JP2003240366A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner

Info

Publication number
JP2003240366A
JP2003240366A JP2002045015A JP2002045015A JP2003240366A JP 2003240366 A JP2003240366 A JP 2003240366A JP 2002045015 A JP2002045015 A JP 2002045015A JP 2002045015 A JP2002045015 A JP 2002045015A JP 2003240366 A JP2003240366 A JP 2003240366A
Authority
JP
Japan
Prior art keywords
refrigerating
evaporator
air
refrigerant
conditioning apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002045015A
Other languages
Japanese (ja)
Inventor
Fumitake Unezaki
史武 畝崎
Shinichi Wakamoto
慎一 若本
Masayuki Tsunoda
昌之 角田
So Nomoto
宗 野本
Toshihiko Enomoto
寿彦 榎本
Yoshihisa Kitora
善久 木藤良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002045015A priority Critical patent/JP2003240366A/en
Publication of JP2003240366A publication Critical patent/JP2003240366A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that flow-in of oil into an evaporator is impossible to be restrained while securing oil supply to an expander when using the expander as a pressure reducing device, in a conventional refrigerating air-conditioner using carbon dioxide gas refrigerant. <P>SOLUTION: In a refrigerating cycle connected with a compressor, a heat radiator, the pressure reducing device and an evaporator in order, carbon dioxide gas is used as a refrigerant, the expander is used as the pressure reducing device, an oil separator is provided between the pressure reducing device and the evaporator, and heat-transfer performance is thereby prevented from being lowered in the evaporator to provide the refrigerating air-conditioner of high operation efficiency. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍空調装置に関す
るものであり、特に冷媒として二酸化炭素を用いた冷凍
空調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration air conditioning system, and more particularly to a refrigeration air conditioning system using carbon dioxide as a refrigerant.

【0002】[0002]

【従来の技術】二酸化炭素を冷媒として用いる冷凍空調
装置として、特開2000−55488号公報記載の冷
凍空調装置がある。図9はこの特許に記載の冷凍サイク
ルであり、図において、1は圧縮機、4は油分離器、2
は放熱器、15は膨張弁、5は蒸発器であり、冷媒とし
て二酸化炭素(CO2)が用いられる。この冷凍空調装
置の冷媒の流れは以下のようになる。まず、圧縮機1に
おいて高温高圧のガスに圧縮され吐出された冷媒は、超
臨界状態で放熱器2にて冷却され温度が低下する。この
冷媒を膨張弁15により減圧し、冷媒は低圧の二相状態
となり、蒸発器5に流入し、ここで蒸発ガス化し、圧縮
機1に吸入される。圧縮機1から冷媒とともに吐出され
た冷凍機油は油分離器4で分離され、圧縮機1に返油さ
れる。このような構造とすることで、二酸化炭素冷媒の
ようにガス密度が大きく、流速の遅い冷媒を用いても、
熱交換器や配管への冷凍機油の滞留を防止し、冷凍機油
の滞留による圧力損失の増加を抑制し、機器の小型化を
可能としていた。
2. Description of the Related Art As a refrigerating and air-conditioning apparatus that uses carbon dioxide as a refrigerant, there is a refrigerating and air-conditioning apparatus described in JP-A-2000-55488. FIG. 9 shows a refrigeration cycle described in this patent, in which 1 is a compressor, 4 is an oil separator, and 2 is a compressor.
Is a radiator, 15 is an expansion valve, 5 is an evaporator, and carbon dioxide (CO 2 ) is used as a refrigerant. The flow of the refrigerant in this refrigeration air conditioner is as follows. First, the refrigerant compressed in the high-temperature and high-pressure gas in the compressor 1 and discharged is cooled by the radiator 2 in the supercritical state, and the temperature thereof drops. The refrigerant is decompressed by the expansion valve 15, the refrigerant is in a low-pressure two-phase state, flows into the evaporator 5, is evaporated and gasified therein, and is sucked into the compressor 1. Refrigerating machine oil discharged from the compressor 1 together with the refrigerant is separated by the oil separator 4 and returned to the compressor 1. With such a structure, a gas density is high like a carbon dioxide refrigerant, and even if a refrigerant with a slow flow rate is used,
It was possible to prevent the refrigerating machine oil from accumulating in the heat exchanger and the piping, to suppress an increase in pressure loss due to the accumulating refrigerating machine oil, and to downsize the equipment.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来例には以
下のような問題があった。二酸化炭素を用いた冷凍サイ
クルでは、冷媒の特性により膨張するときに回収できる
動力が大きくなるので、その動力を回収する膨張機が膨
張弁の代わりに、あるいは膨張弁と併用して用いられ
る。膨張機には摺動部分があるので、その潤滑のために
は冷凍機油の供給が不可欠となる。しかし、従来例で
は、圧縮機1出口に油分離器4を設けたため、圧縮機1
から吐出された冷凍機油のほとんどが圧縮機1に返油さ
れてしまい、膨張機には冷凍機油が供給されなくなり、
膨張機運転の信頼性を低下させるという問題があった。
However, the conventional example has the following problems. In a refrigeration cycle using carbon dioxide, the power that can be recovered when expanding due to the characteristics of the refrigerant is large, so an expander that recovers that power is used instead of the expansion valve or in combination with the expansion valve. Since the expander has sliding parts, it is essential to supply refrigerating machine oil for lubrication. However, in the conventional example, since the oil separator 4 is provided at the outlet of the compressor 1, the compressor 1
Most of the refrigerating machine oil discharged from the compressor is returned to the compressor 1, and the refrigerating machine oil is no longer supplied to the expander,
There is a problem that the reliability of the expander operation is reduced.

【0004】また膨張機に冷凍機油を給油するために、
圧縮機1出口に油分離器4を設けなかった場合、膨張機
に冷凍機油は供給されるものの、冷媒回路全体に冷凍機
油が循環することとなるので、蒸発器4にも冷凍機油が
流入する。二酸化炭素のように従来の冷媒よりも運転圧
力の高い冷媒を用いるとガス密度が大きくなり、蒸発器
4内での冷媒流速も低下する。すると蒸発器4内での伝
熱の形態は、冷媒の流動により生じる対流効果により伝
熱性能向上をもたらす対流伝熱よりも、冷媒が沸騰する
ことによって伝熱性能向上をもたらす沸騰伝熱の方が支
配的となる。沸騰伝熱は、伝熱管表面の微細なキャビテ
ィ(孔)において、冷媒が沸騰し気泡が発生することに
よって伝熱が行われる。このとき、蒸発器4に流入する
冷凍機の油量が多いと、冷媒が沸騰し気泡が発生しよう
とするときに、伝熱管表面に油膜がつくことにより抵抗
となり、気泡の発生を抑制する。従って、油分離器4を
設けず、蒸発器4での油流入量が多くなった場合、蒸発
器4での伝熱性能が低下し、引いては冷凍空調装の運転
効率が低下するという問題があった。
Further, in order to supply refrigerating machine oil to the expander,
If the oil separator 4 is not provided at the outlet of the compressor 1, refrigerating machine oil is supplied to the expander, but since the refrigerating machine oil circulates throughout the refrigerant circuit, the refrigerating machine oil also flows into the evaporator 4. . When a refrigerant having a higher operating pressure than that of a conventional refrigerant such as carbon dioxide is used, the gas density becomes large and the refrigerant flow velocity in the evaporator 4 also decreases. Then, the form of heat transfer in the evaporator 4 is such that the boiling heat transfer that improves the heat transfer performance by boiling the refrigerant is more than the convective heat transfer that improves the heat transfer performance by the convection effect caused by the flow of the refrigerant. Becomes dominant. The boiling heat transfer is performed by the refrigerant boiling and the generation of bubbles in the fine cavities (holes) on the surface of the heat transfer tube. At this time, when the amount of oil in the refrigerator flowing into the evaporator 4 is large, when the refrigerant boils and bubbles tend to be generated, an oil film is formed on the surface of the heat transfer tube, which becomes a resistance and suppresses the generation of bubbles. Therefore, when the oil separator 4 is not provided and the amount of oil inflowing into the evaporator 4 increases, the heat transfer performance in the evaporator 4 deteriorates, which in turn lowers the operating efficiency of the refrigerating and air conditioning equipment. was there.

