JP2007205595A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007205595A
JP2007205595A JP2006022429A JP2006022429A JP2007205595A JP 2007205595 A JP2007205595 A JP 2007205595A JP 2006022429 A JP2006022429 A JP 2006022429A JP 2006022429 A JP2006022429 A JP 2006022429A JP 2007205595 A JP2007205595 A JP 2007205595A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heating
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006022429A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ebara
俊行 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006022429A priority Critical patent/JP2007205595A/en
Priority to DE602007001038T priority patent/DE602007001038D1/en
Priority to EP07001908A priority patent/EP1813887B1/en
Priority to US11/700,247 priority patent/US7716934B2/en
Publication of JP2007205595A publication Critical patent/JP2007205595A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance and efficiency of an air conditioner composed of a waste heat utilizing circuit utilizing the waste heat of a heat source by a heat exchanger for heating to heat a conditioned room, a refrigerant circuit using a carbon dioxide as a refrigerant and having supercritical pressure at a high-pressure side, and a cascade heat exchanger exchanging heat between the fluid flowing from the heat source to the heat exchanger for heating in the waste heat utilizing circuit, and a refrigerant of the refrigerant circuit. <P>SOLUTION: A refrigerant discharged from a compressor 11 is allowed to flow to the cascade heat exchanger 12, and the refrigerant coming out of the cascade heat exchanger 12 is divided by a flow divider, so that one of the refrigerants flows from an auxiliary expansion valve 15 for heating as an auxiliary pressure reducing device to an auxiliary heat exchanger 17 for heating as an internal heat exchanger to exchange heat with the refrigerant coming out of the cascade heat exchanger 12, and then sucked into a sealed container 30 as an intermediate pressure portion of the compressor 11, and the divided other refrigerant is allowed to flow from the expansion valve 20 for heating as a main pressure reducing device to an outdoor heat exchanger 23 (heat sink), and then sucked to a first compressing element 32 as a low pressure portion of the compressor 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築される空気調和装置に関するものである。   The present invention uses a waste heat utilization circuit for utilizing waste heat of a heat source for heating a conditioned room in a heat exchanger for heating, a refrigerant circuit in which carbon dioxide is used as a refrigerant, and a high pressure side is a supercritical pressure, The present invention relates to an air conditioner constructed from a fluid flowing through a waste heat utilization circuit from a heat source to a heating heat exchanger and a cascade heat exchanger that exchanges heat between the refrigerant in the refrigerant circuit.

従来、この種空気調和装置は、暖房用熱交換器にてHEV、FCVカーエアコンやFCコージェネシステムなどの熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、圧縮機、被調和室外に設けられた吸熱器、減圧装置及び被調和室を冷房するための冷房用熱交換器を備えた冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れるエチレングリコールなどの流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器等から構成される。当該廃熱利用回路には循環ポンプが設けられており、当該循環ポンプを作動することにより廃熱利用回路内に流体を循環するものとされていた。また、熱源への流体の流通は電磁弁などにより制御されて、暖房運転時に熱源の廃熱を被調和室の暖房に利用する場合に当該熱源に流体を流すものとされていた。   Conventionally, this type of air conditioner includes a waste heat utilization circuit for heating waste heat from heat sources such as HEV, FCV car air conditioner and FC cogeneration system in a heat exchanger for heating, and a compressor. A refrigerant circuit including a heat absorber provided outside the room to be conditioned, a decompressor, and a cooling heat exchanger for cooling the room to be conditioned, and ethylene glycol flowing from the heat source to the heating heat exchanger through the waste heat utilization circuit And a cascade heat exchanger that exchanges heat between the fluid and the refrigerant in the refrigerant circuit. The waste heat utilization circuit is provided with a circulation pump, and the fluid is circulated in the waste heat utilization circuit by operating the circulation pump. The fluid flow to the heat source is controlled by a solenoid valve or the like, and when the waste heat of the heat source is used for heating the conditioned room during the heating operation, the fluid flows to the heat source.

即ち、暖房運転時には、熱源と熱交換して加熱された流体を暖房用熱交換器に流して被調和室を暖房していた。また、起動時など熱源が加熱する以前には、熱源への流体の流通が停止され、カスケード熱交換器において、圧縮機にて圧縮された冷媒と廃熱利用回路を流れる流体とを熱交換させて流体を加熱し、加熱された流体を暖房用熱交換器に流して被調和室を暖房するものとされていた。また、カスケード熱交換器にて流体と熱交換して放熱した冷媒は、減圧装置にて減圧した後、被調和室外に設けられた吸熱器にて蒸発させていた。また、熱源の冷却を行う場合には、前期カスケード熱交換器における加熱に加え、当該熱   That is, during the heating operation, the conditioned room is heated by flowing a fluid heated by exchanging heat with the heat source to the heating heat exchanger. In addition, before the heat source is heated, such as at the time of startup, the flow of the fluid to the heat source is stopped, and in the cascade heat exchanger, the refrigerant compressed by the compressor and the fluid flowing through the waste heat utilization circuit are heat-exchanged. The fluid is heated, and the heated fluid is passed through the heating heat exchanger to heat the conditioned room. In addition, the refrigerant that has dissipated heat by exchanging heat with the fluid in the cascade heat exchanger is depressurized by the decompression device, and then evaporated by the heat absorber provided outside the chamber to be conditioned. In addition, when cooling the heat source, in addition to the heating in the previous cascade heat exchanger, the heat

一方、冷房運転時には、廃熱利用回路の循環ポンプを運転せずに、冷媒回路の圧縮機を運転して、外部に設けられた熱交換器にて放熱した冷媒を減圧装置にて減圧した後、冷却用熱交換器に流して被調和室を冷房していた。   On the other hand, during the cooling operation, after operating the compressor of the refrigerant circuit without operating the circulation pump of the waste heat utilization circuit, the refrigerant radiated by the heat exchanger provided outside is decompressed by the decompression device. The conditioned room was cooled by flowing through a cooling heat exchanger.

ところで、近年、地球環境問題からこの種空気調和装置においても冷媒として自然冷媒である二酸化炭素が使用されてきている。この二酸化炭素は温暖化係数が1と良好な特性を有するため、フロン系冷媒の代替品として注目されつつある。しかしながら、当該二酸化炭素冷媒は臨界点が約7.31MPa、31.1℃であり、冷媒回路の高圧側圧力が超臨界領域に達しやすい。特に、前記熱源の冷却循環により流体の温度が上昇すると、冷媒と流体との熱交換能力が低下するため、冷媒放熱後(カスケード熱交換器出口)の温度が上昇し、それに伴い冷暖房能力が低下して、効率が著しく悪化する問題が生じていた。   By the way, in recent years, carbon dioxide, which is a natural refrigerant, has been used as a refrigerant in this kind of air conditioner due to global environmental problems. Since carbon dioxide has a favorable characteristic of a warming coefficient of 1, it is attracting attention as an alternative to a fluorocarbon refrigerant. However, the carbon dioxide refrigerant has a critical point of about 7.31 MPa and 31.1 ° C., and the high-pressure side pressure of the refrigerant circuit easily reaches the supercritical region. In particular, if the temperature of the fluid rises due to the cooling circulation of the heat source, the heat exchange capacity between the refrigerant and the fluid decreases, so the temperature after heat release from the refrigerant (cascade heat exchanger outlet) rises, and the cooling and heating capacity decreases accordingly. As a result, there has been a problem that the efficiency is remarkably deteriorated.

このような効率の悪化を解消するために、冷媒回路に熱交換器を追加して設置し、カスケード熱交換器で放熱した冷媒を当該熱交換器に流して、冷媒と周囲の空気(例えば、被調和室の空気など)とを熱交換させることにより、冷媒を更に放熱させて、エンタルピー差を増加させたものも開発されている(特許文献1)。
特開2002−98430号公報
In order to eliminate such deterioration in efficiency, a heat exchanger is additionally installed in the refrigerant circuit, and the refrigerant dissipated in the cascade heat exchanger is caused to flow through the heat exchanger, so that the refrigerant and the surrounding air (for example, An apparatus in which the enthalpy difference is increased by further heat dissipating the refrigerant by exchanging heat with the air in the room to be conditioned (Patent Document 1) has been developed.
JP 2002-98430 A

しかしながら、当該熱交換器にて冷媒と熱交換する空気(例えば、被調和室など)の温度が上昇すると、係る放熱効果が得られなくなってしまい、効率が著しく悪化する不都合が生じていた。また熱交換器を設けることで装置が大型化すると共に、コストが増大する不都合が生じていた。   However, when the temperature of the air (for example, a conditioned room) that exchanges heat with the refrigerant in the heat exchanger rises, the heat dissipation effect cannot be obtained, and the inconvenience that the efficiency is remarkably deteriorated occurs. In addition, the provision of the heat exchanger increases the size of the apparatus and disadvantageously increases the cost.

本発明は、係る従来技術の課題を解決するために成されたものであり、暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築される空気調和装置の性能及び効率を改善することを目的とする。   The present invention has been made to solve the problems of the related art, and a waste heat utilization circuit for utilizing waste heat of a heat source for heating a conditioned room in a heat exchanger for heating, and a refrigerant CO2 is used as a refrigerant circuit with high pressure on the high pressure side, and a waste heat utilization circuit is constructed from a cascade heat exchanger that exchanges heat between the fluid flowing from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit. The purpose is to improve the performance and efficiency of the air conditioner.

請求項1の発明の空気調和装置は、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び被調和室外に設けられた吸熱器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を主減圧装置から吸熱器に流した後、圧縮機の低圧部に吸い込ませることを特徴とする。   The air conditioning apparatus according to the first aspect of the present invention circulates fluid between a heat source and a heating heat exchanger, and uses the waste heat of the heat source for heating the conditioned room in the heating heat exchanger. Cascade heat exchange in which heat is exchanged between the refrigerant in the refrigerant circuit and the fluid that flows from the heat source to the heating heat exchanger in the waste heat utilization circuit using carbon dioxide as the refrigerant and the supercritical pressure on the high-pressure side, and the waste heat utilization circuit The refrigerant circuit includes a compressor, a cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, and a heat absorber provided outside the chamber to be conditioned. The discharged refrigerant is flowed to the cascade heat exchanger, the refrigerant that has exited the cascade heat exchanger is diverted by the flow divider, and one of the refrigerants is flowed from the auxiliary pressure reducing device to the internal heat exchanger to be discharged from the cascade heat exchanger. After exchanging heat with the refrigerant after exiting It was sucked into an intermediate pressure section of the compressor, after flowing the diverted other refrigerant from the main decompressor heat sink, and characterized in that sucked into the low pressure section of the compressor.

請求項2の発明の空気調和装置は、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び被調和室を冷房するための冷房用熱交換器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を主減圧装置から冷房用熱交換器に流した後、圧縮機の低圧部に吸い込ませることを特徴とする。   The air conditioning apparatus according to the invention of claim 2 circulates a fluid through a heat source and a heat exchanger for heating, and uses the waste heat of the heat source for heating the conditioned room in the heating heat exchanger. Cascade heat exchange in which heat is exchanged between the refrigerant in the refrigerant circuit and the fluid that flows from the heat source to the heating heat exchanger in the waste heat utilization circuit using carbon dioxide as the refrigerant and the supercritical pressure on the high-pressure side, and the waste heat utilization circuit The refrigerant circuit comprises a compressor, a cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, and a cooling heat exchanger for cooling the conditioned room. The refrigerant discharged from the compressor is allowed to flow to the cascade heat exchanger, the refrigerant exiting the cascade heat exchanger is diverted by the flow divider, and one of the refrigerants is allowed to flow from the auxiliary pressure reducing device to the internal heat exchanger. Heat exchange with refrigerant after exiting heat exchanger After causes sucked into the intermediate pressure section of the compressor, after flowing into the heat exchanger for cooling the diverted other refrigerant from the main decompressor, characterized thereby sucked into the low pressure section of the compressor.

請求項3の発明の空気調和装置は、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置、被調和室外に設けられた吸熱器及び被調和室を冷房するための冷房用熱交換器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流し、当該カスケード熱交換器を出た冷媒を前記分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませると共に、暖房時には分流した他方の冷媒を主減圧装置から吸熱器に流した後、圧縮機の低圧部に吸い込ませ、冷房時には分流した他方の冷媒を主減圧装置から冷房用熱交換器に流した後、圧縮機の低圧部に吸い込ませることを特徴とする。   The air conditioning apparatus according to the invention of claim 3 circulates a fluid through a heat source and a heating heat exchanger, and uses the waste heat of the heat source for heating the conditioned room in the heating heat exchanger. Cascade heat exchange in which heat is exchanged between the refrigerant in the refrigerant circuit and the fluid that flows from the heat source to the heating heat exchanger in the waste heat utilization circuit using carbon dioxide as the refrigerant and the supercritical pressure on the high-pressure side, and the waste heat utilization circuit The refrigerant circuit cools the compressor, the cascade heat exchanger, the shunt, the auxiliary decompressor, the internal heat exchanger, the main decompressor, the heat absorber provided outside the chamber to be conditioned, and the chamber to be conditioned. A cooling heat exchanger for cooling, the refrigerant discharged from the compressor is allowed to flow to the cascade heat exchanger, the refrigerant exiting the cascade heat exchanger is diverted by the flow divider, and one of the refrigerants is auxiliary decompressed Cascade heat flowing from the equipment to the internal heat exchanger After exchanging heat with the refrigerant that has come out of the converter, the refrigerant is sucked into the intermediate pressure part of the compressor and the other refrigerant that has been diverted during heating flows from the main decompressor to the heat absorber, and then the low pressure part of the compressor The other refrigerant, which is divided during the cooling, flows from the main decompression device to the cooling heat exchanger and is then sucked into the low pressure portion of the compressor.

請求項4の発明の空気調和装置は、請求項1乃至請求項3の何れかに記載の発明において内部熱交換器は、補助減圧装置を経た一方の冷媒と、カスケード熱交換器から出て且つ分流器にて分流される前の冷媒とを熱交換させることを特徴とする。   According to a fourth aspect of the present invention, there is provided the air conditioner according to any one of the first to third aspects, wherein the internal heat exchanger is one of the refrigerant having passed through the auxiliary pressure reducing device and the cascade heat exchanger. It is characterized in that heat is exchanged with the refrigerant before being diverted by the flow divider.

請求項5の発明の空気調和装置は、請求項1乃至請求項4の何れかに記載の発明において分流器の上部及び下部から一方の冷媒を分流させることを特徴とする。   An air conditioner according to a fifth aspect of the invention is characterized in that in the invention according to any one of the first to fourth aspects, one refrigerant is divided from an upper part and a lower part of the flow divider.

請求項6の発明の空気調和装置は、請求項1乃至請求項5の何れかに記載の発明において圧縮機は低段側圧縮手段と高段側圧縮手段とを備え、吸熱器又は冷房用熱交換器を出た冷媒を低段側圧縮手段に吸い込ませ、この低段側圧縮手段にて圧縮された中間圧の冷媒を、内部熱交換器を出た一方の冷媒と共に高段側圧縮手段に吸い込ませると共に、低段側圧縮手段の排除容積に対する高段側圧縮手段の排除容積の比を、70%以上85%以下としたことを特徴とする。   An air conditioner according to a sixth aspect of the present invention is the air conditioning apparatus according to any one of the first to fifth aspects, wherein the compressor comprises a low-stage compression means and a high-stage compression means, and the heat absorber or the cooling heat. The refrigerant exiting the exchanger is sucked into the low-stage compression means, and the intermediate-pressure refrigerant compressed by the low-stage compression means is transferred to the high-stage compression means together with one refrigerant exiting the internal heat exchanger. In addition, the ratio of the displacement volume of the high-stage compression means to the displacement volume of the low-stage compression means is 70% to 85%.

請求項7の発明の空気調和装置は、請求項1乃至請求項6の何れかに記載の発明において主減圧装置に入る冷媒の温度を検出する温度検出手段を備え、この温度検出手段が検出する温度を最低値とするように補助減圧装置の開度を制御することを特徴とする。   An air conditioner according to a seventh aspect of the invention comprises a temperature detection means for detecting the temperature of the refrigerant entering the main decompression device in the invention according to any one of the first to sixth aspects, and the temperature detection means detects this. The opening degree of the auxiliary pressure reducing device is controlled so that the temperature becomes the minimum value.

請求項8の発明の空気調和装置は、請求項1乃至請求項7の何れかに記載の発明において圧縮機の中間圧部の冷媒の温度を検出する温度検出手段を備え、この温度検出手段が検出する温度が最高値となるように補助減圧装置の開度を制御することを特徴とする。   An air conditioner according to an eighth aspect of the present invention comprises the temperature detection means for detecting the temperature of the refrigerant in the intermediate pressure portion of the compressor according to any of the first to seventh aspects, wherein the temperature detection means The opening degree of the auxiliary pressure reducing device is controlled so that the detected temperature becomes the maximum value.

請求項1の発明の空気調和装置によれば、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び被調和室外に設けられた吸熱器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を主減圧装置から吸熱器に流した後、圧縮機の低圧部に吸い込ませるので、分流器で分流して内部熱交換器で加熱された冷媒を圧縮機の中間圧部に戻すことにより、冷媒回路を流れる冷媒の循環量を増やすことなく、カスケード熱交換器に流れる冷媒量を増加させることができる。   According to the air conditioning apparatus of the first aspect of the present invention, the fluid is circulated through the heat source and the heating heat exchanger, and the waste heat of the heat source is used for heating the conditioned room in the heating heat exchanger. Waste heat utilization circuit, a refrigerant circuit using carbon dioxide as a refrigerant, a supercritical pressure on the high pressure side, and a cascade for exchanging heat between the fluid flowing in the waste heat utilization circuit from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit The refrigerant circuit is constructed of a heat exchanger, a compressor circuit, a cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, and a heat absorber provided outside the conditioned chamber, and is compressed. The refrigerant discharged from the machine flows to the cascade heat exchanger, the refrigerant that exits the cascade heat exchanger is divided by the flow divider, and one refrigerant flows from the auxiliary decompressor to the internal heat exchanger to cascade heat exchange. Heat exchange with the refrigerant after leaving the vessel Then, the refrigerant is sucked into the intermediate pressure part of the compressor, and the other divided refrigerant flows from the main decompressor to the heat absorber and then sucked into the low pressure part of the compressor. By returning the refrigerant heated in step 1 to the intermediate pressure portion of the compressor, the amount of refrigerant flowing through the cascade heat exchanger can be increased without increasing the amount of refrigerant circulating through the refrigerant circuit.

