JP2007198670A - Refrigerating system and air conditioner for vehicle - Google Patents

Refrigerating system and air conditioner for vehicle Download PDF

Info

Publication number
JP2007198670A
JP2007198670A JP2006017576A JP2006017576A JP2007198670A JP 2007198670 A JP2007198670 A JP 2007198670A JP 2006017576 A JP2006017576 A JP 2006017576A JP 2006017576 A JP2006017576 A JP 2006017576A JP 2007198670 A JP2007198670 A JP 2007198670A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
compressor
evaporator
oil separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017576A
Other languages
Japanese (ja)
Inventor
Shunji Komatsu
俊二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006017576A priority Critical patent/JP2007198670A/en
Publication of JP2007198670A publication Critical patent/JP2007198670A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating system capable of preventing impairing of cooling performance. <P>SOLUTION: In this refrigerating system 2 in which a CO<SB>2</SB>refrigerant is circulated in a circulation passage, a compressor 18, a gas cooler 20, an expansion valve 22 and an evaporator 26 are successively disposed in the circulation passage when observed from the refrigerant flowing direction, an oil separator 24 is disposed between the expansion valve and the evaporator for separating the oil for the compressor from the refrigerant, and further an oil returning passage 16 is formed for connecting the oil separator and the compressor in a state of bypassing the evaporator, and returning the separated oil from the oil separator to the compressor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍システムに関し、より詳しくは、CO冷媒を使用した冷凍システム及びこの冷凍システムを採用した車両用空調装置に関する。 The present invention relates to a refrigeration system, and more particularly to a refrigeration system using a CO 2 refrigerant and a vehicle air conditioner that employs the refrigeration system.

近年、地球環境への配慮から、地球温暖化係数の小さな値を有する冷媒を用いた冷凍システムの開発が進められている。この種の冷媒の一例としては自然系のCO(炭酸)ガスがある。
しかし、このCO冷媒は高圧側が超臨界領域になってサイクルの効率が悪いため、ガスクーラと膨張弁との間には内部熱交換器が設けられており、ガスクーラの出口側の冷媒と蒸発器の出口側の冷媒とによる内部熱交換が行われている(例えば、特許文献1参照)。
特開2002−225549号公報
In recent years, a refrigeration system using a refrigerant having a small global warming potential has been developed in consideration of the global environment. An example of this type of refrigerant is natural CO 2 (carbonic acid) gas.
However, since this CO 2 refrigerant has a supercritical region on the high pressure side and the cycle efficiency is poor, an internal heat exchanger is provided between the gas cooler and the expansion valve, and the refrigerant and evaporator on the outlet side of the gas cooler Internal heat exchange is performed with the refrigerant on the outlet side (see, for example, Patent Document 1).
JP 2002-225549 A

ところで、この種の圧縮機は冷媒を圧縮するが、この冷媒には、通常、潤滑油(オイル)が含まれている。このオイルは圧縮機内の摺動面や軸受等の潤滑のみならず、摺動面のシールとしての機能を有する。しかしながら、このオイルによる循環経路内の循環は冷凍システムの冷房能力を低下させる要因となる。
つまり、このオイルは、高圧側にてCO冷媒に非常に良く溶解する一方、低圧側では殆ど溶解しない。詳しくは、この高圧側における溶解しないオイルは、液体として例えば蒸発器内部の管壁(熱交換部)に張り付き、オイル独自の層を形成するのである。そして、仮に蒸発器でのオイル循環率(O.C.R.)が0.3%以上になると、熱伝達が極端に悪化するという問題がある。このように、上記従来の技術では、冷房能力の低下の点については依然として課題が残されている。
By the way, this kind of compressor compresses a refrigerant | coolant, but this refrigerant | coolant normally contains lubricating oil (oil). This oil not only lubricates the sliding surfaces and bearings in the compressor, but also functions as a seal for the sliding surfaces. However, the circulation in the circulation path by the oil becomes a factor of reducing the cooling capacity of the refrigeration system.
In other words, this oil dissolves very well in the CO 2 refrigerant on the high pressure side, but hardly dissolves on the low pressure side. Specifically, the undissolved oil on the high-pressure side sticks as a liquid to, for example, a tube wall (heat exchange part) inside the evaporator to form a layer unique to the oil. And if the oil circulation rate (OCR) in an evaporator becomes 0.3% or more, there exists a problem that heat transfer will deteriorate extremely. As described above, in the above-described conventional technology, there is still a problem with respect to the decrease in cooling capacity.