【0005】本発明は以上の課題に鑑みなされたもの
で、運転効率の高い冷凍空調装置を得ることを目的とす
る。また、蒸発器の冷凍機油による伝熱性能低下を抑制
し、運転効率の高い冷凍空調装置を得ることを目的とす
る。また、冷媒として二酸化炭素を使用する運転効率の
高い冷凍空調装置を得ることを目的とする。また、減圧
装置として膨張機を使用する運転効率の高い冷凍空調装
置を得ることを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to obtain a refrigerating and air-conditioning apparatus having high operation efficiency. Another object of the present invention is to obtain a refrigerating and air-conditioning apparatus with high operating efficiency by suppressing a decrease in heat transfer performance due to refrigerating machine oil in the evaporator. Moreover, it aims at obtaining the refrigerating air-conditioning apparatus which uses carbon dioxide as a refrigerant | coolant and has high operation efficiency. Another object of the present invention is to obtain a refrigerating and air-conditioning apparatus that uses an expander as a decompression device and has high operating efficiency.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1の冷凍
空調装置は、圧縮機、放熱器、減圧装置、蒸発器を順次
接続した冷凍空調装置であって、減圧装置と蒸発器の間
に油分離器を設けたものである。
A refrigerating and air-conditioning apparatus according to claim 1 of the present invention is a refrigerating and air-conditioning apparatus in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, and between the decompression device and the evaporator. It has an oil separator.

【0007】また、請求項2の冷凍空調装置は、請求項
1の冷凍空調装置において、分離した冷凍機油の冷熱を
回収する熱交換器を設けたものである。
A refrigerating air-conditioning apparatus according to a second aspect of the present invention is the refrigerating air-conditioning apparatus according to the first aspect, further comprising a heat exchanger for recovering the cold heat of the separated refrigerating machine oil.

【0008】また、請求項3冷凍空調装置は、請求項1
または請求項2の冷凍空調装置において、油分離器で冷
凍機油とともに冷媒ガスを分離し、蒸発器を介さずに圧
縮機へ戻すものである。
According to a third aspect of the present invention, there is provided the refrigerating and air-conditioning apparatus according to the first aspect.
Alternatively, in the refrigerating and air-conditioning apparatus according to claim 2, the refrigerating machine gas is separated together with the refrigerating machine oil by the oil separator and returned to the compressor without passing through the evaporator.

【0009】また、請求項4の冷凍空調装置は、圧縮
機、放熱器、減圧装置、蒸発器を順次接続した冷凍空調
装置であって、蒸発器内の流路を複数の流路に分岐する
分配器を備えるとともに、分配器で分配された流路の中
で、冷凍機油の油量の多くなる流路を熱交換器内の熱流
束の大きい箇所に多く配置したものである。
A refrigeration / air-conditioning apparatus according to a fourth aspect is a refrigeration / air-conditioning apparatus in which a compressor, a radiator, a decompression device, and an evaporator are sequentially connected, and the flow path in the evaporator is branched into a plurality of flow paths. In addition to providing a distributor, among the channels distributed by the distributor, a large number of channels having a large amount of refrigerating machine oil are arranged in the heat exchanger where the heat flux is large.

【0010】また、請求項5の冷凍空調装置は、請求項
4の冷凍空調装置において、冷凍機油の油量の多くなる
流路を蒸発器下部に流入する流路とするものであう。
The refrigerating air-conditioning apparatus according to a fifth aspect of the present invention is the refrigerating air-conditioning apparatus according to the fourth aspect, wherein the flow passage having a large amount of refrigerating machine oil is a flow passage into the lower portion of the evaporator.

【0011】また、請求項6の冷凍空調装置は、請求項
4又は請求項5の冷凍空調装置において、熱流束の大き
い箇所は、冷媒の温度と熱交換器の熱交換媒体の温度差
が大きくなる箇所であるものである。
The refrigerating air conditioner according to claim 6 is the refrigerating air conditioner according to claim 4 or 5, in which a large heat flux has a large temperature difference between the temperature of the refrigerant and the temperature of the heat exchange medium of the heat exchanger. It is a place that becomes.

【0012】また、請求項7の冷凍空調装置は、請求項
1から請求項6のいずれかの冷凍空調装置において、減
圧装置として膨張機を設けたものである。
A refrigerating air-conditioning apparatus according to claim 7 is the refrigerating air-conditioning apparatus according to any one of claims 1 to 6, wherein an expander is provided as a pressure reducing device.

【0013】また、請求項8の冷凍空調装置は、請求項
1から請求項7のいずれかの冷凍空調装置において、冷
媒として二酸化炭素を用いるものである。
A refrigerating air-conditioning apparatus according to claim 8 is the refrigerating air-conditioning apparatus according to any one of claims 1 to 7, wherein carbon dioxide is used as a refrigerant.

【0014】[0014]

【発明の実施の形態】実施の形態1.以下本発明の実施
の形態1の冷凍空調装置の冷媒回路を図1に示す。図1
において、1は圧縮機、2は放熱器、3は減圧装置とし
て用いられる膨張機、4は油分離器、5は蒸発器であ
る。圧縮機1はモータで駆動される圧縮機であり、モー
ター6の駆動軸7が膨張機3の駆動軸7と接続されてい
る。膨張機3では、冷媒が膨張するときに発生する動力
を回収し、圧縮機1と接続されている駆動軸7に動力を
伝達する。圧縮機1では、膨張動力により圧縮機1での
圧縮仕事が一部まかなわれるので、膨張動力回収をしな
い場合に比べ、圧縮機1で必要となる電気入力が低減さ
れ、冷凍空調装置運転の際の効率を高めている。また8
は油分離器4で分離された冷凍機油を圧縮機1吸入部へ
返油する返油配管である。また冷凍空調装置では、冷媒
として二酸化炭素が用いられ、冷凍機油として二酸化炭
素に対して溶解性が低く、密度の大きいPAG油が用い
られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 shows the refrigerant circuit of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. Figure 1
In the above, 1 is a compressor, 2 is a radiator, 3 is an expander used as a pressure reducing device, 4 is an oil separator, and 5 is an evaporator. The compressor 1 is a compressor driven by a motor, and the drive shaft 7 of the motor 6 is connected to the drive shaft 7 of the expander 3. The expander 3 recovers the power generated when the refrigerant expands and transmits the power to the drive shaft 7 connected to the compressor 1. In the compressor 1, since a part of the compression work in the compressor 1 is performed by the expansion power, the electric input required in the compressor 1 is reduced as compared with the case where the expansion power is not recovered, and the refrigeration air conditioner is operated. Is increasing the efficiency of. Again 8
Is a return oil pipe for returning the refrigerating machine oil separated by the oil separator 4 to the suction portion of the compressor 1. Further, in the refrigerating air-conditioning apparatus, carbon dioxide is used as the refrigerant, and PAG oil having low solubility and high density with respect to carbon dioxide is used as the refrigerating machine oil.

