JPWO2009087733A1 - Refrigeration cycle equipment and four-way valve - Google Patents

Refrigeration cycle equipment and four-way valve Download PDF

Info

Publication number
JPWO2009087733A1
JPWO2009087733A1 JP2009548813A JP2009548813A JPWO2009087733A1 JP WO2009087733 A1 JPWO2009087733 A1 JP WO2009087733A1 JP 2009548813 A JP2009548813 A JP 2009548813A JP 2009548813 A JP2009548813 A JP 2009548813A JP WO2009087733 A1 JPWO2009087733 A1 JP WO2009087733A1
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
refrigerant
way valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009548813A
Other languages
Japanese (ja)
Inventor
村上 泰城
泰城 村上
牧野 浩招
浩招 牧野
斎藤 直
直 斎藤
早丸 靖英
靖英 早丸
和英 山本
和英 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2009087733A1 publication Critical patent/JPWO2009087733A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/0655Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with flat slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1223Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being acted upon by the circulating fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Abstract

この発明は、流体の流れ方向を切り替える切替手段を駆動する駆動装置の数を減らし、冷凍サイクル装置のコンパクト化や制御の簡易化を実現することを目的とする。また、駆動装置の要らない四方弁を提供することを目的とする。この発明に係る冷凍サイクル装置は、圧縮機23、第1の熱交換器25、減圧経路22、および第2の熱交換器26を配管により接続して形成される主経路、弁体の位置を移動させて内部の流路を切り替え、主経路を流れる流体の流れ方向を切り替える主四方弁24、および弁体の位置を移動させて内部の流路を切り替え、主四方弁24により切り替えられた流れ方向を局所的に切り替える従属四方弁1を備え、主四方弁24は電力を利用して弁体を駆動し、従属四方弁1は主四方弁24による流れ方向の切り替えにより主経路に発生する圧力変化を用いて弁体を駆動する。It is an object of the present invention to reduce the number of driving devices that drive switching means for switching the fluid flow direction, and to realize a compact refrigeration cycle device and simplified control. Moreover, it aims at providing the four-way valve which does not require a drive device. In the refrigeration cycle apparatus according to the present invention, the main path formed by connecting the compressor 23, the first heat exchanger 25, the decompression path 22, and the second heat exchanger 26 by piping, and the position of the valve body are arranged. The flow path switched by the main four-way valve 24 by switching the internal flow path, switching the flow direction of the fluid flowing through the main path, and the main four-way valve 24 switching the position of the valve body The sub four-way valve 1 that switches the direction locally is provided, the main four-way valve 24 drives the valve body by using electric power, and the sub four-way valve 1 is pressure generated in the main path by switching the flow direction by the main four-way valve 24. The valve body is driven using the change.

Description

本発明は、冷凍サイクル装置および四方弁に関するものである。   The present invention relates to a refrigeration cycle apparatus and a four-way valve.

従来の冷凍サイクル装置(空気調和機)では、圧縮機、第1の熱交換器、第1の減圧装置、気液分離器、第2の減圧装置、第2の熱交換器を配管で順次接続した主経路と、気液分離器で分離された気相冷媒を圧縮機に戻すガスインジェクション経路とで冷媒回路を構成している。また、圧縮機から吐出した冷媒を第1の熱交換器に流す冷房運転と、前記冷媒を第2の熱交換器に流す暖房運転とを切り替える第1の切替手段と、第1の減圧装置、気液分離器、および第2の減圧装置を備えた減圧流路(減圧経路)の出入口に設けられた第2の切替手段とを備えている。
第1の切替手段により切り替えられた流れ方向を、第2の切替手段によって局所的に切り替えることにより、冷房運転および暖房運転のいずれにおいても、気液分離器を備えた減圧経路を通過する冷媒の流れ方向が一定になる。また、ガスインジェクション経路による効果を用いて、エネルギ効率を向上するようにしている。
このような空気調和機においては、第1の切替手段および第2の切替手段に四方弁が用いられる(例えば、特許文献1参照。)。
In a conventional refrigeration cycle apparatus (air conditioner), a compressor, a first heat exchanger, a first pressure reducing device, a gas-liquid separator, a second pressure reducing device, and a second heat exchanger are sequentially connected by piping. A refrigerant circuit is configured by the main path and the gas injection path for returning the gas-phase refrigerant separated by the gas-liquid separator to the compressor. A first switching means for switching between a cooling operation in which the refrigerant discharged from the compressor flows to the first heat exchanger and a heating operation in which the refrigerant flows to the second heat exchanger; a first decompression device; A gas-liquid separator, and a second switching means provided at the entrance / exit of the decompression flow path (decompression path) provided with the second decompression device.
The flow direction switched by the first switching unit is locally switched by the second switching unit, so that the refrigerant passing through the decompression path including the gas-liquid separator can be used in both the cooling operation and the heating operation. The flow direction is constant. In addition, energy efficiency is improved by using the effect of the gas injection path.
In such an air conditioner, a four-way valve is used for the first switching means and the second switching means (see, for example, Patent Document 1).

また、従来の四方弁は、両端に一対のピストンを有し、そのピストン軸に連結された弁体が設けられると共に、高圧配管と低圧配管と一対の配管とが接続された弁室と、弁室の両端に形成される一対のシリンダ室と、一対のシリンダ室に連結された一対の導管と、高圧配管に連結された高圧導管と、低圧配管に連結された低圧導管を備えており、一対の導管、高圧導管、および低圧導管を電磁弁に接続している。電磁弁では選択的に高圧配管を一対の導管のうちの一方の導管に接続するとともに、低圧配管を他方の導管に接続するようにしており、電磁弁の切り替えにより各シリンダ室の圧力を切り替え、弁体を軸方向に選択的に摺動させて流れ方向を切り替えている(例えば、特許文献2参照。)。   A conventional four-way valve has a pair of pistons at both ends, a valve body connected to the piston shaft is provided, a valve chamber in which a high pressure pipe, a low pressure pipe, and a pair of pipes are connected, and a valve A pair of cylinder chambers formed at both ends of the chamber, a pair of conduits connected to the pair of cylinder chambers, a high-pressure conduit connected to the high-pressure piping, and a low-pressure conduit connected to the low-pressure piping, , High pressure and low pressure conduits are connected to the solenoid valve. In the solenoid valve, the high-pressure pipe is selectively connected to one of the pair of pipes, and the low-pressure pipe is connected to the other pipe. The pressure of each cylinder chamber is switched by switching the solenoid valve, The flow direction is switched by selectively sliding the valve body in the axial direction (see, for example, Patent Document 2).

また、別の従来の四方弁では、前記電磁弁の代わりに、両端部にヒーターなどの定温度発熱体が接合された緩動作素子を設け、このような緩動作素子を用いて弁体を軸方向に移動させ、流れ方向を切り替えている(例えば、特許文献3参照。)。   In another conventional four-way valve, instead of the solenoid valve, a slow operation element having a constant temperature heating element such as a heater is provided at both ends, and the valve body is pivoted using such a slow operation element. The direction of flow is switched (for example, see Patent Document 3).

特開2001−241797号公報(段落〔0019〕〜〔0029〕、図1)JP 2001-241797 (paragraphs [0019] to [0029], FIG. 1) 特開2002−250457号公報(段落〔0016〕、図9)Japanese Unexamined Patent Publication No. 2002-250457 (paragraph [0016], FIG. 9) 特許第2757997号(図1)Japanese Patent No. 2757997 (FIG. 1)

このような空気調和機にあっては、冷房運転と暖房運転のいずれにおいても減圧経路を通過する冷媒の流れ方向を一定にするために、冷媒回路に2個の切替手段(四方弁)を配置する必要があるが、従来の四方弁を用いて、選択的に冷媒の流れ方向を切り替えるためには、各四方弁に対し、電磁弁または定温度発熱体などの電力を利用した駆動装置が必要となる。このため、冷媒回路に2個の駆動装置と、駆動装置を動作させるための制御部や配線を設ける必要があり、空気調和機が大きくなるとともに、制御が複雑になるという問題があった。   In such an air conditioner, two switching means (four-way valves) are arranged in the refrigerant circuit in order to make the flow direction of the refrigerant passing through the decompression path constant in both the cooling operation and the heating operation. However, in order to selectively switch the flow direction of the refrigerant using a conventional four-way valve, a driving device using electric power such as an electromagnetic valve or a constant temperature heating element is required for each four-way valve. It becomes. For this reason, it is necessary to provide two drive units and a control unit and wiring for operating the drive units in the refrigerant circuit, and there is a problem that the air conditioner becomes large and the control becomes complicated.

この発明は、前記のような問題点を解決するためになされたものであり、切替手段を駆動するための駆動装置の数を減らすことで、冷凍サイクル装置のコンパクト化や制御の簡易化を実現できる冷凍サイクル装置を得ることを目的とする。
また、駆動装置の要らない切替手段(四方弁)を提供することを目的とする。
The present invention has been made to solve the above-described problems, and by reducing the number of driving devices for driving the switching means, the refrigeration cycle device can be made compact and simplified. It aims at obtaining the refrigerating cycle device which can be performed.
It is another object of the present invention to provide switching means (four-way valve) that does not require a driving device.

この発明に係る冷凍サイクル装置は、圧縮機、第1の熱交換器、減圧経路、および第2の熱交換器を複数の配管により接続して形成される主経路、および前記主経路に設置され、前記主経路の少なくとも3つの配管を接続すると共に、弁体の位置を移動させて内部の流路を切り替え、前記主経路を流れる流体の流れ方向を切り替える切替手段を備えた冷凍サイクル装置であって、前記切替手段は、電力を利用して前記弁体を駆動する少なくとも1つの主切替手段と、前記主切替手段による前記主経路の流れ方向の切り替えにより前記主経路に発生する圧力変化を用いて前記弁体を駆動する少なくとも1つの従属切替手段とを有するものである。   A refrigeration cycle apparatus according to the present invention is installed in a main path formed by connecting a compressor, a first heat exchanger, a decompression path, and a second heat exchanger by a plurality of pipes, and the main path. The refrigeration cycle apparatus includes a switching unit that connects at least three pipes of the main path, switches a flow path of the valve body to switch an internal flow path, and switches a flow direction of fluid flowing through the main path. The switching means uses at least one main switching means for driving the valve element using electric power, and a pressure change generated in the main path by switching the flow direction of the main path by the main switching means. And at least one subordinate switching means for driving the valve body.

また、この発明に係る四方弁は、本体内を気密状に摺動する一対のピストン、前記ピストン間に設けられた弁室、前記弁室内の弁座面との間に切替通路を形成し、前記ピストンと連動して前記弁座面を摺動する弁体、前記ピストンを介して前記弁室の両側にそれぞれ設けた一対のシリンダ室、前記弁室に常時連通の第1の配管、前記弁座面に開口し、前記切替通路に常時連通の第2の配管、前記弁座面に開口し、前記弁体の切替移動によって互いに相反する関係で前記弁室あるいは前記切替通路のいずれかに連通接続する第3の配管および第4の配管、並びに前記一対のシリンダ室にそれぞれ接続し、一方が前記第3の配管に、他方が前記第4の配管に接続する一対の導管を備えた四方弁であって、前記第3の配管および前記第4の配管にそれぞれ流れる流体の圧力の大小関係の変化により前記弁体を駆動するものである。   Further, the four-way valve according to the present invention forms a switching passage between a pair of pistons that slide in an airtight manner in the main body, a valve chamber provided between the pistons, and a valve seat surface in the valve chamber, A valve body that slides on the valve seat surface in conjunction with the piston, a pair of cylinder chambers provided on both sides of the valve chamber via the piston, a first pipe that is always in communication with the valve chamber, the valve A second pipe that opens to the seat surface and is always in communication with the switching passage, opens to the valve seat surface, and communicates with either the valve chamber or the switching passage in a mutually contradictory relationship due to the switching movement of the valve body. Four-way valve comprising a third pipe and a fourth pipe to be connected, and a pair of conduits connected to the pair of cylinder chambers, one connected to the third pipe and the other to the fourth pipe And the third pipe and the fourth pipe are connected to each other. It is intended to drive the valve body by a change in magnitude of the pressure of the fluid flowing through, respectively.

この発明に係る冷凍サイクル装置によれば、流体の流れ方向を切り替える切替手段を駆動するための駆動装置の数が少なくなるため、冷凍サイクル装置をコンパクト化することができ、また制御を簡易化できるという効果がある。   According to the refrigeration cycle apparatus according to the present invention, since the number of drive devices for driving the switching means for switching the fluid flow direction is reduced, the refrigeration cycle apparatus can be made compact and the control can be simplified. There is an effect.

また、この発明に係る四方弁によれば、駆動装置がなくても、流体の流れ方向の変化に応じて発生する圧力変化を利用して流路を切り替えることができるので、四方弁を小型にでき、また四方弁の制御を簡易化できるという効果がある。   In addition, according to the four-way valve according to the present invention, the flow path can be switched using a pressure change generated according to a change in the fluid flow direction without a driving device, so the four-way valve can be made compact. It is also possible to simplify the control of the four-way valve.

この発明の実施の形態1に係わる従属四方弁の断面構成図である。It is a section lineblock diagram of a subordinate four-way valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる従属四方弁の断面構成図である。It is a section lineblock diagram of a subordinate four-way valve concerning Embodiment 1 of this invention. この発明の実施の形態1による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態1による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 1 of this invention. この発明の実施の形態2による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 2 of this invention. この発明の実施の形態2による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 2 of this invention. この発明の実施の形態3による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 3 of this invention. この発明の実施の形態3による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 3 of this invention. この発明の実施の形態4による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 4 of this invention. この発明の実施の形態4による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 4 of this invention. この発明の実施の形態5による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 5 of this invention. この発明の実施の形態5による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 5 of this invention. この発明の実施の形態6による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 6 of this invention. この発明の実施の形態6による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 6 of this invention. この発明の実施の形態7による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 7 of this invention. この発明の実施の形態7による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 7 of this invention. この発明の実施の形態8による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 8 of this invention. この発明の実施の形態8による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 8 of this invention. この発明の実施の形態9による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 9 of this invention. この発明の実施の形態9による空気調和機の圧力−エンタルピ線図である。It is a pressure-enthalpy diagram of the air conditioner by Embodiment 9 of this invention. この発明の実施の形態10による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 10 of this invention. この発明の実施の形態11による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 11 of this invention. この発明の実施の形態11による空気調和器の熱交換器を通過する冷媒の流れ方向を示す図である。It is a figure which shows the flow direction of the refrigerant | coolant which passes the heat exchanger of the air conditioner by Embodiment 11 of this invention. この発明の実施の形態12による空気調和器の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner by Embodiment 12 of this invention. この発明の実施の形態1〜12に係わる従属四方弁の変形例を示す図である。It is a figure which shows the modification of the dependent four-way valve concerning Embodiment 1-12 of this invention. この発明の実施の形態1〜12に係わる従属四方弁の変形例を示す図である。It is a figure which shows the modification of the dependent four-way valve concerning Embodiment 1-12 of this invention. 従来の空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of the conventional air conditioner. 従来の空気調和機の熱交換器を通過する冷媒の流れ方向を示す図である。It is a figure which shows the flow direction of the refrigerant | coolant which passes the heat exchanger of the conventional air conditioner.

