信頼性を確保することができる。
The operational difference between this embodiment and Embodiment 4 is that the degree of superheat of the refrigerant sucked into the compressor (71) together with the lubricating oil is controlled by the electronic expansion valve (81). FIG. 8 is a flowchart showing the control of the degree of superheat of the refrigerant. To control the degree of superheat of the refrigerant, the degree of superheat of the refrigerant is calculated from the temperature difference between the temperature sensors (82a) and (82b), and the appropriate degree of superheat (approximately 3 ° C to 5 ° C) is obtained.
It controls the throttle of the electronic expansion valve (81) so that it becomes about ℃) and further reduces the pressure difference with the refrigerant sucked into the compressor (71) through the accumulator (78). It is possible to prevent the sudden decrease of the oil pressure, eliminate the lack of lubricating oil, and ensure the reliability of the compressor.
【0038】[0038]
【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.
【0039】請求項1の発明によれば、圧縮機、凝縮
器、減圧装置、蒸発器およびアキュムレータを順次冷媒
配管で接続し、上記アキュムレータの底部に調整弁を介
して圧縮機吸入側に液冷媒より比重が小さい潤滑油を注
入する吐出配管を接続した冷凍サイクル装置において、
上記アキュムレータ底部を加熱する加熱装置、上記アキ
ュムレータの液面レベルを検出する液面レベル検出器、
上記アキュムレータ内の冷媒温度を検出する冷媒温度検
出器、および上記アキュムレータ内の冷媒飽和温度を検
出する冷媒飽和温度検出器を設け、上記液面レベル検出
器の所定レベル以上の検出に応じ上記加熱装置を動作さ
せ、上記冷媒温度検出器の検出温度が上記冷媒飽和温度
検出器の検出温度より高くなったときに上記加熱装置の
動作を終了させるとともに、上記調整弁を一定時間開
き、アキュムレータの底部に溜まり込んだ潤滑油のみを
圧縮機に吸入するようにしたので、アキュムレータ内に
潤滑油が溜まり込むことなく、圧縮機に確実に潤滑油を
戻すことが可能となり、圧縮機損傷の原因となる液冷媒
の吸入および潤滑油不足を回避し、圧縮機の信頼性を確
保することができる。
According to the invention of claim 1, the compressor, the condenser, the pressure reducing device, the evaporator, and the accumulator are sequentially connected by the refrigerant pipe, and the liquid refrigerant is connected to the compressor suction side through the adjusting valve at the bottom of the accumulator. In the refrigeration cycle device connected to the discharge pipe for injecting the lubricating oil having a smaller specific gravity ,
A heating device for heating the bottom of the accumulator, a liquid level detector for detecting the liquid level of the accumulator,
A refrigerant temperature detector for detecting the refrigerant temperature in the accumulator, and a refrigerant saturation temperature detector for detecting the refrigerant saturation temperature in the accumulator are provided, and the heating device according to the detection of a predetermined level or higher of the liquid level detector. When the temperature detected by the refrigerant temperature detector becomes higher than the temperature detected by the refrigerant saturation temperature detector, the operation of the heating device is terminated and the adjustment valve is opened for a certain period of time.
The lubricant accumulated in the bottom of the accumulator.
Since it is sucked into the compressor, it is possible to reliably return the lubricating oil to the compressor without accumulating the lubricating oil in the accumulator, and to suck the liquid refrigerant that causes damage to the compressor and lack of lubricating oil. Therefore, the reliability of the compressor can be secured.
【0040】また、請求項2の発明によれば、請求項1
の発明に加え、凝縮器と減圧装置の間に液溜め装置を備
えたので、冷凍サイクルに冷媒過剰の状態が生じても、
液溜め装置に余剰冷媒を溜めることにより、冷凍サイク
ルは適正な冷媒量で運転され、請求項16の発明と同様
の効果を得ることができる。
According to the invention of claim 2, claim 1
In addition to the invention of the above, since the liquid storage device is provided between the condenser and the pressure reducing device, even if a refrigerant excess state occurs in the refrigeration cycle,
By storing the excess refrigerant in the liquid storage device, the refrigeration cycle is operated with an appropriate amount of refrigerant, and the same effect as the invention of claim 16 can be obtained.