【0015】次にこの冷凍空調装置での冷媒の流れにつ
いて説明する。圧縮機1で圧縮され、吐出された高温・
高圧のガス冷媒は、放熱器2で放熱しながら温度低下す
る。このとき高圧が臨界圧以上であれば、冷媒は超臨界
状態のまま温度低下し放熱する。また高圧が臨界圧以下
であれば、冷媒は液化しながら放熱する。放熱器2を出
た冷媒は膨張機3で膨張しながら、膨張動力を駆動軸7
に伝達する。膨張機3で膨張することにより冷媒は低圧
の二相状態となり、蒸発器5に流入する。蒸発器5で冷
媒は蒸発ガス化され圧縮機1に吸入される。
Next, the flow of the refrigerant in this refrigerating and air conditioning system will be described. Compressed by the compressor 1 and discharged at high temperature
The temperature of the high-pressure gas refrigerant drops while radiating heat in the radiator 2. At this time, if the high pressure is equal to or higher than the critical pressure, the temperature of the refrigerant drops in the supercritical state and heat is released. If the high pressure is below the critical pressure, the refrigerant radiates and radiates heat. The expansion power is applied to the drive shaft 7 while the refrigerant exiting the radiator 2 is expanded by the expander 3.
Communicate to. The expansion of the expander 3 causes the refrigerant to be in a low-pressure two-phase state and flow into the evaporator 5. The refrigerant is vaporized and gasified in the evaporator 5, and is sucked into the compressor 1.

【0016】次にこの冷凍空調装置での冷凍機油の流れ
について説明する。圧縮機1で冷媒とともに吐出された
冷凍機油は、放熱器2を経て、膨張機3に流入し、膨張
機3内の軸受けなど摺動部分を潤滑したあと、油分離器
4に流入する。ここで冷凍機油は冷媒と分離され、分離
された冷凍機油は返油配管8を通って圧縮機1吸入部に
返油される。
Next, the flow of refrigerating machine oil in this refrigerating and air conditioning system will be described. Refrigerating machine oil discharged together with the refrigerant in the compressor 1 flows into the expander 3 via the radiator 2, lubricates sliding parts such as bearings in the expander 3, and then flows into the oil separator 4. Here, the refrigerating machine oil is separated from the refrigerant, and the separated refrigerating machine oil is returned to the suction portion of the compressor 1 through the oil return pipe 8.

【0017】油分離器4の構造は図2に示す構造をと
る。油分離器4においては、冷媒は気液二相状態であ
り、これに冷凍機油が加わって、飽和ガス、飽和液、冷
凍機油が存在する。この冷凍空調装置では、前述したよ
うに冷媒として二酸化炭素、冷凍機油としてPAG油が
用いられ、冷媒と冷凍機油は前述した特性を持つので、
重力により、油分離器4内で、ガス冷媒、液冷媒、冷凍
機油の3相に分離される。返油配管8は油分離器4の底
部に接続されており、油分離器4の底部に滞留する冷凍
機油は返油配管8に流入し、返油配管8を通って圧縮機
1吸入部へ流入する。またガス冷媒、液冷媒は蒸発器5
へ至る配管に設けられた、ガス戻し穴9a、液戻し穴9
bを通って蒸発器4に流入していく。
The structure of the oil separator 4 is as shown in FIG. In the oil separator 4, the refrigerant is in a gas-liquid two-phase state, and refrigerating machine oil is added to this, so that saturated gas, saturated liquid, and refrigerating machine oil exist. In this refrigerating air conditioner, carbon dioxide is used as the refrigerant and PAG oil is used as the refrigerating machine oil as described above, and the refrigerant and the refrigerating machine oil have the above-mentioned characteristics,
In the oil separator 4, it is separated into three phases of gas refrigerant, liquid refrigerant, and refrigerating machine oil by gravity. The oil return pipe 8 is connected to the bottom of the oil separator 4, and the refrigerating machine oil accumulated at the bottom of the oil separator 4 flows into the oil return pipe 8 and passes through the oil return pipe 8 to the compressor 1 suction part. Inflow. Also, gas refrigerant and liquid refrigerant are used for the evaporator 5.
Gas return hole 9a and liquid return hole 9 provided in the pipe leading to
It flows into the evaporator 4 through b.

【0018】このように、膨張機3と蒸発器5の間に油
分離器4を設け、油分離器4にて冷凍機油を分離し、圧
縮機1へ返油する事により、圧縮機1から吐出された冷
凍機油を膨張機3へ供給し、膨張機3摺動部分の潤滑を
行うことで、膨張機3運転の信頼性を高め、信頼性の高
い冷凍空調装置が得られるとともに、蒸発器5への冷凍
機油の流入を抑制し、蒸発器5での伝熱性能の低下を抑
制することで、冷凍空調装置の運転効率を高めることが
できる。
As described above, the oil separator 4 is provided between the expander 3 and the evaporator 5, the refrigerating machine oil is separated by the oil separator 4, and the oil is returned to the compressor 1, whereby the compressor 1 is separated from the compressor 1. By supplying the discharged refrigerating machine oil to the expander 3 and lubricating the sliding part of the expander 3, the reliability of the operation of the expander 3 is increased, and a highly reliable refrigerating air conditioner is obtained, and the evaporator is also provided. By suppressing the inflow of the refrigerating machine oil into the refrigerating machine 5, and suppressing the deterioration of the heat transfer performance in the evaporator 5, the operation efficiency of the refrigerating and air-conditioning apparatus can be improved.

【0019】また油分離器4の構造を図3に示す構造と
してもよい。図3では、油分離器4内で3相に分離され
た冷媒、冷凍機油の中で、ガス冷媒を油分離器4頂部に
接続された配管16を介して、冷凍機油とともに圧縮機
1の吸入部へ戻る返油配管8に流入する構造としてい
る。このようにすることで、蒸発することによる冷却能
力を持たないガス冷媒が蒸発器4へ流入せず、直接圧縮
機1の吸入部へ流入する構造とすることができる。従っ
て、蒸発器4を流れる冷媒流量を低下させることがで
き、蒸発器4での圧力損失を低減できるので、より運転
効率の高い冷凍空調装置を得ることができる。
The structure of the oil separator 4 may be the structure shown in FIG. In FIG. 3, among the refrigerant and the refrigerating machine oil separated into three phases in the oil separator 4, the gas refrigerant is sucked into the compressor 1 together with the refrigerating machine oil through the pipe 16 connected to the top of the oil separator 4. It is structured to flow into the oil return pipe 8 returning to the section. By doing so, it is possible to adopt a structure in which the gas refrigerant having no cooling capacity due to evaporation does not flow into the evaporator 4 but directly flows into the suction portion of the compressor 1. Therefore, the flow rate of the refrigerant flowing through the evaporator 4 can be reduced, and the pressure loss in the evaporator 4 can be reduced, so that a refrigerating air-conditioning apparatus with higher operating efficiency can be obtained.