符号の説明Explanation of symbols

1 四方弁、2 四方弁本体、3 弁室、4 第1の配管、5 第2の配管、6 第3の配管、7 第4の配管、8 第1のピストン、9 第2のピストン、10 ピストン軸、11 弁体、11a 折り返し流路、12 切替弁、13 第1のシリンダ室、14 第2のシリンダ室、15 第1の導管、16 第2の導管、17 第1の連通穴、18 第2の連通穴、19 第1の端蓋、20 第2の端蓋、21 弁座、22 減圧経路、23 圧縮機、24 主四方弁、25 室外熱交換器、26 室内熱交換器、27 前段熱交換器、28 後段熱交換器、29 再熱除湿用絞り、30 第1の減圧装置、31 第2の減圧装置、32 気液分離器、33 インジェクション用流量制御弁、34 吐出配管、35 吸入配管、36 インジェクション配管、37 室外側ガス配管、38 室外側液配管、39 室内側ガス配管、40 室内側液配管、41 流入配管、42 流出配管、43 電磁弁、44 吐出側接続口、45 吸込み側接続口、46 第1の接続口、47 第2の接続口、48 再熱除湿用開閉弁、49 気液分離用バイパス配管、50 気液分離用開閉弁、51 気液分離用逆止弁、52 気液分離用キャピラリチューブ、53 第1の過冷却熱交換器、54 過冷却用減圧装置、55 過冷却用インジェクション配管、56 過冷却用開閉弁、57 過冷却用逆止弁、58 過冷却用キャピラリチューブ、59 ノズル、60 ディフューザー、61 エジェクタ、62 エジェクタ用配管、63 エジェクタ用減圧装置、64 気液分離用戻し流量弁、65 第2の過冷却用熱交換器、66 空気の流れ方向、67 フィン、68 伝熱管、69 フィンアンドチューブ熱交換器、70 過冷却用バイパス配管、71 気液分離用戻し配管、72 膨張機、73 膨張動力伝達手段、74 副圧縮機、75 膨張用バイパス配管、76 膨張用流量制御弁、77 第1の連通路、78 第2の連通路。   DESCRIPTION OF SYMBOLS 1 4-way valve, 2 4-way valve main body, 3 Valve chamber, 4 1st piping, 5 2nd piping, 6 3rd piping, 7 4th piping, 8 1st piston, 9 2nd piston, 10 Piston shaft, 11 Valve body, 11a Folding flow path, 12 Switching valve, 13 First cylinder chamber, 14 Second cylinder chamber, 15 First conduit, 16 Second conduit, 17 First communication hole, 18 Second communication hole, 19 First end cover, 20 Second end cover, 21 Valve seat, 22 Pressure reducing path, 23 Compressor, 24 Main four-way valve, 25 Outdoor heat exchanger, 26 Indoor heat exchanger, 27 Pre-stage heat exchanger, 28 Post-stage heat exchanger, 29 Reheat dehumidification throttle, 30 First decompression device, 31 Second decompression device, 32 Gas-liquid separator, 33 Injection flow control valve, 34 Discharge piping, 35 Suction piping, 36 injection piping, 37 Outdoor gas piping, 38 Outdoor liquid piping, 39 Indoor gas piping, 40 Indoor liquid piping, 41 Inflow piping, 42 Outflow piping, 43 Solenoid valve, 44 Discharge side connection port, 45 Suction side connection port, 46 1st Connection port, 47 second connection port, 48 reheat dehumidification on-off valve, 49 gas-liquid separation bypass piping, 50 gas-liquid separation on-off valve, 51 gas-liquid separation check valve, 52 gas-liquid separation capillary Tube, 53 1st supercooling heat exchanger, 54 Supercooling decompression device, 55 Supercooling injection piping, 56 Supercooling on-off valve, 57 Supercooling check valve, 58 Supercooling capillary tube, 59 Nozzle , 60 diffuser, 61 ejector, 62 ejector piping, 63 ejector decompression device, 64 gas-liquid separation return flow valve, 65 second supercooling heat exchanger, 66 air Flow direction, 67 fins, 68 heat transfer tubes, 69 fin-and-tube heat exchanger, 70 supercooling bypass piping, 71 gas-liquid separation return piping, 72 expander, 73 expansion power transmission means, 74 subcompressor, 75 expansion Bypass piping, 76 expansion flow control valve, 77 first communication path, 78 second communication path.

実施の形態1.
図1は、本実施の形態1による空気調和機に搭載される従属切替手段1を示す断面構成図である。本実施の形態の従属切替手段1は四方弁で構成されているが、流路を切り替える弁体11を電力で駆動するのではなく、主経路の流れ方向を変えた際に発生する圧力変化を利用して弁体11を駆動し、主経路の流れ方向の変化に応じて流路が切り替わるようにしている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional configuration diagram showing the subordinate switching means 1 mounted on the air conditioner according to the first embodiment. Although the subordinate switching means 1 of the present embodiment is constituted by a four-way valve, the pressure change that occurs when the flow direction of the main path is changed is not driven by the electric power of the valve body 11 that switches the flow path. The valve body 11 is driven by using it, and the flow path is switched according to the change in the flow direction of the main path.

図1において、従属四方弁1は、内径約20mmの円筒形の切替手段本体(四方弁本体)2の両端に、第1の端蓋19と第2の端蓋20とを備え、四方弁本体2の円周面に内径約9mmの第1の配管4を、また、第1の配管4と対向する円周面に内径約9mmの第2の配管5を、さらに、第2の配管5の両側に内径約9mmの第3の配管6と内径約9mmの第4の配管7とを設置する。また、四方弁本体2内に貫通した第2の配管5と第3の配管6と第4の配管7との端部には、それぞれの配管と四方弁本体2とを連通するように、3つの連通穴を有する弁座21が設けられ、弁座21の座上には弁体11が備えられている。
弁体11は弁座21に対向する面部が凹状に窪んでおり、弁体11が弁座21の座面上を摺動して移動することによって第3の配管6または第4の配管7のどちらか一方と第2の配管5とが連通するようになる。このとき弁体11の内側は折り返し流路(切替通路)11aとなる。
In FIG. 1, a dependent four-way valve 1 includes a first end cover 19 and a second end cover 20 at both ends of a cylindrical switching means body (four-way valve body) 2 having an inner diameter of about 20 mm. The first pipe 4 having an inner diameter of about 9 mm is provided on the circumferential surface of 2, the second pipe 5 having an inner diameter of about 9 mm is provided on the circumferential surface opposite to the first pipe 4, and the second pipe 5 A third pipe 6 having an inner diameter of about 9 mm and a fourth pipe 7 having an inner diameter of about 9 mm are installed on both sides. Further, end portions of the second pipe 5, the third pipe 6 and the fourth pipe 7 penetrating into the four-way valve body 2 are connected to the respective pipes and the four-way valve body 2 so as to communicate with each other. A valve seat 21 having one communication hole is provided, and a valve body 11 is provided on the seat of the valve seat 21.
The valve body 11 has a concave surface portion facing the valve seat 21, and the valve body 11 slides on the seat surface of the valve seat 21 to move the third pipe 6 or the fourth pipe 7. Either one and the second pipe 5 communicate with each other. At this time, the inside of the valve body 11 serves as a folded flow path (switching passage) 11a.

四方弁本体2の内側には、四方弁本体2内を気密状に摺動できる1対のピストン(第1のピストン8と第2のピストン9)を備えており、第1のピストン8と第2のピストン9と弁体11とを、第1の連通穴17と第2の連通穴18とを有する板状のピストン軸10で連結して切替弁12を形成している。なお、ピストン軸10が棒状の場合は、ピストン軸10と四方弁本体2の間に空間を有するため、第1の連通穴17および第2の連通穴18を備えなくてもよい。
切替弁12が四方弁本体2の内側を軸方向に摺動するとき、弁体11は弁座21の座面上を摺動する。
Inside the four-way valve body 2, a pair of pistons (first piston 8 and second piston 9) that can slide in an airtight manner in the four-way valve body 2 are provided. The switching valve 12 is formed by connecting the two pistons 9 and the valve body 11 with a plate-like piston shaft 10 having a first communication hole 17 and a second communication hole 18. In addition, when the piston shaft 10 is rod-shaped, since there is a space between the piston shaft 10 and the four-way valve body 2, the first communication hole 17 and the second communication hole 18 may not be provided.
When the switching valve 12 slides in the axial direction inside the four-way valve body 2, the valve body 11 slides on the seat surface of the valve seat 21.

また、四方弁本体2の内部は、四方弁本体2、第1のピストン8、第2のピストン9、ピストン軸10、弁体11、および弁座21によって仕切られる弁室3と、四方弁本体2、第1の端蓋19、および第1のピストン8によって仕切られる第1のシリンダ室13と、四方弁本体2、第2の端蓋20、および第2のピストン9によって仕切られる第2のシリンダ室14と、弁体11と弁座21で仕切られる折り返し流路11aに区分することができる。   The four-way valve body 2 includes a valve chamber 3 partitioned by the four-way valve body 2, the first piston 8, the second piston 9, the piston shaft 10, the valve body 11, and the valve seat 21, and the four-way valve body. 2, a first cylinder chamber 13 partitioned by the first end lid 19 and the first piston 8, and a second partition partitioned by the four-way valve body 2, the second end lid 20 and the second piston 9. It can be divided into a cylinder chamber 14, a folded flow path 11 a partitioned by the valve body 11 and the valve seat 21.

また、第1の端蓋19と第3の配管6を連通するように内径約2mmの第1の導管15が備えられ、また、第2の端蓋20と第4の配管7を連通するように内径約2mmの第2の導管16が備えられており、第1のシリンダ室13の圧力が第3の配管6の圧力とほぼ等しくなり、第2のシリンダ室14の圧力が第4の配管7の圧力とほぼ等しくなる。   Further, a first conduit 15 having an inner diameter of about 2 mm is provided so as to communicate the first end lid 19 and the third pipe 6, and the second end lid 20 and the fourth pipe 7 are communicated. Is provided with a second conduit 16 having an inner diameter of about 2 mm, the pressure in the first cylinder chamber 13 is substantially equal to the pressure in the third pipe 6, and the pressure in the second cylinder chamber 14 is the fourth pipe. 7 is almost equal to the pressure.

次に、図1、図2を用いて、従属四方弁1の動作を説明する。図1は切替弁12が第1の端蓋19の側に移動した場合で、図2は切替弁12が第2の端蓋20の側に移動した場合に相当する。第1の配管4、第2の配管5、第3の配管6、および第4の配管7は、冷媒回路を構成する配管と連結し、それぞれの配管内を冷媒が通過するが、冷媒回路についての説明は後述するとして、はじめに、従属四方弁1の動作について説明する。   Next, operation | movement of the subordinate four-way valve 1 is demonstrated using FIG. 1, FIG. FIG. 1 shows a case where the switching valve 12 moves to the first end lid 19 side, and FIG. 2 corresponds to a case where the switching valve 12 moves to the second end lid 20 side. The first pipe 4, the second pipe 5, the third pipe 6, and the fourth pipe 7 are connected to the pipes constituting the refrigerant circuit, and the refrigerant passes through the respective pipes. First, the operation of the dependent four-way valve 1 will be described.

まず、切替弁12の初期状態が図1で、図1から図2の状態に変化するときの動作について説明する。
図1において、第3の配管6および第4の配管7の圧力が変化し、第3の配管6の圧力が第4の配管7の圧力よりも高くなると、第1のシリンダ室13の圧力が第2のシリンダ室14の圧力よりも高くなるため、切替弁12は第2の端蓋20の側へ移動し、図2の状態となる。このとき、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。また、第1のシリンダ室13では、第1の導管15を介して第3の配管6から流体が供給され、第2のシリンダ室14では、第2の導管16を介して第4の配管7に流体が流出する。
また、弁室3の圧力は第1のシリンダ室13とほぼ等しく、第2のシリンダ室14よりも高くなるため、第2のピストン9が第2の端蓋20に強く押し付けられて、弁室3内の流体がシリンダ室14へ移動しなくなる。
さらに、第3の配管6に連通した弁室3の圧力は、第4の配管7に連通した折り返し流路11aの圧力よりも高くなるため、弁体11は、弁座21に強く押し付けられて、弁室3内の流体が、折り返し流路11aへ移動しなくなる。
First, the operation when the initial state of the switching valve 12 changes from the state shown in FIG. 1 to the state shown in FIG. 1 will be described.
In FIG. 1, when the pressure in the third pipe 6 and the fourth pipe 7 changes and the pressure in the third pipe 6 becomes higher than the pressure in the fourth pipe 7, the pressure in the first cylinder chamber 13 is increased. Since the pressure is higher than the pressure in the second cylinder chamber 14, the switching valve 12 moves to the second end cover 20 side and enters the state shown in FIG. 2. At this time, the first pipe 4 and the third pipe 6 communicate with each other via the valve chamber 3, and the second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a. In the first cylinder chamber 13, fluid is supplied from the third pipe 6 through the first conduit 15, and in the second cylinder chamber 14, the fourth pipe 7 is connected through the second conduit 16. Fluid flows out to the
Further, since the pressure in the valve chamber 3 is substantially equal to that in the first cylinder chamber 13 and is higher than that in the second cylinder chamber 14, the second piston 9 is strongly pressed against the second end lid 20 and the valve chamber 3 does not move to the cylinder chamber 14.
Furthermore, since the pressure in the valve chamber 3 communicating with the third pipe 6 is higher than the pressure of the folded flow path 11a communicating with the fourth pipe 7, the valve body 11 is strongly pressed against the valve seat 21. The fluid in the valve chamber 3 does not move to the return channel 11a.

次に、図2から図1の状態に変化するときの動作について説明する。
図2において、第3の配管6および第4の配管7の圧力が変化し、第4の配管7の圧力が第3の配管6の圧力よりも高くなると、第2のシリンダ室14の圧力が第1のシリンダ室13の圧力よりも高くなるため、切替弁12は第1の端蓋19の側へ移動し、図1の状態となる。このとき、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。また、第2のシリンダ室14では、第2の導管16を介して第4の配管7から流体が供給され、第1のシリンダ室13では、第1の導管15を介して第3の配管6に流体が流出する。
また、弁室3の圧力は第2のシリンダ室14とほぼ等しく、第1のシリンダ室13よりも高くなるため、第1のピストン8が第1の端蓋19に強く押し付けられて、弁室3内の流体がシリンダ室13へ移動しなくなる。
さらに、第4の配管7に連通した弁室3の圧力は、第3の配管6に連通した折り返し流路11aの圧力よりも高くなるため、弁体11は、弁座21に強く押し付けられて、弁室3内の流体が、折り返し流路11aへ移動しなくなる。
Next, the operation when the state changes from FIG. 2 to FIG. 1 will be described.
In FIG. 2, when the pressure in the third pipe 6 and the fourth pipe 7 changes and the pressure in the fourth pipe 7 becomes higher than the pressure in the third pipe 6, the pressure in the second cylinder chamber 14 is increased. Since the pressure is higher than the pressure in the first cylinder chamber 13, the switching valve 12 moves to the first end cover 19 side and enters the state shown in FIG. 1. At this time, the first pipe 4 and the fourth pipe 7 communicate with each other via the valve chamber 3, and the second pipe 5 and the third pipe 6 communicate with each other via the folded flow path 11a. In the second cylinder chamber 14, fluid is supplied from the fourth pipe 7 through the second conduit 16, and in the first cylinder chamber 13, the third pipe 6 is connected through the first conduit 15. Fluid flows out to the
Further, since the pressure in the valve chamber 3 is substantially equal to that in the second cylinder chamber 14 and is higher than that in the first cylinder chamber 13, the first piston 8 is strongly pressed against the first end cover 19, and the valve chamber 3 3 does not move to the cylinder chamber 13.
Furthermore, since the pressure of the valve chamber 3 communicating with the fourth pipe 7 is higher than the pressure of the folded flow path 11 a communicating with the third pipe 6, the valve body 11 is strongly pressed against the valve seat 21. The fluid in the valve chamber 3 does not move to the return channel 11a.