これにより、カスケード熱交換器において流体と熱交換する冷媒量が増加し、当該カスケード熱交換器における熱交換能力の向上を図ることができる。また、請求項4の如く内部熱交換器にて補助減圧装置を経た一方の冷媒と、カスケード熱交換器から出て且つ分流器にて分流される前の冷媒とを熱交換させることで、吸熱器に入る冷媒の比エンタルピーを小さくすることができるので、当該吸熱器における吸熱能力も向上して、暖房能力をより一層向上させることができる。   As a result, the amount of refrigerant that exchanges heat with the fluid in the cascade heat exchanger increases, and the heat exchange capability of the cascade heat exchanger can be improved. Further, the heat absorption between the one refrigerant having passed through the auxiliary pressure reducing device in the internal heat exchanger and the refrigerant having exited from the cascade heat exchanger and before being diverted by the flow divider is achieved by heat exchange. Since the specific enthalpy of the refrigerant entering the heater can be reduced, the heat absorption capability of the heat absorber can also be improved, and the heating capability can be further improved.

更に、分流器にて分流した一方の冷媒を圧縮機の中間圧部に戻すことにより、圧縮機の低圧部で圧縮される冷媒量を減少させることができるようになるので、圧縮機の圧縮動力を低下することができ、圧縮機の運転効率を改善することができる。   Furthermore, by returning one refrigerant that has been diverted by the flow divider to the intermediate pressure portion of the compressor, the amount of refrigerant compressed in the low pressure portion of the compressor can be reduced, so the compression power of the compressor The operating efficiency of the compressor can be improved.

これらにより、二酸化炭素冷媒を用いた空気調和装置の効率及び性能を改善することができるようになる。   As a result, the efficiency and performance of the air conditioner using carbon dioxide refrigerant can be improved.

請求項2の発明の空気調和装置によれば、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び被調和室を冷房するための冷房用熱交換器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を主減圧装置から冷房用熱交換器に流した後、圧縮機の低圧部に吸い込ませるので、分流器で分流して内部熱交換器で加熱された冷媒を圧縮機の中間圧部に戻すことにより、冷媒回路を流れる冷媒の循環量を増やすことなく、圧縮機から吐出される冷媒量を増加させることができる。   According to the air conditioning apparatus of the second aspect of the present invention, the fluid is circulated through the heat source and the heating heat exchanger, and the waste heat of the heat source is used for heating the conditioned room in the heating heat exchanger. Waste heat utilization circuit, a refrigerant circuit using carbon dioxide as a refrigerant, a supercritical pressure on the high pressure side, and a cascade for exchanging heat between the fluid flowing in the waste heat utilization circuit from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit The refrigerant circuit is composed of a compressor, a cascade heat exchanger, a shunt, an auxiliary decompressor, an internal heat exchanger, a main decompressor, and a cooling heat exchanger for cooling the conditioned room The refrigerant discharged from the compressor is allowed to flow to the cascade heat exchanger, the refrigerant exiting the cascade heat exchanger is diverted by the flow divider, and one refrigerant is allowed to flow from the auxiliary pressure reducing device to the internal heat exchanger. Refrigerant after exiting the cascade heat exchanger After heat exchange, the refrigerant is sucked into the intermediate pressure part, and the other refrigerant that has been diverted flows from the main decompressor to the cooling heat exchanger and then sucked into the low pressure part of the compressor. The amount of refrigerant discharged from the compressor can be increased without increasing the circulation amount of the refrigerant flowing through the refrigerant circuit by returning the refrigerant that has been flown and heated by the internal heat exchanger to the intermediate pressure portion of the compressor. .

従って、冷媒の放熱能力が向上するため、その分、冷房用熱交換器に入る冷媒の被エンタルピーが小さくなり、冷凍効果を向上させることが可能となる。更に、請求項4の如く内部熱交換器にて補助減圧装置を経た一方の冷媒と、カスケード熱交換器から出て且つ分流器にて分流される前の冷媒とを熱交換させることで、冷房用熱交換器に入る冷媒の比エンタルピーをより小さくすることができるようになり、冷凍効果を一層向上させることができるようになる。   Therefore, since the heat dissipation capability of the refrigerant is improved, the enthalpy of the refrigerant entering the cooling heat exchanger is reduced correspondingly, and the refrigeration effect can be improved. Furthermore, heat exchange is performed between the one refrigerant that has passed through the auxiliary pressure reduction device in the internal heat exchanger and the refrigerant that has left the cascade heat exchanger and has not been divided by the flow divider, Thus, the specific enthalpy of the refrigerant entering the heat exchanger can be further reduced, and the refrigeration effect can be further improved.

また、分流器にて分流した一方の冷媒を圧縮機の中間圧部に戻すことにより、圧縮機の低圧部で圧縮される冷媒量を減少させることができるようになるので、圧縮機の圧縮動力を低下することができ、圧縮機の運転効率を改善することができる。   In addition, by returning one of the refrigerants divided by the flow divider to the intermediate pressure part of the compressor, the amount of refrigerant compressed in the low pressure part of the compressor can be reduced, so the compression power of the compressor The operating efficiency of the compressor can be improved.

これらにより、二酸化炭素冷媒を用いた空気調和装置の効率及び性能を改善することができるようになる。   As a result, the efficiency and performance of the air conditioner using carbon dioxide refrigerant can be improved.

請求項3の発明の空気調和装置によれば、熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、廃熱利用回路を熱源から暖房用熱交換器に流れる流体と冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、冷媒回路は、圧縮機、カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置、被調和室外に設けられた吸熱器及び被調和室を冷房するための冷房用熱交換器とを備え、圧縮機から吐出された冷媒をカスケード熱交換器に流し、当該カスケード熱交換器を出た冷媒を前記分流器にて分流し、一方の冷媒を補助減圧装置から内部熱交換器に流してカスケード熱交換器から出た後の冷媒と熱交換させた後、圧縮機の中間圧部に吸い込ませると共に、暖房時には分流した他方の冷媒を主減圧装置から吸熱器に流した後、圧縮機の低圧部に吸い込ませ、冷房時には分流した他方の冷媒を主減圧装置から冷房用熱交換器に流した後、圧縮機の低圧部に吸い込ませるので、分流器で分流して内部熱交換器で加熱された冷媒を圧縮機の中間圧部に戻すことにより、冷媒回路を流れる冷媒の循環量を増やすことなく、カスケード熱交換器に流れる冷媒量を増加させることができる。   According to the air conditioner of the invention of claim 3, fluid is circulated between the heat source and the heating heat exchanger, and the waste heat of the heat source is used for heating the conditioned room in the heating heat exchanger. Waste heat utilization circuit, a refrigerant circuit using carbon dioxide as a refrigerant, a supercritical pressure on the high pressure side, and a cascade for exchanging heat between the fluid flowing in the waste heat utilization circuit from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit The refrigerant circuit is composed of a compressor, a cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, a heat absorber provided outside the room to be conditioned, and a room to be conditioned. A cooling heat exchanger for cooling, the refrigerant discharged from the compressor is allowed to flow to the cascade heat exchanger, the refrigerant exiting the cascade heat exchanger is diverted by the flow divider, and one refrigerant is Flow from auxiliary decompressor to internal heat exchanger After exchanging heat with the refrigerant after exiting from the heat exchanger, the refrigerant is sucked into the intermediate pressure part of the compressor, and the other refrigerant that has been diverted during heating is flowed from the main decompressor to the heat absorber. The other refrigerant that has been sucked into the low-pressure part and diverted during cooling flows from the main decompressor to the cooling heat exchanger and then sucked into the low-pressure part of the compressor, so it is divided by the flow divider and heated by the internal heat exchanger. By returning the obtained refrigerant to the intermediate pressure portion of the compressor, the amount of refrigerant flowing through the cascade heat exchanger can be increased without increasing the circulation amount of the refrigerant flowing through the refrigerant circuit.

これにより、カスケード熱交換器において流体と熱交換する冷媒量が増加し、当該カスケード熱交換器における熱交換能力の向上を図ることができる。また、分流器にて分流した一方の冷媒を圧縮機の中間圧部に戻すことにより、圧縮機の低圧部で圧縮される冷媒量を減少させることができるようになるので、圧縮機の圧縮動力を低下することができ、圧縮機の運転効率を改善することができる。   As a result, the amount of refrigerant that exchanges heat with the fluid in the cascade heat exchanger increases, and the heat exchange capability of the cascade heat exchanger can be improved. In addition, by returning one of the refrigerants divided by the flow divider to the intermediate pressure part of the compressor, the amount of refrigerant compressed in the low pressure part of the compressor can be reduced, so the compression power of the compressor The operating efficiency of the compressor can be improved.

更に、請求項4の如く内部熱交換器にて補助減圧装置を経た一方の冷媒と、カスケード熱交換器から出て且つ分流器にて分流される前の冷媒とを熱交換させることで、暖房運転時には吸熱器に入る冷媒の比エンタルピーを小さくすることができるので、当該吸熱器における吸熱能力も向上して、暖房能力をより一層向上させることができる。   Furthermore, heat exchange is performed by exchanging heat between one refrigerant that has passed through the auxiliary pressure reduction device in the internal heat exchanger and the refrigerant that has left the cascade heat exchanger and has not been divided by the flow divider. Since the specific enthalpy of the refrigerant entering the heat absorber during operation can be reduced, the heat absorption capability of the heat absorber can also be improved, and the heating capability can be further improved.

一方、冷房運転時には、冷房用熱交換器に入る冷媒の比エンタルピーをより小さくすることができるようになり、冷凍効果を一層向上させることができるようになる。   On the other hand, during the cooling operation, the specific enthalpy of the refrigerant entering the cooling heat exchanger can be further reduced, and the refrigeration effect can be further improved.

以上詳述したように、本発明により二酸化炭素冷媒を用いた空気調和装置の効率及び性能を改善することができるようになる。   As described in detail above, according to the present invention, the efficiency and performance of an air conditioner using a carbon dioxide refrigerant can be improved.

請求項5の発明では、上記各発明において分流器の上部及び下部から一方の冷媒を分流させることで、当該分流器において圧縮機から冷媒回路に吐出されたオイルを一方の冷媒と共に、確実に圧縮機の中間圧部に戻すことができるようになる。   In the invention of claim 5, in each of the above inventions, by dividing one refrigerant from the upper and lower parts of the flow divider, the oil discharged from the compressor to the refrigerant circuit in the flow divider is compressed together with the one refrigerant. It becomes possible to return to the intermediate pressure part of the machine.

また、上記各発明において請求項6の如く圧縮機は低段側圧縮手段と高段側圧縮手段とを備え、吸熱器又は冷房用熱交換器を出た冷媒を低段側圧縮手段に吸い込ませ、この低段側圧縮手段にて圧縮された中間圧の冷媒を、内部熱交換器を出た一方の冷媒と共に高段側圧縮手段に吸い込ませると共に、低段側圧縮手段の排除容積に対する高段側圧縮手段の排除容積の比を、70%以上85%以下とすれば、最良の効率に維持することが可能となる。   In each of the above inventions, the compressor includes a low-stage compression means and a high-stage compression means, and the refrigerant discharged from the heat absorber or the heat exchanger for cooling is sucked into the low-stage compression means. The intermediate-pressure refrigerant compressed by the low-stage compression means is sucked into the high-stage compression means together with one refrigerant that has exited the internal heat exchanger, and the high-stage refrigerant with respect to the excluded volume of the low-stage compression means If the ratio of the excluded volume of the side compression means is 70% or more and 85% or less, it is possible to maintain the best efficiency.

更に、請求項7の如き主減圧装置に入る冷媒の温度を検出する温度検出手段を備え、この温度検出手段が検出する温度を最低値とするように補助減圧装置の開度を制御すれば、空気調和装置の効率をより一層向上させることができる。   Furthermore, if the temperature detection means for detecting the temperature of the refrigerant entering the main pressure reduction device as in claim 7 is provided, and the opening of the auxiliary pressure reduction device is controlled so that the temperature detected by this temperature detection means is the minimum value, The efficiency of the air conditioner can be further improved.

更にまた、請求項8の如き圧縮機の中間圧部の冷媒の温度を検出する温度検出手段を備え、この温度検出手段が検出する温度が最高値となるように補助減圧装置の開度を制御すれば、空気調和装置の効率をより一層向上させることができる。   Furthermore, the temperature detecting means for detecting the temperature of the refrigerant in the intermediate pressure portion of the compressor as in claim 8 is provided, and the opening of the auxiliary pressure reducing device is controlled so that the temperature detected by the temperature detecting means becomes the maximum value. Then, the efficiency of the air conditioner can be further improved.

以下、図面に基づき本発明の空気調和装置の実施形態を詳述する。   Hereinafter, embodiments of the air-conditioning apparatus of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の空気調和装置の模式図を示している。本実施例の空気調和装置は、カーエアコンとして使用されるものであり、廃熱利用回路1と、冷媒回路10と、廃熱利用回路1を流れる流体と冷媒回路10を流れる冷媒とを熱交換させるためのカスケード熱交換器12とから構築されている。上記廃熱利用回路1は、HEV或いはFCVなどのエンジンから成る熱源2の廃熱を被調和室としての車室内の暖房に利用するためのものであり、熱源2と暖房用熱交換器4とを環状に配管接続することにより構成されており、循環ポンプ5により配管内を流れる流体を循環するように構成されている。   FIG. 1 is a schematic view of an air conditioner according to an embodiment of the present invention. The air conditioner of this embodiment is used as a car air conditioner, and exchanges heat between the waste heat utilization circuit 1, the refrigerant circuit 10, the fluid flowing through the waste heat utilization circuit 1, and the refrigerant flowing through the refrigerant circuit 10. And a cascade heat exchanger 12 for the purpose. The waste heat utilization circuit 1 is for utilizing the waste heat of the heat source 2 composed of an engine such as HEV or FCV for heating the vehicle interior as a conditioned room. The heat source 2 and the heating heat exchanger 4 Are connected to each other in an annular shape, and the circulation pump 5 is configured to circulate the fluid flowing in the piping.

即ち、熱源2の出口に接続された配管2Aは前記カスケード熱交換器12の通路12Bの入口に接続され、通路12Bの出口に接続された配管3は暖房用熱交換器4の入口に接続される。暖房用熱交換器4を出た配管4Aは循環ポンプ5の入口に接続され、循環ポンプ5の出口には配管5Aの一端が接続されて、配管5Aの他端は三方弁8の入口に至る。この三方弁8は、循環ポンプ5にて循環される流体を熱源2に流すか、否かを制御するための流路制御手段であり、図示しない制御手段にて制御されている。   That is, the pipe 2A connected to the outlet of the heat source 2 is connected to the inlet of the passage 12B of the cascade heat exchanger 12, and the pipe 3 connected to the outlet of the passage 12B is connected to the inlet of the heating heat exchanger 4. The The pipe 4A exiting the heating heat exchanger 4 is connected to the inlet of the circulation pump 5, the one end of the pipe 5A is connected to the outlet of the circulation pump 5, and the other end of the pipe 5A reaches the inlet of the three-way valve 8. . The three-way valve 8 is a flow path control means for controlling whether or not the fluid circulated by the circulation pump 5 flows to the heat source 2 and is controlled by a control means (not shown).

そして、当該三方弁8の一方の出口は配管5Bを介して、熱源2の入口に接続され、他方の出口はバイパス配管7Aの一端に接続される。当該バイパス配管7Aは、循環ポンプ5にて循環される流体を熱源2を迂回してカスケード熱交換器12及び暖房用熱交換器4に順次流すための配管であり、当該バイパス配管7Aの他端は配管2Aの前記カスケード熱交換器12の上流側に位置する配管2Aの途中部に接続される。   One outlet of the three-way valve 8 is connected to the inlet of the heat source 2 via the pipe 5B, and the other outlet is connected to one end of the bypass pipe 7A. The bypass pipe 7A is a pipe for sequentially flowing the fluid circulated by the circulation pump 5 to the cascade heat exchanger 12 and the heating heat exchanger 4 while bypassing the heat source 2, and the other end of the bypass pipe 7A. Is connected to the middle part of the pipe 2A located upstream of the cascade heat exchanger 12 of the pipe 2A.

そして、前記制御手段により熱源2始動直後などの熱源2の温度が低い場合には、配管5Aからの流体がバイパス配管7Aに流れるように三方弁8が制御される。また、熱源2の温度が上昇し、例えば、熱源2が予め設定された所定の温度に上昇すると、制御手段により配管5Aからの流体が配管5Bに流れるように三方弁8が制御される。   When the temperature of the heat source 2 is low, such as immediately after the heat source 2 is started, the three-way valve 8 is controlled so that the fluid from the pipe 5A flows to the bypass pipe 7A. Further, when the temperature of the heat source 2 rises, for example, when the heat source 2 rises to a predetermined temperature set in advance, the three-way valve 8 is controlled by the control means so that the fluid from the pipe 5A flows into the pipe 5B.

尚、本実施例では空気調和装置をカーエアコンとして使用し、熱源をHEV或いはFCV等のエンジンとしたが、本発明の空気調和装置はカーエアコンに適用する以外にも、コージェネシステムなどとして使用することも可能であり、この場合の熱源としてはFC等が挙げられる。   In this embodiment, the air conditioner is used as a car air conditioner and the heat source is an engine such as HEV or FCV. However, the air conditioner of the present invention is used as a cogeneration system or the like in addition to being applied to a car air conditioner. In this case, the heat source includes FC.

一方、前記冷媒回路10は冷媒として二酸化炭素が使用され、高圧側が超臨界圧力となる冷媒回路であり、圧縮機11、カスケード熱交換器12、分流器としての暖房用分流器13及び冷房用分流器14、補助減圧装置としての暖房用補助膨張弁15及び冷房用補助膨張弁16、内部熱交換器としての暖房用補助熱交換器17及び冷房用補助熱交換器18、主減圧装置としての暖房用膨張弁20及び冷房用膨張弁21、車室外に設けられた吸熱器としての室外熱交換器23と、車室内を冷房するための冷房用熱交換器24等とから構成されている。   On the other hand, the refrigerant circuit 10 is a refrigerant circuit in which carbon dioxide is used as a refrigerant and the high pressure side becomes a supercritical pressure. The compressor 11, the cascade heat exchanger 12, the heating diverter 13 as a diverter, and the cooling diversion , Heating auxiliary expansion valve 15 and cooling auxiliary expansion valve 16 as auxiliary pressure reducing devices, heating auxiliary heat exchanger 17 and cooling auxiliary heat exchanger 18 as internal heat exchangers, heating as main pressure reducing device An expansion valve 20 for cooling, an expansion valve 21 for cooling, an outdoor heat exchanger 23 as a heat absorber provided outside the vehicle interior, a heat exchanger 24 for cooling for cooling the vehicle interior, and the like.