【0041】また、請求項3の発明によれば、圧縮機、
凝縮器、レシーバ、第1の減圧装置、蒸発器およびアキ
ュムレータを順次冷媒配管で接続した冷凍サイクル装置
において、上記レシーバの下部を貫通し、かつアキュム
レータの吐出側である圧縮機吸入側に接続する吐出配管
を設け、この吐出配管のレシーバと圧縮機吸入側の間に
第2の減圧装置を設け、上記第2の減圧装置の吐出側の
配管と、上記凝縮器及び蒸発器と上記レシーバとを接続
する配管とを熱交換させ、上記第2の減圧装置の開度調
整により、上記レシーバからの液冷媒を上記第2の減圧
装置を介して上記圧縮機吸入側に合流するまでにガス冷
媒とし潤滑油と共に上記圧縮機に戻すようにしたことを
主要な構成としたので、潤滑油がアキュムレータで滞留
しても、このレシーバにおいて潤滑油を回収できるため
圧縮機に常時潤滑油を戻すことが可能となり、圧縮機損
傷の原因の一つである潤滑油不足を解消し、圧縮機の信
頼性を高めることができ、圧縮機に潤滑油と共に戻る冷
媒が完全に気化するため、潤滑油不足と共に液冷媒の吸
入による圧縮機の損傷を防止し、圧縮機の信頼性を向上
させることができる。
According to the invention of claim 3, the compressor,
In a refrigeration cycle apparatus in which a condenser, a receiver, a first pressure reducing device, an evaporator and an accumulator are sequentially connected by a refrigerant pipe, the lower part of the receiver is penetrated and an accumulator is formed.
A discharge pipe connected to the compressor suction side, which is the discharge side of the generator, is provided, and a second pressure reducing device is provided between the receiver of the discharge pipe and the compressor suction side, and the discharge side pipe of the second pressure reducing device is provided. And heat exchange between the condenser and the evaporator and the pipe connecting the receiver, and by adjusting the opening degree of the second pressure reducing device, the liquid refrigerant from the receiver is passed through the second pressure reducing device. Since the main configuration was to return it to the compressor together with the lubricating oil as a gas refrigerant until it joins the compressor suction side, even if the lubricating oil stays in the accumulator, Since it can be recovered, it is possible to return the lubricating oil to the compressor all the time, and it is possible to eliminate the lack of lubricating oil, which is one of the causes of compressor damage, and improve the reliability of the compressor. Return refrigerant completely vaporized Therefore, damage to the compressor due to inhalation of the liquid refrigerant is prevented with shortage of lubricating oil, it is possible to improve the reliability of the compressor.
【0042】また、請求項4の発明によれば、第2の減
圧装置として温度式膨張弁を使用し、この温度式膨張弁
の吐出側配管部に感温筒を取り付け、これらの検出され
た温度差によって上記制御弁の絞りを制御するようにし
たので、圧縮機に吸入される冷媒の過熱度を適正なもの
とし、圧縮機に吸入される冷媒の圧力の急激な低下を防
止すると共に、潤滑油不足による圧縮機の損傷を防止
し、圧縮機の信頼性を向上させることができる。
According to the invention of claim 4, a temperature type expansion valve is used as the second pressure reducing device, and a temperature sensitive tube is attached to the discharge side pipe portion of the temperature type expansion valve, and these are detected. Since the throttle of the control valve is controlled by the temperature difference, the degree of superheat of the refrigerant sucked into the compressor is made appropriate, and the pressure of the refrigerant sucked into the compressor is prevented from being rapidly reduced, It is possible to prevent damage to the compressor due to lack of lubricating oil and improve the reliability of the compressor.