このように、本実施の形態に係わる従属四方弁1は、第3の配管6の圧力を第1の導管15を介して第1のシリンダ室13に導くとともに、第4の配管7の圧力を第2の導管16を介して第2のシリンダ室14に導き、第3の配管6の圧力と第4の配管7の圧力との大小関係の切り替わりを利用して、切替弁12を駆動することができる。
このため、従来、四方弁を駆動するために必要であった、電磁弁または定温度発熱体などの電力を利用した駆動装置や、駆動装置を動作させるための制御部、配線などを設ける必要がなくなるため、駆動装置に関わる設置スペースを削減し、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。
また、従属四方弁1は、第3の配管6と第4の配管7との圧力差のみを用いて切替弁12を移動する簡単な構造であるため、冷媒の流れ方向を切り替えるための四方弁単体のコストも低減できる。
また、第1のシリンダ室13と第1のシリンダ室13に近い距離にある第3の配管6とを第1の導管15で接続し、第2のシリンダ室14と第2のシリンダ室14に近い距離にある第4の配管7とを第2の導管16で接続したため、第1の導管15と第2の導管16との取り回しが容易になる。さらに、第1の導管15および第2の導管16の長さを短くできるため、低コスト化を図ることができる。
As described above, the subordinate four-way valve 1 according to the present embodiment guides the pressure of the third pipe 6 to the first cylinder chamber 13 via the first conduit 15 and the pressure of the fourth pipe 7. Leading to the second cylinder chamber 14 via the second conduit 16 and driving the switching valve 12 by utilizing the switching of the magnitude relationship between the pressure of the third pipe 6 and the pressure of the fourth pipe 7. Can do.
For this reason, it is necessary to provide a driving device that uses electric power such as an electromagnetic valve or a constant temperature heating element, a control unit for operating the driving device, wiring, etc., which has been conventionally required for driving the four-way valve. Therefore, it is possible to reduce the installation space related to the drive device, to realize a compact air conditioner, and to simplify control and reduce costs.
Moreover, since the dependent four-way valve 1 has a simple structure that moves the switching valve 12 using only the pressure difference between the third pipe 6 and the fourth pipe 7, it is a four-way valve for switching the refrigerant flow direction. The cost of a single unit can also be reduced.
In addition, the first pipe chamber 15 is connected to the first cylinder chamber 13 and the third pipe 6 at a distance close to the first cylinder chamber 13, and the second cylinder chamber 14 and the second cylinder chamber 14 are connected to each other. Since the fourth pipe 7 located at a short distance is connected by the second conduit 16, the first conduit 15 and the second conduit 16 can be easily routed. Furthermore, since the length of the 1st conduit | pipe 15 and the 2nd conduit | pipe 16 can be shortened, cost reduction can be achieved.

次に、図1、図2に示す上述の従属四方弁1が空気調和機を形成する冷媒回路に搭載された場合について説明する。
図3、図4、図5は、この発明の実施の形態1に係わる従属四方弁1が搭載された空気調和機の冷媒回路図であり、図3は、空気調和機が冷房運転を実施している場合、図4は、空気調和機が暖房運転を実施している場合、図5は、空気調和機が再熱除湿運転を実施している場合に相当する。
本実施の形態1の冷媒回路は、圧縮機23、第1の熱交換器(室外熱交換器)25、減圧経路22、および第2の熱交換器(室内熱交換器)26が配管により接続され、主経路を構成する。
また、主経路には、圧縮機23から吐出した冷媒を室外熱交換器25に流す冷房運転と、前記冷媒を室内熱交換器26に流す暖房運転とを切り替える主切替手段(主四方弁)24、および減圧経路22の出入口に設けられた従属切替手段1(従属四方弁)を備えている。本実施の形態において、減圧経路22は、第1の減圧装置30、気液分離器32、および第2の減圧装置31を備え、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、第1の減圧装置30、気液分離器32、および第2の減圧装置31を通過する冷媒の流れ方向が一定になるようにしている。
また、本実施の形態では気液分離器32で分離された気相冷媒を圧縮機23の中間圧縮過程に戻すガスインジェクション配管36を備えている。
Next, the case where the above-mentioned dependent four-way valve 1 shown in FIGS. 1 and 2 is mounted on a refrigerant circuit forming an air conditioner will be described.
3, FIG. 4 and FIG. 5 are refrigerant circuit diagrams of an air conditioner equipped with the subordinate four-way valve 1 according to Embodiment 1 of the present invention. FIG. 3 shows the air conditioner performing a cooling operation. 4 corresponds to the case where the air conditioner is performing the heating operation, and FIG. 5 corresponds to the case where the air conditioner is performing the reheat dehumidifying operation.
In the refrigerant circuit of the first embodiment, the compressor 23, the first heat exchanger (outdoor heat exchanger) 25, the decompression path 22, and the second heat exchanger (indoor heat exchanger) 26 are connected by piping. And constitute the main route.
Further, on the main path, main switching means (main four-way valve) 24 for switching between a cooling operation in which the refrigerant discharged from the compressor 23 flows to the outdoor heat exchanger 25 and a heating operation in which the refrigerant flows to the indoor heat exchanger 26. , And a subordinate switching means 1 (subordinate four-way valve) provided at the entrance / exit of the decompression path 22. In the present embodiment, the decompression path 22 includes a first decompression device 30, a gas-liquid separator 32, and a second decompression device 31, and the main path includes the dependent four-way valve 1, whereby cooling operation and heating are performed. In any operation, the flow direction of the refrigerant passing through the first pressure reducing device 30, the gas-liquid separator 32, and the second pressure reducing device 31 is made constant.
In the present embodiment, a gas injection pipe 36 for returning the gas-phase refrigerant separated by the gas-liquid separator 32 to the intermediate compression process of the compressor 23 is provided.

本実施の形態1において、主四方弁24は圧縮機23の下流に設置され、従来の四方弁と同様、電磁弁43を利用して切替動作を行うものである。
従属四方弁1は、図1、図2に示す四方弁であり、主四方弁24により主経路の流れ方向を変えた際に前記主経路に発生する圧力変化を利用して弁体11を駆動し、流路の切替動作を行うものである。
In the first embodiment, the main four-way valve 24 is installed downstream of the compressor 23 and performs a switching operation using the electromagnetic valve 43 as in the conventional four-way valve.
The subordinate four-way valve 1 is a four-way valve shown in FIGS. 1 and 2, and drives the valve body 11 by utilizing the pressure change generated in the main path when the main four-way valve 24 changes the flow direction of the main path. However, the flow path switching operation is performed.

主四方弁24は、4つの接続口を有し、吐出側接続口44を圧縮機23から高圧の冷媒が流出する吐出配管34に、吸込み側接続口45を圧縮機23にもどる吸入配管35に、第1の接続口46を室外熱交換器25につながる室外側ガス配管37に、第2の接続口47を室内熱交換器26につながる室内側ガス配管39に接続する。
なお、主四方弁24は、冷媒の流れ方向を切り替えることのできる構造であれば、どのような構造であってもよく、また、切替動作をおこなうための駆動装置も電磁弁にかぎらず定温度発熱体などであってもよく、さらに、駆動装置が四方弁本体と別体であっても一体であってもよく、電力を利用した駆動装置により切替動作がおこなわれるものであればよい。
The main four-way valve 24 has four connection ports. The discharge side connection port 44 is connected to a discharge pipe 34 through which high-pressure refrigerant flows out of the compressor 23, and the suction side connection port 45 is connected to a suction pipe 35 that returns to the compressor 23. The first connection port 46 is connected to the outdoor gas pipe 37 connected to the outdoor heat exchanger 25, and the second connection port 47 is connected to the indoor side gas pipe 39 connected to the indoor heat exchanger 26.
The main four-way valve 24 may have any structure as long as it can switch the flow direction of the refrigerant, and the drive device for performing the switching operation is not limited to the electromagnetic valve, but has a constant temperature. It may be a heating element or the like, and the driving device may be separate from or integrated with the four-way valve body, and any switching operation may be performed by a driving device using electric power.

また、主四方弁24を図1、図2に示す従属四方弁1と同様、一対のピストン8,9により弁室3と一対のシリンダ室13,14とを形成し、第1の配管4を吐出配管34に、第2の配管5を吸入配管35に、第3の配管6を室外側ガス配管37に、第4の配管7を室内側ガス配管39にそれぞれ接続し、さらに、第1の導管15と第2の導管16とをそれぞれ第3の配管6および第4の配管7に接続するのではなく、電磁弁43に接続し、電磁弁43の切替により、電磁弁43につながる別の圧力の異なる一対の導管と、第1の導管15および第2の導管16が選択的に切り替わることで、第1のシリンダ室13と第2のシリンダ室14との圧力差を切り替えて、主四方弁24の切替弁12を駆動するようにしてもよい。この構成により、主四方弁24を簡単な構造で形成できるとともに、低コスト化をはかることができる。   In addition, the main four-way valve 24 is formed with a pair of pistons 8 and 9 to form a valve chamber 3 and a pair of cylinder chambers 13 and 14 in the same manner as the dependent four-way valve 1 shown in FIGS. The discharge pipe 34, the second pipe 5 is connected to the suction pipe 35, the third pipe 6 is connected to the outdoor gas pipe 37, and the fourth pipe 7 is connected to the indoor side gas pipe 39. Instead of connecting the conduit 15 and the second conduit 16 to the third pipe 6 and the fourth pipe 7, respectively, the conduit 15 and the second conduit 16 are connected to the solenoid valve 43. By selectively switching the pair of conduits having different pressures, the first conduit 15 and the second conduit 16, the pressure difference between the first cylinder chamber 13 and the second cylinder chamber 14 is switched, and the main four-way The switching valve 12 of the valve 24 may be driven. With this configuration, the main four-way valve 24 can be formed with a simple structure, and costs can be reduced.

従属四方弁1においては、第1の配管4に、順次、流入配管41、第1の減圧装置(第1の絞り)30、気液分離器32、第2の減圧装置(第2の絞り)31、流出配管42が接続され、この流出配管42に、従属四方弁1の第2の配管5が接続されている。また、従属四方弁1の第3の配管6は、室内熱交換器26へつながる室内側液配管40に、第4の配管7は、室外熱交換器25へつながる室外側液配管38にそれぞれ接続される。   In the subordinate four-way valve 1, the inflow pipe 41, the first pressure reducing device (first throttle) 30, the gas-liquid separator 32, the second pressure reducing device (second throttle) are sequentially connected to the first pipe 4. 31 and the outflow pipe 42 are connected, and the second pipe 5 of the subordinate four-way valve 1 is connected to the outflow pipe 42. The third pipe 6 of the subordinate four-way valve 1 is connected to the indoor side liquid pipe 40 connected to the indoor heat exchanger 26, and the fourth pipe 7 is connected to the outdoor side liquid pipe 38 connected to the outdoor heat exchanger 25. Is done.

ここで、室内熱交換器26は、再熱除湿運転が可能なように、前段熱交換器27、再熱除湿用絞り29、再熱除湿用開閉弁48、および後段熱交換器28で構成される。
また、圧縮機32の圧縮工程の途中に設けられたインジェクション用のポートと気液分離器32とを接続するインジェクション配管36には、インジェクションの有無を切り替えるためのインジェクション用流量制御弁33を備えている。
Here, the indoor heat exchanger 26 includes a front heat exchanger 27, a reheat dehumidifying throttle 29, a reheat dehumidifying on-off valve 48, and a rear heat exchanger 28 so that a reheat dehumidifying operation is possible. The
The injection pipe 36 connecting the injection port provided in the compression process of the compressor 32 and the gas-liquid separator 32 is provided with an injection flow control valve 33 for switching the presence or absence of injection. Yes.

次に、実施の形態1に示した空気調和機が冷房運転、暖房運転、再熱除湿運転を実施する場合の冷媒回路の動作について説明する。
まず初めに、図3および図6を用いて、実施の形態1に示す空気調和機が冷房運転を実施する場合の冷媒回路の動作について説明する。
図6は、圧力−エンタルピ線図であり、実線が本実施の形態1に示す空気調和機に関する冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機に関する冷媒回路の動作を示している。図6のA〜H,Kは、図3、図4、および図29中に示したA〜H,Kのポイントに相当する。また、曲線Wは冷媒の飽和液線および飽和蒸気線を示しており、曲線Wの内側が気液二相状態、曲線Wより外側の左側が液体状態、右側が気体状態となっている。
ここで比較のために図29に示した従来の空気調和機は、圧縮機100、室外熱交換器102、減圧装置103、および室内熱交換器104が配管により接続され、主経路を構成する。また、主経路には圧縮機100から吐出した冷媒を室外熱交換器102に流す冷房運転と、前記冷媒を室内熱交換器104に流す暖房運転とを切り替える主四方弁101が1つのみ設けられ、主四方弁101は電磁弁(図示を省略)により駆動される。図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示している。
Next, the operation of the refrigerant circuit when the air conditioner shown in Embodiment 1 performs the cooling operation, the heating operation, and the reheat dehumidification operation will be described.
First, the operation of the refrigerant circuit when the air conditioner shown in Embodiment 1 performs the cooling operation will be described with reference to FIGS. 3 and 6.
FIG. 6 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit related to the air conditioner shown in the first embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit regarding the conventional air conditioner shown in FIG. A to H and K in FIG. 6 correspond to points A to H and K shown in FIGS. 3, 4, and 29. A curve W indicates a saturated liquid line and a saturated vapor line of the refrigerant. The inside of the curve W is a gas-liquid two-phase state, the left side outside the curve W is a liquid state, and the right side is a gas state.
For comparison, in the conventional air conditioner shown in FIG. 29, the compressor 100, the outdoor heat exchanger 102, the pressure reducing device 103, and the indoor heat exchanger 104 are connected by piping to form a main path. The main path is provided with only one main four-way valve 101 that switches between a cooling operation in which the refrigerant discharged from the compressor 100 flows to the outdoor heat exchanger 102 and a heating operation in which the refrigerant flows to the indoor heat exchanger 104. The main four-way valve 101 is driven by a solenoid valve (not shown). In the figure, the solid arrow indicates the refrigerant flow direction during the cooling operation, and the broken arrow indicates the refrigerant flow direction during the heating operation.

従来の空気調和機では、圧縮機100で圧縮されて高圧となった冷媒蒸気(A点)は、主四方弁101を介して室外熱交換器102に流入し、室外熱交換器で凝縮された後(B点)、減圧装置103で減圧され(C点)、室内熱交換器104で蒸発し、再び主四方弁101を介して(D点)、圧縮機100にもどる。   In the conventional air conditioner, the refrigerant vapor (point A) compressed to a high pressure by the compressor 100 flows into the outdoor heat exchanger 102 via the main four-way valve 101 and is condensed in the outdoor heat exchanger. After (point B), the pressure is reduced by the pressure reducing device 103 (point C), evaporates in the indoor heat exchanger 104, and returns to the compressor 100 via the main four-way valve 101 (point D) again.

本実施の形態1に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、室内熱交換器26の再熱除湿用開閉弁48を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。このため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
In the air conditioner shown in the first embodiment, the electromagnetic valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. Is switched so as to communicate with each other. Further, the reheat dehumidifying on-off valve 48 of the indoor heat exchanger 26 is opened.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. For this reason, the switching valve 12 moves to the first end cover 19 side from the operation of the above-described subordinate four-way valve 1 to the state shown in FIG. 1, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber. 3, the second pipe 5 and the third pipe 6 communicate with each other via the folded flow path 11 a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、第1の減圧装置30で減圧され、中間圧力の冷媒蒸気と冷媒液とが混在する気液二相状態となって(F点)、気液分離器32に流入する。気液分離器32では冷媒蒸気(K点)と冷媒液(G点)とに分離され、分離された中間圧力の冷媒液は第2の減圧装置31でさらに減圧されて(H点)、再び従属四方弁1を介した後に、蒸発器である室内熱交換器26に流入する。冷媒は、順に、前段熱交換器27、再熱除湿用開閉弁48、後段熱交換器28と進み、蒸発器である前段熱交換器27と後段熱交換器28とで、屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、圧縮機23に流入する。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid is depressurized by the first pressure reducing device 30 after passing through the subordinate four-way valve 1 (point B), and becomes a gas-liquid two-phase state in which refrigerant vapor and refrigerant liquid of intermediate pressure are mixed. (Point F) flows into the gas-liquid separator 32. In the gas-liquid separator 32, the refrigerant vapor (K point) and the refrigerant liquid (G point) are separated, and the separated intermediate pressure refrigerant liquid is further depressurized by the second decompression device 31 (H point), and again. After passing through the subordinate four-way valve 1, it flows into the indoor heat exchanger 26, which is an evaporator. The refrigerant proceeds in sequence to the front-stage heat exchanger 27, the reheat dehumidification on-off valve 48, and the rear-stage heat exchanger 28, and heats from indoor air in the front-stage heat exchanger 27 and the rear-stage heat exchanger 28 that are evaporators. Take away and evaporate. The evaporated refrigerant vapor flows into the compressor 23 after passing through the main four-way valve 24 (D point).