本発明は、このような課題に鑑みてなされたもので、冷房能力の低下を防ぐことができる冷凍システム及び車両用空調装置を提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the refrigeration system and vehicle air conditioner which can prevent the fall of a cooling capability.

上記の目的を達成すべく、請求項1記載の冷凍システムは、CO冷媒が循環経路内を循環する冷凍システムであって、循環経路には、冷媒の流れ方向でみて圧縮機、ガスクーラ、膨張弁及び蒸発器が順次介挿されており、膨張弁と蒸発器との間に配設され、冷媒から圧縮機用のオイルを分離するオイルセパレータと、オイルセパレータと圧縮機とを蒸発器をバイパスして接続し、分離されたオイルをオイルセパレータから圧縮機に戻すオイル返戻通路とを具備することを特徴としている。 In order to achieve the above object, a refrigeration system according to claim 1 is a refrigeration system in which CO 2 refrigerant circulates in a circulation path, and the circulation path has a compressor, a gas cooler, and an expansion in the flow direction of the refrigerant. A valve and an evaporator are sequentially inserted, and are disposed between the expansion valve and the evaporator. The oil separator that separates the oil for the compressor from the refrigerant, and bypasses the evaporator between the oil separator and the compressor. And an oil return passage for returning the separated oil from the oil separator to the compressor.

また、請求項2記載の発明では、オイルセパレータは、蒸発器の内部において蒸発器の熱交換部の上流側に設けられていることを特徴としている。
更に、請求項3記載の発明では、車両用空調装置が上述の冷凍システムを備えたことを特徴としている。
The invention according to claim 2 is characterized in that the oil separator is provided on the upstream side of the heat exchanging portion of the evaporator inside the evaporator.
Furthermore, the invention according to claim 3 is characterized in that a vehicle air conditioner includes the above-described refrigeration system.

従って、請求項1記載の本発明の冷凍システムによれば、CO冷媒がオイルを含み、このオイルは圧縮機から流出し、ガスクーラにて冷却されて膨張弁を介してオイルセパレータに達する。このオイルセパレータでは冷媒からオイルが分離され、このオイルは循環経路とは別個のオイル返戻通路を介して圧縮機に常に戻される。よって、蒸発器へのオイルの流入が回避される。この結果、熱交換機能が確保され、CO冷媒を用いた冷凍システムの冷房能力の低下が回避される。 Therefore, according to the refrigeration system of the first aspect of the present invention, the CO 2 refrigerant contains oil, this oil flows out of the compressor, is cooled by the gas cooler, and reaches the oil separator through the expansion valve. In this oil separator, oil is separated from the refrigerant, and this oil is always returned to the compressor via an oil return path that is separate from the circulation path. Therefore, the inflow of oil to the evaporator is avoided. As a result, a heat exchange function is ensured, and a decrease in the cooling capacity of the refrigeration system using the CO 2 refrigerant is avoided.

また、オイルセパレータを、圧縮機の出口側ではなく、膨張弁の出口側に設ければ、ガスクーラ及び膨張弁で冷却されたオイルはそのオイル粘度が高くなり、冷媒からの分離が容易になる。この結果、効率の良いオイル分離が達成される。
また、請求項2記載の発明によれば、現有のシステムに蒸発器を交換するのみで済み、システムのコストの低廉化に寄与する。
Further, if the oil separator is provided not on the outlet side of the compressor but on the outlet side of the expansion valve, the oil cooled by the gas cooler and the expansion valve has a high oil viscosity and can be easily separated from the refrigerant. As a result, efficient oil separation is achieved.
Further, according to the invention described in claim 2, it is only necessary to replace the evaporator with the existing system, which contributes to a reduction in the cost of the system.