圧縮機11は、密閉容器30内に図示しない駆動要素と、この駆動要素の駆動軸にて駆動される低段側圧縮手段としての第1の圧縮要素32と、高段側圧縮手段としての第2圧縮要素34を収納して成る多段(2段)圧縮式のコンプレッサである。そして、室外熱交換器23或いは冷房用熱交換器24から出た冷媒を第1の圧縮要素32に吸い込ませて圧縮し、当該第1の圧縮要素32にて圧縮された中間圧の冷媒を密閉容器30内に吐出させた後、後述する暖房用補助回路70の暖房用補助熱交換器17或いは冷房用補助回路75の冷房用補助熱交換器18から出た一方の冷媒と合流させ、第2の圧縮要素34に吸い込ませて圧縮されるように構成されている。本実施例では、第1の圧縮要素32に対する第2の圧縮要素34の排除容積比が70%以上85%以下の圧縮機11を使用するものとする。   The compressor 11 includes a drive element (not shown) in the hermetic container 30, a first compression element 32 as a low-stage compression means driven by a drive shaft of the drive element, and a first compression element as a high-stage compression means. This is a multi-stage (two-stage) compression compressor that houses the two compression elements 34. Then, the refrigerant discharged from the outdoor heat exchanger 23 or the cooling heat exchanger 24 is sucked into the first compression element 32 and compressed, and the intermediate pressure refrigerant compressed by the first compression element 32 is sealed. After being discharged into the container 30, it is combined with one of the refrigerants coming out of the heating auxiliary heat exchanger 17 of the heating auxiliary circuit 70, which will be described later, or the cooling auxiliary heat exchanger 18 of the cooling auxiliary circuit 75. The compression element 34 is sucked and compressed. In this embodiment, it is assumed that the compressor 11 in which the excluded volume ratio of the second compression element 34 to the first compression element 32 is 70% or more and 85% or less is used.

第1の圧縮要素32の吸込側には、冷媒導入管40の一端が接続されており、ここから低段側圧縮手段となる第1の圧縮要素32内に低温低圧の冷媒ガスが導入される。当該冷媒導入管40の他端は2つに分岐して、一方の配管40Aは冷房用熱交換器24の出口に接続され、他方の配管40Bは電磁弁27を介して冷房用分流器14の他方の出口に接続された冷媒配管58の途中部に接続される。   One end of a refrigerant introduction pipe 40 is connected to the suction side of the first compression element 32, and a low-temperature and low-pressure refrigerant gas is introduced into the first compression element 32 serving as a low-stage compression means from here. . The other end of the refrigerant introduction pipe 40 branches into two, one pipe 40A is connected to the outlet of the cooling heat exchanger 24, and the other pipe 40B is connected to the cooling shunt 14 via the electromagnetic valve 27. It is connected to the middle part of the refrigerant pipe 58 connected to the other outlet.

また、第2の圧縮要素34の吐出側には、冷媒吐出管42の一端が接続されており、当該冷媒吐出管42から高段側となる第2の圧縮要素34にて圧縮された高温高圧の冷媒ガスが圧縮機11の外部に吐出される。冷媒吐出管42はカスケード熱交換器12の通路12Aに接続される。カスケード熱交換器12は圧縮機11から出た冷媒回路10を流れる高温高圧の冷媒ガスと、廃熱利用回路1を流れる流体とを熱交換するためのものであり、前記通路12Aと通路12Bとが熱交換可能に配設されている。そして、カスケード熱交換器12の通路12Aを圧縮機11から出た高温高圧の冷媒ガスが流れ、通路12Bを廃熱利用回路1の流体が流れる。また、カスケード熱交換器12の一端には通路12Aの入口と通路12Bの出口がそれぞれ形成され、他端には通路12Aの出口と通路12Bの出口がそれぞれ形成されている。従って、カスケード熱交換器12において、配管12Aを流れる冷媒回路10の冷媒と配管12Bを流れる廃熱利用回路1の流体が対向流となる。   In addition, one end of a refrigerant discharge pipe 42 is connected to the discharge side of the second compression element 34, and high temperature and high pressure compressed by the second compression element 34 on the higher stage side from the refrigerant discharge pipe 42. The refrigerant gas is discharged to the outside of the compressor 11. The refrigerant discharge pipe 42 is connected to the passage 12 </ b> A of the cascade heat exchanger 12. The cascade heat exchanger 12 is for exchanging heat between the high-temperature and high-pressure refrigerant gas flowing from the compressor 11 and flowing in the refrigerant circuit 10 and the fluid flowing in the waste heat utilization circuit 1, and the passage 12A and the passage 12B Are arranged so that heat exchange is possible. Then, the high-temperature and high-pressure refrigerant gas exiting from the compressor 11 flows through the passage 12A of the cascade heat exchanger 12, and the fluid of the waste heat utilization circuit 1 flows through the passage 12B. Further, an inlet of the passage 12A and an outlet of the passage 12B are formed at one end of the cascade heat exchanger 12, and an outlet of the passage 12A and an outlet of the passage 12B are formed at the other end, respectively. Therefore, in the cascade heat exchanger 12, the refrigerant in the refrigerant circuit 10 that flows through the pipe 12A and the fluid in the waste heat utilization circuit 1 that flows through the pipe 12B become counterflows.

一方、カスケード熱交換器12の通路12Aを出た冷媒配管43は暖房用補助熱交換器17の通路17Aの入口に接続される。当該暖房用補助熱交換器17は後述する暖房運転時にカスケード熱交換器12から出た後の冷媒と、暖房用分流器13にて分流され、暖房用補助回路70に設けられた暖房用補助膨張弁15にて減圧された冷媒(暖房用分流器13にて分流された一方の冷媒)とを熱交換するためのものであり、当該通路17Aと通路17Bとが熱交換可能に配置されている。そして、暖房運転時に暖房用補助熱交換器17の通路17Aをカスケード熱交換器12から出た後の冷媒が流れ、通路17Bを暖房用分流器13にて分流され、暖房用補助回路70に流入し、暖房用補助膨張弁15にて減圧された冷媒が流れる。また、当該暖房用熱交換器17において、前記通路17Aを流れる冷媒と通路17Bを流れる冷媒の流れが対向流となるように、暖房用補助熱交換器17の一端に通路17Aの入口と通路17Bの出口が形成され、他端に通路17Aの出口と通路17Bの出口が形成されている。   On the other hand, the refrigerant pipe 43 exiting the passage 12A of the cascade heat exchanger 12 is connected to the inlet of the passage 17A of the auxiliary heating heat exchanger 17. The heating auxiliary heat exchanger 17 is divided by the refrigerant after coming out of the cascade heat exchanger 12 during heating operation, which will be described later, and the heating diverter 13, and is provided in the heating auxiliary circuit 70. This is for exchanging heat with the refrigerant depressurized by the valve 15 (one refrigerant diverted by the heating diverter 13), and the passage 17A and the passage 17B are arranged to be able to exchange heat. . Then, the refrigerant after exiting the cascade heat exchanger 12 flows through the passage 17A of the auxiliary heating heat exchanger 17 during the heating operation, flows through the passage 17B in the heating diverter 13, and flows into the auxiliary heating circuit 70. Then, the refrigerant depressurized by the heating auxiliary expansion valve 15 flows. In the heating heat exchanger 17, the inlet of the passage 17A and the passage 17B are connected to one end of the heating auxiliary heat exchanger 17 so that the refrigerant flowing in the passage 17A and the refrigerant flowing in the passage 17B are opposed to each other. The outlet of the passage 17A and the outlet of the passage 17B are formed at the other end.

上記暖房用補助熱交換器17の通路17Aの出口に接続された冷媒配管45は暖房用分流器13の入口に接続される。当該暖房用分流器13は、暖房運転時に暖房用補助熱交換器17から出た冷媒を第1の冷媒流(一方の冷媒)と第2の冷媒流(他方の冷媒)の2つの冷媒流に分流するための冷媒分岐手段であり、当該暖房用分流器13の一方の出口には第1の冷媒流(一方の冷媒)のための暖房用補助回路70の冷媒配管47が接続されている。また、暖房用分流器13の他方の出口には第2の冷媒流(他方の冷媒)のための冷媒配管48が接続されている。   The refrigerant pipe 45 connected to the outlet of the passage 17 </ b> A of the heating auxiliary heat exchanger 17 is connected to the inlet of the heating diverter 13. The heating diverter 13 converts the refrigerant from the heating auxiliary heat exchanger 17 during the heating operation into two refrigerant flows, a first refrigerant flow (one refrigerant) and a second refrigerant flow (the other refrigerant). Refrigerant branching means for diverting the refrigerant, and a refrigerant pipe 47 of the heating auxiliary circuit 70 for the first refrigerant flow (one refrigerant) is connected to one outlet of the heating diverter 13. A refrigerant pipe 48 for the second refrigerant flow (the other refrigerant) is connected to the other outlet of the heating flow divider 13.

前記暖房用補助回路70は、前記暖房用分流器13にて分流された一方の冷媒を減圧して膨張した後に圧縮機11の中間圧部としての密閉容器30内に吸い込ませるための回路であり、当該暖房用補助回路70には、暖房用分流器13にて分流された一方の冷媒を減圧するための暖房用補助膨張弁15が設けられている。即ち、暖房用分流器13の一方の出口に接続された冷媒配管47は、暖房用補助膨張弁15の入口に接続される。そして、当該暖房用補助膨張弁15の出口は、暖房用補助熱交換器17の通路17Bの入口に接続される。これにより、暖房用補助膨張弁15にて減圧された冷媒を暖房用補助熱交換器17に流して、前記カスケード熱交換器12から出た高圧側の冷媒と熱交換させることで、配管17Bを流れる冷媒を膨張させることができる。また、通路17Bの出口には冷媒導入管41が接続され、ここから圧縮機11の中間圧部である密閉容器30内に暖房用分流器13にて分流された一方の冷媒が吸い込まれる。   The heating auxiliary circuit 70 is a circuit for decompressing and expanding one refrigerant divided by the heating diverter 13 and then sucking it into the sealed container 30 as an intermediate pressure portion of the compressor 11. The heating auxiliary circuit 70 is provided with a heating auxiliary expansion valve 15 for decompressing one of the refrigerants diverted by the heating flow divider 13. That is, the refrigerant pipe 47 connected to one outlet of the heating diverter 13 is connected to the inlet of the heating auxiliary expansion valve 15. The outlet of the auxiliary heating expansion valve 15 is connected to the inlet of the passage 17B of the auxiliary heating heat exchanger 17. As a result, the refrigerant decompressed by the auxiliary heating expansion valve 15 is caused to flow through the auxiliary heating heat exchanger 17 for heat exchange with the refrigerant on the high-pressure side coming out of the cascade heat exchanger 12, so that the pipe 17B is The flowing refrigerant can be expanded. In addition, a refrigerant introduction pipe 41 is connected to the outlet of the passage 17B, and one refrigerant divided by the heating diverter 13 is sucked into the sealed container 30 which is an intermediate pressure portion of the compressor 11 from here.

ここで、本実施例で使用する前記暖房用分流器13について図2を用いて説明する。図2において、13Aは暖房用分流器13の本体であり、本体13Aには一側(図2の右側)に入口が形成され、当該入口には暖房用補助熱交換器17を出た冷媒配管45が接続されている。本体13Aの他側(図2の左側)、即ち、冷媒配管45が接続された前記入口の対角線上には他方の出口が形成され、当該出口には暖房用膨張弁20に至る冷媒配管48が接続されている。また、本体13Aの上部及び下部には一方の出口がそれぞれ形成され、上部に形成された一方の出口には冷媒配管47Aの一端が、下部に形成された一方の出口には冷媒配管47Bの一端がそれぞれ接続されている。そして、上部に接続された冷媒配管47Aの他端は下部に接続された冷媒配管47Bの途中部に接続され、当該冷媒配管47Bの他端は暖房用補助膨張弁15の入口に接続されている。これにより、暖房用分流器13の上部及び下部から一方の冷媒を分流させて、暖房用補助回路70に流すことができる。   Here, the heating diverter 13 used in the present embodiment will be described with reference to FIG. In FIG. 2, 13A is a main body of the heating diverter 13. The main body 13A has an inlet formed on one side (the right side in FIG. 2), and the inlet is a refrigerant pipe from which the auxiliary heating heat exchanger 17 is discharged. 45 is connected. The other outlet is formed on the other side of the main body 13A (left side in FIG. 2), that is, on the diagonal line of the inlet to which the refrigerant pipe 45 is connected, and the refrigerant pipe 48 reaching the heating expansion valve 20 is formed at the outlet. It is connected. Further, one outlet is formed in the upper and lower parts of the main body 13A, one end of the refrigerant pipe 47A is formed in one outlet formed in the upper part, and one end of the refrigerant pipe 47B is formed in one outlet formed in the lower part. Are connected to each other. The other end of the refrigerant pipe 47A connected to the upper part is connected to the middle part of the refrigerant pipe 47B connected to the lower part, and the other end of the refrigerant pipe 47B is connected to the inlet of the auxiliary heating expansion valve 15 for heating. . Thereby, one refrigerant can be divided from the upper part and the lower part of the heating diverter 13 and can be caused to flow to the heating auxiliary circuit 70.

尚、暖房用分流器13の構造は上記図2で説明した構造に限らず、カスケード熱交換器12から出た冷媒を2つの冷媒流に分流することができる構造であれば構わない。また、請求項5の発明では、分流器の上部及び下部から一方の冷媒を分流させることができるものであれば良く、例えば、図3に示す構造の分流器を用いても構わない。図3の分流器80では、図2で説明した分流器と同様に本体80Aの一側(図3の右側)に入口が形成され、当該入口には暖房用補助熱交換器17を出た冷媒配管45が接続されている。同様に本体80Aの他側(図3の左側)、即ち、冷媒配管45が接続された前記入口の対角線上には他方の出口が形成され、当該出口には暖房用膨張弁20に至る冷媒配管48が接続されている。また、本体80Aの下部には、一方の出口が形成され、当該一方の出口には暖房用補助膨張弁15に至る冷媒配管82が接続されている。この冷媒配管82は本体80A内に挿入され、一端は本体80A内上方にて開口して、ここから分流器80の本体80A内上部の冷媒を冷媒配管82内に流入させることができる。また、当該冷媒配管82の本体80A内下方には冷媒配管82内と本体80A内下部とを連通する連通口83が形成され、この連通口83から分流器80の本体80A内下部の冷媒を冷媒配管82内に流入させることができる。このように、図3の分流器80を用いるものとしても、分流器80の上部及び下部から一方の冷媒を分流させて、暖房用補助回路70に流すことができる。   The structure of the heating flow divider 13 is not limited to the structure described with reference to FIG. 2, and any structure that can divide the refrigerant from the cascade heat exchanger 12 into two refrigerant flows may be used. In addition, in the invention of claim 5, any one that can divert one refrigerant from the upper part and the lower part of the diverter may be used. For example, a diverter having a structure shown in FIG. 3 may be used. In the flow divider 80 shown in FIG. 3, an inlet is formed on one side (right side in FIG. 3) of the main body 80A in the same manner as the flow divider described in FIG. 2, and the refrigerant that has exited the heating auxiliary heat exchanger 17 is formed in the inlet. A pipe 45 is connected. Similarly, the other outlet is formed on the other side of the main body 80A (the left side in FIG. 3), that is, on the diagonal line of the inlet to which the refrigerant pipe 45 is connected, and the outlet reaches the heating expansion valve 20 at the outlet. 48 is connected. Further, one outlet is formed in the lower part of the main body 80A, and a refrigerant pipe 82 reaching the heating auxiliary expansion valve 15 is connected to the one outlet. The refrigerant pipe 82 is inserted into the main body 80A, and one end is opened above the main body 80A so that the refrigerant in the upper part of the main body 80A of the flow divider 80 can flow into the refrigerant pipe 82 from here. Further, a communication port 83 that connects the refrigerant pipe 82 and the lower part of the main body 80A is formed below the main body 80A of the refrigerant pipe 82, and the refrigerant in the lower part of the main body 80A of the flow divider 80 is supplied from the communication port 83 to It can flow into the pipe 82. As described above, even when the flow divider 80 of FIG. 3 is used, one of the refrigerants can be divided from the upper and lower portions of the flow divider 80 and can flow to the heating auxiliary circuit 70.

他方、暖房用分流器13の他方の出口に接続された冷媒配管48は暖房用膨張弁20に至る。当該暖房用膨張弁20は暖房運転時において暖房用分流器13にて分流された他方の冷媒を減圧するための主減圧装置であり、暖房用膨張弁20の出口側には室外熱交換器23が設けられている。室外熱交換器23は暖房運転時において、吸熱器として作用するものである。即ち、暖房運転時において前記主減圧装置としての暖房用膨張弁20にて減圧された冷媒が当該室外熱交換器23において外気と熱交換することにより外気から熱を汲み上げる(吸熱する)こととなる。また、当該室外熱交換器23は後述する冷房運転時或いは除湿運転時には外気に放熱する放熱器として使用するものである。   On the other hand, the refrigerant pipe 48 connected to the other outlet of the heating diverter 13 reaches the heating expansion valve 20. The heating expansion valve 20 is a main pressure reducing device for reducing the pressure of the other refrigerant divided by the heating flow divider 13 during the heating operation. An outdoor heat exchanger 23 is provided at the outlet side of the heating expansion valve 20. Is provided. The outdoor heat exchanger 23 functions as a heat absorber during heating operation. That is, during the heating operation, the refrigerant decompressed by the heating expansion valve 20 as the main decompression device exchanges heat with the outside air in the outdoor heat exchanger 23, thereby pumping up heat (absorbing heat) from the outside air. . The outdoor heat exchanger 23 is used as a radiator that radiates heat to the outside air during cooling operation or dehumidifying operation described later.

室外熱交換器23を出た冷媒配管50は冷房用補助熱交換器18の通路18Aの入口に接続される。当該冷房用補助熱交換器18は後述する冷房運転時にカスケード熱交換器12から出た後の冷媒と、冷房用分流器14にて分流され、冷房用補助回路75に設けられた冷房用補助膨張弁16にて減圧された冷媒(冷房用分流器14にて分流された一方の冷媒)とを熱交換するためのものであり、当該通路18Aと通路18Bとが熱交換可能に配置されている。そして、冷房運転時に冷房用補助熱交換器18の通路18Aをカスケード熱交換器12から出た後の冷媒が流れ、通路18Bを冷房用分流器14にて分流され、冷房用補助回路75に流入し、冷房用補助膨張弁16にて減圧された冷媒が流れる。また、当該冷房用熱交換器18において、前記通路18Aを流れる冷媒と通路18Bを流れる冷媒の流れが対向流となるように、冷房用補助熱交換器18の一端に通路18Aの入口と通路18Bの出口が形成され、他端に通路18Aの出口と通路18Bの出口が形成されている。   The refrigerant pipe 50 exiting the outdoor heat exchanger 23 is connected to the inlet of the passage 18A of the cooling auxiliary heat exchanger 18. The cooling auxiliary heat exchanger 18 is divided into the refrigerant after it is discharged from the cascade heat exchanger 12 during cooling operation, which will be described later, and the cooling diverter 14, and is provided with a cooling auxiliary circuit 75. This is for exchanging heat with the refrigerant depressurized by the valve 16 (one refrigerant diverted by the cooling flow divider 14), and the passage 18A and the passage 18B are arranged to be able to exchange heat. . Then, the refrigerant after exiting the cascade heat exchanger 12 flows through the passage 18A of the cooling auxiliary heat exchanger 18 during cooling operation, flows through the passage 18B by the cooling flow divider 14, and flows into the cooling auxiliary circuit 75. Then, the refrigerant depressurized by the cooling auxiliary expansion valve 16 flows. In the cooling heat exchanger 18, the inlet of the passage 18A and the passage 18B are provided at one end of the cooling auxiliary heat exchanger 18 so that the refrigerant flowing through the passage 18A and the refrigerant flowing through the passage 18B are opposed to each other. The outlet of the passage 18A and the outlet of the passage 18B are formed at the other end.