一方、気液分離器32で分離された中間圧力の冷媒蒸気(K点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(I点)に注入され、K点の冷媒とI点の冷媒とが混合される(J点)。さらに冷媒はE点まで圧縮されて、再び吐出される。   On the other hand, the flow rate of the intermediate-pressure refrigerant vapor (point K) separated by the gas-liquid separator 32 is adjusted by the injection flow control valve 33 and passes through the injection pipe 36 in the middle of the compression process of the compressor 23 ( The refrigerant at point K) is mixed with the refrigerant at point K and the refrigerant at point I (point J). Further, the refrigerant is compressed to point E and discharged again.

実施の形態1に示す空気調和機を冷房運転した場合、気液分離器32を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、圧縮機23を流れる冷媒流量は、インジェクション配管36を有するので、インジェクション配管36から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に蒸発能力が大きいため、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。また、圧縮機23から吐出したときの温度(E点)は、従来例(A点)よりも低下するため、圧縮機23の信頼性が向上する。
When the air conditioner shown in Embodiment 1 is air-cooled, the air-liquid separator 32 is provided. Therefore, the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the enthalpy of the conventional air conditioner. It becomes larger than the difference (h3−h2). Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, the flow rate of refrigerant flowing through the compressor 23 includes the injection pipe 36, and thus increases due to the flow rate of refrigerant injected from the injection pipe 36 into the compressor 23. Therefore, although the input of the compressor 23 also increases, since the evaporation capacity is larger than that, the coefficient of performance during the cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is increased as compared with the conventional example. Further, since the temperature (point E) when discharged from the compressor 23 is lower than that of the conventional example (point A), the reliability of the compressor 23 is improved.

次に、図4を用いて、実施の形態1の空気調和機が暖房運転を実施する場合の冷媒回路の動作について説明する。空気調和機が暖房運転を実施している場合の圧力−エンタルピ線図の形は、図6を用いて説明した冷房運転を実施する場合とほぼ等しくなる。ただし、図29に示す従来の空気調和機が暖房運転する場合は、B点とC点とが入れ替わる。
図4において、電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。また、室内熱交換器26の再熱除湿用開閉弁48を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the operation of the refrigerant circuit when the air conditioner of Embodiment 1 performs the heating operation will be described using FIG. The shape of the pressure-enthalpy diagram when the air conditioner is performing the heating operation is almost the same as that when the cooling operation described with reference to FIG. 6 is performed. However, when the conventional air conditioner shown in FIG. 29 performs the heating operation, the point B and the point C are interchanged.
In FIG. 4, the main four-way valve is driven such that the solenoid valve 43 is driven so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other. 24 is switched. Further, the reheat dehumidifying on-off valve 48 of the indoor heat exchanger 26 is opened.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室内熱交換器26へ流入する。冷媒は、順に、後段熱交換器28、再熱除湿用開閉弁48、前段熱交換器27と進み、凝縮器である前段熱交換器27と後段熱交換器28とで屋内の空気により冷却されて凝縮される。凝縮された冷媒液は、従属四方弁1を介した後に(B点)、第1の減圧装置30で減圧され、中間圧力の冷媒蒸気と冷媒液とが混在する気液二相状態となって(F点)、気液分離器32に流入する。気液分離器32では冷媒蒸気(K点)と冷媒液(G点)とに分離され、分離された中間圧力の冷媒液は第2の減圧装置31でさらに減圧されて(H点)、再び従属四方弁1を介した後に、室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後に(D点)、圧縮機23に流入する。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 flows into the indoor heat exchanger 26 via the main four-way valve 24. The refrigerant proceeds in sequence to the rear heat exchanger 28, the reheat dehumidifying on-off valve 48, and the front heat exchanger 27, and is cooled by indoor air in the front heat exchanger 27 and the rear heat exchanger 28 that are condensers. Condensed. The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the dependent four-way valve 1 (point B), and becomes a gas-liquid two-phase state in which refrigerant vapor and refrigerant liquid of intermediate pressure are mixed. (Point F) flows into the gas-liquid separator 32. In the gas-liquid separator 32, the refrigerant vapor (K point) and the refrigerant liquid (G point) are separated, and the separated intermediate pressure refrigerant liquid is further depressurized by the second decompression device 31 (H point), and again. After passing through the dependent four-way valve 1, the process proceeds to the outdoor heat exchanger 25, where the outdoor heat exchanger 25, which is an evaporator, takes heat from the outside air and evaporates. The evaporated refrigerant vapor flows into the compressor 23 after passing through the main four-way valve 24 (point D).

一方、冷房運転と同様に、気液分離器32で分離された中間圧力の冷媒蒸気(K点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(I点)に注入され、K点の冷媒とI点の冷媒とが混合される(J点)。さらに冷媒はE点まで圧縮されて、再び吐出される。   On the other hand, similarly to the cooling operation, the flow rate of the intermediate-pressure refrigerant vapor (point K) separated by the gas-liquid separator 32 is adjusted by the injection flow control valve 33, passes through the injection pipe 36, and passes through the compressor 23. In the middle of the compression process (point I), the refrigerant at point K and the refrigerant at point I are mixed (point J). Further, the refrigerant is compressed to point E and discharged again.

実施の形態1に示す空気調和機を暖房運転した場合、気液分離器32、およびインジェクション配管36を有するので、凝縮器である室内熱交換器26を流れる冷媒流量は、インジェクション配管36から圧縮機23に注入される冷媒流量により増加する。そのため、凝縮能力つまり暖房能力は従来例よりも増加する。
さらに、圧縮機23を流れる冷媒流量は、インジェクション配管36から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に凝縮能力が大きいので、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
また、圧縮機から吐出したときの温度(E点)は、従来例(A点)よりも低下するため、圧縮機の信頼性が向上する。
When the air conditioner shown in Embodiment 1 is operated for heating, since it has the gas-liquid separator 32 and the injection pipe 36, the refrigerant flow rate flowing through the indoor heat exchanger 26 that is a condenser is reduced from the injection pipe 36 to the compressor. It increases with the flow rate of the refrigerant injected into 23. For this reason, the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Further, the flow rate of the refrigerant flowing through the compressor 23 increases due to the flow rate of the refrigerant injected into the compressor 23 from the injection pipe 36. Therefore, although the input of the compressor 23 also increases, since the condensing capacity is larger than that, the coefficient of performance during the heating operation obtained by dividing the condensing capacity by the input of the compressor 23 is increased as compared with the conventional example.
Further, since the temperature (point E) when discharged from the compressor is lower than the conventional example (point A), the reliability of the compressor is improved.

次に、図5を用いて、実施の形態1に示す空気調和機が再熱除湿運転を実施する場合の冷媒回路の動作について説明する。
電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、再熱除湿用開閉弁48を開き、インジェクション用流量制御弁33を閉じて、第1の減圧装置30または第2の減圧装置31の少なくとも1つを全開ではなく絞った状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。その後、再熱除湿用開閉弁48を閉じ、第1の減圧装置30と第2の減圧装置31とを全開にする。
Next, the operation of the refrigerant circuit when the air conditioner shown in Embodiment 1 performs the reheat dehumidifying operation will be described with reference to FIG.
The electromagnetic valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the first connection port 46 communicate with each other and the suction side connection port 45 and the second connection port 47 communicate with each other. Further, the reheat dehumidifying on-off valve 48 is opened, the injection flow control valve 33 is closed, and at least one of the first pressure reducing device 30 and the second pressure reducing device 31 is not fully opened but is throttled.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a. Thereafter, the reheat dehumidifying on-off valve 48 is closed, and the first decompressor 30 and the second decompressor 31 are fully opened.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて凝縮される。このとき、冷媒蒸気は、室外熱交換器25で完全に液化されず、冷媒蒸気と冷媒液とが混在する気液二相状態のままで、従属四方弁1を介して、第1の減圧装置30、気液分離器32、第2の減圧装置31を通過し、再び従属四方弁1を介して熱交換器26へ流入する。室内熱交換器26に流入した冷媒は、凝縮器である前段熱交換器27において、屋内の空気により冷却されて凝縮された後、再熱除湿用絞り29により減圧され、蒸発器である後段熱交換器28において、屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介して圧縮機23に流入する。屋内の空気は、蒸発器となる後段熱交換器28において除湿冷却されるとともに、凝縮器となる前段熱交換器27において加熱されるため、前段熱交換器27と後段熱交換器28とを通過した屋内の空気を混合することで、屋内の空気を除湿しつつ空調することができる。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled and condensed by the outdoor air in the outdoor heat exchanger 25 that is a condenser. At this time, the refrigerant vapor is not completely liquefied by the outdoor heat exchanger 25 and remains in the gas-liquid two-phase state in which the refrigerant vapor and the refrigerant liquid coexist, and the first pressure reducing device via the dependent four-way valve 1. 30, passes through the gas-liquid separator 32 and the second pressure reducing device 31, and again flows into the heat exchanger 26 through the dependent four-way valve 1. The refrigerant that has flowed into the indoor heat exchanger 26 is cooled and condensed by indoor air in a pre-stage heat exchanger 27 that is a condenser, and is then depressurized by a reheat dehumidifying restrictor 29, and is then heated by a post-stage heat that is an evaporator. The exchanger 28 evaporates by taking heat from indoor air. The evaporated refrigerant vapor flows into the compressor 23 via the main four-way valve 24. The indoor air is dehumidified and cooled in the post-stage heat exchanger 28 serving as an evaporator and heated in the pre-stage heat exchanger 27 serving as a condenser, and thus passes through the pre-stage heat exchanger 27 and the post-stage heat exchanger 28. By mixing the indoor air, the indoor air can be air-conditioned while dehumidifying.

なお、再熱除湿運転時においては、前述のように、第1段では主四方弁24を冷房運転時と同じ状態にすると共に、再熱除湿用開閉弁48が開、インジェクション用流量制御弁33が閉、第1の減圧装置30または第2の減圧装置31の少なくとも1つが全開ではなく絞った状態とする。その後第2段で、再熱除湿用開閉弁48が閉、第1の減圧装置30および第2の減圧装置31が全開となるようにする。前記各弁および前記各減圧装置の開閉は図示しない制御装置により行われる。   In the reheat dehumidifying operation, as described above, in the first stage, the main four-way valve 24 is brought into the same state as in the cooling operation, and the reheat dehumidifying on-off valve 48 is opened and the injection flow control valve 33 is set. Is closed, and at least one of the first pressure reducing device 30 or the second pressure reducing device 31 is not fully opened but is throttled. Thereafter, in the second stage, the reheat dehumidifying on-off valve 48 is closed, and the first decompressor 30 and the second decompressor 31 are fully opened. The valves and the pressure reducing devices are opened and closed by a control device (not shown).

このようにすることにより、従属四方弁1の切替弁12を確実に図1の状態に切り替えてから再熱除湿運転を行うことができ、第1の減圧装置30、気液分離器32、および第2の減圧装置31を通過する冷媒の流れ方向を常に一定方向にすることができる。また、減圧経路22を通過する冷媒に対して方向性を有する場合には、減圧経路22が有する減圧量、流量制御量を満足できるとともに、減圧経路22の構造寿命を延ばすことができる。   In this way, the reheat dehumidifying operation can be performed after the switching valve 12 of the dependent four-way valve 1 is reliably switched to the state shown in FIG. 1, and the first decompressor 30, the gas-liquid separator 32, and The flow direction of the refrigerant passing through the second decompression device 31 can always be a constant direction. Moreover, when it has directionality with respect to the refrigerant | coolant which passes through the pressure reduction path 22, while being able to satisfy the pressure reduction amount and flow control amount which the pressure reduction path 22 has, the structural lifetime of the pressure reduction path 22 can be extended.

以上のように、本実施の形態1の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転、再熱除湿運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of Embodiment 1 has the configuration shown in FIGS. 1 and 2, so that the subordinate four-way valve 1 is used for cooling operation, heating operation, and reheating. When the dehumidifying operation is performed, the switching valve of the dependent four-way valve 1 is automatically received in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. 12 can be switched. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態1に示した空気調和機は、減圧経路22に気液分離器32を備えると共に、減圧経路22の両端に接続する従属四方弁1を備えるので、冷房運転または暖房運転のどちらにおいても、従属四方弁1の切替弁12の切り替わりにより、気液分離器32を通過する冷媒の流れ方向を一定にすることができる。そのため、流入配管41から気液分離器32へと冷媒が流入して冷媒液と冷媒蒸気とに分離され、分離された冷媒液が気液分離器32から流出配管42を通って流出し、また、分離された冷媒蒸気が気液分離器32からインジェクション配管36を通って流出するといった、気液分離器32が機能する冷媒の流れを常に形成することができる。したがって、空気調和機の冷房運転と暖房運転とのどちらにおいても、能力および成績係数を増加させることができる。また、圧縮機23の信頼性も向上する。   In addition, the air conditioner shown in the first embodiment includes the gas-liquid separator 32 in the decompression path 22 and the dependent four-way valve 1 connected to both ends of the decompression path 22, so that the cooling operation or the heating operation is performed. In either case, the flow direction of the refrigerant passing through the gas-liquid separator 32 can be made constant by switching the switching valve 12 of the dependent four-way valve 1. Therefore, the refrigerant flows into the gas-liquid separator 32 from the inflow pipe 41 and is separated into the refrigerant liquid and the refrigerant vapor, and the separated refrigerant liquid flows out from the gas-liquid separator 32 through the outflow pipe 42. Thus, it is possible to always form a refrigerant flow in which the gas-liquid separator 32 functions such that the separated refrigerant vapor flows out of the gas-liquid separator 32 through the injection pipe 36. Therefore, the capacity and the coefficient of performance can be increased both in the cooling operation and the heating operation of the air conditioner. Further, the reliability of the compressor 23 is also improved.

また、冷房運転、暖房運転、再熱除湿運転のすべての運転において、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられる。そのため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   In all of the cooling operation, the heating operation, and the reheat dehumidifying operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a. Strongly pressed. Therefore, the refrigerant does not short-circuit from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、前記実施の形態1において、再熱除湿運転においては、インジェクションをおこなわないので、気液分離をおこなう必要がない。そのため、冷媒は、気液分離器32をどちらの方向に流れてもよく、圧縮機23の起動開始前から、再熱除湿用開閉弁48を閉じ、第1の減圧装置30と第2の減圧装置31を全開にしたままであってもよい。   In the first embodiment, since no injection is performed in the reheat dehumidifying operation, there is no need to perform gas-liquid separation. Therefore, the refrigerant may flow in either direction through the gas-liquid separator 32, and before the start of the compressor 23, the reheat dehumidification on-off valve 48 is closed, and the first decompressor 30 and the second decompressor. The device 31 may be left fully open.

また、再熱除湿運転をおこなう場合の第3の配管6と第4の配管7の圧力差は、空気調和機が冷房運転または暖房運転をおこなう場合に比べて小さくなるが、たとえ、弁体11が弁座21に押し付けられる力が減少し、従属四方弁1内で、冷媒が第4の配管7から第3の配管6へショートカットしたとしても、再熱除湿運転においては問題はない。   Further, the pressure difference between the third pipe 6 and the fourth pipe 7 in the reheat dehumidifying operation is smaller than that in the case where the air conditioner performs the cooling operation or the heating operation. Even if the force pressed against the valve seat 21 is reduced and the refrigerant shortcuts from the fourth pipe 7 to the third pipe 6 in the dependent four-way valve 1, there is no problem in the reheat dehumidifying operation.

また、本実施の形態1では、再熱除湿運転を実施するために、室内熱交換器26を第1の室内熱交換器27、後段熱交換器28、再熱除湿用絞り29、再熱除湿用開閉弁48で構成したが、再熱除湿運転を実施しない空気調和機であれば、室内熱交換器28のみを室内熱交換器26としてもよい。また、再熱除湿運転を実施するために、再熱除湿用絞り29と再熱除湿用開閉弁48を併用したが、これらの代わりに、絞り量を調整可能な再熱除湿用減圧装置を用いてもかまわない。   Further, in the first embodiment, in order to perform the reheat dehumidification operation, the indoor heat exchanger 26 is replaced with the first indoor heat exchanger 27, the rear heat exchanger 28, the reheat dehumidifying throttle 29, the reheat dehumidification. However, if the air conditioner does not perform the reheat dehumidifying operation, only the indoor heat exchanger 28 may be used as the indoor heat exchanger 26. Further, in order to perform the reheat dehumidification operation, the reheat dehumidification throttle 29 and the reheat dehumidification on-off valve 48 are used in combination. It doesn't matter.