【0043】また、請求項5の発明によれば、第2の減
圧装置として電子膨張弁を使用し、この電子膨張弁の吐
出側配管部と熱交換直後の配管とに温度センサを取り付
け、これらによる検出温度差が所定値以上となるよう
に、上記電子膨張弁を開度調整するようにしたので、圧
縮機に吸入される冷媒の過熱度を適正なものとし、圧縮
機に吸入される冷媒の圧力の急激な低下を防止すると共
に潤滑油不足による圧縮機の損傷を防止し、圧縮機の信
頼性を向上させることができる。
According to the fifth aspect of the present invention, an electronic expansion valve is used as the second pressure reducing device, and a temperature sensor is attached to the discharge side pipe portion of this electronic expansion valve and the pipe immediately after heat exchange. Since the opening degree of the electronic expansion valve is adjusted so that the detected temperature difference due to becomes a predetermined value or more, the degree of superheat of the refrigerant sucked into the compressor is made appropriate, and the refrigerant sucked into the compressor is adjusted. It is possible to prevent the pressure from rapidly decreasing and prevent the compressor from being damaged due to lack of lubricating oil, thereby improving the reliability of the compressor.
【0044】また、請求項6の発明によれば、上記各発
明のものにおいて、液冷媒と溶解しない冷凍サイクル用
潤滑油を用いたので、液冷媒や潤滑油として安価なもの
が使用できる。
According to the invention of claim 6, in each of the above inventions, since the refrigerating cycle lubricating oil that does not dissolve in the liquid refrigerant is used, an inexpensive liquid refrigerant or lubricating oil can be used.
【図面の簡単な説明】[Brief description of drawings]
【図1】この発明の実施例1を示す冷凍サイクル装置の
冷媒回路図。
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle device showing a first embodiment of the present invention.
【図2】この発明の実施例1の冷凍サイクル装置のアキ
ュムレータの断面図。
FIG. 2 is a cross-sectional view of the accumulator of the refrigeration cycle device according to the first embodiment of the present invention.
【図3】この発明の実施例1における動作を示すフロー
チャート。
FIG. 3 is a flowchart showing the operation of the first embodiment of the present invention.
【図4】この発明の実施例2を示す冷凍サイクル装置の
冷媒回路図。
FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle device showing Embodiment 2 of the present invention.
【図5】この発明の実施例3を示す冷凍サイクル装置の
冷媒回路図。
FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 3 of the present invention.
【図6】この発明の実施例4を示す冷凍サイクル装置の
冷媒回路図。
FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 4 of the present invention.
【図7】この発明の実施例5を示す冷凍サイクル装置の
冷媒回路図。
FIG. 7 is a refrigerant circuit diagram of a refrigeration cycle apparatus showing Embodiment 5 of the present invention.
【図8】この発明の実施例5における冷媒過熱度の制御
を示すフローチャート。
FIG. 8 is a flowchart showing control of refrigerant superheat degree in Embodiment 5 of the present invention.
【図9】一般の冷凍サイクル装置の冷媒回路図。FIG. 9 is a refrigerant circuit diagram of a general refrigeration cycle device.
【図10】従来のアキュムレータの断面図。FIG. 10 is a sectional view of a conventional accumulator.
【図11】従来の冷凍サイクル装置の冷媒回路図。FIG. 11 is a refrigerant circuit diagram of a conventional refrigeration cycle device.
【図12】従来の冷凍サイクル装置におけるアキュムレ
ータの断面図。
FIG. 12 is a sectional view of an accumulator in a conventional refrigeration cycle apparatus.
【図13】従来の冷凍サイクル装置の冷媒回路図。FIG. 13 is a refrigerant circuit diagram of a conventional refrigeration cycle device.