【0020】また油分離器4の構造を図4に示す構造と
してもよい。図4に示される油分離器4はサイクロン型
の油分離器であり、冷媒、冷凍機油を油分離器4の周方
向に旋回させ、遠心分離により、最も密度の重い冷凍機
油を油分離器4の底部に導き、それ以外の冷媒ガス、冷
媒液は油分離器4中心部の管を通して、蒸発器5へ流入
させる構造としている。油分離器4の底部には返油配管
8が接続されており、分離された冷凍機油は圧縮機1吸
入部へ返油される。
The structure of the oil separator 4 may be that shown in FIG. The oil separator 4 shown in FIG. 4 is a cyclone type oil separator, and the refrigerant and the refrigerating machine oil are swirled in the circumferential direction of the oil separating machine 4, and the refrigerating machine oil having the highest density is separated by centrifugal separation. The refrigerant gas and the refrigerant liquid other than the above are introduced into the evaporator 5 through the pipe at the center of the oil separator 4. An oil return pipe 8 is connected to the bottom of the oil separator 4, and the separated refrigerating machine oil is returned to the compressor 1 suction section.

【0021】また油分離器4の構造を図5に示す構造と
してもよい。図5に示される油分離器4では内部に有機
物質と無機物質を分離する多孔質膜10が設けられてお
り、この膜10は無機物質である二酸化炭素冷媒は透過
せず、有機物質であるPAG油は透過する構造となって
いる。膜10を透過する冷凍機油は油分離器4の底部に
滞留し、底部の返油配管8を介して圧縮機1吸入部へ返
油される。膜10を透過しない二酸化炭素冷媒は油分離
器4上部へ滞留し、油分離器4から蒸発器5へ流出す
る。
The structure of the oil separator 4 may be that shown in FIG. In the oil separator 4 shown in FIG. 5, a porous membrane 10 for separating an organic substance and an inorganic substance is provided inside, and the membrane 10 is an organic substance that does not permeate a carbon dioxide refrigerant which is an inorganic substance. PAG oil is permeable. Refrigerating machine oil that permeates the membrane 10 stays at the bottom of the oil separator 4 and is returned to the suction portion of the compressor 1 through the oil return pipe 8 at the bottom. The carbon dioxide refrigerant that does not pass through the membrane 10 stays in the upper part of the oil separator 4 and flows out from the oil separator 4 to the evaporator 5.

【0022】油分離器4の構造として前記のいずれの構
造としても、膨張機3へ冷凍機油を供給できると供に、
蒸発器5への冷凍機油の流入を抑制できるので、信頼性
が高く、運転効率の高い冷凍空調装置を得ることができ
る。なお、放熱器2では、伝熱の形態が対流伝熱支配で
あることから、冷凍機油の影響は蒸発器に比べて小さ
い。
With any of the above-mentioned structures of the oil separator 4, it is possible to supply the refrigerating machine oil to the expander 3,
Since the inflow of refrigerating machine oil to the evaporator 5 can be suppressed, it is possible to obtain a refrigerating and air-conditioning apparatus with high reliability and high operating efficiency. In the radiator 2, the effect of refrigerating machine oil is smaller than that of the evaporator because the form of heat transfer is convective heat transfer control.

【0023】なお、本実施の形態では油分離器4下流に
蒸発器5が接続されていれば、油分離器4と蒸発器5の
間に別の膨張弁など減圧装置が設けられていても、同様
の効果を得ることができる。また、冷凍空調装置に膨張
機3が用いられず、減圧装置として膨張弁などの弁が用
いられる場合であっても、本実施の形態に示すように膨
張弁と蒸発器5の間に油分離器4を設けることで、蒸発
器5への冷凍機油の流入を抑制し、運転効率の高い冷凍
空調装置を得ることができる。
In this embodiment, if the evaporator 5 is connected downstream of the oil separator 4, even if a pressure reducing device such as another expansion valve is provided between the oil separator 4 and the evaporator 5. , A similar effect can be obtained. Further, even when the expander 3 is not used in the refrigeration air conditioner and a valve such as an expansion valve is used as the pressure reducing device, oil separation is performed between the expansion valve and the evaporator 5 as shown in the present embodiment. By providing the device 4, it is possible to suppress the inflow of refrigerating machine oil into the evaporator 5 and obtain a refrigerating air-conditioning system with high operating efficiency.

【0024】また冷媒としては二酸化炭素に限定される
ものではなくHFC系冷媒、HC系冷媒、水、空気、ア
ンモニア(NH3)などの自然冷媒いずれを用いた場合
にも同様な冷凍空調装置の構成とすることで、同様の効
果を得ることができる。また冷凍機油についてもPAG
油に限定されるものではなく、エステル油、エーテル
油、アルキルベンゼン油、鉱油など各冷凍機油を用いた
場合にも同様な冷凍空調装置の構成とすることで、同様
の効果を得ることができる。
The refrigerant is not limited to carbon dioxide, and any refrigerant such as HFC type refrigerant, HC type refrigerant, water, air, or natural refrigerant such as ammonia (NH 3 ) may be used. With the configuration, the same effect can be obtained. Also for refrigeration oil, PAG
The same effect can be obtained by using the same refrigerating and air-conditioning apparatus configuration when the refrigerating machine oil such as ester oil, ether oil, alkylbenzene oil, and mineral oil is not limited to oil.

【0025】実施の形態2.以下、本発明の実施の形態
2の冷凍空調装置の冷媒回路図を図6に示す。図6にお
いて、11は返油配管8の途中に設けられた高低圧熱交
換器である。図6のその他の符号については図1と同様
であるので説明を省略する。高低圧熱交換器11は油分
離器4で分離された冷凍機油と放熱器2出口の冷媒と熱
交換する構造となっており、例えば二重管などを用いて
構成される。放熱器2出口の冷媒温度は、冷凍機油の温
度より高くなるので、熱交換を行うことで、放熱器3出
口の冷媒温度は低下し、返油される冷凍機油の温度は上
昇する。
Embodiment 2. Hereinafter, a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention is shown in FIG. In FIG. 6, 11 is a high / low pressure heat exchanger provided in the middle of the oil return pipe 8. The other reference numerals in FIG. 6 are the same as those in FIG. The high / low pressure heat exchanger 11 has a structure for exchanging heat with the refrigerating machine oil separated by the oil separator 4 and the refrigerant at the outlet of the radiator 2, and is configured using, for example, a double pipe. Since the temperature of the refrigerant at the outlet of the radiator 2 becomes higher than the temperature of the refrigerating machine oil, the temperature of the refrigerant at the outlet of the radiator 3 lowers and the temperature of the refrigerating machine oil returned increases by performing heat exchange.