更に、請求項3記載の車両用空調装置によれば、自然系冷媒であるCO冷媒を用いていることから、環境負荷の低減に大きく貢献する。 Further, according to the vehicle air conditioner of the third aspect, since the CO 2 refrigerant that is a natural refrigerant is used, it greatly contributes to the reduction of the environmental load.

以下、図面により本発明の実施形態について説明する。
図1は、車両用空調装置を構成する一実施例の冷凍システム2の概略を示し、この冷凍システム2は車室4内を所望の設定温度にて冷房する。
冷凍システム2は、自然系冷媒であるCO冷媒(以下、単に冷媒と称す)を循環させる冷凍回路6を有し、この冷凍回路6はエンジン10を備えたエンジンルーム8から車室4に亘って設置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a refrigeration system 2 of an embodiment constituting a vehicle air conditioner. The refrigeration system 2 cools the interior of a passenger compartment 4 at a desired set temperature.
The refrigeration system 2 includes a refrigeration circuit 6 that circulates a CO 2 refrigerant (hereinafter simply referred to as a refrigerant), which is a natural refrigerant, and the refrigeration circuit 6 extends from an engine room 8 including an engine 10 to a vehicle compartment 4. Installed.

冷凍回路6は上記冷媒の循環経路11〜15を有し、これら循環経路11〜15はその大部分が車両のエンジンルーム8内に配置されているが、その一部は車両の車室4内にも延びている。詳しくは、循環経路11〜15には、上流側からコンプレッサ(圧縮機)18、ガスクーラ20、膨張弁22、オイルセパレータ24及びエバポレータ(蒸発器)26が順次介挿されている。そして、これら圧縮機18、ガスクーラ20、膨張弁22及びオイルセパレータ24はエンジンルーム8内に配置され、蒸発器26は車室4内に配置されている。   The refrigeration circuit 6 has circulation paths 11 to 15 for the refrigerant, and most of the circulation paths 11 to 15 are arranged in the engine room 8 of the vehicle, but a part of the circulation paths 11 to 15 is in the vehicle compartment 4 of the vehicle. It also extends. Specifically, a compressor (compressor) 18, a gas cooler 20, an expansion valve 22, an oil separator 24, and an evaporator (evaporator) 26 are sequentially inserted in the circulation paths 11 to 15 from the upstream side. The compressor 18, the gas cooler 20, the expansion valve 22 and the oil separator 24 are disposed in the engine room 8, and the evaporator 26 is disposed in the vehicle compartment 4.

なお、図1中、参照符号11,12,13,14は上記循環経路の往路部分を形成し、参照符号15は上記循環経路の復路部分を形成している。
圧縮機18はエンジン10の駆動力によって作動され、ガス状態の冷媒を吸い込んで圧縮し、高温高圧ガス状態にして循環経路11に吐出する。つまり、圧縮機18は、冷媒を圧縮しながら冷媒の流動を生成させる。
In FIG. 1, reference numerals 11, 12, 13, and 14 form the forward path portion of the circulation path, and reference numeral 15 forms the return path portion of the circulation path.
The compressor 18 is operated by the driving force of the engine 10, sucks and compresses the refrigerant in the gas state, and discharges it to the circulation path 11 in a high-temperature and high-pressure gas state. That is, the compressor 18 generates a refrigerant flow while compressing the refrigerant.

そして、ガスクーラ20は図示しない送風ファン及び車両前方からの風を受けて、その内部を流れる冷媒を空冷する。更に、ガスクーラ20からの高圧状態の冷媒は、膨張弁22を通じて蒸発器26に供給され、蒸発器26内にて比較的低温低圧のガス状態となる。この蒸発器26の下流側は、循環経路15を介して圧縮機18に接続されており、上記低温低圧ガス状態の冷媒は圧縮機18に吸引される。   And the gas cooler 20 receives the wind from the fan and the vehicle front which are not shown in figure, and air-cools the refrigerant | coolant which flows through the inside. Further, the high-pressure refrigerant from the gas cooler 20 is supplied to the evaporator 26 through the expansion valve 22, and becomes a relatively low-temperature and low-pressure gas state in the evaporator 26. The downstream side of the evaporator 26 is connected to the compressor 18 via the circulation path 15, and the refrigerant in the low-temperature and low-pressure gas state is sucked into the compressor 18.