【符号の説明】[Explanation of symbols]
1 筒状密閉容器、2 吸入管、7 吐出管、8 小
孔、14 圧縮機、15凝縮器、16 減圧器、17
蒸発器、18 アキュムレータ、51 圧縮機、52
凝縮器、53 減圧装置、54 蒸発器、55 アキュ
ムレータ、56吸入管、57 吐出管、58 油戻し
管、59 吐出配管、60 加熱装置、61 弁、62
液溜め装置、63 液面レベル検出器、64 冷媒飽
和温度検出器、65 冷媒温度検出器、71 圧縮機、
72 四方弁、73 室内熱交換器、74a 逆止弁、
74b 逆止弁、75 レシーバ、76a 減圧装置、
76b 減圧装置、77 室外熱交換器、78 アキュ
ムレータ、79 減圧装置、80a 熱交換器、80b
熱交換器、81 電子膨張弁(制御弁)、82a温度
センサ、82b 温度センサ、83 温度式膨張弁(制
御弁)、84 管温筒。
1 cylindrical closed container, 2 suction pipe, 7 discharge pipe, 8 small holes, 14 compressor, 15 condenser, 16 pressure reducer, 17
Evaporator, 18 Accumulator, 51 Compressor, 52
Condenser, 53 decompression device, 54 evaporator, 55 accumulator, 56 suction pipe, 57 discharge pipe, 58 oil return pipe, 59 discharge pipe, 60 heating device, 61 valve, 62
Liquid sump device, 63 liquid level detector, 64 refrigerant saturation temperature detector, 65 refrigerant temperature detector, 71 compressor,
72 four-way valve, 73 indoor heat exchanger, 74a check valve,
74b Check valve, 75 receiver, 76a Pressure reducing device,
76b Pressure reducing device, 77 Outdoor heat exchanger, 78 Accumulator, 79 Pressure reducing device, 80a Heat exchanger, 80b
Heat exchanger, 81 electronic expansion valve (control valve), 82a temperature sensor, 82b temperature sensor, 83 temperature type expansion valve (control valve), 84 tube warm cylinder.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 孝行 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (72)発明者 永野 雅夫 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (72)発明者 枝吉 敦史 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (72)発明者 小西 勝 東京都千代田区大手町二丁目6番2号 日本建鐵株式会社内 (72)発明者 幸田 利秀 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 岡崎 多佳志 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 木藤良 善久 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 森本 修 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 昭63−25462(JP,A) 特開 平2−298770(JP,A) 特開 平4−344072(JP,A) 特開 平4−283360(JP,A) 特開 昭60−66064(JP,A) 特開 平4−240355(JP,A) 特開 平5−157379(JP,A) 実開 昭63−63660(JP,U) 実開 昭52−28776(JP,U) 実開 平2−120667(JP,U) 実開 昭53−65053(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/02 F25B 1/00 331 F25B 41/06 F25B 43/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Yoshida 3-18-1, Oka, Shizuoka City Mitsubishi Electric Co., Ltd. Living Environment Engineering Center (72) Inventor Masao Nagano 3-18-1, Oga, Shizuoka No. Mitsubishi Electric Co., Ltd. Living Environment Engineering Center (72) Inventor Atsushi Edayoshi 3-18-1, Oga, Shizuoka City Mitsubishi Electric Co., Ltd. Living Environment Engineering Center (72) Inventor Masaru Konishi Tokyo 2-6-2 Otemachi, Chiyoda-ku Nihon Kenketsu Co., Ltd. (72) Inventor Toshihide Koda 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Institute (72) Inventor Yoshihiro Sumida Amagasaki City 8-1-1 Tsukaguchihonmachi Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Takashi Okazaki Amagasaki 8-1-1 Tsukaguchi Honcho Mitsubishi Electric Co., Ltd. Central Research Laboratory (72) Inventor Yoshihisa Kito 3-181-1, Oga, Shizuoka City Mitsubishi Electric Corporation Shizuoka Factory (72) Inventor Osamu Morimoto Wakayama City 6-5-6 Tedai Mitsubishi Electric Co., Ltd. Wakayama Works (72) Inventor Tomohiko Kasai 6-5-6 Tehira Tei, Wakayama Mitsubishi Electric Co., Ltd. Wakayama Works (56) Reference JP-A-63-25462 (JP, A) JP-A-2-298770 (JP, A) JP-A-4-344072 (JP, A) JP-A-4-283360 (JP, A) JP-A-60-66064 (JP, A) Kaihei 4-240355 (JP, A) JP-A 5-157379 (JP, A) Actual opening Sho 63-63660 (JP, U) Actual opening Sho 52-28776 (JP, U) Actual opening 2-120667 ( JP, U) Actual development Sho 53-65053 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 43/02 F25B 1/00 331 F25B 41/06 F25B 43/00