【0026】この油分離器4で分離される冷凍機油に
は、冷媒と冷凍機油の溶解性が低くても、少量の液冷媒
が溶解している。油分離器4で分離された冷凍機油をそ
のまま圧縮機1へ戻すと、冷凍機油に溶解している液冷
媒もそのまま圧縮機1へ吸入されることになり、液冷媒
のもつ冷却能力が蒸発器にて生かされず、冷凍空調装置
運転の効率が低下する。そこで、冷凍機油を放熱器2出
口の冷媒と熱交換する事により、冷凍機油とともに冷凍
機油に溶解している液冷媒のもつ冷却能力を熱回収し、
放熱器2出口の冷媒に与える。このように冷凍機油とと
もに圧縮機1吸入部へ戻される液冷媒の冷却能力を回収
することで、油分離による冷凍空調装置運転の効率低下
を抑制し、運転効率の高い冷凍空調装置を得ることがで
きる。
A small amount of liquid refrigerant is dissolved in the refrigerating machine oil separated by the oil separator 4, even though the refrigerant and refrigerating machine oil have low solubility. If the refrigerating machine oil separated by the oil separator 4 is returned to the compressor 1 as it is, the liquid refrigerant dissolved in the refrigerating machine oil is also sucked into the compressor 1 as it is, and the cooling capacity of the liquid refrigerant is the evaporator. Therefore, the operating efficiency of the refrigerating and air-conditioning system is reduced. Therefore, by exchanging heat between the refrigerating machine oil and the refrigerant at the outlet of the radiator 2, the cooling capacity of the liquid refrigerant dissolved in the refrigerating machine oil together with the refrigerating machine oil is recovered.
It is given to the refrigerant at the outlet of the radiator 2. By thus recovering the cooling capacity of the liquid refrigerant that is returned to the suction portion of the compressor 1 together with the refrigerating machine oil, it is possible to suppress a reduction in the efficiency of operation of the refrigerating and air conditioning apparatus due to oil separation and obtain a refrigerating and air conditioning apparatus with high operation efficiency. it can.

【0027】なお、高低圧熱交換器11の構造について
は二重管に限るものではなく、シェルアンドチューブ
型、プレート熱交、配管と配管をロウ付けした構造な
ど、どのような構造をとってもよく、同様の効果を得る
ことができる。
The structure of the high and low pressure heat exchanger 11 is not limited to the double pipe, and may have any structure such as a shell and tube type, a plate heat exchange, a structure in which pipes and pipes are brazed. , A similar effect can be obtained.

【0028】実施の形態3.以下、本発明の実施の形態
3の冷凍空調装置の冷媒回路を図7に示す。図8は蒸発
器5の構造を示す断面図である。図7において、各符号
については図1と同様であるので説明を省略する。これ
らの図において、蒸発器5はプレートフィンチューブ型
の熱交換器であり、12は蒸発器5内に複数存在する流
路に冷媒を分配する分配器であり、13は伝熱管、14
はフィンである。また蒸発器5では空気と熱交換を行
い、空気の流れ方向が矢印で示されている。蒸発器5の
流路は図8にあるように上下方向に複数存在する。分配
器12を出た冷媒の流れは蒸発器5上部の流路は上向き
の流れ、蒸発器5下部の流路は下向きの流れとなる。蒸
発器5に冷凍機油が流入した場合、冷凍機油の多くは、
配管壁面に沿って流れるので、重力の影響により、上方
には流れにくく、下方に流れやすくなる。従って、蒸発
器5の各流路の中では下部の流路に多く冷凍機油が流れ
る。冷凍機油が多く流れると、二酸化炭素など流速が遅
くなり、沸騰伝熱が支配的である蒸発器においては伝熱
性能が低下する。従って図8の蒸発器の場合、下部の流
路が最も伝熱性能が低くなる。
Embodiment 3. Hereinafter, the refrigerant circuit of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention is shown in FIG. FIG. 8 is a sectional view showing the structure of the evaporator 5. In FIG. 7, the reference numerals are the same as those in FIG. In these figures, the evaporator 5 is a plate fin tube type heat exchanger, 12 is a distributor that distributes a refrigerant to a plurality of flow paths existing in the evaporator 5, 13 is a heat transfer tube, and 14 is a heat transfer tube.
Is a fin. Further, the evaporator 5 exchanges heat with the air, and the flow direction of the air is shown by an arrow. The evaporator 5 has a plurality of flow paths in the vertical direction as shown in FIG. The flow of the refrigerant exiting the distributor 12 flows upward in the flow path above the evaporator 5, and flows downward in the flow path below the evaporator 5. When refrigerating machine oil flows into the evaporator 5, most of the refrigerating machine oil is
Since it flows along the wall surface of the pipe, it is difficult to flow upward due to the influence of gravity, and it is easy to flow downward. Therefore, in each flow path of the evaporator 5, a large amount of refrigerating machine oil flows in the lower flow path. When a large amount of refrigerating machine oil flows, the flow velocity of carbon dioxide and the like becomes slow, and the heat transfer performance is lowered in the evaporator in which boiling heat transfer is dominant. Therefore, in the case of the evaporator of FIG. 8, the heat transfer performance is the lowest in the lower flow path.

【0029】一方沸騰伝熱の場合、熱流束が高く、伝熱
量が多くなり、より沸騰が起きやすい状態になると、気
泡の発生が頻繁になり伝熱性能が良くなる。図8の蒸発
器の場合、空気が左から右方向へ流れるので、空気は左
側の列の空気温度が高く、右側の列の空気温度は低くな
る。従って、冷媒と空気の温度差は左側の列が大きくな
り、その分伝熱量も左側の列の方が多くなり、伝熱性能
も良くなる。
On the other hand, in the case of boiling heat transfer, when the heat flux is high, the amount of heat transfer is large, and when boiling is more likely to occur, bubbles are frequently generated and the heat transfer performance is improved. In the case of the evaporator of FIG. 8, since the air flows from left to right, the air temperature of the left column is high and the air temperature of the right column is low. Therefore, the left column has a larger temperature difference between the refrigerant and the air, and the left column also has a larger amount of heat transfer, and the heat transfer performance is also improved.

【0030】一般に熱交換器においては、伝熱性能の極
端に低い箇所があると、その部分の影響により熱交換器
全体の伝熱性能が低下する。これは冷媒が空気など温度
変化する媒体と熱交換する場合に特有であり、伝熱性能
を良くして、伝熱量を増加させようとしてもそれに伴い
媒体の温度変化が生じ、冷媒と媒体の温度が近接してく
るため、伝熱性能を良くしてもその分だけ熱交換量が増
えることはなく、逆に伝熱性能を悪くすると、その影響
はそのまま熱交換量に表れる。従って熱交換器において
は、一部伝熱性能が良く、一部悪いという状態よりは、
全体的に均一な伝熱性能を持たせる方が、全体としては
熱交換量が増加し、好ましい形態となる。
Generally, in a heat exchanger, if there is a portion having extremely low heat transfer performance, the heat transfer performance of the entire heat exchanger is lowered due to the influence of that portion. This is peculiar to the case where the refrigerant exchanges heat with a medium whose temperature changes, such as air.When the heat transfer performance is improved and the amount of heat transfer is increased, the temperature change of the medium occurs accordingly, and the temperature of the refrigerant and the medium changes. However, even if the heat transfer performance is improved, the heat exchange amount does not increase by that amount. Conversely, if the heat transfer performance is deteriorated, the effect directly appears in the heat exchange amount. Therefore, in the heat exchanger, rather than a state where the heat transfer performance is partly good and partly bad,
It is preferable to have uniform heat transfer performance because the amount of heat exchange is increased as a whole.