また、インジェクションに利用する冷媒流量を制御するために、インジェクション用流量制御弁33を用いたが、インジェクションの有無を切り替えるだけの開閉弁であってもかまわない。   Moreover, in order to control the refrigerant | coolant flow volume utilized for injection, although the flow control valve 33 for injection was used, it may be an on-off valve which only switches the presence or absence of injection.

また、第1の減圧装置30の絞り量および第2の減圧装置31の絞り量は任意であり、弁開度が可変の減圧装置を用いることにより、空気調和機の冷房運転および暖房運転の各運転において、成績係数が最大となるような最適な運転が可能となる。
また、圧縮機23の構造は任意であり、前段と後段との2段圧縮機として、前段と後段との間に冷媒をインジェクションするようにしてもよい。
The throttle amount of the first decompressor 30 and the throttle amount of the second decompressor 31 are arbitrary, and each of the cooling operation and the heating operation of the air conditioner can be performed by using a decompressor having a variable valve opening. In operation, the optimum operation that maximizes the coefficient of performance is possible.
The structure of the compressor 23 is arbitrary, and a refrigerant may be injected between the front stage and the rear stage as a two-stage compressor of the front stage and the rear stage.

実施の形態2.
図7はこの発明の実施の形態2による空気調和機の冷媒回路図である。本実施の形態2の空気調和機は、実施の形態1とは異なり、減圧経路22は第2の減圧装置31を備えておらず、第1の減圧装置30と気液分離器32とを備えている。また、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
また、本実施の形態2では、インジェクション用流量制御弁33、インジェクション配管36を具備しておらず、これに代わり、気液分離器32で分離された気相流体を圧縮機23に戻す気液分離用バイパス配管49を備えている。気液分離用バイパス配管49は圧縮機23の吸入配管35に接続しており、気液分離用開閉弁50、気液分離用逆止弁51、気液分離用キャピラリチューブ52が設けられている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
また、再熱除湿運転の動作を省略して説明するため、室内熱交換器26の構成を、前段熱交換器27、再熱除湿用絞り29、再熱除湿用開閉弁48、後段熱交換器28にわけて図示せず、室内熱交換器26とする。
Embodiment 2. FIG.
FIG. 7 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2 of the present invention. The air conditioner of the second embodiment is different from the first embodiment in that the decompression path 22 does not include the second decompression device 31, but includes the first decompression device 30 and the gas-liquid separator 32. ing. Further, the main path includes the subordinate four-way valve 1 so that the flow direction of the refrigerant passing through the decompression path 22 is constant in both the cooling operation and the heating operation.
In the second embodiment, the injection flow control valve 33 and the injection pipe 36 are not provided. Instead, the gas-liquid returning the gas-phase fluid separated by the gas-liquid separator 32 to the compressor 23. A separation bypass pipe 49 is provided. The gas-liquid separation bypass pipe 49 is connected to the suction pipe 35 of the compressor 23, and is provided with a gas-liquid separation on-off valve 50, a gas-liquid separation check valve 51, and a gas-liquid separation capillary tube 52. .
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.
Further, in order to omit the description of the reheat dehumidifying operation, the configuration of the indoor heat exchanger 26 includes a front heat exchanger 27, a reheat dehumidifying throttle 29, a reheat dehumidifying on-off valve 48, and a rear heat exchanger. 28, not shown, and an indoor heat exchanger 26.

以下、図7および図8を用いて、実施の形態2に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図8は、圧力−エンタルピ線図であり、実線が本実施の形態2に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜Gは、図7および図29中に示したA〜Gのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 2 performs the cooling operation and the heating operation will be described with reference to FIGS. 7 and 8.
FIG. 8 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the second embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to G in the figure correspond to points A to G shown in FIGS. 7 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機では、圧縮機100で圧縮されて高圧となった冷媒蒸気(A点)は、主四方弁101を介して室外熱交換器102に流入し、室外熱交換器で凝縮された後(B点)、減圧装置103で減圧され(C点)、室内熱交換器104で蒸発し、再び主四方弁101を介して(D点)、圧縮機100にもどる。このとき、蒸発に寄与しない冷媒蒸気も冷媒液と一緒に室内熱交換器104へ流入するため、冷媒が室内熱交換器104を通過する前後で圧力損失(P1−P3)が生じる。
なお、図8と実施の形態1に示した図6とを比較すると、従来例の動作においてC点からD点への直線の傾きが異なっている。図6のC点からD点への直線は厳密には圧力損失により図8と同様の傾きが生じるが、図6ではこの傾きを無視して図示し、図8では前記傾きを強調して図示している。
First, a case where the air conditioner performs a cooling operation will be described.
In the conventional air conditioner, the refrigerant vapor (point A) compressed to a high pressure by the compressor 100 flows into the outdoor heat exchanger 102 via the main four-way valve 101 and is condensed in the outdoor heat exchanger. After (point B), the pressure is reduced by the pressure reducing device 103 (point C), evaporates in the indoor heat exchanger 104, and returns to the compressor 100 via the main four-way valve 101 (point D) again. At this time, since the refrigerant vapor that does not contribute to evaporation also flows into the indoor heat exchanger 104 together with the refrigerant liquid, pressure loss (P1-P3) occurs before and after the refrigerant passes through the indoor heat exchanger 104.
When FIG. 8 is compared with FIG. 6 shown in the first embodiment, the slope of the straight line from the point C to the point D is different in the operation of the conventional example. Strictly speaking, the straight line from the point C to the point D in FIG. 6 has the same inclination as that in FIG. 8 due to pressure loss, but FIG. 6 shows this inclination ignored, and FIG. 8 emphasizes the inclination. Show.

一方、実施の形態2に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、気液分離用開閉弁50を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
On the other hand, in the air conditioner shown in the second embodiment, the electromagnetic valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. The main four-way valve 24 is switched so as to communicate with each other. Further, the gas-liquid separation on-off valve 50 is opened.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、第1の減圧装置30で減圧され、低圧の冷媒蒸気と冷媒液とが混在する気液二相状態となって(C点)、気液分離器32に流入する。気液分離器32では冷媒蒸気(F点)と冷媒液(E点)とに分離され、分離された冷媒液は、従属四方弁1を介して室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。このとき、蒸発に寄与しない冷媒蒸気は、冷媒液と一緒に室内熱交換器26へ流入しない。そのため、冷媒が室内熱交換器26を通過する前後の圧力損失(P1−P2)は従来例の圧力損失(P1−P3)より小さくなる。蒸発した冷媒蒸気は、主四方弁24を介した後(G点)、圧縮機23へ進む。
一方、気液分離器32で分離された冷媒蒸気(F点)は、気液分離用開閉弁50、気液分離用逆止弁51を介して気液分離用キャピラリチューブ52へ進み、気液分離用キャピラリチューブ52で減圧された後に、主四方弁24を通過した冷媒蒸気と合流し(G点)、圧縮機23に流入する。圧縮機23に流入した冷媒蒸気は、A点まで圧縮されて、再び吐出される。
The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the subordinate four-way valve 1 (point B), and becomes a gas-liquid two-phase state in which low-pressure refrigerant vapor and refrigerant liquid are mixed ( C), and flows into the gas-liquid separator 32. In the gas-liquid separator 32, the refrigerant vapor (point F) and the refrigerant liquid (point E) are separated, and the separated refrigerant liquid proceeds to the indoor heat exchanger 26 via the dependent four-way valve 1 and is an evaporator. The indoor heat exchanger 26 evaporates by taking heat from indoor air. At this time, the refrigerant vapor that does not contribute to evaporation does not flow into the indoor heat exchanger 26 together with the refrigerant liquid. Therefore, the pressure loss (P1-P2) before and after the refrigerant passes through the indoor heat exchanger 26 is smaller than the pressure loss (P1-P3) of the conventional example. The evaporated refrigerant vapor passes through the main four-way valve 24 (point G) and then proceeds to the compressor 23.
On the other hand, the refrigerant vapor (point F) separated by the gas-liquid separator 32 proceeds to the gas-liquid separation capillary tube 52 via the gas-liquid separation on-off valve 50 and the gas-liquid separation check valve 51, and the gas-liquid is separated. After the pressure is reduced in the separation capillary tube 52, the refrigerant vapor that has passed through the main four-way valve 24 is merged (point G) and flows into the compressor 23. The refrigerant vapor that has flowed into the compressor 23 is compressed to point A and discharged again.

実施の形態2に示す空気調和機を冷房運転した場合、気液分離器32を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、室内熱交換器26には気液分離機32からの冷媒液のみが流入するので、蒸発器である室内熱交換器26の圧力損失が減少し、圧縮機23の吸入圧力が上昇する。そのため、蒸発能力が一定となるように空気調和機を運転した場合、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
When the air conditioner shown in the second embodiment is air-cooled, the air-liquid separator 32 is provided. Therefore, the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the enthalpy of the conventional air conditioner. It becomes larger than the difference (h3−h2). Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, since only the refrigerant liquid from the gas-liquid separator 32 flows into the indoor heat exchanger 26, the pressure loss of the indoor heat exchanger 26 that is an evaporator is reduced, and the suction pressure of the compressor 23 is increased. Therefore, when the air conditioner is operated so that the evaporation capacity is constant, the input of the compressor 23 decreases, and the coefficient of performance during cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is conventionally More than the example.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図8とほぼ等しくなる。ただし、図29に示す従来の空気調和機を暖房運転する場合は、B点とC点とが入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。また、気液分離用開閉弁50を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is substantially the same as FIG. However, when heating the conventional air conditioner shown in FIG. 29, the points B and C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other. Further, the gas-liquid separation on-off valve 50 is opened.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、第1の減圧装置30で減圧され、低圧の冷媒蒸気と冷媒液とが混在する気液二相状態となって(C点)、気液分離器32に流入する。気液分離器32では冷媒蒸気(F点)と冷媒液(E点)とに分離され、分離された冷媒液は、従属四方弁1を介した後、室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(G点)、圧縮機23へ進む。
一方、気液分離器32で分離された冷媒蒸気(F点)は、気液分離用開閉弁50、気液分離用逆止弁51を介して気液分離用キャピラリチューブ52へ進み、気液分離用キャピラリチューブ52で減圧された後に、主四方弁24を通過した冷媒蒸気と合流し(G点)、圧縮機23に流入する。圧縮機23に流入した冷媒蒸気は、A点まで圧縮されて、再び吐出される。
The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24, and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. , Condensed. The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the subordinate four-way valve 1 (point B), and becomes a gas-liquid two-phase state in which low-pressure refrigerant vapor and refrigerant liquid are mixed ( C), and flows into the gas-liquid separator 32. In the gas-liquid separator 32, the refrigerant vapor (point F) and the refrigerant liquid (point E) are separated, and the separated refrigerant liquid passes through the dependent four-way valve 1 and then proceeds to the outdoor heat exchanger 25, where the evaporator In the outdoor heat exchanger 25, the heat is taken from the outside air to evaporate. The evaporated refrigerant vapor passes through the main four-way valve 24 (point G) and then proceeds to the compressor 23.
On the other hand, the refrigerant vapor (point F) separated by the gas-liquid separator 32 proceeds to the gas-liquid separation capillary tube 52 via the gas-liquid separation on-off valve 50 and the gas-liquid separation check valve 51, and the gas-liquid is separated. After the pressure is reduced in the separation capillary tube 52, the refrigerant vapor that has passed through the main four-way valve 24 is merged (point G) and flows into the compressor 23. The refrigerant vapor that has flowed into the compressor 23 is compressed to point A and discharged again.

実施の形態2に示す空気調和機を暖房運転した場合、室外熱交換器25には気液分離機32からの冷媒液のみが流入するので、室外熱交換器25の圧力損失が小さくなる(P1−P2)。そのため、圧縮機の吸入温度が上昇し、空気調和機の冷媒循環流量が増加するので、凝縮能力つまり暖房能力は従来例よりも増加する。
また、圧縮機の吸入圧力が上昇することにより(P2−P3)、凝縮能力が一定となるように空気調和機を運転した場合、圧縮機の入力が減少し、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
When the air conditioner shown in Embodiment 2 is heated, only the refrigerant liquid from the gas-liquid separator 32 flows into the outdoor heat exchanger 25, so that the pressure loss of the outdoor heat exchanger 25 is reduced (P1). -P2). Therefore, the intake temperature of the compressor rises and the refrigerant circulation flow rate of the air conditioner increases, so that the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Further, when the air conditioner is operated so that the condensing capacity becomes constant due to the increase of the suction pressure of the compressor (P2-P3), the input of the compressor is reduced, and the condensing capacity is input to the compressor 23. The coefficient of performance at the time of heating operation obtained by dividing by is increased from the conventional example.

以上のように、本実施の形態2の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the second embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. The valve 12 can be switched. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態2に示した空気調和機は、減圧経路22に気液分離器32を備えると共に、減圧経路22の両端に接続する従属四方弁1を備えるので、冷房運転または暖房運転のどちらにおいても、従属四方弁1の切替弁12の切り替わりにより、気液分離器32の流れ方向を一定にすることができる。そのため、流入配管41から気液分離器32へと冷媒が流入して冷媒液と冷媒蒸気とに分離され、分離された冷媒液が気液分離器32から流出配管42を通って室外熱交換器26に流出し、また、分離された冷媒蒸気が気液分離用配管49を通って圧縮機23に流出するといった、気液分離器32が機能する冷媒の流れを常に形成することができる。したがって、空気調和機の冷房運転と暖房運転とのどちらにおいても、能力および成績係数を増加させることができる。   In addition, the air conditioner shown in the second embodiment includes the gas-liquid separator 32 in the decompression path 22 and the dependent four-way valve 1 connected to both ends of the decompression path 22, so that the cooling operation or the heating operation is performed. In either case, the flow direction of the gas-liquid separator 32 can be made constant by switching the switching valve 12 of the dependent four-way valve 1. Therefore, the refrigerant flows into the gas-liquid separator 32 from the inflow pipe 41 and is separated into the refrigerant liquid and the refrigerant vapor, and the separated refrigerant liquid passes from the gas-liquid separator 32 through the outflow pipe 42 to the outdoor heat exchanger. It is possible to always form a refrigerant flow in which the gas-liquid separator 32 functions such that the refrigerant vapor flows out to the refrigerant 26 and flows out to the compressor 23 through the gas-liquid separation pipe 49. Therefore, the capacity and the coefficient of performance can be increased both in the cooling operation and the heating operation of the air conditioner.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられる。そのため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in either the cooling operation or the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. Therefore, the refrigerant does not short-circuit from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。
また、気液分離用開閉弁50、気液分離用逆止弁51、気液分離用キャピラリチューブ52の代わりに、気液分離用流量制御弁を設けて、気液分離用バイパス配管49を通過する冷媒蒸気流量を調整してもよい。
Although the description of the reheat dehumidifying operation is omitted in the present embodiment, the reheat dehumidifying operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.
Further, instead of the gas-liquid separation on-off valve 50, the gas-liquid separation check valve 51, and the gas-liquid separation capillary tube 52, a gas-liquid separation flow control valve is provided to pass through the gas-liquid separation bypass pipe 49. The refrigerant vapor flow rate may be adjusted.