Claims (6)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器およ
    びアキュムレータを順次冷媒配管で接続し、上記アキュ
    ムレータの底部に調整弁を介して圧縮機吸入側に液冷媒
    より比重が小さい潤滑油を注入する吐出配管を接続した
    冷凍サイクル装置において、上記アキュムレータ底部を
    加熱する加熱装置、上記アキュムレータの液面レベルを
    検出する液面レベル検出器、上記アキュムレータ内の冷
    媒温度を検出する冷媒温度検出器、および上記アキュム
    レータ内の冷媒飽和温度を検出する冷媒飽和温度検出器
    を設け、上記液面レベル検出器の所定レベル以上の検出
    に応じ上記加熱装置を動作させ、上記冷媒温度検出器の
    検出温度が上記冷媒飽和温度検出器の検出温度より高く
    なったときに上記加熱装置の動作を終了させるととも
    に、上記調整弁を一定時間開き、アキュムレータの底部
    に溜まり込んだ潤滑油のみを圧縮機に吸入するようにし
    たことを特徴とする冷凍サイクル装置。
    1. A compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator are sequentially connected by a refrigerant pipe, and a liquid refrigerant is introduced to a compressor suction side through a regulating valve at the bottom of the accumulator.
    In a refrigeration cycle device connected to a discharge pipe for injecting lubricating oil having a smaller specific gravity, a heating device for heating the bottom of the accumulator, a liquid level detector for detecting the liquid level of the accumulator, and a refrigerant temperature in the accumulator. A refrigerant temperature detector for detecting and a refrigerant saturation temperature detector for detecting a refrigerant saturation temperature in the accumulator are provided, and the heating device is operated in response to detection of a predetermined level or more of the liquid level detector, and the refrigerant temperature together to terminate the operation of the heating device when the temperature detected by the detector is higher than the detection temperature of the refrigerant saturation temperature detector, open a certain time the adjustment valve, the bottom of the accumulator
    A refrigeration cycle device characterized in that only the lubricating oil accumulated in the compressor is sucked into the compressor .
  2. 【請求項2】 冷凍サイクルを構成する凝縮器と減圧装
    置の間に液溜め装置を備えたことを特徴とする請求項1
    記載の冷凍サイクル装置。
    2. A liquid sump device is provided between a condenser and a decompression device constituting a refrigeration cycle.
    The refrigeration cycle device described.
  3. 【請求項3】 圧縮機、凝縮器、レシーバ、第1の減圧
    装置、蒸発器およびアキュムレータを順次冷媒配管で接
    続した冷凍サイクル装置において、上記レシーバの下部
    を貫通し、かつ上記アキュムレータの吐出側である圧縮
    機吸入側に接続する吐出配管を設け、この吐出配管のレ
    シーバと圧縮機吸入側の間に第2の減圧装置を設け、上
    記第2の減圧装置の吐出側の配管と、上記凝縮器及び蒸
    発器と上記レシーバとを接続する配管とを熱交換させ、
    上記第2の減圧装置の開度調整により、上記レシーバか
    の液冷媒を上記第2の減圧装置を介して上記圧縮機吸
    入側に合流するまでにガス冷媒とし潤滑油と共に上記圧
    縮機に戻すようにしたことを特徴とする冷凍サイクル装
    置。
    3. A refrigeration cycle apparatus in which a compressor, a condenser, a receiver, a first pressure reducing device, an evaporator and an accumulator are sequentially connected by a refrigerant pipe, and penetrates a lower part of the receiver and at a discharge side of the accumulator. A discharge pipe connected to a compressor suction side is provided, a second pressure reducing device is provided between the receiver of the discharge pipe and the compressor suction side, the discharge side pipe of the second pressure reducing device, and the condenser. And heat exchange between the evaporator and the pipe connecting the receiver,
    The opening adjustment of the second pressure reducing device, the pressure of the gas refrigerant with the lubricating oil before merging into a liquid refrigerant through the second pressure reducing device the suction side of the compressor from the receiver
    A refrigeration cycle device characterized by being returned to a compressor .