【0031】図8に示される蒸発器の場合、下部の流路
の伝熱性能が低いので、この伝熱性能の低下を抑制すべ
く、下部の流路を熱交換量の多くなる左側の列に多く配
置する。このような配置とすることで、各流路を左右各
列に均等に配置した場合に比べ、蒸発器5全体的に均一
な伝熱性能を持たせることができ、蒸発器5全体として
の伝熱性能がよくなり、冷凍空調装置の運転効率を高め
ることができる。即ち、図8の場合、分配器12で3系
統の流路に分配し、それぞれがフィン14に直交する8
本の流路を有するようにしているが、一番下の系統の流
路は、フィン14に直交する流路に関し、冷凍機油が多
く流れる伝熱性能が低い流路を、左右列とも下から4本
ずつとせずに、熱流束の大きな左列を6本と多くし、熱
流束の小さな右列を2本と少なく有するようにし、本系
統の流路の伝熱性能をよくする。このように、分配した
3系統の流路の伝熱性能を均一化の方向に持っていくこ
とにより、蒸発器5に冷凍機油が流入しても、蒸発器5
全体としての伝熱性能をよくする。
In the case of the evaporator shown in FIG. 8, since the heat transfer performance of the lower flow passage is low, the lower flow passage has a large amount of heat exchange in the lower flow passage in order to suppress the deterioration of the heat transfer performance. Place a lot in. With such an arrangement, the evaporator 5 as a whole can have uniform heat transfer performance as compared with the case where the respective flow paths are evenly arranged in each of the left and right rows, so that the evaporator 5 as a whole can transfer heat. The thermal performance is improved, and the operation efficiency of the refrigerating and air conditioning system can be improved. That is, in the case of FIG. 8, the distributor 12 distributes the flow path into three channels, each of which is orthogonal to the fin 14.
Although the flow path of the book is provided, the flow path of the bottom system is the flow path orthogonal to the fins 14, and the flow path with low heat transfer performance in which a large amount of refrigerating machine oil flows The number of left columns with a large heat flux is increased to six and the number of right columns with a small heat flux is reduced to two instead of four, thereby improving the heat transfer performance of the flow path of this system. In this way, by bringing the heat transfer performance of the distributed flow paths of the three systems in the direction of equalization, even if the refrigerating machine oil flows into the evaporator 5, the evaporator 5
Improve the heat transfer performance as a whole.

【0032】なお、蒸発器5の構造としては、流路、列
数が増減しても、下部の流路を、冷媒と空気の温度差が
大きくなる列に多く配置することにより、蒸発器5全体
としての伝熱性能がよくなり、冷凍空調装置の運転効率
を高めることができる。また冷媒流路の分配器12とし
ては、2分岐に多く用いられるY字管、U字管、やヘッ
ダータイプの分配器を用いても同様の効果を得ることが
できる。また伝熱管として扁平管を用いた場合において
も、同様の配置とすることで、同様の効果を得ることが
できる。本実施の形態の冷凍空調装置は、油分離機を備
えていないが、実施の形態1のように油分離機4を備え
るようにしてもよく、本実施の形態の蒸発器5によれ
ば、冷媒に冷凍機油が混入しても蒸発器5の伝熱性能を
向上きる。
As for the structure of the evaporator 5, even if the number of flow paths and the number of rows are increased and decreased, many lower flow paths are arranged in a row in which the temperature difference between the refrigerant and the air is large, so that the evaporator 5 The heat transfer performance as a whole is improved, and the operation efficiency of the refrigerating and air-conditioning apparatus can be improved. The same effect can be obtained by using a Y-shaped tube, a U-shaped tube, or a header type distributor, which is often used for two branches, as the distributor 12 of the refrigerant flow path. Even when a flat tube is used as the heat transfer tube, the same effect can be obtained with the same arrangement. Although the refrigerating air-conditioning apparatus of this embodiment does not include an oil separator, it may be equipped with an oil separator 4 as in Embodiment 1, and according to the evaporator 5 of this embodiment, Even if refrigerating machine oil is mixed in the refrigerant, the heat transfer performance of the evaporator 5 can be improved.

【0033】[0033]

【発明の効果】本発明の請求項1に関わる冷凍空調装置
は、圧縮機、放熱器、減圧装置、蒸発器を順次接続した
冷凍空調装置であって、減圧装置と蒸発器の間に油分離
器を設けることで、蒸発器での伝熱性能低下を抑制し、
運転効率の高い冷凍空調装置を得ることができる。
The refrigerating and air-conditioning apparatus according to claim 1 of the present invention is a refrigerating and air-conditioning apparatus in which a compressor, a radiator, a pressure reducing device, and an evaporator are sequentially connected, and oil separation is performed between the pressure reducing device and the evaporator. By installing a heater, you can suppress the decrease in heat transfer performance in the evaporator,
It is possible to obtain a refrigerating air-conditioning system with high operating efficiency.

【0034】また、請求項2に関わる冷凍空調装置は、
請求項1の冷凍空調装置において、分離した冷凍機油の
冷熱を回収する熱交換器を設けることで、蒸発器での伝
熱性能低下を抑制するとともに、分離された冷凍機油に
溶解する液冷媒の冷却能力を回収できるので、運転効率
の高い冷凍空調装置を得ることができる。
A refrigerating and air-conditioning apparatus according to claim 2 is
The refrigerating air-conditioning apparatus according to claim 1, wherein a heat exchanger that recovers the cold heat of the separated refrigerating machine oil is provided to suppress a decrease in heat transfer performance in the evaporator and to reduce the amount of liquid refrigerant dissolved in the separated refrigerating machine oil. Since the cooling capacity can be recovered, it is possible to obtain a refrigerating and air-conditioning system with high operating efficiency.

【0035】また、請求項3冷凍空調装置は、請求項1
または請求項2の冷凍空調装置において、油分離器で冷
凍機油とともに冷媒ガスを分離し、蒸発器を介さずに圧
縮機へ戻すので、蒸発器での圧力損失を低減でき、より
運転効率の高い冷凍空調装置を得ることができる。
A third aspect of the present invention is a refrigerating and air-conditioning apparatus.
Alternatively, in the refrigerating air-conditioning apparatus of claim 2, since the refrigerant gas is separated together with the refrigerating machine oil in the oil separator and returned to the compressor without passing through the evaporator, the pressure loss in the evaporator can be reduced and the operating efficiency is higher. A refrigerating and air-conditioning system can be obtained.

【0036】また、請求項4に関わる冷凍空調装置は、
圧縮機、放熱器、減圧装置、蒸発器を順次接続した冷凍
空調装置であって、蒸発器内の流路を複数の流路に分岐
する分配器を備えるとともに、分配器で分配された流路
の中で、冷凍機油の油量の多くなる流路を熱交換器内の
熱流束の大きい箇所に多く配置することで、冷凍機油が
流入しても、蒸発器全体の伝熱性能を良くすることがで
き、運転効率の高い冷凍空調装置を得ることができる。
The refrigerating and air-conditioning apparatus according to claim 4 is
A refrigeration and air-conditioning system in which a compressor, a radiator, a pressure reducing device, and an evaporator are sequentially connected, and a distributor that divides the flow path inside the evaporator into a plurality of flow paths and the flow path that is distributed by the distributor Among these, by arranging many flow paths where the amount of refrigerating machine oil is large at locations with a large heat flux in the heat exchanger, even if refrigerating machine oil flows in, the heat transfer performance of the entire evaporator is improved. It is possible to obtain a refrigerating air-conditioning system with high operating efficiency.

【0037】また、請求項5の冷凍空調装置は、請求項
4の冷凍空調装置において、冷凍機油の油量の多くなる
流路を蒸発器下部に流入する流路とするので、蒸発器全
体の伝熱性能を良くすることができ、運転効率の高い冷
凍空調装置を得ることができる。
Further, in the refrigerating air-conditioning apparatus of claim 5, in the refrigerating air-conditioning apparatus of claim 4, since the flow path in which the amount of refrigerating machine oil is large flows into the lower part of the evaporator, the entire evaporator is cooled. The heat transfer performance can be improved, and a refrigerating and air-conditioning apparatus with high operating efficiency can be obtained.