実施の形態3.
図9はこの発明の実施の形態3による空気調和機の冷媒回路図である。本実施の形態3の空気調和機は、実施の形態1とは異なり、減圧経路22は第2の減圧装置31と気液分離器32とを備えておらず、第1の減圧装置30と第1の過冷却熱交換器53(第1の減圧装置30の上流側に設ける。)とを備える。また、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
また、本実施の形態3では、インジェクション用流量制御弁33、インジェクション配管36を具備しておらず、これに代わり、過冷却用インジェクション配管55を備えている。過冷却用インジェクション配管55は、従属四方弁1と第1の過冷却熱交換器53との間(B点)から分岐され、分岐した冷媒を中間圧力にする過冷却用減圧装置54、および第1の過冷却熱交換器53を介して、圧縮機32の圧縮工程の途中に設けられたインジェクション用のポートに接続される。第1の過冷却熱交換器53では、過冷却用減圧装置54を通過後の中間圧力の冷媒と、従属四方弁1を通過した高圧冷媒とが熱交換する。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 3 FIG.
FIG. 9 is a refrigerant circuit diagram of an air conditioner according to Embodiment 3 of the present invention. In the air conditioner of the third embodiment, unlike the first embodiment, the decompression path 22 does not include the second decompression device 31 and the gas-liquid separator 32, and the first decompression device 30 and the first decompression device 1 supercooling heat exchanger 53 (provided on the upstream side of the first decompression device 30). Further, the main path includes the subordinate four-way valve 1 so that the flow direction of the refrigerant passing through the decompression path 22 is constant in both the cooling operation and the heating operation.
In the third embodiment, the injection flow control valve 33 and the injection pipe 36 are not provided, but a supercooling injection pipe 55 is provided instead. The supercooling injection pipe 55 is branched from between the subordinate four-way valve 1 and the first supercooling heat exchanger 53 (point B), and the supercooling decompression device 54 that makes the branched refrigerant intermediate pressure, and 1 is connected to an injection port provided in the middle of the compression process of the compressor 32 via a supercooling heat exchanger 53. In the first supercooling heat exchanger 53, the intermediate-pressure refrigerant after passing through the supercooling decompression device 54 and the high-pressure refrigerant passing through the subordinate four-way valve 1 exchange heat.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図9および図10を用いて、実施の形態3に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図10は、圧力−エンタルピ線図であり、実線が本実施の形態3に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜H,Kは、図9および図29中に示したA〜H,Kのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air conditioner shown in Embodiment 3 performs the cooling operation and the heating operation will be described with reference to FIGS. 9 and 10.
FIG. 10 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the third embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to H and K in the figure correspond to points A to H and K shown in FIG. 9 and FIG.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図10においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態3に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as that of the conventional operation shown in FIG. 6, and also in FIG. 10, the inclination of the straight line from the point C to the point D is ignored.
On the other hand, in the air conditioner shown in the third embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate, and the suction side connection port 45 and the second connection port 47. The main four-way valve 24 is switched so as to communicate with each other.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧の冷媒により冷却され(F点)、第1の減圧装置30で減圧された後(H点)、従属四方弁1を介して室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、圧縮機23へ進む。
一方、B点で過冷却用インジェクション配管55に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力まで減圧された後(G点)、第1の過冷却熱交換器53で対向して流れる高圧冷媒から熱を奪って蒸発し(K点)、圧縮機23の圧縮工程の途中(I点)に注入され、K点の冷媒とI点の冷媒とが混合される(J点)。さらに冷媒はE点まで圧縮されて、再び吐出される。
The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 through the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid passes through the dependent four-way valve 1 (point B), and is further cooled by an intermediate-pressure refrigerant that flows oppositely in the first subcooling heat exchanger 53 (point F). After the pressure is reduced by the pressure reducing device 30 (point H), the process proceeds to the indoor heat exchanger 26 via the dependent four-way valve 1, and the indoor heat exchanger 26, which is an evaporator, takes heat from the indoor air and evaporates. The evaporated refrigerant vapor passes through the main four-way valve 24 (D point) and then proceeds to the compressor 23.
On the other hand, a part of the refrigerant liquid branched to the supercooling injection pipe 55 at point B is decompressed to an intermediate pressure by the supercooling decompression device 54 (point G), and then the first supercooling heat exchanger 53. The heat is taken away from the high-pressure refrigerant that flows in the opposite direction to evaporate (point K), and injected in the middle of the compression process of the compressor 23 (point I), and the refrigerant at point K and the refrigerant at point I are mixed ( J point). Further, the refrigerant is compressed to point E and discharged again.

実施の形態3に示す空気調和機を冷房運転した場合、第1の過冷却熱交換器53を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、過冷却用インジェクション配管55を備えるので、圧縮機23を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に蒸発能力が大きいため、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。また、圧縮機から吐出したときの温度が、従来例よりも低下するため、圧縮機の信頼性が向上する。
When the air conditioner shown in Embodiment 3 is air-cooled, the first supercooling heat exchanger 53 is provided, so that the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the conventional air. It becomes larger than the enthalpy difference (h3-h2) of the harmony machine. Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, since the supercooling injection pipe 55 is provided, the flow rate of the refrigerant flowing through the compressor 23 is increased by the flow rate of the refrigerant injected from the supercooling injection pipe 55 into the compressor 23. Therefore, although the input of the compressor 23 also increases, since the evaporation capacity is larger than that, the coefficient of performance during the cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is increased as compared with the conventional example. Further, since the temperature when discharged from the compressor is lower than that of the conventional example, the reliability of the compressor is improved.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図10とほぼ等しくなる。ただし、図29に示す従来の空気調和機を暖房運転する場合は、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost the same as that in FIG. However, when heating the conventional air conditioner shown in FIG. 29, the points B and C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧の冷媒により冷却され(F点)、第1の減圧装置30で減圧された後(H点)、従属四方弁1を介して室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、圧縮機23へ進む。
一方、B点で過冷却用インジェクション配管55に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力まで減圧された後(G点)、第1の過冷却熱交換器53で対向して流れる高圧冷媒から熱を奪って蒸発し(K点)、圧縮機23の圧縮工程の途中(I点)に注入され、K点の冷媒とI点の冷媒とが混合される(J点)。さらに冷媒はE点まで圧縮されて、再び吐出される
The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. , Condensed. After the condensed refrigerant liquid passes through the dependent four-way valve 1 (point B), it is further cooled by the intermediate pressure refrigerant flowing oppositely in the first subcooling heat exchanger 53 (point F), and the first After the pressure is reduced by the pressure reducing device 30 (point H), the process proceeds to the outdoor heat exchanger 25 via the dependent four-way valve 1, and the outdoor heat exchanger 25, which is an evaporator, takes heat from the outside air and evaporates. The evaporated refrigerant vapor passes through the main four-way valve 24 (D point) and then proceeds to the compressor 23.
On the other hand, a part of the refrigerant liquid branched to the supercooling injection pipe 55 at point B is decompressed to an intermediate pressure by the supercooling decompression device 54 (point G), and then the first supercooling heat exchanger 53. The heat is taken away from the high-pressure refrigerant that flows in the opposite direction to evaporate (point K), and injected in the middle of the compression process of the compressor 23 (point I), and the refrigerant at point K and the refrigerant at point I are mixed ( J point). Furthermore, the refrigerant is compressed to point E and discharged again.

実施の形態3に示す空気調和機を暖房運転した場合、過冷却用インジェクション配管55を備えるので、凝縮器である室内熱交換器26を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、凝縮能力つまり暖房能力は従来例よりも増加する。
また、圧縮機23を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に凝縮能力が大きいため、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。また、圧縮機23から吐出したときの温度が、従来例よりも低下するため、圧縮機23の信頼性が向上する。
When the air conditioner shown in the third embodiment is heated, the supercooling injection pipe 55 is provided. Therefore, the refrigerant flow rate flowing through the indoor heat exchanger 26 that is a condenser is changed from the supercooling injection pipe 55 to the compressor 23. It increases with the flow rate of the refrigerant injected into the tank. For this reason, the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Further, the flow rate of the refrigerant flowing through the compressor 23 increases due to the flow rate of the refrigerant injected into the compressor 23 from the subcooling injection pipe 55. Therefore, although the input of the compressor 23 also increases, since the condensing capacity is larger than that, the coefficient of performance during the heating operation obtained by dividing the condensing capacity by the input of the compressor 23 is increased as compared with the conventional example. Moreover, since the temperature when discharged from the compressor 23 is lower than that of the conventional example, the reliability of the compressor 23 is improved.

以上のように、本実施の形態3の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of the third embodiment has the configuration shown in FIGS. 1 and 2, and thus the subordinate four-way valve 1 was used for cooling operation and heating operation. In this case, the switching valve 12 of the dependent four-way valve 1 can be automatically switched in response to a pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. it can. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態3に示した空気調和機では、減圧経路22を第1の減圧装置30と第1の過冷却熱交換器53とで構成する共に、減圧経路22の両端に従属四方弁1を接続し、冷房運転または暖房運転のどちらにおいても、高圧冷媒が第1の減圧装置30に流入する前に、前記高圧冷媒を第1の減圧装置30へ流す経路と、過冷却用減圧装置54により中間圧力に減圧して圧縮機23の中間圧縮過程に戻すインジェクション経路とに分岐されるようにした。また、過冷却用減圧装置54を通過後の冷媒と第1の減圧装置30に流入する冷媒とが熱交換するように第1の過冷却熱交換器53を設けた。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても、能力および成績係数を増加させることができる。また、圧縮機の信頼性が向上する。   In the air conditioner shown in the third embodiment, the decompression path 22 includes the first decompression device 30 and the first supercooling heat exchanger 53, and the subordinate four-way valve is disposed at both ends of the decompression path 22. 1 and a path for flowing the high-pressure refrigerant to the first decompression device 30 before the high-pressure refrigerant flows into the first decompression device 30 in both the cooling operation and the heating operation, and a supercooling decompression device The pressure is reduced to an intermediate pressure by 54 and branched to an injection path for returning to the intermediate compression process of the compressor 23. Further, the first supercooling heat exchanger 53 is provided so that the refrigerant after passing through the supercooling decompression device 54 and the refrigerant flowing into the first decompression device 30 exchange heat. Therefore, the capacity and the coefficient of performance can be increased in both the cooling operation and the heating operation of the air conditioner. Further, the reliability of the compressor is improved.

また、冷房運転または暖房運転のどちらにおいても、第1の過冷却熱交換器53の前で分岐した高圧の冷媒と中間圧の冷媒が、第1の過冷却熱交換器53で対向して流れるようにしたので、第1の過冷却熱交換器53の熱交換性能を向上させることができる。   Further, in both the cooling operation and the heating operation, the high-pressure refrigerant and the intermediate-pressure refrigerant branched in front of the first subcooling heat exchanger 53 flow oppositely in the first subcooling heat exchanger 53. Since it did in this way, the heat exchange performance of the 1st subcooling heat exchanger 53 can be improved.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、第1の過冷却熱交換器53の構造は任意であり、異なる圧力を有する冷媒が熱交換できるものであればよい。
また、本実施の形態では、第1の過冷却熱交換器53を通過する高圧の冷媒と中間圧の冷媒の流れを対向流となるようにしたが、並行流であってもよい。
また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。
In addition, the structure of the 1st subcooling heat exchanger 53 is arbitrary, and the refrigerant | coolant which has a different pressure should just be heat-exchangeable.
Further, in the present embodiment, the flow of the high-pressure refrigerant and the intermediate-pressure refrigerant that passes through the first subcooling heat exchanger 53 is opposed, but it may be parallel flow.
In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

実施の形態4.
図11はこの発明の実施の形態4による空気調和機の冷媒回路図である。本実施の形態4の空気調和機は、実施の形態3とは異なり、過冷却用インジェクション配管55の代わりに過冷却用バイパス配管70を備えている。また、過冷却用バイパス配管70は、従属四方弁1と第1の過冷却熱交換器53に至る間(B点)から分岐され、過冷却用減圧装置54、第1の過冷却熱交換器53、過冷却用開閉弁56、過冷却用逆止弁57、過冷却用キャピラリチューブ58を介して、圧縮機23につながる吸入配管35に接続される。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 4 FIG.
FIG. 11 is a refrigerant circuit diagram of an air conditioner according to Embodiment 4 of the present invention. Unlike the third embodiment, the air conditioner of the fourth embodiment includes a supercooling bypass pipe 70 instead of the supercooling injection pipe 55. The subcooling bypass pipe 70 is branched from the point where the sub four-way valve 1 and the first subcooling heat exchanger 53 are reached (point B), and the subcooling decompression device 54 and the first subcooling heat exchanger are branched. 53, a supercooling on-off valve 56, a supercooling check valve 57, and a supercooling capillary tube 58 are connected to a suction pipe 35 connected to the compressor 23.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図11および図12を用いて、実施の形態4に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図12は、圧力−エンタルピ線図であり、実線が本実施の形態4に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜Iは、図11および図29中に示したA〜Iのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 4 performs the cooling operation and the heating operation will be described with reference to FIGS. 11 and 12.
FIG. 12 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the fourth embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to I in the figure correspond to points A to I shown in FIGS. 11 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図8に示した従来動作と同様であり、図12においてもC点からD点への直線の傾きを図6の場合より強調して図示している。
一方、実施の形態4に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、過冷却用開閉弁56を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as the conventional operation shown in FIG. 8, and in FIG. 12, the inclination of the straight line from the point C to the point D is emphasized as compared with the case of FIG.
On the other hand, in the air conditioner shown in the fourth embodiment, the electromagnetic valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47. The main four-way valve 24 is switched so as to communicate with each other. Further, the supercooling on / off valve 56 is opened.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧の冷媒により冷却され(E点)、第1の減圧装置30で減圧された後(F点)、従属四方弁1を介して室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。このとき、飽和蒸気圧曲線Wより判るように、F点においては、蒸発に寄与しない冷媒蒸気の割合が、C点での冷媒蒸気の割合よりも小さいので、冷媒液と一緒に室内熱交換器26へ流入する冷媒蒸気が少なく、冷媒が室内熱交換器26を通過する前後の圧力損失(P1−P2)は従来例の圧力損失(P1−P3)より小さくなる。室内熱交換器26で蒸発した冷媒蒸気は、主四方弁24を介した後(G点)、圧縮機23へ進む。   The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid passes through the dependent four-way valve 1 (point B), and is further cooled by an intermediate-pressure refrigerant flowing oppositely in the first subcooling heat exchanger 53 (point E). After being depressurized by the decompression device 30 (point F), the process proceeds to the indoor heat exchanger 26 via the subordinate four-way valve 1, and evaporates by taking heat from the indoor air in the indoor heat exchanger 26 that is an evaporator. At this time, as can be seen from the saturation vapor pressure curve W, the proportion of the refrigerant vapor that does not contribute to evaporation is smaller at the point F than the proportion of the refrigerant vapor at the point C. Therefore, the indoor heat exchanger together with the refrigerant liquid There are few refrigerant | coolants vapor | steam which flows in into 26, and the pressure loss (P1-P2) before and behind a refrigerant | coolant passing the indoor heat exchanger 26 becomes smaller than the pressure loss (P1-P3) of a prior art example. The refrigerant vapor evaporated in the indoor heat exchanger 26 passes through the main four-way valve 24 (point G) and then proceeds to the compressor 23.

一方、B点で過冷却用バイパス配管70に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力まで減圧された後(H点)、第1の過冷却熱交換器53で対向して流れる高圧冷媒から熱を奪って蒸発し(I点)、過冷却用開閉弁56、過冷却用逆止弁57を介して過冷却用キャピラリチューブ58へ進み、過冷却用キャピラリチューブ58で減圧された後に、主四方弁24を通過した冷媒蒸気と合流し(G点)、圧縮機23に流入する。圧縮機23に流入した冷媒蒸気は、A点まで圧縮されて、再び吐出される。   On the other hand, a part of the refrigerant liquid branched into the supercooling bypass pipe 70 at the point B is decompressed to an intermediate pressure by the supercooling decompression device 54 (point H), and then the first supercooling heat exchanger 53. The heat is removed from the high-pressure refrigerant flowing in the opposite direction and evaporated (point I), and then proceeds to the supercooling capillary tube 58 via the supercooling on-off valve 56 and the supercooling check valve 57, and the supercooling capillary tube After being depressurized at 58, it merges with the refrigerant vapor that has passed through the main four-way valve 24 (point G) and flows into the compressor 23. The refrigerant vapor that has flowed into the compressor 23 is compressed to point A and discharged again.