  4. 【請求項4】 第2の減圧装置として温度式膨張弁を使
    用し、この温度式膨張弁の吐出側配管部に感温筒を取り
    付けたことを特徴とする請求項3記載の冷凍サイクル装
    置。
    4. The refrigeration cycle apparatus according to claim 3, wherein a temperature type expansion valve is used as the second pressure reducing device, and a temperature sensing cylinder is attached to a discharge side piping portion of the temperature type expansion valve.
  5. 【請求項5】 第2の減圧装置として電子膨張弁を使用
    し、この電子膨張弁の吐出側配管部と熱交換直後の配管
    とに温度センサを取り付け、これらによる検出温度差が
    所定値以上となるように、上記電子膨張弁を開度調整す
    るようにしたことを特徴とする請求項3記載の冷凍サイ
    クル装置。
    5. An electronic expansion valve is used as the second pressure reducing device, and a temperature sensor is attached to a discharge side pipe portion of this electronic expansion valve and a pipe immediately after heat exchange so that a temperature difference detected by them is a predetermined value or more. The refrigeration cycle apparatus according to claim 3, wherein the opening degree of the electronic expansion valve is adjusted so that
  6. 【請求項6】 液冷媒と溶解しない冷凍サイクル用潤滑
    油を用いたことを特徴とする請求項1〜5の何れかに記
    載の冷凍サイクル装置。
    6. The refrigeration cycle apparatus according to claim 1, wherein a refrigeration cycle lubricating oil that does not dissolve in the liquid refrigerant is used.
JP2000193121A 1993-12-28 2000-06-27 Refrigeration cycle device Expired - Lifetime JP3439178B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05334283A JP3104513B2 (en) 1993-12-28 1993-12-28 accumulator
JP2000193121A JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193121A JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05334283A Division JP3104513B2 (en) 1993-12-28 1993-12-28 accumulator

Publications (2)

Publication Number Publication Date
JP2001027460A JP2001027460A (en) 2001-01-30
JP3439178B2 true JP3439178B2 (en) 2003-08-25

Family

ID=27806844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193121A Expired - Lifetime JP3439178B2 (en) 1993-12-28 2000-06-27 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP3439178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738033A (en) * 2008-11-21 2010-06-16 湖南艾捷能节能科技有限公司 Refrigerant purification economizer

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714304B2 (en) 2002-07-10 2005-11-09 ダイキン工業株式会社 Refrigeration equipment
JP3719246B2 (en) 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
KR100556773B1 (en) * 2003-11-05 2006-03-10 엘지전자 주식회사 Oil return apparatus for accumulator of air conditioner and oil return method thereof
JP4459776B2 (en) 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
KR100698294B1 (en) * 2004-11-25 2007-03-23 엘지전자 주식회사 Cyclone type oil separator
KR100569833B1 (en) 2005-01-07 2006-04-11 한국에너지기술연구원 Flash tank of two-stage compression heat pump
JP4462436B2 (en) * 2005-11-16 2010-05-12 株式会社富士通ゼネラル Refrigeration equipment
JP5170494B2 (en) * 2005-12-07 2013-03-27 アイシン精機株式会社 Gas-liquid separator for compressor
CN100554820C (en) 2006-03-27 2009-10-28 三菱电机株式会社 Refrigerating air-conditioning
JP4787070B2 (en) * 2006-05-30 2011-10-05 サンデン株式会社 Refrigeration cycle
JP5595025B2 (en) * 2009-12-10 2014-09-24 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
JP2012007864A (en) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp Liquid receiver and refrigerating cycle device using the same
KR101201635B1 (en) * 2010-09-27 2012-11-20 엘지전자 주식회사 An air conditioner
JP5213990B2 (en) * 2011-04-27 2013-06-19 三菱電機株式会社 Refrigeration air conditioner