前記冷房用補助熱交換器18の通路18Aの出口に接続された冷媒配管52は冷房用分流器14の入口に接続される。当該冷房用分流器14は、冷房運転時に冷房用補助熱交換器18から出た冷媒を第1の冷媒流(一方の冷媒)と第2の冷媒流(他方の冷媒)の2つの冷媒流に分岐するための分流するための冷媒分岐手段であり、当該冷房用分流器14の一方の出口には第1の冷媒流(一方の冷媒)のための冷房用補助回路75の冷媒配管54が接続されている。また、冷房用分流器14の他方の出口には第2の冷媒流(他方の冷媒)のための冷媒配管58が接続されている。   The refrigerant pipe 52 connected to the outlet of the passage 18A of the cooling auxiliary heat exchanger 18 is connected to the inlet of the cooling flow divider 14. The cooling diverter 14 converts the refrigerant from the cooling auxiliary heat exchanger 18 during the cooling operation into two refrigerant flows, a first refrigerant flow (one refrigerant) and a second refrigerant flow (the other refrigerant). Refrigerant branching means for branching for branching, and a refrigerant pipe 54 of a cooling auxiliary circuit 75 for the first refrigerant flow (one refrigerant) is connected to one outlet of the cooling flow divider 14. Has been. A refrigerant pipe 58 for a second refrigerant flow (the other refrigerant) is connected to the other outlet of the cooling flow divider 14.

上記冷房用補助回路75は、前記冷房用分流器14にて分流された一方の冷媒を減圧して膨張した後に圧縮機11の中間圧部としての密閉容器30内に吸い込ませるための回路であり、当該冷房用補助回路75には、冷房用分流器14にて分流された一方の冷媒を減圧するための冷房用補助膨張弁16が設けられている。即ち、冷房用分流器14の一方の出口に接続された冷媒配管54は、冷房用補助膨張弁16の入口に接続される。そして、当該冷房用補助膨張弁16の出口は、冷房用補助熱交換器18の通路18Bの入口に接続される。これにより、冷房運転時に冷房用補助膨張弁16にて減圧された冷媒を冷房用補助熱交換器18に流して、前記カスケード熱交換器12から出た高圧側の冷媒と熱交換させることで、通路18Bを流れる冷媒を膨張させることができる。また、通路18Bの出口には冷媒配管57の一端が接続され、当該冷媒配管57の他端は前述した冷媒導入管41の途中部に接続され、当該冷媒導入管41から圧縮機11の中間圧部である密閉容器30内に冷房用分流器14にて分流された一方の冷媒が吸い込まれる。   The cooling auxiliary circuit 75 is a circuit for decompressing and expanding one refrigerant divided by the cooling diverter 14 and then sucking it into the sealed container 30 as an intermediate pressure portion of the compressor 11. The cooling auxiliary circuit 75 is provided with a cooling auxiliary expansion valve 16 for reducing the pressure of one refrigerant divided by the cooling flow divider 14. That is, the refrigerant pipe 54 connected to one outlet of the cooling flow divider 14 is connected to the inlet of the cooling auxiliary expansion valve 16. The outlet of the cooling auxiliary expansion valve 16 is connected to the inlet of the passage 18B of the cooling auxiliary heat exchanger 18. Thereby, the refrigerant decompressed by the cooling auxiliary expansion valve 16 during the cooling operation is caused to flow to the cooling auxiliary heat exchanger 18 to exchange heat with the high-pressure side refrigerant discharged from the cascade heat exchanger 12, The refrigerant flowing through the passage 18B can be expanded. Further, one end of the refrigerant pipe 57 is connected to the outlet of the passage 18B, and the other end of the refrigerant pipe 57 is connected to the middle part of the refrigerant introduction pipe 41 described above, and the intermediate pressure of the compressor 11 is communicated from the refrigerant introduction pipe 41. One refrigerant that has been diverted by the cooling diverter 14 is sucked into the airtight container 30 that is a part.

前記冷房用分流器14には、図2で説明した前述の暖房用分流器13と同様の構成の冷媒分流手段が使用されているが、これに限らず、カスケード熱交換器12から出た冷媒を2つの冷媒流に分流することができる構造であれば構わない。また、請求項5の発明では、上部及び下部から一方の分流を分流させることができる構成を有した分流器であれば良く、前記図3に示す構造の分流器や他の分流器であっても適用可能である。   The cooling diverter 14 uses the refrigerant diverting means having the same configuration as that of the heating diverter 13 described with reference to FIG. 2, but is not limited thereto, and the refrigerant discharged from the cascade heat exchanger 12 is used. Any structure can be used as long as it can be divided into two refrigerant streams. Further, in the invention of claim 5, any shunt having a configuration capable of shunting one shunt from the upper part and the lower part may be used, and the shunt having the structure shown in FIG. Is also applicable.

前記圧縮機11の密閉容器30内には当該密閉容器30内の冷媒温度を検出するための冷媒温度センサ30Sが設置されている。また、冷媒配管48及び冷媒配管58にもそれぞれ冷媒温度センサ48S、58Sが設置されている。冷媒温度センサ48Sは、暖房用膨張弁20(暖房運転時における主減圧装置)に入る冷媒温度を検出する冷媒温度検出手段であり、冷媒温度センサ58Sは、冷房用膨張弁21(冷房運転時における主減圧装置)に入る冷媒温度を検出する冷媒温度検出手段である。更に、冷媒配管47には、暖房用補助熱交換器17に入る一方の冷媒の温度を検出するための冷媒温度検出手段としての冷媒温度センサ47Sが設けられ、且つ、冷媒導入管41には、暖房用補助熱交換器17から出た一方の冷媒を検出するための冷媒温度検出手段としての冷媒温度センサ41Sが設けれている。   A refrigerant temperature sensor 30 </ b> S for detecting the refrigerant temperature in the sealed container 30 is installed in the sealed container 30 of the compressor 11. Further, refrigerant temperature sensors 48S and 58S are also installed in the refrigerant pipe 48 and the refrigerant pipe 58, respectively. The refrigerant temperature sensor 48S is a refrigerant temperature detecting means for detecting the refrigerant temperature entering the heating expansion valve 20 (main pressure reducing device during heating operation), and the refrigerant temperature sensor 58S is the cooling expansion valve 21 (in the cooling operation). The refrigerant temperature detecting means detects the refrigerant temperature entering the main decompression device. Further, the refrigerant pipe 47 is provided with a refrigerant temperature sensor 47S as refrigerant temperature detecting means for detecting the temperature of one refrigerant entering the auxiliary heating heat exchanger 17, and the refrigerant introduction pipe 41 is provided with A refrigerant temperature sensor 41S is provided as refrigerant temperature detection means for detecting one refrigerant that has come out of the auxiliary heat exchanger 17 for heating.

上記各冷媒温度センサ30S、48S、58S、47S、41Sは本発明の空気調和装置の制御を司る図示しない制御手段に接続されている。   Each refrigerant temperature sensor 30S, 48S, 58S, 47S, 41S is connected to a control means (not shown) that controls the air conditioner of the present invention.

(1)暖房運転時
以上の構成で次に空気調和装置の動作を説明する。先ず、暖房運転時における動作について、空気調和装置始動時などの熱源2の温度が低い場合の暖房運転時における動作を図4を用いて説明する。図4において矢印は、冷媒回路10を流れる冷媒及び廃熱利用回路1を流れる流体の流れを示している。当該暖房運転時において、制御手段は図5に示すように、前記冷房用膨張弁21及び冷房用補助膨張弁16を全閉し、電磁弁27を全開にすると共に、暖房用補助膨張弁15及び暖房用膨張弁20を流れる冷媒を減圧可能に開度制御する。また、制御手段は循環ポンプ5からの流体が熱源2に流れず、バイパス配管7Aに流れるように三方弁8を制御して、循環ポンプ5及び暖房用熱交換器4のファン4Fを始動する。これにより、流体が三方弁8からバイパス回路7Aを介してカスケード熱交換器12の他端から通路12Bに流入し、当該カスケード熱交換器12の通路12Bを流れる過程で、通路12Aを流れる冷媒から熱を奪って加熱される。
(1) During heating operation Next, the operation of the air conditioner will be described with the above configuration. First, regarding the operation during the heating operation, the operation during the heating operation when the temperature of the heat source 2 is low, such as when the air conditioner is started, will be described with reference to FIG. In FIG. 4, arrows indicate the flow of the refrigerant flowing through the refrigerant circuit 10 and the fluid flowing through the waste heat utilization circuit 1. During the heating operation, as shown in FIG. 5, the control means fully closes the cooling expansion valve 21 and the cooling auxiliary expansion valve 16 and fully opens the electromagnetic valve 27, and the heating auxiliary expansion valve 15 and The degree of opening of the refrigerant flowing through the heating expansion valve 20 is controlled so that the pressure can be reduced. The control means controls the three-way valve 8 so that the fluid from the circulation pump 5 does not flow to the heat source 2 but flows to the bypass pipe 7A, and starts the fan 4F of the circulation pump 5 and the heat exchanger 4 for heating. Thereby, the fluid flows into the passage 12B from the other end of the cascade heat exchanger 12 through the bypass circuit 7A from the three-way valve 8, and from the refrigerant flowing through the passage 12A in the process of flowing through the passage 12B of the cascade heat exchanger 12. Deprived of heat and heated.

そして、カスケード熱交換器12の一端から出た流体は、暖房用熱交換器4内に入る。ここで、流体は周囲の空気と熱交換して冷却される。一方、流体と熱交換することで加熱された空気はファン4Fにより被調和室である車室内に送風される。これにより、車室内が暖房される。他方、暖房用熱交換器4にて空気と熱交換して冷却された空気は当該暖房用熱交換器4から出て配管4Aを介して循環ポンプ5に吸い込まれて、配管5Aに吐出され、三方弁8、バイパス回路7Aを経てカスケード熱交換器12の通路12Bを流れるサイクルを繰り返す。   Then, the fluid exiting from one end of the cascade heat exchanger 12 enters the heating heat exchanger 4. Here, the fluid is cooled by exchanging heat with the surrounding air. On the other hand, the air heated by exchanging heat with the fluid is blown by the fan 4F into the vehicle interior which is a conditioned room. Thereby, the vehicle interior is heated. On the other hand, the air cooled by exchanging heat with air in the heating heat exchanger 4 is extracted from the heating heat exchanger 4 and sucked into the circulation pump 5 through the pipe 4A and discharged to the pipe 5A. The cycle of flowing through the passage 12B of the cascade heat exchanger 12 through the three-way valve 8 and the bypass circuit 7A is repeated.

一方、制御手段により圧縮機11の駆動要素が駆動されると(このとき、冷房用熱交換器24のファン24Fは停止されている)、冷媒導入管40から第1の圧縮要素32の低圧室側に低温低圧の冷媒ガスが吸い込まれて圧縮される。これにより、当該第1の圧縮要素32で圧縮されて中間圧となった冷媒が高圧室側より密閉容器30内に吐出される。密閉容器30内に吐出された冷媒は当該密閉容器30内において暖房用補助回路70からの第1の冷媒流(暖房用分流器13にて分流された一方の冷媒)と合流する。   On the other hand, when the drive element of the compressor 11 is driven by the control means (at this time, the fan 24F of the cooling heat exchanger 24 is stopped), the low-pressure chamber of the first compression element 32 is supplied from the refrigerant introduction pipe 40. A low-temperature and low-pressure refrigerant gas is sucked into the side and compressed. Thereby, the refrigerant compressed to the intermediate pressure by the first compression element 32 is discharged into the sealed container 30 from the high pressure chamber side. The refrigerant discharged into the hermetic container 30 joins the first refrigerant flow (one refrigerant diverted by the heating diverter 13) from the heating auxiliary circuit 70 in the hermetic container 30.

その後、合流した冷媒は第2の圧縮要素34の低圧室側に吸い込まれて圧縮され、高温高圧の冷媒ガスとなり、高圧室側から冷媒吐出管42に入り、圧縮機11の外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている。また、圧縮機11から吐出された冷媒ガス中には圧縮機11の第2の圧縮要素34の摺動部に供給されていたオイルが混入している。   Thereafter, the merged refrigerant is sucked into the low-pressure chamber side of the second compression element 34 and compressed to become high-temperature and high-pressure refrigerant gas, enters the refrigerant discharge pipe 42 from the high-pressure chamber side, and is discharged to the outside of the compressor 11. . At this time, the refrigerant is compressed to an appropriate supercritical pressure. The refrigerant gas discharged from the compressor 11 is mixed with oil that has been supplied to the sliding portion of the second compression element 34 of the compressor 11.

冷媒吐出管42から吐出された冷媒はカスケード熱交換器12の一端に形成された通路12Aの入口から当該カスケード熱交換器12内に入る。そして、圧縮機11から出た高温高圧の冷媒はカスケード熱交換器12の通路12Aを通過する過程で、当該通路12Aと交熱的に設けられた通路12Bを流れる廃熱利用回路1の流体に熱を奪われ、冷却される。   The refrigerant discharged from the refrigerant discharge pipe 42 enters the cascade heat exchanger 12 through an inlet of a passage 12 </ b> A formed at one end of the cascade heat exchanger 12. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 11 passes through the passage 12A of the cascade heat exchanger 12 and becomes a fluid in the waste heat utilization circuit 1 that flows through the passage 12B that is exchanged with the passage 12A. Deprived of heat and cooled.

カスケード熱交換器12にて冷却された通路12Aの冷媒は、他端からカスケード熱交換器12を出て暖房用補助熱交換器17の一端側に形成された通路17Aの入口から当該暖房用補助熱交換器17内に入る。そして、カスケード熱交換器12から出た高圧側の冷媒は暖房用補助熱交換器17の通路17Aを通過する過程で、当該通路17Aと交熱的に設けられた通路17Bを流れる低圧側の冷媒(暖房用分流器13にて分流され、暖房用補助回路70を流れる一方の冷媒)に熱を奪われる。これにより、通路17Aを流れる高圧側の冷媒ガスを冷却して、室外熱交換器23に入る冷媒の比エンタルピーを小さくすることができる。   The refrigerant in the passage 12 </ b> A cooled by the cascade heat exchanger 12 exits the cascade heat exchanger 12 from the other end and enters the heating auxiliary through the inlet of the passage 17 </ b> A formed on one end side of the auxiliary heating heat exchanger 17. Enters heat exchanger 17. The high-pressure side refrigerant that has flowed out of the cascade heat exchanger 12 passes through the passage 17A of the heating auxiliary heat exchanger 17, and the low-pressure side refrigerant that flows through the passage 17B that is exchanged with the passage 17A. Heat is deprived by (one refrigerant that is diverted by the heating diverter 13 and flows through the auxiliary heating circuit 70). Thereby, the refrigerant gas on the high pressure side flowing through the passage 17A can be cooled, and the specific enthalpy of the refrigerant entering the outdoor heat exchanger 23 can be reduced.

従って、当該室外熱交換器23における吸熱能力も向上し、暖房能力をより一層向上させることができる。特に、暖房用補助熱交換器17にてカスケード熱交換器12からの高圧冷媒を暖房用分流器13で分流した一方の冷媒にて冷却することで、従来の冷媒を空気と熱交換させる熱交換器よりコンパクト、且つ、ローコストで暖房能力の向上を図ることが可能となる。   Therefore, the heat absorption capability in the outdoor heat exchanger 23 is also improved, and the heating capability can be further improved. In particular, heat exchange in which heat is exchanged between the conventional refrigerant and air by cooling the high-pressure refrigerant from the cascade heat exchanger 12 with one of the refrigerant diverted with the heating diverter 13 in the auxiliary heat exchanger 17 for heating. It is possible to improve the heating capacity more compactly and at a lower cost than the heater.

暖房用補助熱交換器17にて冷却された通路17Aの冷媒は、他端から当該暖房用補助熱交換器17を出て暖房用分流器13に入り、ここで第1の冷媒流(一方の冷媒)と第2の冷媒流(他方の冷媒)の2つの冷媒流に分岐される。このとき、暖房用分流器13は前述の如く当該分流器13の上部と下部から一方の冷媒を分流する構成とされているため、当該一方の冷媒と共に、後述する如きオイルも取り出すことができる。   The refrigerant in the passage 17A cooled by the heating auxiliary heat exchanger 17 exits the heating auxiliary heat exchanger 17 from the other end and enters the heating diverter 13, where the first refrigerant flow (one of the refrigerant flows) The refrigerant is branched into two refrigerant streams, that is, a refrigerant) and a second refrigerant stream (the other refrigerant). At this time, since the heating diverter 13 is configured to divert one refrigerant from the upper and lower portions of the diverter 13 as described above, oil as described later can be taken out together with the one refrigerant.

そして、当該暖房用分流器13にて分流された一方の冷媒(一方の冷媒及びオイル)は暖房用補助回路70に入り、暖房用補助膨張弁15に至る。尚、当該暖房用補助膨張弁15を通過した冷媒は未だ超臨界を維持した状態であり、この状態で暖房用補助熱交換器17の他端に形成された通路17Bの入口から当該暖房用補助熱交換器17内に流入して、膨張する。このとき、通路17Bを流れる冷媒(一方の冷媒)は、通路17Aを流れる冷媒から熱を奪って蒸発する。   Then, one refrigerant (one refrigerant and oil) diverted by the heating diverter 13 enters the heating auxiliary circuit 70 and reaches the heating auxiliary expansion valve 15. The refrigerant that has passed through the heating auxiliary expansion valve 15 is still in a supercritical state, and in this state, the heating auxiliary is supplied from the inlet of the passage 17B formed at the other end of the heating auxiliary heat exchanger 17. It flows into the heat exchanger 17 and expands. At this time, the refrigerant (one refrigerant) flowing through the passage 17B takes heat away from the refrigerant flowing through the passage 17A and evaporates.