【0038】本発明の請求項6に関わる冷凍空調装置
は、請求項4又は請求項5の冷凍空調装置において、熱
流束の大きい箇所は、冷媒の温度と熱交換器の熱交換媒
体の温度差が大きくなる箇所であるとすることで、蒸発
器全体の伝熱性能を良くすることができ、運転効率の高
い冷凍空調装置を得ることができる。
The refrigerating air conditioner according to claim 6 of the present invention is the refrigerating air conditioner according to claim 4 or claim 5, wherein a portion having a large heat flux has a difference in temperature between the refrigerant and the heat exchange medium of the heat exchanger. The heat transfer performance of the entire evaporator can be improved and the refrigerating and air-conditioning apparatus with high operating efficiency can be obtained by setting the area where the temperature increases.

【0039】また、請求項7の冷凍空調装置は、請求項
1から請求項6のいずれかの冷凍空調装置において、減
圧装置として膨張機を設けることで、使用冷媒の特性に
よっては、例えば二酸化炭素冷媒のように膨張時の動力
を回収し、圧縮仕事の一部をまかなうようにでき、圧縮
機の電気入力を節減できる運転効率の高い冷凍空調装置
を得ることができる。
The refrigerating air conditioner according to claim 7 is the refrigerating air conditioner according to any one of claims 1 to 6, wherein an expander is provided as a pressure reducing device, so that carbon dioxide, for example, is changed depending on the characteristics of the refrigerant used. It is possible to obtain a refrigerating and air-conditioning apparatus with high operating efficiency that can recover the power at the time of expansion like a refrigerant and can do a part of the compression work and can save the electric input of the compressor.

【0040】また、請求項8の冷凍空調装置は、請求項
1から請求項7のいずれかの冷凍空調装置において、冷
媒として二酸化炭素を用いるので、脱フロンの運転効率
の高い冷凍空調装置を得ることができる。
Further, the refrigerating air conditioner according to claim 8 is the refrigerating air conditioner according to any one of claims 1 to 7, wherein carbon dioxide is used as the refrigerant, so that a refrigerating air conditioner having a high efficiency of dechlorofluorocarbon operation is obtained. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における冷凍空調装置の実施の形態1
での冷媒回路を示す図である。
FIG. 1 is a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention.
3 is a diagram showing a refrigerant circuit in FIG.

【図2】 本発明における冷凍空調装置の実施の形態1
での油分離器の構造を示す図である。
FIG. 2 is a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention.
It is a figure which shows the structure of the oil separator in FIG.

【図3】 本発明における冷凍空調装置の実施の形態1
での別の油分離器の構造を示す図である。
FIG. 3 is a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention.
It is a figure which shows the structure of another oil separator in FIG.

【図4】 本発明における冷凍空調装置の実施の形態1
での別の油分離器の構造を示す図である。
FIG. 4 is a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention.
It is a figure which shows the structure of another oil separator in FIG.

【図5】 本発明における冷凍空調装置の実施の形態1
での別の油分離器の構造を示す図である。
FIG. 5 is a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention.
It is a figure which shows the structure of another oil separator in FIG.

【図6】 本発明における冷凍空調装置の実施の形態2
での冷媒回路を示す図である。
FIG. 6 is a second embodiment of the refrigeration / air-conditioning system according to the present invention.
3 is a diagram showing a refrigerant circuit in FIG.

【図7】 本発明における冷凍空調装置の実施の形態3
での冷媒回路を示す図である。
FIG. 7 is a third embodiment of the refrigerating and air-conditioning apparatus according to the present invention.
3 is a diagram showing a refrigerant circuit in FIG.

【図8】 本発明における冷凍空調装置の実施の形態3
での蒸発器の構造を示す断面図である。
FIG. 8 is a third embodiment of the refrigerating and air-conditioning apparatus according to the present invention.
3 is a cross-sectional view showing the structure of the evaporator in FIG.

【図9】 従来の冷凍空調装置の冷媒回路を示す図であ
る。 1 圧縮機、2 放熱器、3 減圧装置(膨張機)、4
油分離器、5 蒸発器、11 熱交換器、12 分配
器。
FIG. 9 is a diagram showing a refrigerant circuit of a conventional refrigeration / air-conditioning system. 1 compressor, 2 radiator, 3 decompression device (expander), 4
Oil separator, 5 evaporators, 11 heat exchangers, 12 distributors.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 39/02 F25B 39/02 G 43/02 43/02 D (72)発明者 角田 昌之 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 野本 宗 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 榎本 寿彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 木藤良 善久 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 39/02 F25B 39/02 G 43/02 43/02 D (72) Inventor Masayuki Tsunoda 2 Marunouchi, Chiyoda-ku, Tokyo No. 2-3 Sanryo Electric Co., Ltd. (72) Inventor Sou Nomoto 2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Toshihiko Enomoto 2-2 Marunouchi, Chiyoda-ku, Tokyo No. 3 Sanryo Electric Co., Ltd. (72) Yoshihisa Kito 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、放熱器、減圧装置、蒸発器を順
次接続した冷凍空調装置において、減圧装置と蒸発器の
間に油分離器を設けたことを特徴とする冷凍空調装置。
1. A refrigerating air conditioner in which a compressor, a radiator, a pressure reducing device, and an evaporator are sequentially connected, and an oil separator is provided between the pressure reducing device and the evaporator.
【請求項2】 請求項1において、分離した冷凍機油の
冷熱を回収する熱交換器を設けたことを特徴とする冷凍
空調装置。
2. The refrigerating air-conditioning apparatus according to claim 1, further comprising a heat exchanger that recovers the cold heat of the separated refrigerating machine oil.
【請求項3】 請求項1又は請求項2において、油分離
器においては冷凍機油とともに冷媒ガスを分離し、蒸発
器を介さずに、圧縮機へ戻したことを特徴とする冷凍空
調装置。
3. The refrigeration air conditioner according to claim 1 or 2, wherein the refrigerant gas is separated together with the refrigerating machine oil in the oil separator and returned to the compressor without passing through the evaporator.
【請求項4】 圧縮機、放熱器、減圧装置、蒸発器を順
次接続した冷凍空調装置において、蒸発器内の流路を複
数の流路に分岐する分配器を備えるとともに、分配器で
分配された流路の中で、冷凍機油の油量の多くなる流路
を熱交換器内の熱流束の大きい箇所に多く配置したこと
を特徴とする冷凍空調装置。
4. A refrigerating and air-conditioning apparatus in which a compressor, a radiator, a pressure reducing device, and an evaporator are sequentially connected to each other, and a distributor for branching a flow path in the evaporator into a plurality of flow paths is provided and distributed by the distributor. A refrigeration / air-conditioning device, characterized in that a large number of flow passages having a large amount of refrigerating machine oil are arranged in a portion having a large heat flux in the heat exchanger.
【請求項5】 請求項4において、冷凍機油の油量の多
くなる流路を蒸発器下部に流入する流路とすることを特
徴とする冷凍空調装置。
5. The refrigerating air-conditioning apparatus according to claim 4, wherein the flow passage having a large amount of refrigerating machine oil is a flow passage into the lower portion of the evaporator.
【請求項6】 請求項4又は請求項5において、熱流束
の大きい箇所は、冷媒の温度と熱交換器の熱交換媒体の
温度差が大きくなる箇所であることを特徴とする冷凍空
調装置。
6. The refrigerating and air-conditioning apparatus according to claim 4 or 5, wherein the portion having a large heat flux is a portion where the temperature difference between the refrigerant and the heat exchange medium of the heat exchanger becomes large.
【請求項7】 請求項1から請求項6のいずれかの請求
項において、減圧装置として膨張機を設けたことを特徴
とする冷凍空調装置。
7. The refrigerating and air-conditioning apparatus according to claim 1, further comprising an expander as a pressure reducing device.
【請求項8】 請求項1から請求項7のいずれかの請求
項において、冷媒として二酸化炭素を用いることを特徴
とする冷凍空調装置。
8. A refrigerating air-conditioning apparatus according to claim 1, wherein carbon dioxide is used as the refrigerant.
JP2002045015A 2002-02-21 2002-02-21 Refrigerating air conditioner Pending JP2003240366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045015A JP2003240366A (en) 2002-02-21 2002-02-21 Refrigerating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045015A JP2003240366A (en) 2002-02-21 2002-02-21 Refrigerating air conditioner