CN103822413B (en) * 2012-05-02 2016-01-20 广东万和新电气股份有限公司 Removable cold-producing medium electric heating body
CN106104173B (en) * 2014-03-17 2019-03-01 三菱电机株式会社 Refrigerating circulatory device
WO2015198431A1 (en) * 2014-06-25 2015-12-30 三菱電機株式会社 Refrigeration-cycle device, air conditioner, and method for controlling refrigeration cycle device
US10408513B2 (en) * 2015-02-18 2019-09-10 Heatcraft Refrigeration Products, Inc. Oil line control system
JP2017096564A (en) 2015-11-25 2017-06-01 三菱重工業株式会社 Refrigeration cycle system and liquid back prevention method
CN108444128B (en) * 2018-05-14 2019-05-24 西安交通大学 A kind of Trans-critical cycle CO2Wet Compression heat pump system and its operating method
CN109579344A (en) * 2018-11-27 2019-04-05 南京天加环境科技有限公司 A kind of air-conditioning system and its control method that can prevent compressor liquid hammer
WO2021038852A1 (en) * 2019-08-30 2021-03-04 三菱電機株式会社 Refrigeration cycle device
CN111486626A (en) * 2020-04-30 2020-08-04 宁波奥克斯电气股份有限公司 Liquid-gas separator, air conditioner and liquid-gas separation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228776U (en) * 1975-08-22 1977-02-28
JPS5365053U (en) * 1976-11-05 1978-06-01
JPS6066064A (en) * 1983-09-22 1985-04-16 Sanyo Electric Co Refrigerator
JPH0627595B2 (en) * 1986-07-16 1994-04-13 三菱電機株式会社 Air conditioner
JPS6363660U (en) * 1986-10-15 1988-04-27
JPH02120667U (en) * 1989-03-10 1990-09-28
JPH02298770A (en) * 1989-05-10 1990-12-11 Daikin Ind Ltd Multiple type air conditioner
JP3086813B2 (en) * 1991-01-22 2000-09-11 東芝キヤリア株式会社 Control method of electronic expansion valve in air conditioner
JPH04283360A (en) * 1991-03-11 1992-10-08 Daikin Ind Ltd Refrigerator
JP2951043B2 (en) * 1991-05-20 1999-09-20 三洋電機株式会社 Air conditioner
JP2803451B2 (en) * 1991-07-12 1998-09-24 三菱電機株式会社 Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738033A (en) * 2008-11-21 2010-06-16 湖南艾捷能节能科技有限公司 Refrigerant purification economizer

Also Published As

Publication number Publication date
JP2001027460A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
EP2491317B1 (en) Refrigerant vapor compression system operation
EP2147264B1 (en) Refrigerant vapor compression system
US6023935A (en) Air conditioner
CN101568776B (en) Economized refrigeration cycle with expander
CN101688698B (en) Refrigerant vapor compression system with flash tank economizer
US9163865B2 (en) Refrigeration cycle device and method of controlling the same
EP0855562B1 (en) Air conditioner
EP1435494B1 (en) Refrigeration system and method for operating a refrigeration system
CN100353128C (en) Freezing device
JP4023415B2 (en) Vapor compression refrigerator
JP3925545B2 (en) Refrigeration equipment
KR100658461B1 (en) Freezer
JP4581720B2 (en) Cycle using ejector
JP2865707B2 (en) Refrigeration equipment
CN100590372C (en) Refrigeration circuit with improved liquid/steam receiver
US6343486B1 (en) Supercritical vapor compression cycle
JP5200593B2 (en) Air conditioner
EP1757879B1 (en) Refrigerant cycle apparatus
JP3321191B2 (en) refrigerator
US5369958A (en) Air conditioner
KR20090064417A (en) Air conditioner
US4551983A (en) Refrigeration apparatus
JP3538492B2 (en) Refrigeration cycle device
EP0854331A2 (en) Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
US20020129612A1 (en) Refrigeration cycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100613

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term