このように、暖房用補助熱交換器17にて通路17Aを流れる高圧側の冷媒と熱交換させることで、通路17Bを流れる低圧側の冷媒(一方の冷媒)を蒸発させることができる。そして、蒸発した低圧側の冷媒(オイルも含む)は、一端に形成された通路17Bの出口から暖房用補助熱交換器17を出て、冷媒導入管41に入り、圧縮機11の密閉容器30に吸い込まれる。そして、当該密閉容器30内に吸い込まれた冷媒は、第1の圧縮要素32にて圧縮された中間圧の冷媒と合流する。また、密閉容器30内に前記冷媒と共に吸い込まれたオイルは当該密閉容器30内にて冷媒から分離して底部に形成されたオイル溜めに戻る。これにより、圧縮機11の外部に吐出されたオイルを密閉容器30内に戻すことができるようになる。   In this manner, the heating auxiliary heat exchanger 17 exchanges heat with the high-pressure refrigerant flowing through the passage 17A, whereby the low-pressure refrigerant (one refrigerant) flowing through the passage 17B can be evaporated. The evaporated low-pressure side refrigerant (including oil) exits the heating auxiliary heat exchanger 17 from the outlet of the passage 17B formed at one end, enters the refrigerant introduction pipe 41, and the sealed container 30 of the compressor 11. Sucked into. Then, the refrigerant sucked into the sealed container 30 merges with the intermediate pressure refrigerant compressed by the first compression element 32. Further, the oil sucked into the sealed container 30 together with the refrigerant is separated from the refrigerant in the sealed container 30 and returns to the oil sump formed at the bottom. Thereby, the oil discharged to the outside of the compressor 11 can be returned into the sealed container 30.

特に、二酸化炭素を冷媒として用いた場合、二酸化炭素の圧力と温度によって二酸化炭素とオイルの密度差が大きくことなる。この場合、オイルとしてPAGを用いた場合の当該PAGオイルと二酸化炭素冷媒の密度差を図6に示す。図6に示すように低温時には二酸化炭素の密度がオイルの密度より大きく、温度の上昇に伴いその差が小さくなって、約−5℃以上になると二酸化炭素の密度がPAGオイルの密度より小さくなることがわかる。従って、暖房用分流器13にて上部のみから一方の冷媒を分流させた場合、温度が−5℃以下ではPAGオイルを一方の冷媒と共に取り出して、暖房用補助回路70に流すことができるが、温度が−5℃以上になると、二酸化炭素の密度よりPAGオイルの密度の方が大きくなるので、オイルを一方の冷媒と共に暖房用補助回路70に流すことができず、他方の冷媒と共に暖房用膨張弁20に流れてしまう。   In particular, when carbon dioxide is used as a refrigerant, the density difference between carbon dioxide and oil varies greatly depending on the pressure and temperature of carbon dioxide. In this case, the density difference between the PAG oil and the carbon dioxide refrigerant when PAG is used as the oil is shown in FIG. As shown in FIG. 6, the density of carbon dioxide is higher than the density of oil at low temperatures, and the difference decreases as the temperature rises. When the temperature is about −5 ° C. or higher, the density of carbon dioxide is lower than the density of PAG oil. I understand that. Therefore, when one refrigerant is diverted from only the upper part in the heating diverter 13, if the temperature is -5 ° C. or lower, the PAG oil can be taken out together with the one refrigerant and flowed to the heating auxiliary circuit 70. When the temperature is −5 ° C. or higher, the density of the PAG oil becomes larger than the density of carbon dioxide, so that the oil cannot flow through the heating auxiliary circuit 70 together with one refrigerant, and the expansion for heating together with the other refrigerant. It will flow to the valve 20.

また、暖房用分流器13にて下部のみから一方の冷媒を分流させた場合、温度が−5℃以上ではオイルを一方の冷媒と共に取り出して、暖房用補助回路70に流すことができるが、温度が−5℃以下になると、二酸化炭素の密度よりオイルの密度の方が小さくなるので、オイルを一方の冷媒と共に暖房用補助回路70に流すことができず、他方の冷媒と共に暖房用膨張弁20に流れるようになる。   In addition, when one refrigerant is divided from only the lower part in the heating diverter 13, if the temperature is −5 ° C. or higher, the oil can be taken out together with the one refrigerant and flowed to the heating auxiliary circuit 70. Is less than −5 ° C., the density of oil becomes smaller than the density of carbon dioxide, so that the oil cannot flow to the heating auxiliary circuit 70 together with one refrigerant, and the heating expansion valve 20 together with the other refrigerant. To flow into.

一方、オイルとしてPVEを用いた場合の当該PVEオイルと二酸化炭素冷媒の密度差を図7に示す。図7に示すように当該PVEオイルも低温時には二酸化炭素の密度がオイルの密度より大きく、温度の上昇に伴いその差が小さくなって、0℃以上になると二酸化炭素の密度がPVEオイルの密度より小さくなることがわかる。従って、暖房用分流器13にて上部のみから一方の冷媒を分流させた場合、温度が0℃以下ではオイルを一方の冷媒と共に取り出して、暖房用補助回路70に流すことができるが、温度が0℃以上になると、二酸化炭素の密度よりオイルの密度の方が大きくなるので、オイルを一方の冷媒と共に暖房用補助回路70に流すことができず、他方の冷媒と共に暖房用膨張弁20に流れるようになる。   On the other hand, FIG. 7 shows the density difference between the PVE oil and the carbon dioxide refrigerant when PVE is used as the oil. As shown in FIG. 7, the density of carbon dioxide is also higher than the density of oil when the PVE oil is at a low temperature, and the difference becomes smaller as the temperature rises. It turns out that it becomes small. Accordingly, when one of the refrigerants is divided from only the upper portion in the heating diverter 13, if the temperature is 0 ° C. or less, the oil can be taken out together with the one refrigerant and flowed to the heating auxiliary circuit 70. When the temperature is 0 ° C. or higher, the density of the oil becomes larger than the density of carbon dioxide, so that the oil cannot flow to the heating auxiliary circuit 70 together with one refrigerant and flows to the heating expansion valve 20 together with the other refrigerant. It becomes like this.

また、暖房用分流器13にて下部のみから一方の冷媒を分流させた場合、温度が0℃以上ではオイルを一方の冷媒と共に取り出して、暖房用補助回路70に流すことができるが、温度が0℃以下になると、二酸化炭素の密度よりオイルの密度の方が小さくなるので、オイルを一方の冷媒と共に暖房用補助回路70に流すことができず、他方の冷媒と共に暖房用膨張弁20に流れるようになる。   Further, when one refrigerant is divided from only the lower part in the heating diverter 13, if the temperature is 0 ° C. or higher, the oil can be taken out together with the one refrigerant and flowed to the heating auxiliary circuit 70. When the temperature is 0 ° C. or lower, the density of the oil is smaller than the density of carbon dioxide, so that the oil cannot flow to the heating auxiliary circuit 70 together with one refrigerant and flows to the heating expansion valve 20 together with the other refrigerant. It becomes like this.

従って、従来の構造の分流器では、上述したように分流器の上部、或いは、下部の何れかから一方の冷媒を分流するものであったため、このような冷媒とオイルとの密度差の変動に対処できず、一方の冷媒と共にオイルを常に補助回路に流すことが困難であった。従って、当該補助回路を介してオイルを圧縮機11に戻すことができないので、圧縮機11内のオイルが減少して、オイル不足に陥る恐れがあった。加えて、オイルが他方の冷媒と共に冷媒回路10内を循環することとなり、冷媒回路10内でオイルが溜まり、冷媒の良好な流れを阻害したり、圧力損失の発生する問題が生じて、空気調和装置全体の性能の低下を招く恐れがあった。   Therefore, in the shunt of the conventional structure, as described above, one refrigerant is shunted from either the upper part or the lower part of the shunt, so that the density difference between the refrigerant and the oil varies. It was difficult to cope with it, and it was difficult to always let oil flow along the auxiliary circuit along with one of the refrigerants. Accordingly, the oil cannot be returned to the compressor 11 via the auxiliary circuit, so that the oil in the compressor 11 may be reduced and the oil may be insufficient. In addition, the oil circulates in the refrigerant circuit 10 together with the other refrigerant, so that the oil accumulates in the refrigerant circuit 10, thereby obstructing a good flow of the refrigerant and causing a pressure loss. There was a risk of reducing the performance of the entire apparatus.

しかしながら、本発明の如く暖房用分流器13を上部及び下部から一方の冷媒を分流させる形状とすることで、オイルの密度が二酸化炭素の密度より大きくなる場合であっても、小さくなる場合であっても上部及び下部の何れかからオイルを分流して、一方の冷媒と共に暖房用補助回路70に流し、当該回路70から圧縮機11の密閉容器30内に確実にオイルを戻すことが可能となる。   However, when the heating diverter 13 has a shape in which one refrigerant is diverted from the upper part and the lower part as in the present invention, even when the density of the oil becomes larger than the density of carbon dioxide, it becomes a case where it becomes smaller. However, it is possible to divert the oil from either the upper part or the lower part, and flow the oil together with one refrigerant to the heating auxiliary circuit 70, and reliably return the oil from the circuit 70 into the sealed container 30 of the compressor 11. .

即ち、オイルの密度が二酸化炭素の密度より大きい場合には、オイルは本体13Aの下部に溜まるため、下部に溜まったオイルを一方の冷媒流と共に他方の冷媒から分岐させて、暖房用補助回路70に流すことができる。   That is, when the density of the oil is higher than the density of carbon dioxide, the oil accumulates in the lower portion of the main body 13A. Therefore, the oil accumulated in the lower portion is branched from the other refrigerant together with one refrigerant flow, and the heating auxiliary circuit 70 Can be shed.

また、オイルの密度が二酸化炭素の密度より小さい場合には、オイルは本体13Aの上部に溜まるため、上部に溜まったオイルを一方の冷媒流と共に他方の冷媒から分岐させて、暖房用補助回路70に流すことができる。これにより、二酸化炭素を冷媒として使用した空気調和装置の冷媒回路10において、 圧縮機11外部に吐出されたオイルを圧縮機11の密閉容器30内に直接戻すことができる。   Further, when the density of the oil is smaller than that of carbon dioxide, the oil accumulates in the upper part of the main body 13A. Therefore, the oil accumulated in the upper part is branched from the other refrigerant together with one refrigerant flow, and the heating auxiliary circuit 70 Can be shed. Thereby, in the refrigerant circuit 10 of the air conditioner using carbon dioxide as a refrigerant, the oil discharged to the outside of the compressor 11 can be returned directly into the sealed container 30 of the compressor 11.

また、暖房用分流器13にて分流された一方の冷媒を圧縮機11の中間圧部である密閉容器30内に戻すことで、冷媒回路10に流す冷媒の循環量を増やすことなく、第2の圧縮要素34に吸い込まれて圧縮され、ガスクーラ熱交換器12に流れる冷媒量を増やすことができる。これにより、カスケード熱交換器12において流体と熱交換する冷媒量が増加し、当該カスケード熱交換器12における熱交換能力の向上を図ることができる。特に、暖房用分流器13にて分流された一方の冷媒を圧縮機11の中間圧部である密閉容器30内に戻すことで、圧縮機11の第1の圧縮要素32で圧縮される冷媒量を減少させることができるので、圧縮機11の圧縮動力を抑えて、運転効率を改善することができる。   Further, by returning the one refrigerant divided by the heating diverter 13 into the hermetic container 30 that is an intermediate pressure part of the compressor 11, the second circulation amount is increased without increasing the circulation amount of the refrigerant flowing through the refrigerant circuit 10. Therefore, the amount of refrigerant flowing into the gas cooler heat exchanger 12 can be increased. As a result, the amount of refrigerant that exchanges heat with the fluid in the cascade heat exchanger 12 increases, and the heat exchange capability of the cascade heat exchanger 12 can be improved. In particular, the amount of refrigerant compressed by the first compression element 32 of the compressor 11 by returning one refrigerant divided by the heating flow divider 13 into the sealed container 30 that is an intermediate pressure portion of the compressor 11. Therefore, it is possible to reduce the compression power of the compressor 11 and improve the operation efficiency.

図8に、本実施例の冷媒回路10を用いて車室内を暖房した場合の暖房能力特性と従来の冷媒回路を用いて車室内を暖房した場合の暖房能力特性を示す。図8において、黒丸は従来の空気調和装置の暖房特性を示し、黒四角は本発明の空気調和装置の暖房特性を示している。また、三角は従来の暖房能力特性に対する本発明の暖房能力特性の比率(本発明の空気調和装置の暖房特性/従来の空気調和装置の暖房特性)を示している。   FIG. 8 shows a heating capacity characteristic when the vehicle interior is heated using the refrigerant circuit 10 of the present embodiment and a heating capacity characteristic when the vehicle interior is heated using the conventional refrigerant circuit. In FIG. 8, black circles indicate the heating characteristics of the conventional air conditioner, and black squares indicate the heating characteristics of the air conditioner of the present invention. Further, the triangle indicates the ratio of the heating capacity characteristic of the present invention to the conventional heating capacity characteristic (the heating characteristic of the air conditioner of the present invention / the heating characteristic of the conventional air conditioner).

図8からも明らかなように、本発明を適用することで、従来の空気調和装置より暖房能力が向上することがわかる。特に、図中三角のプロットで示すように(本発明の空気調和装置の暖房特性/従来の空気調和装置の暖房特性)、室外熱交換器23における蒸発温度が低く、暖房時において過酷な条件であるほど、本発明を適用した空気調和装置はより大きな効果が得られる。   As is apparent from FIG. 8, it can be seen that the heating capacity is improved as compared with the conventional air conditioner by applying the present invention. In particular, as shown by the triangular plots in the figure (heating characteristics of the air conditioner of the present invention / heating characteristics of the conventional air conditioner), the evaporation temperature in the outdoor heat exchanger 23 is low, and under severe conditions during heating The greater the effect, the greater the effect of the air conditioner to which the present invention is applied.

従来のHFC系の冷媒を用いた装置では、冷媒回路に本発明のような冷媒の流れを分流する、所謂、スプリットタイプの冷媒回路を用いた場合、高圧側の循環量が増加すると、高圧圧力が高くなり、圧縮動力が増加するため、効率の改善が得られないので、係る冷媒回路を採用することが困難であった。しかしながら、二酸化炭素冷媒では、高圧側を超臨界圧力として使用するため、高圧側圧力の上昇は能力向上に有用となるため、圧力上昇分の圧縮動力増加は効率に悪影響を及ぼさない。   In a conventional apparatus using an HFC-based refrigerant, when a so-called split type refrigerant circuit that divides the refrigerant flow as in the present invention is used in the refrigerant circuit, if the circulation amount on the high-pressure side increases, the high-pressure pressure Since the compression power increases and the compression power increases, it is difficult to adopt such a refrigerant circuit because improvement in efficiency cannot be obtained. However, since the carbon dioxide refrigerant uses the high-pressure side as the supercritical pressure, the increase in the high-pressure side pressure is useful for improving the capacity, and therefore the increase in the compression power corresponding to the pressure increase does not adversely affect the efficiency.

以上のように本発明により、二酸化炭素冷媒を用いて冷媒回路10の高圧側が超臨界となる空気調和装置の効率及び性能を改善することができる。   As described above, according to the present invention, it is possible to improve the efficiency and performance of an air conditioner in which the high pressure side of the refrigerant circuit 10 is supercritical using carbon dioxide refrigerant.

他方、暖房用分流器13にて分流された他方の冷媒(第2の冷媒流)は、当該暖房用分流器13の他方の出口に接続された冷媒配管48を介して暖房用膨張弁20に至る。尚、暖房用膨張弁20の入口では冷媒は暖房用分流器13から出た他方の冷媒はまだ超臨界の状態であり、当該暖房用膨張弁20を通過する過程で圧力低下して、ガス/液体の二相混合状態となり、この状態で室外熱交換器23に流入する。ここで、暖房用膨張弁20にて圧力低下した冷媒は、周囲の外気と熱交換して蒸発する。その後、室外熱交換器23から出た冷媒は、冷房用補助熱交換器18、冷房用分流器14を経て冷媒配管58の途中部に接続された冷媒導入管40Bから冷媒導入管40に入り、圧縮機11の低圧部である第1の圧縮要素32に吸い込まれるサイクルを繰り返す。尚、当該暖房運転時において冷房用補助膨張弁16は全閉されているため、冷房用分流器14にて冷媒は分流されること無く、全て他方の出口に接続された冷媒配管58に流入する。これにより、冷房用補助回路75には冷媒が流れないので、冷房用補助熱交換器18の通路18Aを流れる過程で、冷媒の熱交換は生じない。また、冷房用膨張弁21も全閉されているため、冷媒配管58に流入した冷媒は全て当該冷媒配管58の途中部に接続された冷媒導入管40Bに入り、電磁弁27を経由して、冷媒導入管40から第1の圧縮要素32に吸い込まれることとなる。   On the other hand, the other refrigerant (second refrigerant flow) divided by the heating diverter 13 is transferred to the heating expansion valve 20 via the refrigerant pipe 48 connected to the other outlet of the heating diverter 13. It reaches. Note that the refrigerant at the inlet of the heating expansion valve 20 is in a supercritical state while the other refrigerant exiting from the heating diverter 13 is in a supercritical state, and the pressure drops in the process of passing through the heating expansion valve 20, causing the gas / The liquid becomes a two-phase mixed state and flows into the outdoor heat exchanger 23 in this state. Here, the refrigerant whose pressure has dropped in the heating expansion valve 20 evaporates by exchanging heat with the surrounding outside air. Thereafter, the refrigerant that has come out of the outdoor heat exchanger 23 enters the refrigerant introduction pipe 40 from the refrigerant introduction pipe 40B that is connected to the middle portion of the refrigerant pipe 58 via the cooling auxiliary heat exchanger 18 and the cooling diverter 14, and The cycle of being sucked into the first compression element 32, which is the low pressure portion of the compressor 11, is repeated. In addition, since the cooling auxiliary expansion valve 16 is fully closed during the heating operation, the refrigerant flows into the refrigerant pipe 58 connected to the other outlet without being divided by the cooling diverter 14. . Thereby, since the refrigerant does not flow through the cooling auxiliary circuit 75, heat exchange of the refrigerant does not occur in the process of flowing through the passage 18A of the cooling auxiliary heat exchanger 18. Further, since the cooling expansion valve 21 is also fully closed, all of the refrigerant flowing into the refrigerant pipe 58 enters the refrigerant introduction pipe 40B connected to the middle part of the refrigerant pipe 58 and passes through the electromagnetic valve 27. The refrigerant is sucked into the first compression element 32 from the refrigerant introduction pipe 40.