本実施形態のオイルセパレータ24は、膨張弁22と蒸発器26との間、すなわち、循環経路13と循環経路14との間に配設されており、冷媒から圧縮機用のオイルを分離する。この冷媒から分離されたオイルはオイルセパレータ24から圧縮機18に戻される。より詳しくは、オイルセパレータ24と圧縮機18とは、循環経路13,14とは別個のオイル返戻通路16で接続されており、オイルは、蒸発器26をバイパスし、オイル返戻通路16及び循環経路15を介して圧縮機18に戻されている。   The oil separator 24 of the present embodiment is disposed between the expansion valve 22 and the evaporator 26, that is, between the circulation path 13 and the circulation path 14, and separates the compressor oil from the refrigerant. The oil separated from the refrigerant is returned from the oil separator 24 to the compressor 18. More specifically, the oil separator 24 and the compressor 18 are connected to each other by an oil return passage 16 that is separate from the circulation paths 13 and 14, and the oil bypasses the evaporator 26 and the oil return path 16 and the circulation path. 15 is returned to the compressor 18.

なお、オイル返戻通路16にリリーフ弁を設け、オイルセパレータ24内の圧力が所定圧力以上に達した場合にオイル返戻通路16を開き、分離されたオイルをオイル返戻通路16及び循環経路15から圧縮機18の内部に向けて戻しても良い。
上述した冷凍システム2によれば、圧縮機18の作動に伴い、蒸発器26から冷媒を圧縮する。つまり、この圧縮機18の断熱圧縮作用により、比エンタルピ及び圧力がそれぞれ増加して図2の点Aから点Bまで変化する。そして、循環経路11を介して高温高圧ガス状態の冷媒をガスクーラ20に供給する。
The oil return passage 16 is provided with a relief valve, and when the pressure in the oil separator 24 reaches a predetermined pressure or higher, the oil return passage 16 is opened, and the separated oil is supplied from the oil return passage 16 and the circulation passage 15 to the compressor. You may return toward the inside of 18.
According to the refrigeration system 2 described above, the refrigerant is compressed from the evaporator 26 with the operation of the compressor 18. That is, due to the adiabatic compression action of the compressor 18, the specific enthalpy and pressure increase and change from point A to point B in FIG. 2. Then, a refrigerant in a high-temperature and high-pressure gas state is supplied to the gas cooler 20 through the circulation path 11.

続いて、この冷媒はガスクーラ20内で冷却される。つまり、ガスクーラ20の冷却作用により、比エンタルピが減少して図2の点Bから点Cまで等圧変化する。そして、循環経路12を介して膨張弁22に供給される。
上述した図2の点Bから点Cに変化した状態では、図3に示されるように、3つの如何なる外気温度においても、高圧側(約10〜12MPa)に達するガスクーラ20内のオイルの溶解度は高くなることが分かる。つまり、オイルは高圧側にて冷媒に非常に良く溶解しているのである。
Subsequently, the refrigerant is cooled in the gas cooler 20. That is, due to the cooling action of the gas cooler 20, the specific enthalpy decreases and changes from the point B to the point C in FIG. Then, it is supplied to the expansion valve 22 via the circulation path 12.
In the state changed from the point B to the point C in FIG. 2 as described above, as shown in FIG. 3, the solubility of the oil in the gas cooler 20 reaching the high pressure side (about 10 to 12 MPa) at any three outside air temperatures is It turns out that it becomes high. In other words, the oil is very well dissolved in the refrigerant on the high pressure side.