Publications (1)

Publication Number Publication Date
JP2003240366A true JP2003240366A (en) 2003-08-27

Family

ID=27784162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045015A Pending JP2003240366A (en) 2002-02-21 2002-02-21 Refrigerating air conditioner

Country Status (1)

Country Link
JP (1) JP2003240366A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220356A (en) * 2005-02-10 2006-08-24 Daikin Ind Ltd Air conditioner
WO2006126396A1 (en) * 2005-05-24 2006-11-30 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle device
JP2007024439A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2007170783A (en) * 2005-12-26 2007-07-05 Sanden Corp Pressure reducer module with oil separator
JP2007198670A (en) * 2006-01-26 2007-08-09 Sanden Corp Refrigerating system and air conditioner for vehicle
JP2007255748A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Heat pump system, shaft sealing method of heat pump system, and modification method for heat pump system
WO2007123087A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigerating apparatus
WO2007123088A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigerating apparatus
JP2007285674A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2008075531A (en) * 2006-09-21 2008-04-03 Fujitsu General Ltd Refrigerant circuit provided with expander
WO2008108055A1 (en) * 2007-03-08 2008-09-12 Daikin Industries, Ltd. Refrigerating device
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
JP5921718B2 (en) * 2012-12-21 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
CN107314582A (en) * 2017-07-10 2017-11-03 珠海格力电器股份有限公司 Flash tank and water chilling unit
DE102021125108A1 (en) 2021-09-28 2023-03-30 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Expansion-compression machine for refrigeration circuits

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
JP4692002B2 (en) * 2005-02-10 2011-06-01 ダイキン工業株式会社 Air conditioner
JP2006220356A (en) * 2005-02-10 2006-08-24 Daikin Ind Ltd Air conditioner
WO2006126396A1 (en) * 2005-05-24 2006-11-30 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle device
JP2007024439A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP4569406B2 (en) * 2005-07-20 2010-10-27 パナソニック株式会社 Refrigeration cycle equipment
JP4694365B2 (en) * 2005-12-26 2011-06-08 サンデン株式会社 Pressure reducer module with oil separator
JP2007170783A (en) * 2005-12-26 2007-07-05 Sanden Corp Pressure reducer module with oil separator
JP2007198670A (en) * 2006-01-26 2007-08-09 Sanden Corp Refrigerating system and air conditioner for vehicle
JP2007255748A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Heat pump system, shaft sealing method of heat pump system, and modification method for heat pump system
JP2007285681A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
US8312732B2 (en) 2006-04-20 2012-11-20 Daikin Industries, Ltd. Refrigerating apparatus
US8122735B2 (en) 2006-04-20 2012-02-28 Daikin Industries, Ltd. Refrigerating apparatus
AU2007241900B2 (en) * 2006-04-20 2010-03-04 Daikin Industries, Ltd. Refrigerating apparatus
AU2007241901B2 (en) * 2006-04-20 2010-03-04 Daikin Industries, Ltd. Refrigerating apparatus
JP2007285674A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
WO2007123088A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigerating apparatus
JP4591402B2 (en) * 2006-04-20 2010-12-01 ダイキン工業株式会社 Refrigeration equipment
JP2007285680A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP4715615B2 (en) * 2006-04-20 2011-07-06 ダイキン工業株式会社 Refrigeration equipment
WO2007123087A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigerating apparatus
JP2008075531A (en) * 2006-09-21 2008-04-03 Fujitsu General Ltd Refrigerant circuit provided with expander
US20100101268A1 (en) * 2007-03-08 2010-04-29 Katsumi Sakitani Refrigeration system
AU2008222268B2 (en) * 2007-03-08 2011-05-26 Daikin Industries, Ltd. Refrigeration system
KR101096824B1 (en) * 2007-03-08 2011-12-22 다이킨 고교 가부시키가이샤 Refrigerating device
JP2008224053A (en) * 2007-03-08 2008-09-25 Daikin Ind Ltd Refrigerating device
AU2008222268C1 (en) * 2007-03-08 2012-03-29 Daikin Industries, Ltd. Refrigeration system
WO2008108055A1 (en) * 2007-03-08 2008-09-12 Daikin Industries, Ltd. Refrigerating device
CN101627265B (en) * 2007-03-08 2013-04-17 大金工业株式会社 Refrigerating device
JP5921718B2 (en) * 2012-12-21 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
CN107314582A (en) * 2017-07-10 2017-11-03 珠海格力电器股份有限公司 Flash tank and water chilling unit
CN107314582B (en) * 2017-07-10 2023-08-15 珠海格力电器股份有限公司 Flash evaporator and water chilling unit
DE102021125108A1 (en) 2021-09-28 2023-03-30 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Expansion-compression machine for refrigeration circuits

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
US7320228B2 (en) Refrigerant cycle apparatus
JP2022125037A (en) Refrigeration system mounted in deck
EP2543941B1 (en) Chiller
JP2003240366A (en) Refrigerating air conditioner
EP1628088A2 (en) Refrigerant cycle apparatus
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
EP2942585B1 (en) Refrigeration cycle device
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP4428341B2 (en) Refrigeration cycle equipment
JP2009133624A (en) Refrigerating/air-conditioning device
JP2003056930A (en) Air heat source type heat pump apparatus, water-cooled heat pump apparatus, air-cooled refrigerating apparatus and water-cooled refrigerating apparatus
KR20110097367A (en) Chiller
WO2017179631A1 (en) Condenser, and turbo-refrigerating apparatus equipped with same
KR101345666B1 (en) Refrigerator
JP6176470B2 (en) refrigerator
JP5646257B2 (en) Refrigeration cycle equipment
EP1843109A2 (en) Cooling System
EP2431685B1 (en) Air conditioner
US6993932B2 (en) Refrigerant cycle system
JP2007212071A (en) Refrigerating cycle device
KR100882525B1 (en) High Pressure Refrigerants System
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
JP4814823B2 (en) Refrigeration equipment
JP2017161088A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050921

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Effective date: 20060206

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Effective date: 20060914

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20061011

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070803

Free format text: JAPANESE INTERMEDIATE CODE: A912