ところで、当該暖房運転において熱源2が始動してから時間が経過して、当該熱源2の温度が上昇し、例えば予め設定されていた所定の温度に上昇すると、制御手段は、圧縮機11の運転を停止する。これにより、カスケード熱交換器12における冷媒と流体の熱交換は行われなくなる。また、制御手段は、配管5Aからの流体が配管5Bに流れるように三方弁8を制御する。従って、図9に矢印で示すように循環ポンプ5からの流体がバイパス回路7Aに流れず、配管5Bを介して熱源2に流れるようになる。これにより、流体は当該熱源2の熱を奪って加熱された後、熱源2から出て配管2Aに入り、カスケード熱交換器12、配管3を経て、暖房用熱交換器4に流入する。   By the way, when time elapses from the start of the heat source 2 in the heating operation and the temperature of the heat source 2 rises, for example, rises to a predetermined temperature set in advance, the control means operates the compressor 11. To stop. Thereby, heat exchange between the refrigerant and the fluid in the cascade heat exchanger 12 is not performed. Further, the control means controls the three-way valve 8 so that the fluid from the pipe 5A flows into the pipe 5B. Therefore, as shown by the arrow in FIG. 9, the fluid from the circulation pump 5 does not flow to the bypass circuit 7A but flows to the heat source 2 via the pipe 5B. As a result, the fluid is deprived of heat of the heat source 2 and heated, then exits the heat source 2 and enters the pipe 2A, and flows into the heating heat exchanger 4 through the cascade heat exchanger 12 and the pipe 3.

ここで、流体は周囲の空気と熱交換して冷却される。一方、流体と熱交換することで加熱された空気はファン4Fにより被調和室である車室内に送風され、車室内が暖房される。他方、暖房用熱交換器4にて空気と熱交換して冷却された空気は当該暖房用熱交換器4から出て配管4を介して循環ポンプ5に吸い込まれて、配管5Aに吐出され、三方弁8、配管5Bを介して熱源2に流れるサイクルを繰り返す。   Here, the fluid is cooled by exchanging heat with the surrounding air. On the other hand, the air heated by exchanging heat with the fluid is blown into the vehicle interior, which is a conditioned room, by the fan 4F, and the vehicle interior is heated. On the other hand, the air cooled by exchanging heat with air in the heating heat exchanger 4 is extracted from the heating heat exchanger 4 and sucked into the circulation pump 5 through the pipe 4 and discharged to the pipe 5A. The cycle that flows to the heat source 2 through the three-way valve 8 and the pipe 5B is repeated.

このように、熱源2が予め設定された所定温度に加熱するまでは、圧縮機11を運転して、カスケード熱交換器12にて冷媒回路10の冷媒から熱により車室内を暖房し、熱源2が加熱してからは圧縮機11を停止して、熱源2の廃熱を利用して車室内を加熱することで、例えば、車の始動直後などであっても車室内を早期に暖房することができるようになり、当該空気調和装置を車に搭載することで、車室内の快適性を向上することができるようになる。また、熱源2が加熱してから当該熱源2の廃熱を利用して車室内を暖房することで、圧縮機11を運転することなく車室内を暖房でき、消費電力を極力抑えて車室内を暖房することができる。   Thus, until the heat source 2 is heated to a predetermined temperature set in advance, the compressor 11 is operated, the cascade heat exchanger 12 heats the vehicle interior with heat from the refrigerant in the refrigerant circuit 10, and the heat source 2 After heating, the compressor 11 is stopped and the interior of the vehicle is heated using the waste heat of the heat source 2, so that the interior of the vehicle can be heated early, for example, even immediately after the start of the vehicle. It becomes possible to improve the comfort in the passenger compartment by mounting the air conditioner on the vehicle. In addition, by heating the vehicle interior using the waste heat of the heat source 2 after the heat source 2 is heated, the vehicle interior can be heated without operating the compressor 11, and power consumption can be suppressed as much as possible. Can be heated.

(2)冷房運転時
次に、冷房運転時における動作を図10を用いて説明する。図10において矢印は、当該冷房運転時における冷媒回路10の流れを示している。当該冷房運転時では、制御手段は図5に示しように、前記暖房用膨張弁20、暖房用補助膨張弁15及び電磁弁27を全閉すると共に、冷房用補助膨張弁16及び冷房用膨張弁21を流れる冷媒を減圧可能に開度制御する。この場合、前記循環ポンプ5及びファン4Fは停止された状態である。
(2) During cooling operation Next, the operation during cooling operation will be described with reference to FIG. In FIG. 10, the arrows indicate the flow of the refrigerant circuit 10 during the cooling operation. During the cooling operation, as shown in FIG. 5, the control means fully closes the heating expansion valve 20, the heating auxiliary expansion valve 15, and the electromagnetic valve 27, and the cooling auxiliary expansion valve 16 and the cooling expansion valve. The opening degree of the refrigerant flowing through the refrigerant 21 is controlled so that the pressure can be reduced. In this case, the circulation pump 5 and the fan 4F are stopped.

そして、制御手段は、冷房用熱交換器24のファン24F及び圧縮機11の駆動要素を始動する。これにより、冷媒導入管40から第1の圧縮要素32の低圧室側に低温低圧の冷媒ガスが吸い込まれて圧縮される。これにより、当該第1の圧縮要素32で圧縮されて中間圧となった冷媒が高圧室側より密閉容器30内に吐出される。密閉容器30内に吐出された冷媒は当該密閉容器30内において冷房用補助回路75からの第1の冷媒流(冷房用分流器14にて分流された一方の冷媒)と合流する。   And a control means starts the drive element of the fan 24F of the heat exchanger 24 for cooling, and the compressor 11. FIG. As a result, the low-temperature and low-pressure refrigerant gas is sucked from the refrigerant introduction pipe 40 into the low-pressure chamber side of the first compression element 32 and compressed. Thereby, the refrigerant compressed to the intermediate pressure by the first compression element 32 is discharged into the sealed container 30 from the high pressure chamber side. The refrigerant discharged into the hermetic container 30 merges with the first refrigerant flow from the cooling auxiliary circuit 75 (one refrigerant divided by the cooling diverter 14) in the hermetic container 30.

その後、合流した冷媒は第2の圧縮要素34の低圧室側に吸い込まれて圧縮され、高温高圧の冷媒ガスとなり、高圧室側から冷媒吐出管42に入り、圧縮機11の外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている。また、圧縮機11から吐出された冷媒ガス中には圧縮機11の第2の圧縮要素34の摺動部に供給されていたオイルが混入している。   Thereafter, the merged refrigerant is sucked into the low-pressure chamber side of the second compression element 34 and compressed to become high-temperature and high-pressure refrigerant gas, enters the refrigerant discharge pipe 42 from the high-pressure chamber side, and is discharged to the outside of the compressor 11. . At this time, the refrigerant is compressed to an appropriate supercritical pressure. The refrigerant gas discharged from the compressor 11 is mixed with oil that has been supplied to the sliding portion of the second compression element 34 of the compressor 11.

また、冷媒吐出管42から吐出された冷媒はカスケード熱交換器12の通路12A、冷媒配管43、暖房用補助熱交換器17の通路17A、冷媒配管45、暖房用分流器13、冷媒配管48、暖房用膨張弁20を経て、室外熱交換器23に流入する。尚、冷房運転時において、廃熱利用回路1の循環ポンプ5は運転されていないため、カスケード熱交換器12において、冷媒と流体の熱交換は生じない。また、前述の如く暖房用補助膨張弁15が全閉とされ、冷媒配管45からの冷媒は暖房用補助回路70に流れることなく、全て冷媒配管48に流れるため、暖房用補助熱交換器17において、通路17Aを流れる冷媒は放熱せずに、冷媒配管45、暖房用分流器13、冷媒配管48に順次流れる。   Further, the refrigerant discharged from the refrigerant discharge pipe 42 is the passage 12A of the cascade heat exchanger 12, the refrigerant pipe 43, the passage 17A of the auxiliary heating heat exchanger 17, the refrigerant pipe 45, the heating diverter 13, the refrigerant pipe 48, It flows into the outdoor heat exchanger 23 through the expansion valve 20 for heating. In the cooling operation, since the circulation pump 5 of the waste heat utilization circuit 1 is not operated, heat exchange between the refrigerant and the fluid does not occur in the cascade heat exchanger 12. Further, as described above, the heating auxiliary expansion valve 15 is fully closed, and the refrigerant from the refrigerant pipe 45 does not flow to the heating auxiliary circuit 70, but flows to the refrigerant pipe 48, so in the heating auxiliary heat exchanger 17 The refrigerant flowing in the passage 17A does not radiate heat and flows sequentially to the refrigerant pipe 45, the heating diverter 13, and the refrigerant pipe 48.

更にまた、当該冷房運転時において暖房用膨張弁20も前述の如く全開であるため、当該暖房用膨張弁20にて冷媒は減圧されることなく、室外熱交換器23内に流入する。そして、室外熱交換器23内に流入した冷媒はそこで外気と熱交換して放熱した後、室外熱交換器23から出て冷房用補助熱交換器18の一端側に形成された通路18Aの入口から当該冷房用補助熱交換器18内に入る。当該冷房用補助熱交換器18において通路18Aを流れる高圧側の冷媒は、通路18Aと交熱的に設けられた通路18Bを流れる低圧側の冷媒(冷房用分流器14にて分流され、冷房用補助回路75を流れる一方の冷媒)に熱を奪われる。   Furthermore, since the heating expansion valve 20 is also fully opened during the cooling operation as described above, the refrigerant flows into the outdoor heat exchanger 23 without being depressurized by the heating expansion valve 20. Then, the refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outside air to dissipate the heat, and then exits the outdoor heat exchanger 23 and enters the passage 18A formed on one end side of the cooling auxiliary heat exchanger 18. The cooling auxiliary heat exchanger 18 enters. In the cooling auxiliary heat exchanger 18, the high-pressure side refrigerant flowing through the passage 18A is divided by the low-pressure side refrigerant (cooling flow divider 14) flowing through the passage 18B provided in heat exchange with the passage 18A. Heat is taken away by one refrigerant flowing through the auxiliary circuit 75.

一方、冷房用補助熱交換器18にて冷却された通路18Aの冷媒は、他端から当該冷房用補助熱交換器18を出て冷房用分流器14に入り、ここで第1の冷媒流(一方の冷媒)と第2の冷媒流(他方の冷媒)の2つの冷媒流に分流される。このとき、冷房用分流器14は前述の如く当該分流器14の上部と下部から一方の冷媒を分留する構成とされているため、当該一方の冷媒と共にオイルも取り出して、冷房用補助回路75に流すことができる。   On the other hand, the refrigerant in the passage 18A cooled by the cooling auxiliary heat exchanger 18 exits the cooling auxiliary heat exchanger 18 from the other end and enters the cooling diverter 14, where the first refrigerant flow ( The refrigerant is divided into two refrigerant streams, one refrigerant) and the second refrigerant stream (the other refrigerant). At this time, since the cooling shunt 14 is configured to fractionate one refrigerant from the upper and lower portions of the shunt 14 as described above, oil is taken out together with the one refrigerant, and the cooling auxiliary circuit 75 is used. Can be shed.

そして、冷房用分流器14にて分流された一方の冷媒(一方の冷媒及びオイル)は、冷房用補助回路75に入り、冷房用補助膨張弁16に至る。尚、当該冷房用補助膨張弁16を通過した一方の冷媒はまだ超臨界の状態であり、この状態で冷房用補助熱交換器18の他端に形成された通路18Bの入口から当該冷房用補助熱交換器18内に流入して、膨張する。このとき、通路18Bを流れる冷媒(一方の冷媒)は、通路18Bを流れる冷媒から熱を奪って蒸発する。   Then, one refrigerant (one refrigerant and oil) divided by the cooling flow divider 14 enters the cooling auxiliary circuit 75 and reaches the cooling auxiliary expansion valve 16. One refrigerant that has passed through the cooling auxiliary expansion valve 16 is still in a supercritical state, and in this state, the cooling auxiliary is supplied from the inlet of the passage 18B formed at the other end of the cooling auxiliary heat exchanger 18. It flows into the heat exchanger 18 and expands. At this time, the refrigerant (one refrigerant) flowing through the passage 18B takes heat away from the refrigerant flowing through the passage 18B and evaporates.

このように、冷房用補助熱交換器18にて通路18を流れる高圧側の冷媒と熱交換させることで、通路18Bを流れる低圧側の冷媒(一方の冷媒)を蒸発させることができる。そして、蒸発した低圧側の冷媒(オイルも含む)は、一端に形成された通路18Bの出口から冷房用補助熱交換器18を出て、冷媒配管57を経て冷媒導入管41に入り、圧縮機11の密閉容器30内に吸い込まれる。そして、当該密閉容器30内に吸い込まれた冷媒は、第1の圧縮要素32にて圧縮された中間圧の冷媒と合流する。また、密閉容器30内に前記冷媒と共に吸い込まれたオイルは当該密閉容器30内にて冷媒から分離して底部に形成されたオイル溜めに戻る。これにより、圧縮機11の外部に吐出されたオイルを密閉容器30内に戻すことができるようになる。   In this way, by performing heat exchange with the high-pressure side refrigerant flowing through the passage 18 in the cooling auxiliary heat exchanger 18, the low-pressure side refrigerant (one refrigerant) flowing through the passage 18B can be evaporated. Then, the evaporated low-pressure side refrigerant (including oil) exits the cooling auxiliary heat exchanger 18 from the outlet of the passage 18B formed at one end, enters the refrigerant introduction pipe 41 through the refrigerant pipe 57, and enters the compressor. 11 airtight containers 30. Then, the refrigerant sucked into the sealed container 30 merges with the intermediate pressure refrigerant compressed by the first compression element 32. Further, the oil sucked into the sealed container 30 together with the refrigerant is separated from the refrigerant in the sealed container 30 and returns to the oil sump formed at the bottom. Thereby, the oil discharged to the outside of the compressor 11 can be returned into the sealed container 30.

特に、前記暖房運転で詳述した如き二酸化炭素冷媒とオイルとは温度や冷媒圧力によって密度差が大きく異なる(図6及び図7)。従って、分流器の上部、或いは、下部の何れかから一方の冷媒を分流する従来の構造の分流器では、このような冷媒とオイルとの密度差の変動に対処できず、一方の冷媒と共にオイルを常に補助回路に流すことが困難であった。従って、当該補助回路を介してオイルを圧縮機11に戻すことができないので、圧縮機11内のオイルが減少して、オイル不足に陥る恐れがあった。加えて、オイルが他方の冷媒と共に冷媒回路10内を循環することとなり、冷媒回路10内でオイルが溜まり、冷媒の良好な流れを阻害したり、圧力損失の発生する問題が生じて、空気調和装置全体の性能の低下を招く恐れがあった。   In particular, the carbon dioxide refrigerant and oil as described in detail in the heating operation differ greatly in density difference depending on temperature and refrigerant pressure (FIGS. 6 and 7). Therefore, a conventional shunt that shunts one refrigerant from either the upper part or the lower part of the shunt cannot handle such a fluctuation in density difference between the refrigerant and the oil, and the oil with one refrigerant It was difficult to always flow through the auxiliary circuit. Accordingly, the oil cannot be returned to the compressor 11 via the auxiliary circuit, so that the oil in the compressor 11 may be reduced and the oil may be insufficient. In addition, the oil circulates in the refrigerant circuit 10 together with the other refrigerant, so that the oil accumulates in the refrigerant circuit 10, thereby obstructing a good flow of the refrigerant and causing a pressure loss. There was a risk of reducing the performance of the entire apparatus.

しかしながら、冷房用分流器14を上部及び下部から一方の冷媒を分流させる形状とすることで、オイルの密度が二酸化炭素の密度より大きくなる場合であっても、小さくなる場合であっても上部及び下部の何れかからオイルを分流して、一方の冷媒と共に冷房用補助回路75に流し、当該回路75から圧縮機11の密閉容器30内に確実にオイルを戻すことが可能となる。   However, by forming the cooling diverter 14 into a shape in which one refrigerant is diverted from the upper part and the lower part, even if the density of the oil is larger or smaller than the density of carbon dioxide, the upper and Oil can be divided from any one of the lower parts, and can be supplied to the cooling auxiliary circuit 75 together with one refrigerant, so that the oil can be reliably returned from the circuit 75 into the sealed container 30 of the compressor 11.

他方、冷房用分流器14にて分流された他方の冷媒(第2の冷媒流)は、当該冷房用分流器14の他方の出口に接続された冷媒配管58を介して冷房用膨張弁21に至る。尚、冷房用膨張弁21の入口では冷媒は冷房用分流器14から出た他方の冷媒はまだ超臨界の状態であり、当該冷房用膨張弁21を通過する過程で圧力低下して、ガス/液体の二相混合状態となり、この状態で冷房用熱交換器24に流入する。ここで、冷房用膨張弁21にて圧力低下した冷媒は、周囲の空気と熱交換して蒸発し、このときの吸熱効果により周囲の空気が冷却される。冷却された空気はファン24Fにより車室内に送風され、車内を冷房する。   On the other hand, the other refrigerant (second refrigerant flow) divided by the cooling flow divider 14 is supplied to the cooling expansion valve 21 via the refrigerant pipe 58 connected to the other outlet of the cooling flow divider 14. It reaches. Note that the refrigerant at the inlet of the cooling expansion valve 21 is in a supercritical state while the other refrigerant exiting from the cooling diverter 14 is reduced in pressure in the process of passing through the cooling expansion valve 21, and the gas / The liquid becomes a two-phase mixed state, and flows into the cooling heat exchanger 24 in this state. Here, the refrigerant whose pressure is reduced by the cooling expansion valve 21 evaporates by exchanging heat with the surrounding air, and the surrounding air is cooled by the endothermic effect at this time. The cooled air is blown into the vehicle interior by the fan 24F and cools the interior of the vehicle.

他方、冷房用熱交換器24を出た冷媒は冷媒導入管40Aから冷媒導入管40に入り、圧縮機11の低圧部である第1の圧縮要素32に吸い込まれるサイクルを繰り返す。   On the other hand, the refrigerant that has exited the cooling heat exchanger 24 enters the refrigerant introduction pipe 40 from the refrigerant introduction pipe 40 </ b> A, and repeats the cycle of being sucked into the first compression element 32 that is the low-pressure portion of the compressor 11.