次いで、循環経路12からの冷媒は膨張弁22の絞り作用による膨張を受け、その比エンタルピを一定に維持しながら圧力が減少して図2の点Cから点Dまで変化し、冷媒は循環経路13を介してオイルセパレータ24に供給される。
ここで、オイルセパレータ24内に流入した冷媒中のオイルは、例えば遠心分離の原理に基づいて冷媒から分離され、オイルセパレータ24の内周面に付着する。そして、冷媒は循環経路14を介して蒸発器26内に噴出され、冷媒の気化熱により蒸発器26の周囲の空気が冷却される。次いで、冷気が車室4内に送り込まれることにより、車室4内の冷房が行われる。一方、冷媒から分離されたオイルは、オイルセパレータ24の内周面を伝って流下し、オイル返戻通路16及び循環経路15を介して圧縮機18に常時返戻される。
Next, the refrigerant from the circulation path 12 undergoes expansion due to the throttling action of the expansion valve 22, and the pressure decreases while maintaining its specific enthalpy constant, and changes from point C to point D in FIG. 13 to the oil separator 24.
Here, the oil in the refrigerant that has flowed into the oil separator 24 is separated from the refrigerant based on, for example, the principle of centrifugation, and adheres to the inner peripheral surface of the oil separator 24. Then, the refrigerant is jetted into the evaporator 26 through the circulation path 14, and the air around the evaporator 26 is cooled by the heat of vaporization of the refrigerant. Next, the cooling air is sent into the passenger compartment 4 to cool the passenger compartment 4. On the other hand, the oil separated from the refrigerant flows down along the inner peripheral surface of the oil separator 24 and is always returned to the compressor 18 via the oil return passage 16 and the circulation passage 15.

また、蒸発器26内の冷媒は、循環経路15を介して圧縮機18に戻り、比エンタルピが増加して図2の点Dから点Aまで等圧変化する。そして、この後、圧縮機18により再度圧縮され、循環経路11〜15を上述した如く循環する。
上述した図2の点Dから点Aに変化した状態では、図3に示されるように、3つの如何なる外気温度においても、低圧側(約1〜2MPa)に達する蒸発器26内におけるオイルの溶解度は低くなることが分かる。すなわち、オイルは低圧側では冷媒に殆ど溶解しないのであり、上記の如く配置されたオイルセパレータ24では、冷媒からオイルを効率良く分離可能となる。
Further, the refrigerant in the evaporator 26 returns to the compressor 18 through the circulation path 15, and the specific enthalpy increases and changes at the same pressure from the point D to the point A in FIG. 2. After that, it is compressed again by the compressor 18 and circulates in the circulation paths 11 to 15 as described above.
In the state changed from the point D to the point A in FIG. 2 as described above, as shown in FIG. 3, the solubility of oil in the evaporator 26 reaching the low pressure side (about 1 to 2 MPa) at any three outside air temperatures. Can be seen to be lower. That is, the oil hardly dissolves in the refrigerant on the low pressure side, and the oil separator 24 arranged as described above can efficiently separate the oil from the refrigerant.

以上のように、本発明によれば、フロン系サイクルの如く圧縮機の出口側にオイルセパレータを設けるのではなく、膨張弁22と蒸発器26との間の低圧側にオイルセパレータ24を設けている。換言すれば、CO冷媒がオイルを含み、このオイルは圧縮機18から流出し、ガスクーラ20にて冷却されて膨張弁22を介してオイルセパレータ24に達する。このオイルセパレータ24では冷媒からオイルが分離され、このオイルは循環経路13、14とは別個のオイル返戻通路16を介して圧縮機18に常に戻される。よって、蒸発器26へのオイルの流入が回避される結果、蒸発器26内のオイル循環率が小さくなって熱交換機能が確保され、CO冷媒を用いた冷凍システムの冷房能力の低下が回避される。 As described above, according to the present invention, an oil separator 24 is provided on the low pressure side between the expansion valve 22 and the evaporator 26, instead of providing an oil separator on the outlet side of the compressor as in the Freon type cycle. Yes. In other words, the CO 2 refrigerant contains oil, which flows out of the compressor 18, is cooled by the gas cooler 20, and reaches the oil separator 24 via the expansion valve 22. In the oil separator 24, oil is separated from the refrigerant, and this oil is always returned to the compressor 18 via an oil return passage 16 separate from the circulation paths 13 and 14. As a result, the inflow of oil to the evaporator 26 is avoided. As a result, the oil circulation rate in the evaporator 26 is reduced, the heat exchange function is ensured, and the cooling capacity of the refrigeration system using the CO 2 refrigerant is prevented from being lowered. Is done.