実施の形態4に示す空気調和機を冷房運転した場合、第1の過冷却熱交換器53を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、蒸発器である室内熱交換器26の圧力損失が減少し、圧縮機23の吸入圧力が上昇する。そのため、蒸発能力が一定となるように空気調和機を運転した場合、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
When the air conditioner shown in Embodiment 4 is air-cooled, the first subcooling heat exchanger 53 is provided, so that the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the conventional air. It becomes larger than the enthalpy difference (h3-h2) of the harmony machine. Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, the pressure loss of the indoor heat exchanger 26 as an evaporator is reduced, and the suction pressure of the compressor 23 is increased. Therefore, when the air conditioner is operated so that the evaporation capacity is constant, the input of the compressor 23 decreases, and the coefficient of performance during cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is conventionally More than the example.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図12とほぼ等しくなる。ただし、図29に示す従来の空気調和機では、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。また、気液分離用開閉弁56を開いた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost the same as FIG. However, in the conventional air conditioner shown in FIG. 29, the point B and the point C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other. Further, the gas-liquid separating on-off valve 56 is opened.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧の冷媒により冷却され(E点)、第1の減圧装置30で減圧された後(F点)、従属四方弁1を介して室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(G点)、圧縮機23へ進む。
一方、B点で過冷却用バイパス配管70に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力まで減圧された後(H点)、第1の過冷却熱交換器53で対向して流れる高圧冷媒から熱を奪って蒸発し(I点)、過冷却用開閉弁56、過冷却用逆止弁57を介して過冷却用キャピラリチューブ58へ進み、過冷却用キャピラリチューブ58で減圧された後に、主四方弁24を通過した冷媒蒸気と合流し(G点)、圧縮機23に流入する。圧縮機23に流入した冷媒蒸気は、A点まで圧縮されて、再び吐出される。
The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24, and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. , Condensed. After the condensed refrigerant liquid passes through the dependent four-way valve 1 (point B), it is further cooled by the intermediate pressure refrigerant flowing oppositely in the first subcooling heat exchanger 53 (point E), After being depressurized by the decompression device 30 (point F), the process proceeds to the outdoor heat exchanger 25 via the dependent four-way valve 1 and evaporates by taking heat from the outside air in the outdoor heat exchanger 25 that is an evaporator. The evaporated refrigerant vapor passes through the main four-way valve 24 (point G) and then proceeds to the compressor 23.
On the other hand, a part of the refrigerant liquid branched into the supercooling bypass pipe 70 at point B is decompressed to an intermediate pressure by the supercooling decompression device 54 (point H), and then the first supercooling heat exchanger 53. The heat is removed from the high-pressure refrigerant flowing in the opposite direction to evaporate (point I), and proceeds to the supercooling capillary tube 58 via the supercooling on-off valve 56 and supercooling check valve 57, and the supercooling capillary tube After being decompressed at 58, the refrigerant vapor that has passed through the main four-way valve 24 is merged (point G) and flows into the compressor 23. The refrigerant vapor that has flowed into the compressor 23 is compressed to point A and discharged again.

実施の形態4に示す空気調和機を暖房運転した場合、蒸発器となる室外熱交換器25の圧力損失(P1−P2)が小さくなるため、圧縮機の吸入温度が上昇し、空気調和機の冷媒循環流量が増加する。そのため、凝縮能力つまり暖房能力は従来例よりも増加する。
また、圧縮機の吸入圧力が上昇することにより(P2−P3)、凝縮能力が一定となるように空気調和機を運転した場合、圧縮機の入力が減少し、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
When the air conditioner shown in Embodiment 4 is operated for heating, the pressure loss (P1-P2) of the outdoor heat exchanger 25 serving as an evaporator is reduced, so that the intake temperature of the compressor rises and the air conditioner Refrigerant circulation flow rate increases. For this reason, the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Further, when the air conditioner is operated so that the condensing capacity becomes constant due to the increase of the suction pressure of the compressor (P2-P3), the input of the compressor is reduced, and the condensing capacity is input to the compressor 23. The coefficient of performance at the time of heating operation obtained by dividing by is increased from the conventional example.

以上のように、本実施の形態4の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of the fourth embodiment has the configuration shown in FIGS. 1 and 2, and thus the subordinate four-way valve 1 was used for cooling operation and heating operation. In this case, the switching valve 12 of the dependent four-way valve 1 can be automatically switched in response to a pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. it can. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態4に示した空気調和機は、減圧経路22を第1の減圧装置30と第1の過冷却熱交換器53とで構成する共に、減圧経路22の両端に従属四方弁1を接続し、冷房運転または暖房運転のどちらにおいても、高圧冷媒が第1の減圧装置30に流入する前に、前記高圧冷媒を第1の減圧装置30へ流す経路と、過冷却用減圧装置54により中間圧力に減圧して圧縮機23に戻す過冷却用バイパス経路とに分岐されるようにした。また、過冷却用減圧装置54を通過後の冷媒と第1の減圧装置30に流入する冷媒とが熱交換するように第1の過冷却熱交換器53を設けた。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても、能力および成績係数を増加させることができる。   In the air conditioner shown in the fourth embodiment, the decompression path 22 includes the first decompression device 30 and the first subcooling heat exchanger 53, and the subordinate four-way valve is disposed at both ends of the decompression path 22. 1 and a path for flowing the high-pressure refrigerant to the first decompression device 30 before the high-pressure refrigerant flows into the first decompression device 30 in both the cooling operation and the heating operation, and a supercooling decompression device The pressure is reduced to an intermediate pressure by 54 and branched to a subcooling bypass path that returns to the compressor 23. Further, the first supercooling heat exchanger 53 is provided so that the refrigerant after passing through the supercooling decompression device 54 and the refrigerant flowing into the first decompression device 30 exchange heat. Therefore, the capacity and the coefficient of performance can be increased in both the cooling operation and the heating operation of the air conditioner.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の切替弁12の切り替わりにより、第1の過冷却熱交換器53の前で分岐した高圧の冷媒と中間圧の冷媒が、第1の過冷却熱交換器53で対向して流れるようになるため、第1の過冷却熱交換器53の熱交換性能を向上することができる。   Further, in both the cooling operation and the heating operation, the high-pressure refrigerant and the intermediate-pressure refrigerant branched in front of the first supercooling heat exchanger 53 by the switching of the switching valve 12 of the subordinate four-way valve 1 are the first refrigerant. Therefore, the heat exchange performance of the first supercooling heat exchanger 53 can be improved.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、第1の過冷却熱交換器53の構造は任意であり、異なる圧力を有する冷媒が熱交換できるものであればよい。
また、本実施の形態では、第1の過冷却熱交換器53を通過する高圧の冷媒と中間圧の冷媒の流れを対向流となるようにしたが、並行流であってもよい。
また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。
また、過冷却用開閉弁56、過冷却用逆止弁57、過冷却用キャピラリチューブ58の代わりに、過冷却用流量制御弁を設けて、過冷却用バイパス配管70を通過する冷媒蒸気流量を調整してもよい。
In addition, the structure of the 1st subcooling heat exchanger 53 is arbitrary, and the refrigerant | coolant which has a different pressure should just be heat-exchangeable.
Further, in the present embodiment, the flow of the high-pressure refrigerant and the intermediate-pressure refrigerant that passes through the first subcooling heat exchanger 53 is opposed, but it may be parallel flow.
In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.
Further, instead of the supercooling on-off valve 56, the supercooling check valve 57, and the supercooling capillary tube 58, a supercooling flow rate control valve is provided so that the flow rate of the refrigerant vapor passing through the supercooling bypass pipe 70 is increased. You may adjust.

実施の形態5.
図13はこの発明の実施の形態5による空気調和機の冷媒回路図である。本実施の形態5の空気調和機は、実施の形態1とは異なり、減圧経路22は第2の減圧装置31を備えておらず、第1の減圧装置30と気液分離器32(第1の減圧装置30の上流側に設ける。)とエジェクタ61(気液分離器32の上流側に設ける。)とを備えている。また、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
エジェクタ61は、ノズル59とディフューザー60とを備え、さらにノズル59とディフューザー60との間と、吸入配管35とはエジェクタ用配管62で接続されている。また、エジェクタ用配管62はエジェクタ用減圧装置63を備えている。
また、実施の形態1と同様、気液分離器32で分離された気相冷媒を圧縮機23の中間圧縮過程に戻すガスインジェクション配管36を備えている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 5 FIG.
13 is a refrigerant circuit diagram of an air conditioner according to Embodiment 5 of the present invention. In the air conditioner of the fifth embodiment, unlike the first embodiment, the decompression path 22 does not include the second decompression device 31, and the first decompression device 30 and the gas-liquid separator 32 (first And an ejector 61 (provided on the upstream side of the gas-liquid separator 32). Further, the main path includes the subordinate four-way valve 1 so that the flow direction of the refrigerant passing through the decompression path 22 is constant in both the cooling operation and the heating operation.
The ejector 61 includes a nozzle 59 and a diffuser 60, and the nozzle 59 and the diffuser 60 are connected to the suction pipe 35 by an ejector pipe 62. The ejector pipe 62 includes an ejector decompression device 63.
Further, similarly to the first embodiment, a gas injection pipe 36 for returning the gas-phase refrigerant separated by the gas-liquid separator 32 to the intermediate compression process of the compressor 23 is provided.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図13および図14を用いて、実施の形態5に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図14は、圧力−エンタルピ線図であり、実線が本実施の形態5に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜Lは、図13および図29中に示したA〜Lのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 5 performs the cooling operation and the heating operation will be described with reference to FIGS. 13 and 14.
FIG. 14 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the fifth embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to L in the figure correspond to points A to L shown in FIGS. 13 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図14においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態5に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。このため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as that of the conventional operation shown in FIG. 6, and in FIG. 14, the inclination of the straight line from the C point to the D point is ignored.
On the other hand, in the air conditioner shown in the fifth embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. The main four-way valve 24 is switched so as to communicate with each other.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. For this reason, the switching valve 12 moves to the first end cover 19 side from the operation of the above-described subordinate four-way valve 1 to the state shown in FIG. 1, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber. 3, the second pipe 5 and the third pipe 6 communicate with each other via the folded flow path 11 a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、エジェクタ61のノズル59で等エントロピ変化しながら膨張して増速し(F点)、ディフューザー60の入口でエジェクタ用配管62を通過した冷媒蒸気(D点)を誘引して混合し(G点)、ディフューザー60で圧力回復する(H点)。圧力回復した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(L点)と冷媒液(I点)とに分離され、分離された冷媒液は第1の減圧装置30でさらに減圧された後(J点)、従属四方弁1を介して、室内熱交換器26に流入する。冷媒は、蒸発器である室内熱交換器26で、屋内の空気から熱を奪って蒸発し、主四方弁24を介した後(K点)、圧縮機23に流入する。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 through the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid passes through the subordinate four-way valve 1 (point B) and then expands and accelerates while changing the isentropy at the nozzle 59 of the ejector 61 (point F). The refrigerant vapor (point D) that has passed through 62 is attracted and mixed (point G), and the pressure is recovered by the diffuser 60 (point H). The pressure-recovered refrigerant flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point L) and refrigerant liquid (point I). The separated refrigerant liquid is the first decompression device. After the pressure is further reduced at 30 (point J), it flows into the indoor heat exchanger 26 via the dependent four-way valve 1. The refrigerant evaporates by taking heat from indoor air in the indoor heat exchanger 26 that is an evaporator, and flows into the compressor 23 through the main four-way valve 24 (point K).

一方、気液分離器32で分離された中間圧力の冷媒蒸気(L点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(M点)に注入され、L点の冷媒とM点の冷媒とが混合される(N点)。さらに冷媒はE点まで圧縮されて、再び吐出される。
また、室内熱交換器26で蒸発し、主四方弁24を通過した後(K点)の冷媒蒸気は、吸入配管35の途中からエジェクタ配管62へ分岐され、エジェクタ用減圧装置63で減圧された後に(D点)、ノズル59を通過した高速の冷媒(F点)に誘引されて混合される(G点)。
On the other hand, the flow rate of the intermediate-pressure refrigerant vapor (point L) separated by the gas-liquid separator 32 is adjusted by the injection flow control valve 33, passes through the injection pipe 36, and is in the middle of the compression process of the compressor 23 ( The refrigerant at point L and the refrigerant at point M are mixed (point N). Further, the refrigerant is compressed to point E and discharged again.
Further, the refrigerant vapor after evaporating in the indoor heat exchanger 26 and passing through the main four-way valve 24 (point K) is branched from the middle of the suction pipe 35 to the ejector pipe 62 and decompressed by the ejector decompression device 63. Later (D point), it is attracted and mixed by the high-speed refrigerant (F point) that has passed through the nozzle 59 (G point).

実施の形態5に示す空気調和機を冷房運転した場合、エジェクタ61および気液分離器32を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、蒸発能力が一定となるように空気調和機を運転した場合、エジェクタ61を用いたことによる圧力上昇分(P1−P2)だけ、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
また、エジェクタ用配管62を備えるので、室内熱交換器26で蒸発した冷媒蒸気の一部がエジェクタ61で吸引され、ディフューザー60で昇圧された後に気液分離器32で分離されて、インジェクション配管36から圧縮機23に流入する。これにより、圧縮機23への入力が減少する。
また、圧縮機23から吐出したときの温度(E点)は、従来例(A点)よりも低下するため、圧縮機23の信頼性が向上する。
When the air conditioner shown in Embodiment 5 is air-cooled, the ejector 61 and the gas-liquid separator 32 are provided. Therefore, the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the conventional air conditioner. It becomes larger than the enthalpy difference (h3-h2) of the machine. Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, when the air conditioner is operated so that the evaporation capacity is constant, the input of the compressor 23 is reduced by the pressure increase (P1-P2) due to the use of the ejector 61, and the evaporation capacity is reduced to the compressor 23. The coefficient of performance at the time of cooling operation obtained by dividing by the input is increased as compared with the conventional example.
Further, since the ejector pipe 62 is provided, a part of the refrigerant vapor evaporated by the indoor heat exchanger 26 is sucked by the ejector 61, boosted by the diffuser 60, separated by the gas-liquid separator 32, and injected by the injection pipe 36. To the compressor 23. Thereby, the input to the compressor 23 decreases.
Further, since the temperature (point E) when discharged from the compressor 23 is lower than that of the conventional example (point A), the reliability of the compressor 23 is improved.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図14とほぼ等しくなる。ただし、図29に示す従来の空気調和機では、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost the same as that in FIG. However, in the conventional air conditioner shown in FIG. 29, the point B and the point C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、ノズル59で等エントロピ変化しながら膨張して増速し(F点)、ディフューザー60の入口でエジェクタ用配管62を通過した冷媒蒸気(D点)を誘引して混合し(G点)、ディフューザー60で圧力回復する(H点)。圧力回復した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(L点)と冷媒液(I点)とに分離され、分離された冷媒液は第1の減圧装置30でさらに減圧された後(J点)、従属四方弁1を介して、室外熱交換器25に流入する。冷媒は、蒸発器である室外熱交換器25で、外気から熱を奪って蒸発し、主四方弁24を介した後(K点)、圧縮機23に流入する。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. , Condensed. The condensed refrigerant liquid passes through the subordinate four-way valve 1 (point B), then expands and accelerates while changing the isentropy at the nozzle 59 (point F), and passes through the ejector pipe 62 at the inlet of the diffuser 60. The refrigerant vapor (D point) is attracted and mixed (G point), and the pressure is restored by the diffuser 60 (H point). The pressure-recovered refrigerant flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point L) and refrigerant liquid (point I). The separated refrigerant liquid is the first decompression device. After the pressure is further reduced at 30 (point J), the refrigerant flows into the outdoor heat exchanger 25 via the dependent four-way valve 1. The refrigerant evaporates by taking heat from the outside air in the outdoor heat exchanger 25 that is an evaporator, and flows into the compressor 23 through the main four-way valve 24 (point K).

一方、気液分離器32で分離された中間圧力の冷媒蒸気(L点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(M点)に注入され、L点の冷媒とM点の冷媒とが混合される(N点)。さらに冷媒はE点まで圧縮されて、再び吐出される。
また、主四方弁24を介した後(K点)の冷媒蒸気は、吸入配管35の途中からエジェクタ配管62へ分岐され、エジェクタ用減圧装置63で減圧された後に(D点)、ノズル59を通過した高速の冷媒(F点)に誘引されて混合される(G点)。
On the other hand, the flow rate of the intermediate-pressure refrigerant vapor (point L) separated by the gas-liquid separator 32 is adjusted by the injection flow control valve 33, passes through the injection pipe 36, and is in the middle of the compression process of the compressor 23 ( The refrigerant at point L and the refrigerant at point M are mixed (point N). Further, the refrigerant is compressed to point E and discharged again.
The refrigerant vapor after passing through the main four-way valve 24 (point K) is branched from the middle of the suction pipe 35 to the ejector pipe 62 and decompressed by the ejector decompression device 63 (point D). It is attracted and mixed by the high-speed refrigerant (F point) that has passed (G point).