このように、冷房運転時運転時において冷房用分流器14にて分流された一方の冷媒を圧縮機11の中間圧部である密閉容器30内に戻すことで、冷媒回路10に流す冷媒の循環量を増やすことなく、第2の圧縮要素34に吸い込まれて圧縮され、室外熱交換器23に流れる冷媒量を増やすことができる。これにより、室外熱交換器23において流体と熱交換する冷媒量が増加し、当該室外熱交換器23における熱交換能力の向上を図ることができる。更に、室外熱交換器23にて放熱した冷媒を冷房用補助熱交換器18に流し、冷房用分流器14にて分流される前の冷媒と冷房用分流器14にて分流された一方の冷媒とを熱交換させることで、室外熱交換器23にて冷却した冷媒をより冷却することができる。   In this way, the refrigerant circulating in the refrigerant circuit 10 is returned by returning one refrigerant, which has been diverted by the cooling diverter 14 during the cooling operation, into the hermetic container 30 that is the intermediate pressure portion of the compressor 11. Without increasing the amount, the amount of refrigerant sucked into the second compression element 34 and compressed and flowing to the outdoor heat exchanger 23 can be increased. As a result, the amount of refrigerant that exchanges heat with the fluid in the outdoor heat exchanger 23 increases, and the heat exchange capability of the outdoor heat exchanger 23 can be improved. Further, the refrigerant radiated by the outdoor heat exchanger 23 is caused to flow to the cooling auxiliary heat exchanger 18, and the refrigerant before being diverted by the cooling diverter 14 and one refrigerant diverted by the cooling diverter 14. As a result, the refrigerant cooled by the outdoor heat exchanger 23 can be further cooled.

特に、本発明では冷媒回路10の冷房用補助熱交換器18の通路18Bを流れる冷媒は、未だ超臨界の状態のままである。即ち、冷房用補助熱交換器18の容量は温度差に比例するため、超臨界条件では、冷房用膨張弁21に入る前の温度を下げて低温を発生させることは冷房用補助熱交換器18の容量に有利となる。これにより、従来の冷媒を空気と熱交換させる熱交換器よりコンパクト、且つ、ローコストで放熱能力の向上を図ることが可能となる。   In particular, in the present invention, the refrigerant flowing through the passage 18B of the cooling auxiliary heat exchanger 18 of the refrigerant circuit 10 still remains in a supercritical state. That is, since the capacity of the cooling auxiliary heat exchanger 18 is proportional to the temperature difference, in the supercritical condition, the temperature before entering the cooling expansion valve 21 is lowered to generate a low temperature. It is advantageous for the capacity. As a result, it is possible to improve the heat dissipating capacity more compactly and at a lower cost than a heat exchanger that exchanges heat between conventional refrigerant and air.

このように、室外熱交換器23にて放熱した冷媒を冷却用補助熱交換器18にて更に冷却した後、冷房用熱交換器24にて断熱膨張させることで、当該冷房用熱交換器24に入る冷媒の比エンタルピーを小さくすることができ、冷房用熱交換器24において、より低温が発生できるという効果が得られる。これにより、冷房用熱交換器24における冷凍効果を向上させることが可能となる。   In this way, after the refrigerant radiated by the outdoor heat exchanger 23 is further cooled by the auxiliary cooling heat exchanger 18, it is adiabatically expanded by the cooling heat exchanger 24, so that the cooling heat exchanger 24. The specific enthalpy of the refrigerant entering can be reduced, and the effect of being able to generate a lower temperature in the cooling heat exchanger 24 is obtained. Thereby, the freezing effect in the heat exchanger 24 for cooling can be improved.

特に、冷房用分流器14にて分流された一方の冷媒を圧縮機11の中間圧部である密閉容器30内に戻すことで、圧縮機11の第1の圧縮要素32で圧縮される冷媒量を減少させることができるので、圧縮機11の圧縮動力を抑えて、運転効率を改善することができる。   In particular, the amount of refrigerant compressed by the first compression element 32 of the compressor 11 by returning one refrigerant divided by the cooling flow divider 14 into the hermetic container 30 that is an intermediate pressure portion of the compressor 11. Therefore, the compression power of the compressor 11 can be suppressed and the operation efficiency can be improved.

図11に、本実施例の冷媒回路10を用いて車室内を冷房した場合の冷房能力特性と従来の冷媒回路を用いて車室内を冷房した場合の冷房能力特性を示す。図11において、黒丸は従来の空気調和装置の冷房特性を示し、黒四角は本発明の空気調和装置の冷房特性を示している。また、三角は従来の冷房能力特性に対する本発明の冷房特性の比率(本発明の空気調和装置の暖房特性/従来の空気調和装置の暖房特性)を示している。   FIG. 11 shows a cooling capacity characteristic when the vehicle interior is cooled using the refrigerant circuit 10 of the present embodiment and a cooling capacity characteristic when the vehicle interior is cooled using a conventional refrigerant circuit. In FIG. 11, black circles indicate the cooling characteristics of the conventional air conditioner, and black squares indicate the cooling characteristics of the air conditioner of the present invention. Further, the triangle indicates the ratio of the cooling characteristic of the present invention to the conventional cooling capacity characteristic (heating characteristic of the air conditioner of the present invention / heating characteristic of the conventional air conditioner).

図11からも明らかなように、本発明を適用することで、従来の空気調和装置より冷房能力が向上することがわかる。特に、図中三角に示すように(本発明の空気調和装置の冷房特性/従来の空気調和装置の冷房特性)、室外熱交換器23出口温度が高く、冷房時において過酷な条件であるほど、本発明を適用した空気調和装置はより大きな効果が得られることがわかる。   As is apparent from FIG. 11, it can be seen that the application of the present invention improves the cooling capacity over the conventional air conditioner. In particular, as shown by the triangle in the figure (cooling characteristics of the air conditioner of the present invention / cooling characteristics of the conventional air conditioner), the outlet temperature of the outdoor heat exchanger 23 is higher, and the more severe the condition during cooling, It can be seen that the air conditioner to which the present invention is applied can obtain a greater effect.

以上のように本発明により、二酸化炭素冷媒を用いた空気調和装置の効率及び性能を改善することができる。   As described above, according to the present invention, the efficiency and performance of an air conditioner using a carbon dioxide refrigerant can be improved.

(3)除湿運転時
ところで、車室内の湿度が上昇すると、フロントガラスが曇ってしまい視界が悪化して、運転に支障を来たす恐れがある。そのため、車室内の除湿を行う必要がある。次に、このような除湿運転時における動作を説明する。当該除湿運転時において、制御手段は前記冷房運転時と同様に図10の矢印に示すように冷媒が流れるように、前記暖房用膨張弁20、暖房用補助膨張弁15及び電磁弁27を全閉すると共に、冷房用補助膨張弁16及び冷房用膨張弁21を流れる冷媒を減圧可能に開度制御する(図5)。尚、車室内の空気は車室内から図示しない空気循環用ダクトを介して暖房用熱交換器4を通過し、冷房用熱交換器24を経て、車室内に循環されるサイクルを繰り返すものとする。
(3) During dehumidifying operation By the way, if the humidity in the passenger compartment increases, the windshield may become cloudy and the visibility may deteriorate, which may hinder driving. Therefore, it is necessary to dehumidify the passenger compartment. Next, operation during such dehumidifying operation will be described. During the dehumidifying operation, the control means fully closes the heating expansion valve 20, the heating auxiliary expansion valve 15, and the electromagnetic valve 27 so that the refrigerant flows as shown by the arrows in FIG. 10 as in the cooling operation. At the same time, the degree of opening of the refrigerant flowing through the cooling auxiliary expansion valve 16 and the cooling expansion valve 21 is controlled so that the pressure can be reduced (FIG. 5). The air in the passenger compartment passes through the heating heat exchanger 4 through an air circulation duct (not shown) from the passenger compartment, and passes through the cooling heat exchanger 24 to be repeatedly circulated into the passenger compartment. .

当該除湿運転時においては、制御手段は、循環ポンプ5を運転して廃熱利用回路1の流体を循環させると共に、室内熱交換器4のファン4Fの運転も行う。この場合、制御手段により前述の如く熱源2始動直後などの熱源2の温度が低い場合には、配管5Aからの流体がバイパス配管7Aに流れるように三方弁8が制御され、熱源2の温度が上昇し、例えば、熱源2が予め設定された所定の温度に上昇すると、制御手段により配管5Aからの流体が配管5Bに流れるように三方弁8が制御される。   During the dehumidifying operation, the control means operates the circulation pump 5 to circulate the fluid in the waste heat utilization circuit 1, and also operates the fan 4F of the indoor heat exchanger 4. In this case, when the temperature of the heat source 2 is low, such as immediately after the start of the heat source 2 as described above, the three-way valve 8 is controlled so that the fluid from the pipe 5A flows into the bypass pipe 7A. For example, when the heat source 2 rises to a predetermined temperature set in advance, the three-way valve 8 is controlled by the control means so that the fluid from the pipe 5A flows into the pipe 5B.

これにより、カスケード熱交換器12、若しくは、熱源2にて加熱された廃熱利用回路1を流れる流体は、暖房用熱交換器4にて周囲の空気と熱交換して放熱する。そして、流体から熱を奪って加熱された空気は、ファン4Fにて冷媒回路10の冷房用熱交換器24に送風される。このとき、車室内からの空気に含まれる水分(湿気)は冷房用熱交換器24を通過する過程で当該冷房用熱交換器24の表面に凝結し、水滴となって落下する。これにより、空気中に含まれる水分(湿気)を除去することができる。   As a result, the fluid flowing through the cascade heat exchanger 12 or the waste heat utilization circuit 1 heated by the heat source 2 exchanges heat with ambient air in the heating heat exchanger 4 to radiate heat. The air heated by removing heat from the fluid is sent to the cooling heat exchanger 24 of the refrigerant circuit 10 by the fan 4F. At this time, moisture (humidity) contained in the air from the passenger compartment is condensed on the surface of the cooling heat exchanger 24 in the process of passing through the cooling heat exchanger 24 and falls as water droplets. Thereby, moisture (humidity) contained in the air can be removed.

冷房用熱交換器24にて水分が除去された空気は、ファン24Fにより車室内に送風されるサイクルを繰り返す。これにより、車室内の湿度が徐々に低下し、前述したフロントガラスの曇り等を効果的に取ることができる。   The air from which moisture has been removed by the cooling heat exchanger 24 repeats a cycle in which the air is blown into the passenger compartment by the fan 24F. Thereby, the humidity in the passenger compartment gradually decreases, and the above-described fogging of the windshield can be effectively taken.

尚、以上詳述した空気調和装置の冷媒回路10において、圧縮機11として本実施例の如く1つの駆動軸で2つの圧縮要素を駆動する場合、第1の圧縮要素32と第2の圧縮要素34の排除容積比と体積効率の積と第1の圧縮要素32の吸気冷媒の圧力及び温度条件により、中間圧部の圧力(中間圧)が決定することとなる。本実施例の冷媒回路10では冷房運転時の最高効率を達成する冷房用補助回路75の冷房用補助熱交換器18の通路18Bを流れる一方の冷媒の質量流量(冷媒量)は、冷房用熱交換器24を流れる他方の冷媒の40%以上60%以下である。これを達成するための第1の圧縮要素32と第2の圧縮要素34の排除容積比は70%以上85%以下である。従って、第1の圧縮要素32の排除容積に対する第2の圧縮要素34の比を70%以上85%以下とすれば、最高効率を達成することが可能となる。   In the refrigerant circuit 10 of the air conditioner described in detail above, when the two compression elements are driven by one drive shaft as the compressor 11 as in this embodiment, the first compression element 32 and the second compression element The pressure (intermediate pressure) of the intermediate pressure portion is determined by the product of the excluded volume ratio 34 and the volume efficiency 34 and the pressure and temperature conditions of the intake refrigerant of the first compression element 32. In the refrigerant circuit 10 of the present embodiment, the mass flow rate (refrigerant amount) of one refrigerant flowing through the passage 18B of the auxiliary cooling heat exchanger 18 of the auxiliary cooling circuit 75 that achieves the highest efficiency during the cooling operation is the cooling heat. 40% or more and 60% or less of the other refrigerant flowing through the exchanger 24. In order to achieve this, the excluded volume ratio of the first compression element 32 and the second compression element 34 is 70% or more and 85% or less. Therefore, when the ratio of the second compression element 34 to the excluded volume of the first compression element 32 is set to 70% or more and 85% or less, the maximum efficiency can be achieved.

(4)補助減圧装置の制御
更に、上述した空気調和装置において効率良く運転するためには、分流器(暖房用分流器13或いは冷房用補助回路14)にて分流され、補助回路(暖房用補助回路70或いは冷房用補助回路75)に流れる一方の冷媒と他方の冷媒の量を制御して暖房運転時には室外熱交換器23に入る冷媒の比エンタルピーを小さくし、冷房運転時には冷房用熱交換器24に入る冷媒の比エンタルピーを小さくする必要がある。
(4) Control of auxiliary pressure reducing device Furthermore, in order to operate efficiently in the above-described air conditioner, the current is diverted by a shunt (heating diverter 13 or cooling auxiliary circuit 14), and the auxiliary circuit (heating auxiliary) The refrigerant 70 flowing into the circuit 70 or the cooling auxiliary circuit 75) is controlled to reduce the specific enthalpy of the refrigerant entering the outdoor heat exchanger 23 during the heating operation and to the cooling heat exchanger during the cooling operation. The specific enthalpy of the refrigerant entering 24 needs to be reduced.

そこで、冷媒圧力や温度を検出してこれらに基づいて最適な運転となるように制御する必要がある。しかしながら、冷媒圧力の検出は温度検出に比べてコストがかかり、特に、圧縮により圧力が非常に高くなる二酸化炭素冷媒の場合、圧力検出手段自体の性能や信頼性、その他圧力検出手段の取付部の信頼性も含めて使用に大きな課題があった。   Therefore, it is necessary to detect the refrigerant pressure and temperature and perform control based on them by detecting the refrigerant pressure and temperature. However, the detection of the refrigerant pressure is more costly than the temperature detection. In particular, in the case of a carbon dioxide refrigerant whose pressure becomes very high due to compression, the performance and reliability of the pressure detection means itself, and other mounting parts of the pressure detection means There was a big problem in use including reliability.

そこで、本実施例の空気調和装置では、制御手段により冷媒回路10内の冷媒温度に基づいて、補助回路(暖房用補助回路70或いは冷房用補助回路75)に流れる一方の冷媒と他方の冷媒の量を制御するものとする。図12は補助回路(暖房用補助回路70或いは冷房用補助回路75)に流れる一方の冷媒の循環率(分流器13或いは分流器14にて分流された一方の冷媒量G2と他方の冷媒量G1の比率(G2/G1))を変化させた場合の各部の温度変化と成績係数(COP)の変化を示したものである。図12において、実線Aは暖房運転時における成績係数、破線Bは冷房運転時における成績係数、実線Cは圧縮機11から吐出される冷媒ガス温度、実線Dは圧縮機11の中間圧部である密閉容器30内の冷媒温度(2段目吸気温度)、実線Eは主減圧装置(暖房運転時おける暖房用膨張弁20、冷房運転時における冷房用膨張弁21)に入る冷媒温度(膨張弁前温度)をそれぞれ示している。   Therefore, in the air conditioner of the present embodiment, the control means controls one refrigerant and the other refrigerant flowing in the auxiliary circuit (the heating auxiliary circuit 70 or the cooling auxiliary circuit 75) based on the refrigerant temperature in the refrigerant circuit 10. The amount shall be controlled. FIG. 12 shows the circulation rate of one refrigerant flowing in the auxiliary circuit (heating auxiliary circuit 70 or cooling auxiliary circuit 75) (one refrigerant amount G2 divided by the flow divider 13 or the flow divider 14 and the other refrigerant amount G1). This shows the change in temperature and coefficient of performance (COP) of each part when the ratio (G2 / G1)) is changed. In FIG. 12, a solid line A is a coefficient of performance during heating operation, a broken line B is a coefficient of performance during cooling operation, a solid line C is a refrigerant gas temperature discharged from the compressor 11, and a solid line D is an intermediate pressure portion of the compressor 11. The refrigerant temperature in the sealed container 30 (second stage intake temperature), the solid line E is the refrigerant temperature (before the expansion valve) entering the main decompression device (the heating expansion valve 20 during the heating operation, the cooling expansion valve 21 during the cooling operation). Temperature).

図12に示すように、補助回路を流れる冷媒の循環率が0%から約20%にかけては、補助回路を流れる冷媒量の増加に伴い、主減圧装置(暖房運転時おける暖房用膨張弁20、冷房運転時における冷房用膨張弁21)に入る冷媒温度(膨張弁前温度)が低下し、中間圧部冷媒温度は上昇する。そして、冷媒量が約20%となると、主減圧装置(暖房運転時おける暖房用膨張弁20、冷房運転時における冷房用膨張弁21)に入る冷媒温度が最低値となり、中間圧部の冷媒温度は最高値となる。このとき、暖房運転時における成績係数(COP)は最も良い値となる。また、冷房運転時における成績係数も0%から約20%にかけては殆ど変化することなく良好な値となる。   As shown in FIG. 12, when the circulation rate of the refrigerant flowing through the auxiliary circuit is from 0% to about 20%, the main decompression device (the heating expansion valve 20 during the heating operation, The refrigerant temperature entering the cooling expansion valve 21) during the cooling operation (temperature before the expansion valve) decreases, and the intermediate pressure portion refrigerant temperature increases. When the refrigerant amount reaches about 20%, the refrigerant temperature entering the main pressure reducing device (the heating expansion valve 20 during the heating operation and the cooling expansion valve 21 during the cooling operation) becomes the lowest value, and the refrigerant temperature of the intermediate pressure portion Is the highest value. At this time, the coefficient of performance (COP) during the heating operation is the best value. Also, the coefficient of performance during the cooling operation is a good value with almost no change from 0% to about 20%.

しかしながら、補助回路を流れる冷媒の循環率が20%を超えると、主減圧装置(暖房運転時おける暖房用膨張弁20、冷房運転時における冷房用膨張弁21)に入る冷媒温度(膨張弁前温度)が徐々に上昇し、中間圧部の冷媒温度も徐々に低下する。また、暖房運転時及び冷房運転時の成績係数も20%を超えると低下することがわかる。これは、補助回路に流れる冷媒量が多すぎて、補助熱交換器(暖房運転時における暖房用補助熱交換器17、冷房運転時における冷房用補助熱交換器18)において高圧側の冷媒と熱交換できない余剰分が発生するためであると考えられる。   However, when the circulation rate of the refrigerant flowing through the auxiliary circuit exceeds 20%, the refrigerant temperature (pre-expansion valve temperature) entering the main decompression device (the heating expansion valve 20 during the heating operation and the cooling expansion valve 21 during the cooling operation). ) Gradually increases, and the refrigerant temperature in the intermediate pressure portion also gradually decreases. Moreover, it turns out that the coefficient of performance at the time of heating operation and at the time of cooling operation will also fall if it exceeds 20%. This is because the amount of the refrigerant flowing through the auxiliary circuit is too large, and the auxiliary heat exchanger (the heating auxiliary heat exchanger 17 during the heating operation and the cooling auxiliary heat exchanger 18 during the cooling operation) has a high pressure side refrigerant and heat. This is thought to be because a surplus that cannot be exchanged occurs.