また、オイルセパレータ24を、圧縮機18の出口側ではなく、膨張弁22の出口側に設ければ、ガスクーラ20及び膨張弁22で冷却されたオイルはそのオイル粘度が高くなり、冷媒からの分離が容易になる。この結果、効率の良いオイル分離が達成される。
また、車両用空調装置に自然系冷媒であるCO冷媒を用いれば、環境負荷の低減に大きく貢献する。
Further, if the oil separator 24 is provided not on the outlet side of the compressor 18 but on the outlet side of the expansion valve 22, the oil cooled by the gas cooler 20 and the expansion valve 22 has a high oil viscosity and is separated from the refrigerant. Becomes easier. As a result, efficient oil separation is achieved.
Further, by using the CO 2 refrigerant is a natural refrigerant in an air conditioning system for vehicles, greatly contributes to reducing environmental impact.

以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、循環経路13と循環経路14との間にオイルセパレータ24を設けているが、必ずしもこの形態に限定されるものではなく、オイルセパレータは、蒸発器の内部においてその熱交換部の上流側に設けられていても良い。具体的には、この熱交換部の上流側に対し、金網を配置するデミスト方式や、じゃま板を配置するバッファー方式を採用し、蒸発器での差圧よりも小さくして圧縮機に向けて戻せば良い。この場合にも上記と同様の効果の他、現有の冷凍システムに蒸発器を交換するのみで済み、システムのコストの低廉化に寄与するとの効果を奏する。
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the oil separator 24 is provided between the circulation path 13 and the circulation path 14. However, the oil separator 24 is not necessarily limited to this form, and the oil separator has its heat exchange inside the evaporator. It may be provided on the upstream side of the section. Specifically, for the upstream side of this heat exchanging section, a demist method that arranges a wire mesh and a buffer method that arranges a baffle plate are adopted, and it is made smaller than the differential pressure in the evaporator and directed toward the compressor. Return it. In this case, in addition to the same effects as described above, it is only necessary to replace the evaporator with the existing refrigeration system, which contributes to a reduction in the cost of the system.

また、上記実施形態では車両用空調装置に具体化された例を示しているが、本発明の冷凍システムは、業務用空調装置、家庭用ヒートパイプ、給湯器、暖房器等の如く、CO冷媒を用いた冷凍・空調サイクル全般に適用可能である。 In the above embodiment shows the embodied example in an air conditioning system for vehicles, but refrigeration system of the present invention, commercial air-conditioning equipment, household heat pipes, water heaters, as heating or the like, CO 2 Applicable to all refrigeration and air conditioning cycles using refrigerants.

本発明の一実施例に係る冷凍システムの概略構成図である。1 is a schematic configuration diagram of a refrigeration system according to an embodiment of the present invention. 図1の冷凍システムにおけるCO冷媒の概略的なモリエール線図である。FIG. 2 is a schematic Mollier diagram of a CO 2 refrigerant in the refrigeration system of FIG. 1. 潤滑油の溶解度を説明する図である。It is a figure explaining the solubility of lubricating oil.

符号の説明Explanation of symbols

2 冷凍システム
11,12,13,14,15 循環経路
16 オイル返戻通路
18 圧縮機
20 ガスクーラ
22 膨張弁
24 オイルセパレータ
26 蒸発器
2 Refrigeration system 11, 12, 13, 14, 15 Circulation path 16 Oil return path 18 Compressor 20 Gas cooler 22 Expansion valve 24 Oil separator 26 Evaporator

Claims (3)