このように、主減圧装置(暖房運転時おける暖房用膨張弁20、冷房運転時における冷房用膨張弁21)に入る冷媒温度(膨張弁前温度)が最低値となる冷媒量(循環率)と中間圧部の冷媒温度が最高値となる冷媒量が一致し、このときの成績係数(COP)が良好な値となることから、空気調和装置をより効率よく運転するために、制御手段は前記補助減圧装置(暖房運転時における暖房用補助膨張弁15であり、冷房運転時における冷房用補助膨張弁16)の開度を以下のように制御するものとする。   Thus, the refrigerant amount (circulation rate) at which the refrigerant temperature (temperature before the expansion valve) entering the main decompression device (the heating expansion valve 20 during the heating operation and the cooling expansion valve 21 during the cooling operation) becomes the minimum value is obtained. Since the refrigerant amount at which the refrigerant temperature in the intermediate pressure portion reaches the maximum value coincides and the coefficient of performance (COP) at this time becomes a good value, in order to operate the air conditioner more efficiently, the control means The opening degree of the auxiliary pressure reducing device (the heating auxiliary expansion valve 15 during the heating operation and the cooling auxiliary expansion valve 16 during the cooling operation) is controlled as follows.

即ち、暖房運転時には、制御手段は前記冷媒温度センサ48Sにて検出される暖房用膨張弁20に入る冷媒の温度に基づいて、当該冷媒温度センサ48Sが検出する冷媒温度を冷媒回路10における冷媒の最低値となり、且つ、前記冷媒温度センサ30Sにて検出される圧縮機11の中間圧部である密閉容器30内の冷媒温度に基づいて、当該冷媒温度センサ30Sが検出する冷媒温度を冷媒回路10内における最高値なるように暖房用補助膨張弁15の開度を制御する。   That is, during the heating operation, the control means determines the refrigerant temperature detected by the refrigerant temperature sensor 48S based on the temperature of the refrigerant entering the heating expansion valve 20 detected by the refrigerant temperature sensor 48S. Based on the refrigerant temperature in the hermetic container 30 which is the lowest value and detected by the refrigerant temperature sensor 30S, which is the intermediate pressure part of the compressor 11, the refrigerant temperature detected by the refrigerant temperature sensor 30S is set to the refrigerant circuit 10. The opening degree of the auxiliary heating expansion valve 15 is controlled so as to be the highest value.

また、冷房運転時には、制御装置は前記冷媒温度センサ58Sにて検出される冷房用膨張弁21に入る冷媒温度に基づいて、当該冷媒温度センサ58Sにて検出される冷媒温度が最低値となり、且つ、冷媒温度センサ30Sにて検出される圧縮機11の中間圧部である密閉容器30内の冷媒温度に基づいて、当該冷媒温度センサ30Sにて検出される冷媒温度が最高値となるように冷房用補助膨張弁16の開度を制御する。   Further, during the cooling operation, the control device, based on the refrigerant temperature entering the cooling expansion valve 21 detected by the refrigerant temperature sensor 58S, has the lowest refrigerant temperature detected by the refrigerant temperature sensor 58S, and Based on the refrigerant temperature in the sealed container 30 that is the intermediate pressure part of the compressor 11 detected by the refrigerant temperature sensor 30S, the cooling is performed so that the refrigerant temperature detected by the refrigerant temperature sensor 30S becomes the maximum value. The opening degree of the auxiliary expansion valve 16 is controlled.

このように、暖房用補助膨張弁15及び冷房用補助膨張弁16を制御することで、図12に示すように成績係数(COP)が良好な値となる。これにより、低コストで空気調和装置を制御して、効率をより一層向上させることができるようになる。   Thus, by controlling the heating auxiliary expansion valve 15 and the cooling auxiliary expansion valve 16, the coefficient of performance (COP) becomes a good value as shown in FIG. Thus, the efficiency can be further improved by controlling the air conditioner at a low cost.

本発明の一実施例の空気調和装置の模式図である。It is a schematic diagram of the air conditioning apparatus of one Example of this invention. 図1の空気調和装置の冷媒回路の分流器の構造を示す図である。It is a figure which shows the structure of the flow shunt of the refrigerant circuit of the air conditioning apparatus of FIG. 他の分流器の構造を示す図である。It is a figure which shows the structure of another shunt. 図1の空気調和装置の暖房運転時における冷媒及び流体の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant and the fluid at the time of the heating operation of the air conditioning apparatus of FIG. 図4の冷媒回路の膨張弁及び電磁弁の動作を示す図である。It is a figure which shows operation | movement of the expansion valve and electromagnetic valve of the refrigerant circuit of FIG. 二酸化炭素冷媒とオイル(PAG)の温度変化に伴う密度を示した図である。It is the figure which showed the density accompanying the temperature change of a carbon dioxide refrigerant and oil (PAG). 二酸化炭素冷媒とオイル(PVE)の温度変化に伴う密度を示した図である。It is the figure which showed the density accompanying the temperature change of a carbon dioxide refrigerant and oil (PVE). 本発明の空気調和装置と従来の空気調和装置の暖房能力特性とを示す図である。It is a figure which shows the heating capability characteristic of the air conditioning apparatus of this invention, and the conventional air conditioning apparatus. 図1の空気調和装置の熱源加熱後の暖房運転時における流体の流れを示す図である。It is a figure which shows the flow of the fluid at the time of the heating operation after the heat source heating of the air conditioning apparatus of FIG. 図1の空気調和装置の冷房運転時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the cooling operation of the air conditioning apparatus of FIG. 本発明の空気調和装置と従来の空気調和装置の冷房能力特性とを示す図である。It is a figure which shows the air conditioning apparatus of this invention, and the air_conditioning | cooling capability characteristic of the conventional air conditioning apparatus. 補助回路を流れる冷媒の循環率の変化に伴う各部温度及び成績係数を示す図である。It is a figure which shows each part temperature and a coefficient of performance accompanying the change of the circulation rate of the refrigerant | coolant which flows through an auxiliary circuit.

符号の説明Explanation of symbols

1 廃熱利用回路
2 熱源
4 暖房用熱交換器
5 循環ポンプ
10 冷媒回路
11 圧縮機
12 カスケード熱交換器
13、14 分流器
15、16 補助減圧装置
17 内部熱交換器
20、21 主減圧装置
23 吸熱器(室外熱交換器)
24 冷房用熱交換器
30 密閉容器
32 第1の圧縮要素
34 第2の圧縮要素
70、75 補助回路
30S、41S、47S、48S、58S 冷媒温度センサ
DESCRIPTION OF SYMBOLS 1 Waste heat utilization circuit 2 Heat source 4 Heating heat exchanger 5 Circulation pump 10 Refrigerant circuit 11 Compressor 12 Cascade heat exchanger 13, 14 Divider 15, 16 Auxiliary decompression device 17 Internal heat exchanger 20, 21 Main decompression device 23 Heat absorber (outdoor heat exchanger)
24 Heat exchanger for cooling 30 Airtight container 32 First compression element 34 Second compression element 70, 75 Auxiliary circuit 30S, 41S, 47S, 48S, 58S Refrigerant temperature sensor

Claims (8)

熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて前記熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、前記廃熱利用回路を前記熱源から前記暖房用熱交換器に流れる流体と前記冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、
前記冷媒回路は、圧縮機、前記カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び前記被調和室外に設けられた吸熱器とを備え、前記圧縮機から吐出された冷媒を前記カスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を前記分流器にて分流し、一方の冷媒を前記補助減圧装置から前記内部熱交換器に流して前記カスケード熱交換器から出た後の冷媒と熱交換させた後、前記圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を前記主減圧装置から前記吸熱器に流した後、前記圧縮機の低圧部に吸い込ませることを特徴とする空気調和装置。
A fluid is circulated between the heat source and the heating heat exchanger, and the waste heat utilization circuit for using the waste heat of the heat source for heating the conditioned room in the heating heat exchanger, and carbon dioxide as a refrigerant. A refrigerant circuit having a supercritical pressure on the high-pressure side, and a cascade heat exchanger for exchanging heat between the fluid flowing from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit in the waste heat utilization circuit,
The refrigerant circuit includes a compressor, the cascade heat exchanger, a flow divider, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, and a heat absorber provided outside the conditioned room, and is discharged from the compressor. The refrigerant flowing out of the cascade heat exchanger, the refrigerant flowing out of the cascade heat exchanger is diverted by the diverter, and one of the refrigerants is made to flow from the auxiliary pressure reducing device to the internal heat exchanger to be converted into the cascade heat. After exchanging heat with the refrigerant that has come out of the exchanger, the refrigerant is sucked into the intermediate pressure portion of the compressor, and the other refrigerant that has been divided is passed from the main decompressor to the heat absorber, and then the low pressure of the compressor An air conditioner characterized by being sucked into a part.
熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて前記熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、前記廃熱利用回路を前記熱源から前記暖房用熱交換器に流れる流体と前記冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、
前記冷媒回路は、圧縮機、前記カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置及び前記被調和室を冷房するための冷房用熱交換器とを備え、前記圧縮機から吐出された冷媒を前記カスケード熱交換器に流すと共に、当該カスケード熱交換器を出た冷媒を前記分流器にて分流し、一方の冷媒を前記補助減圧装置から前記内部熱交換器に流して前記カスケード熱交換器から出た後の冷媒と熱交換させた後、前記圧縮機の中間圧部に吸い込ませ、分流した他方の冷媒を前記主減圧装置から前記冷房用熱交換器に流した後、前記圧縮機の低圧部に吸い込ませることを特徴とする空気調和装置。
A fluid is circulated between the heat source and the heating heat exchanger, and the waste heat utilization circuit for using the waste heat of the heat source for heating the conditioned room in the heating heat exchanger, and carbon dioxide as a refrigerant. A refrigerant circuit having a supercritical pressure on the high-pressure side, and a cascade heat exchanger for exchanging heat between the fluid flowing from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit in the waste heat utilization circuit,
The refrigerant circuit includes a compressor, the cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, and a cooling heat exchanger for cooling the conditioned room, and the compression circuit The refrigerant discharged from the machine is caused to flow to the cascade heat exchanger, the refrigerant that has left the cascade heat exchanger is diverted by the diverter, and one refrigerant is allowed to flow from the auxiliary pressure reducing device to the internal heat exchanger. Heat exchange with the refrigerant after exiting from the cascade heat exchanger, and then sucked into the intermediate pressure portion of the compressor, and the other divided refrigerant was allowed to flow from the main decompression device to the cooling heat exchanger. Thereafter, the air conditioner is sucked into a low pressure portion of the compressor.
熱源と暖房用熱交換器とに流体を循環させ、当該暖房用熱交換器にて前記熱源の廃熱を被調和室の暖房に利用するための廃熱利用回路と、冷媒として二酸化炭素を用い、高圧側が超臨界圧力となる冷媒回路と、前記廃熱利用回路を前記熱源から前記暖房用熱交換器に流れる流体と前記冷媒回路の冷媒とを熱交換させるカスケード熱交換器とから構築され、
前記冷媒回路は、圧縮機、前記カスケード熱交換器、分流器、補助減圧装置、内部熱交換器、主減圧装置、前記被調和室外に設けられた吸熱器及び前記被調和室を冷房するための冷房用熱交換器とを備え、前記圧縮機から吐出された冷媒を前記カスケード熱交換器に流し、当該カスケード熱交換器を出た冷媒を前記分流器にて分流し、一方の冷媒を前記補助減圧装置から前記内部熱交換器に流して前記カスケード熱交換器から出た後の冷媒と熱交換させた後、前記圧縮機の中間圧部に吸い込ませると共に、暖房時には分流した他方の冷媒を前記主減圧装置から前記吸熱器に流した後、前記圧縮機の低圧部に吸い込ませ、冷房時には分流した他方の冷媒を前記主減圧装置から前記冷房用熱交換器に流した後、前記圧縮機の低圧部に吸い込ませることを特徴とする空気調和装置。
A fluid is circulated between the heat source and the heating heat exchanger, and the waste heat utilization circuit for using the waste heat of the heat source for heating the conditioned room in the heating heat exchanger, and carbon dioxide as a refrigerant. A refrigerant circuit having a supercritical pressure on the high-pressure side, and a cascade heat exchanger for exchanging heat between the fluid flowing from the heat source to the heat exchanger for heating and the refrigerant in the refrigerant circuit in the waste heat utilization circuit,
The refrigerant circuit is for cooling a compressor, the cascade heat exchanger, a shunt, an auxiliary pressure reducing device, an internal heat exchanger, a main pressure reducing device, a heat absorber provided outside the conditioned room, and the conditioned room. A cooling heat exchanger, the refrigerant discharged from the compressor is allowed to flow to the cascade heat exchanger, the refrigerant that has exited the cascade heat exchanger is diverted by the flow divider, and one of the refrigerants is the auxiliary After flowing from the decompression device to the internal heat exchanger and exchanging heat with the refrigerant after exiting from the cascade heat exchanger, the refrigerant is sucked into the intermediate pressure portion of the compressor, and the other refrigerant divided during heating is After flowing from the main pressure reducing device to the heat absorber, the refrigerant is sucked into the low pressure portion of the compressor, and the other refrigerant separated during cooling is flowed from the main pressure reducing device to the cooling heat exchanger. Inhale into the low pressure part An air conditioning apparatus characterized by and.
前記内部熱交換器は、前記補助減圧装置を経た前記一方の冷媒と、前記カスケード熱交換器から出て且つ前記分流器にて分流される前の冷媒とを熱交換させることを特徴とする請求項1乃至請求項3の何れかに記載の空気調和装置。   The internal heat exchanger exchanges heat between the one refrigerant that has passed through the auxiliary pressure reducing device and the refrigerant that has exited the cascade heat exchanger and has not been divided by the flow divider. The air conditioner according to any one of claims 1 to 3. 前記分流器の上部及び下部から前記一方の冷媒を分流させることを特徴とする請求項1乃至請求項4の何れかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 4, wherein the one refrigerant is divided from an upper part and a lower part of the flow divider. 前記圧縮機は低段側圧縮手段と高段側圧縮手段とを備え、前記吸熱器又は冷房用熱交換器を出た冷媒を前記低段側圧縮手段に吸い込ませ、該低段側圧縮手段にて圧縮された中間圧の冷媒を、前記内部熱交換器を出た前記一方の冷媒と共に前記高段側圧縮手段に吸い込ませると共に、前記低段側圧縮手段の排除容積に対する前記高段側圧縮手段の排除容積の比を、70%以上85%以下としたことを特徴とする空気調和装置。   The compressor includes a low-stage compression unit and a high-stage compression unit, and the refrigerant discharged from the heat absorber or the heat exchanger for cooling is sucked into the low-stage compression unit, and the low-stage compression unit The compressed intermediate pressure refrigerant is sucked into the high stage compression means together with the one refrigerant exiting the internal heat exchanger, and the high stage compression means with respect to the excluded volume of the low stage compression means An air conditioner in which the ratio of the excluded volume is 70% or more and 85% or less. 前記主減圧装置に入る冷媒の温度を検出する温度検出手段を備え、該温度検出手段が検出する温度を最低値とするように前記補助減圧装置の開度を制御することを特徴とする請求項1乃至請求項6の何れかに記載の空気調和装置。   The temperature detecting means for detecting the temperature of the refrigerant entering the main pressure reducing device is provided, and the opening degree of the auxiliary pressure reducing device is controlled so that the temperature detected by the temperature detecting means becomes a minimum value. The air conditioning apparatus according to any one of claims 1 to 6. 前記圧縮機の中間圧部の冷媒の温度を検出する温度検出手段を備え、該温度検出手段が検出する温度が最高値となるように前記補助減圧装置の開度を制御することを特徴とする請求項1乃至請求項7の何れかに記載の空気調和装置。   Temperature detecting means for detecting the temperature of the refrigerant in the intermediate pressure portion of the compressor is provided, and the opening of the auxiliary pressure reducing device is controlled so that the temperature detected by the temperature detecting means becomes the maximum value. The air conditioning apparatus according to any one of claims 1 to 7.
JP2006022429A 2006-01-31 2006-01-31 Air conditioner Withdrawn JP2007205595A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006022429A JP2007205595A (en) 2006-01-31 2006-01-31 Air conditioner
DE602007001038T DE602007001038D1 (en) 2006-01-31 2007-01-29 air conditioning
EP07001908A EP1813887B1 (en) 2006-01-31 2007-01-29 Air conditioning device
US11/700,247 US7716934B2 (en) 2006-01-31 2007-01-31 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022429A JP2007205595A (en) 2006-01-31 2006-01-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP2007205595A true JP2007205595A (en) 2007-08-16

Family

ID=38485220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022429A Withdrawn JP2007205595A (en) 2006-01-31 2006-01-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP2007205595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107162A (en) * 2007-10-29 2009-05-21 Seiko Epson Corp Liquid jet head
JP2010210133A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Refrigerating cycle device
CN102252445A (en) * 2010-05-20 2011-11-23 Lg电子株式会社 Hot water supply device associated with heat pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107162A (en) * 2007-10-29 2009-05-21 Seiko Epson Corp Liquid jet head
JP2010210133A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Refrigerating cycle device
CN102252445A (en) * 2010-05-20 2011-11-23 Lg电子株式会社 Hot water supply device associated with heat pump
WO2011145779A1 (en) * 2010-05-20 2011-11-24 Lg Electronics Inc. Hot water supply device associated with heat pump
KR101190492B1 (en) 2010-05-20 2012-10-12 엘지전자 주식회사 Hot water supply device associated with heat pump
US9347683B2 (en) 2010-05-20 2016-05-24 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
US9416990B2 (en) 2010-05-20 2016-08-16 Lg Electronics Inc. Hot water supply apparatus associated with heat pump

Similar Documents

Publication Publication Date Title
EP1813887B1 (en) Air conditioning device
CN108369042B (en) Refrigeration cycle device
JP6852642B2 (en) Heat pump cycle
JP3928470B2 (en) Air conditioner for vehicles
JP5533207B2 (en) Heat pump cycle
JP3928471B2 (en) Air conditioner for vehicles
WO2015194107A1 (en) Refrigeration cycle device
JP6087744B2 (en) refrigerator
WO2008032645A1 (en) Refrigeration device
JP2009270748A (en) Refrigerating device
JPWO2009087733A1 (en) Refrigeration cycle equipment and four-way valve
JP2010236706A (en) Air conditioner
JP2019100688A (en) Heat pump system
JP2013203221A (en) Air conditioner for vehicle
JP2007205596A (en) Air conditioner
JP2005016747A (en) Refrigeration cycle device
KR20060122037A (en) Air cycle for car air conditioning system
JP4156422B2 (en) Refrigeration cycle equipment
CN114025977B (en) Refrigeration cycle device
EP3770531A1 (en) Air-conditioning apparatus
JP5895662B2 (en) Refrigeration equipment
JP2007205595A (en) Air conditioner
JP5999624B2 (en) Accumulator and air conditioner using the same
JP2018192968A (en) Air-conditioning system for vehicle
JP2005289095A (en) Vehicular air-conditioner

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090713