CO冷媒が循環経路内を循環する冷凍システムであって、
前記循環経路には、前記冷媒の流れ方向でみて圧縮機、ガスクーラ、膨張弁及び蒸発器が順次介挿されており、
前記膨張弁と前記蒸発器との間に配設され、前記冷媒から前記圧縮機用のオイルを分離するオイルセパレータと、
該オイルセパレータと前記圧縮機とを前記蒸発器をバイパスして接続し、前記分離されたオイルを前記オイルセパレータから前記圧縮機に戻すオイル返戻通路と
を具備することを特徴とする冷凍システム。
CO 2 refrigerant is a refrigeration system that circulates through the circulation path,
In the circulation path, a compressor, a gas cooler, an expansion valve, and an evaporator are sequentially inserted in the flow direction of the refrigerant,
An oil separator disposed between the expansion valve and the evaporator and separating oil for the compressor from the refrigerant;
An refrigeration system comprising: an oil return passage for connecting the oil separator and the compressor, bypassing the evaporator, and returning the separated oil from the oil separator to the compressor.
前記オイルセパレータは、前記蒸発器の内部において該蒸発器の熱交換部の上流側に設けられていることを特徴とする請求項1に記載の冷凍システム。   The refrigeration system according to claim 1, wherein the oil separator is provided on the upstream side of the heat exchange section of the evaporator inside the evaporator. 請求項1又は2に記載の冷凍システムを備えたことを特徴とする車両用空調装置。   A vehicle air conditioner comprising the refrigeration system according to claim 1.
JP2006017576A 2006-01-26 2006-01-26 Refrigerating system and air conditioner for vehicle Pending JP2007198670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017576A JP2007198670A (en) 2006-01-26 2006-01-26 Refrigerating system and air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017576A JP2007198670A (en) 2006-01-26 2006-01-26 Refrigerating system and air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2007198670A true JP2007198670A (en) 2007-08-09

Family

ID=38453439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017576A Pending JP2007198670A (en) 2006-01-26 2006-01-26 Refrigerating system and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2007198670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096440A (en) * 2008-10-17 2010-04-30 Panasonic Corp Heat pump device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764559U (en) * 1980-10-03 1982-04-17
JPH06207751A (en) * 1993-01-08 1994-07-26 Yoriyuki Oguri Heat pump fitted with oil separator
JPH08240350A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Freezing cycle
JP2001201190A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Ammonia refrigerating apparatus
JP2003139420A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Refrigeration unit
JP2003240366A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Refrigerating air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764559U (en) * 1980-10-03 1982-04-17
JPH06207751A (en) * 1993-01-08 1994-07-26 Yoriyuki Oguri Heat pump fitted with oil separator
JPH08240350A (en) * 1995-03-07 1996-09-17 Matsushita Refrig Co Ltd Freezing cycle
JP2001201190A (en) * 2000-01-18 2001-07-27 Kobe Steel Ltd Ammonia refrigerating apparatus
JP2003139420A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Refrigeration unit
JP2003240366A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Refrigerating air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096440A (en) * 2008-10-17 2010-04-30 Panasonic Corp Heat pump device

Similar Documents

Publication Publication Date Title
EP1315938B1 (en) Method and arrangement for defrosting a vapor compression system
JP4075429B2 (en) Refrigeration air conditioner
JP2007162988A (en) Vapor compression refrigerating cycle
JPH1194380A (en) Refrigeration cycle
JP2010085042A (en) Refrigerating cycle device
WO2009062526A1 (en) Refrigerating system and method for refrigerating
JP2006183950A (en) Refrigeration apparatus and refrigerator
US9134057B2 (en) Refrigeration cycle and condenser with supercooling unit
JP2009299911A (en) Refrigeration device
JP2008127017A (en) Combination of cooling circuit and rankine circuit for air-conditioning vehicle interior
JP2005214550A (en) Air conditioner
JP4354372B2 (en) Refrigeration system and vehicle air conditioner
WO2009128487A1 (en) Refrigerating apparatus
JP2004150749A (en) Refrigerating cycle device
JP2000292016A (en) Refrigerating cycle
JP2007071511A (en) Accumulator structure
JP2007198670A (en) Refrigerating system and air conditioner for vehicle
JP5403047B2 (en) Refrigeration equipment
JP4326004B2 (en) Air conditioner
JP2007333283A (en) Vapor compression type refrigeration circuit and air conditioning system for vehicle using the circuit
JP2007064602A (en) Refrigeration system
JP2007187332A (en) Refrigeration cycle device
JP2007093086A (en) Refrigerating system
JP6655534B2 (en) Compressor with oil separator
JP2007205595A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081010

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101208