実施の形態5に示す空気調和機を暖房運転した場合、インジェクション配管36を有するので、凝縮器である室内熱交換器26を流れる冷媒流量は、インジェクション配管36から圧縮機23に注入される冷媒流量により増加する。そのため、凝縮能力つまり暖房能力は従来例よりも増加する。
また、圧縮機23から吐出したときの温度が、従来例よりも低下するため、圧縮機23の信頼性が向上する。
また、凝縮能力が一定となるように空気調和機を運転した場合、エジェクタ61を備えるので、エジェクタ61を用いたことによる圧力上昇分(P1−P2)だけ、圧縮機23の入力が減少し、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
また、エジェクタ用配管62を備えるので、室外熱交換器25で蒸発した冷媒蒸気の一部がエジェクタ61で吸引され、ディフューザー60で昇圧された後に気液分離器32で分離されて、インジェクション配管36から圧縮機23へ流入する。これにより、圧縮機23への入力が減少する。
When the air conditioner shown in Embodiment 5 is heated and operated, since it has the injection pipe 36, the refrigerant flow rate flowing through the indoor heat exchanger 26 that is a condenser is the refrigerant flow rate injected into the compressor 23 from the injection pipe 36. Increase by. For this reason, the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Moreover, since the temperature when discharged from the compressor 23 is lower than that of the conventional example, the reliability of the compressor 23 is improved.
Further, when the air conditioner is operated so that the condensing capacity is constant, since the ejector 61 is provided, the input of the compressor 23 is reduced by the pressure increase (P1-P2) due to the use of the ejector 61, The coefficient of performance at the time of heating operation obtained by dividing the condensation capacity by the input of the compressor 23 is increased as compared with the conventional example.
Further, since the ejector pipe 62 is provided, a part of the refrigerant vapor evaporated by the outdoor heat exchanger 25 is sucked by the ejector 61, boosted by the diffuser 60, separated by the gas-liquid separator 32, and injected by the injection pipe 36. To the compressor 23. Thereby, the input to the compressor 23 decreases.

以上のように、本実施の形態5の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of the fifth embodiment has the configuration shown in FIGS. 1 and 2, and thus the subordinate four-way valve 1 was used for cooling operation and heating operation. In this case, the switching valve 12 of the dependent four-way valve 1 can be automatically switched in response to a pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. it can. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態5に示した空気調和機は、減圧経路22を第1の減圧装置30と気液分離器32とエジェクタ61とで構成する共に、減圧経路22の両端に従属四方弁1を接続し、冷房運転または暖房運転のどちらにおいても、高圧冷媒がエジェクタ61に流入して、ノズル59で等エントロピ変化して膨張し、また、エジェクタ用配管62を介して冷媒蒸気を吸引してディフューザー60で圧力回復した後に、気液二相状態で気液分離器32に流入し、さらに、気液分離器32で冷媒蒸気と冷媒液とに分離され、分離された冷媒液が流出配管42を通って流出した後に第1の減圧装置30で減圧され、また、分離された冷媒蒸気が気液分離用配管49を通って流出するといった、エジェクタ61および気液分離器32が機能するように動作する冷媒の流れを形成することができる。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても、能力および成績係数を増加させることができるとともに、圧縮機の信頼性が向上する。   In the air conditioner shown in the fifth embodiment, the decompression path 22 includes the first decompression device 30, the gas-liquid separator 32, and the ejector 61, and the subordinate four-way valve 1 is disposed at both ends of the decompression path 22. In both the cooling operation and the heating operation, the high-pressure refrigerant flows into the ejector 61, expands by isentropic change at the nozzle 59, and sucks the refrigerant vapor through the ejector pipe 62. After the pressure is recovered by the diffuser 60, it flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is further separated into the refrigerant vapor and the refrigerant liquid by the gas-liquid separator 32. So that the ejector 61 and the gas-liquid separator 32 function such that the refrigerant is depressurized by the first pressure reducing device 30 after flowing out and the separated refrigerant vapor flows out through the gas-liquid separating pipe 49. It is possible to form a flow of refrigerant work. Therefore, in both the cooling operation and the heating operation of the air conditioner, the capacity and the coefficient of performance can be increased, and the reliability of the compressor is improved.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、ここでは、ノズル59とディフューザー60とを備えたエジェクタ61を示したが、膨張動力を回収できる膨張機構であればよい。   In addition, although the ejector 61 provided with the nozzle 59 and the diffuser 60 was shown here, what is necessary is just an expansion mechanism which can collect | recover expansion power.

また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

実施の形態6.
図15はこの発明の実施の形態6による空気調和機の冷媒回路図である。本実施の形態6の空気調和機は、実施の形態5とは異なり、主四方弁24の吸込み側接続口45を吸入配管35と接続せず、エジェクタ用配管62に接続している。また、インジェクション配管36とインジェクション用流量制御弁33とを具備しておらず、これに代わり、気液分離器32と吸入配管35とを気液分離用戻し配管71で接続し、気液分離用戻し配管71には、気液分離用戻し流量弁64を備えている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 6 FIG.
FIG. 15 is a refrigerant circuit diagram of an air conditioner according to Embodiment 6 of the present invention. The air conditioner of the sixth embodiment is different from the fifth embodiment in that the suction side connection port 45 of the main four-way valve 24 is not connected to the suction pipe 35 but is connected to the ejector pipe 62. In addition, the injection pipe 36 and the injection flow control valve 33 are not provided. Instead, the gas-liquid separator 32 and the suction pipe 35 are connected by a gas-liquid separation return pipe 71 for gas-liquid separation. The return pipe 71 includes a gas-liquid separation return flow valve 64.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図15および図16を用いて、実施の形態6に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図16は、圧力−エンタルピ線図であり、実線が本実施の形態6に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜Kは、図15および図29中に示したA〜Kのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 6 performs the cooling operation and the heating operation will be described with reference to FIGS. 15 and 16.
FIG. 16 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the sixth embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to K in the figure correspond to points A to K shown in FIGS. 15 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図16においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態6に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に、気液分離用戻し配管71、気液分離器32、ディフューザー60、エジェクタ用配管62、主四方弁24、室内側ガス配管39、室内熱交換器26、室内側液配管40を介して連通する従属四方弁1の第3の配管6は低圧となる。このため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as that of the conventional operation shown in FIG. 6, and in FIG. 16, the inclination of the straight line from the point C to the point D is ignored.
On the other hand, in the air conditioner shown in the sixth embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. The main four-way valve 24 is switched so as to communicate with each other.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the gas-liquid separation return pipe 71 and the gas pipe are connected to the suction side of the compressor 23. The third pipe 6 of the subordinate four-way valve 1 communicating with the liquid separator 32, the diffuser 60, the ejector pipe 62, the main four-way valve 24, the indoor side gas pipe 39, the indoor heat exchanger 26, and the indoor side liquid pipe 40. Becomes low pressure. For this reason, the switching valve 12 moves to the first end cover 19 side from the operation of the above-described subordinate four-way valve 1 to the state shown in FIG. 1, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber. 3, the second pipe 5 and the third pipe 6 communicate with each other via the folded flow path 11 a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、エジェクタ61のノズル59で等エントロピ変化しながら膨張して増速し(E点)、ディフューザー60の入口でエジェクタ用配管62を通過した冷媒蒸気(D点)を誘引して混合し(F点)、ディフューザー60で圧力回復する(G点)。圧力回復した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(K点)と冷媒液(H点)とに分離され、分離された冷媒液は第1の減圧装置30でさらに減圧された後(I点)、従属四方弁1を介して、室内熱交換器26に流入する。冷媒は、蒸発器である室内熱交換器26で、屋内の空気から熱を奪って蒸発し、主四方弁24を介した後(J点)、エジェクタ配管62を通って、エジェクタ用減圧装置63で減圧され(D点)、ノズル59を通過した高速の冷媒(E点)に誘引されて混合される(F点)。つまり、室内熱交換器26を循環する冷媒流量は、全てエジェクタ61で誘引される流量となる。
また、気液分離器32で分離された冷媒蒸気は、気液分離用戻し流量弁64を介し(K点)、気液分離用戻し配管71を通って、圧縮機23に流入する。
The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. The condensed refrigerant liquid passes through the dependent four-way valve 1 (point B), and then expands and accelerates while changing the isentropy at the nozzle 59 of the ejector 61 (point E). The refrigerant vapor (point D) that has passed through 62 is attracted and mixed (point F), and the pressure is recovered by the diffuser 60 (point G). The refrigerant whose pressure has been recovered flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point K) and refrigerant liquid (point H). The separated refrigerant liquid is the first decompression device. After further depressurization at 30 (point I), it flows into the indoor heat exchanger 26 via the dependent four-way valve 1. The refrigerant takes the heat from the indoor air by the indoor heat exchanger 26 as an evaporator, evaporates, passes through the main four-way valve 24 (point J), passes through the ejector pipe 62, and is ejected by the decompressor 63 for ejector. The pressure is reduced (point D) and is attracted and mixed by the high-speed refrigerant (point E) that has passed through the nozzle 59 (point F). That is, the refrigerant flow rate circulating through the indoor heat exchanger 26 is all the flow rate attracted by the ejector 61.
The refrigerant vapor separated by the gas-liquid separator 32 flows into the compressor 23 through the gas-liquid separation return pipe 71 via the gas-liquid separation return flow valve 64 (point K).

実施の形態6に示す空気調和機を冷房運転した場合、気液分離器32を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、蒸発能力が一定となるように空気調和機を運転した場合、エジェクタ61を備えるので、エジェクタ61を用いたことによる圧力上昇分(P1−P2)だけ、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
また、エジェクタ用配管62を備えるので、室内熱交換器26で蒸発した冷媒蒸気がエジェクタ61で吸引され、室内熱交換器26に冷媒を循環させることができる。
When the air conditioner shown in Embodiment 6 is air-cooled, the gas-liquid separator 32 is provided, so that the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is enthalpy of the conventional air conditioner. It becomes larger than the difference (h3−h2). Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, when the air conditioner is operated so that the evaporation capacity becomes constant, the ejector 61 is provided, so that the input of the compressor 23 is reduced by the pressure increase (P1-P2) due to the use of the ejector 61, The coefficient of performance during cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is increased as compared with the conventional example.
Further, since the ejector pipe 62 is provided, the refrigerant vapor evaporated by the indoor heat exchanger 26 is sucked by the ejector 61, and the refrigerant can be circulated through the indoor heat exchanger 26.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図16とほぼ等しくなる。ただし、図29に示す従来の空気調和機では、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に、気液分離用戻し配管71、気液分離器32、ディフューザー60、エジェクタ用配管62、主四方弁24、室外側ガス配管37、室外熱交換器25、室外側液配管38を介して連通する従属四方弁1の第4の配管7は、低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost the same as that in FIG. However, in the conventional air conditioner shown in FIG. 29, the point B and the point C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the gas-liquid separation return pipe 71 and the gas pipe are connected to the suction side of the compressor 23. The fourth pipe 7 of the subordinate four-way valve 1 communicated via the liquid separator 32, the diffuser 60, the ejector pipe 62, the main four-way valve 24, the outdoor gas pipe 37, the outdoor heat exchanger 25, and the outdoor liquid pipe 38. Becomes low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器25で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、ノズル59で等エントロピ変化しながら膨張して増速し(E点)、ディフューザー60の入口でエジェクタ用配管62を通過した冷媒蒸気(D点)を誘引して混合し(F点)、ディフューザー60で圧力回復する(G点)。圧力回復した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(K点)と冷媒液(H点)とに分離され、分離された冷媒液は第1の減圧装置30でさらに減圧された後(I点)、従属四方弁1を介して、室外熱交換器25に流入する。冷媒は、蒸発器である室外熱交換器25で、外気から熱を奪って蒸発し、主四方弁24を介した後(J点)、エジェクタ配管62を通って、エジェクタ用減圧装置63で減圧された後に(D点)、ノズル59を通過した高速の冷媒(E点)に誘引されて混合される(F点)。つまり、室外熱交換器25を循環する冷媒流量は、全てエジェクタ61で誘引される流量となる。
また、気液分離器32で分離された冷媒蒸気は、気液分離用戻し流量弁64を介し(K点)、気液分離用戻し配管71を通って、圧縮機23に流入する。
The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and is cooled by indoor air in the indoor heat exchanger 25 that is a condenser. , Condensed. The condensed refrigerant liquid passes through the subordinate four-way valve 1 (point B), then expands and accelerates while changing the isentropy at the nozzle 59 (point E), and passes through the ejector pipe 62 at the inlet of the diffuser 60. The refrigerant vapor (point D) is attracted and mixed (point F), and the pressure is restored by the diffuser 60 (point G). The refrigerant whose pressure has been recovered flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point K) and refrigerant liquid (point H). The separated refrigerant liquid is the first decompression device. After the pressure is further reduced at 30 (point I), it flows into the outdoor heat exchanger 25 via the dependent four-way valve 1. The refrigerant evaporates by taking heat from the outside air in the outdoor heat exchanger 25 that is an evaporator, passes through the main four-way valve 24 (point J), passes through the ejector piping 62, and is decompressed by the ejector decompression device 63. (D point), the high-speed refrigerant (point E) that has passed through the nozzle 59 is attracted and mixed (point F). That is, the refrigerant flow rate circulating through the outdoor heat exchanger 25 is all the flow rate attracted by the ejector 61.
The refrigerant vapor separated by the gas-liquid separator 32 flows into the compressor 23 through the gas-liquid separation return pipe 71 via the gas-liquid separation return flow valve 64 (point K).

実施の形態6に示す空気調和機を暖房運転した場合、エジェクタ61を備えるので、エジェクタ61を用いたことによる圧力上昇分(P1−P2)だけ、圧縮機23の入力が減少する。そのため、凝縮能力が一定となるように空気調和機を運転した場合、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
また、エジェクタ用配管62を備えるので、室外熱交換器25で蒸発した冷媒蒸気がエジェクタ61で吸引され、室外熱交換器25に冷媒を循環させることができる。
When the air conditioner shown in Embodiment 6 is operated for heating, since the ejector 61 is provided, the input of the compressor 23 is reduced by a pressure increase (P1-P2) due to the use of the ejector 61. Therefore, when the air conditioner is operated so that the condensing capacity is constant, the coefficient of performance during the heating operation obtained by dividing the condensing capacity by the input of the compressor 23 is increased as compared with the conventional example.
Further, since the ejector pipe 62 is provided, the refrigerant vapor evaporated by the outdoor heat exchanger 25 is sucked by the ejector 61, and the refrigerant can be circulated through the outdoor heat exchanger 25.

以上のように、本実施の形態6の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of the sixth embodiment has the configuration shown in FIGS. 1 and 2, and thus the subordinate four-way valve 1 was used for cooling operation and heating operation. In this case, the switching valve 12 of the dependent four-way valve 1 can be automatically switched in response to a pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. it can. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態6に示した空気調和機は、減圧経路22を第1の減圧装置30と気液分離器32とエジェクタ61とで構成する共に、減圧経路22の両端に従属四方弁1を接続し、冷房運転または暖房運転のどちらにおいても、高圧冷媒がエジェクタ61に流入して、ノズル59で等エントロピ変化して膨張し、また、エジェクタ用配管62を介して冷媒蒸気を吸引してディフューザー60で圧力回復した後に、気液二相状態で気液分離器32に流入し、さらに、気液分離器32で冷媒蒸気と冷媒液とに分離され、分離された冷媒液が流出配管42を通って流出した後に第1の減圧装置30で減圧され、また、分離された冷媒蒸気が気液分離用戻し配管71を通って流出するといった、エジェクタ61および気液分離器32が機能するように動作する冷媒の流れを形成することができる。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても成績係数を増加させることができる。   In the air conditioner shown in the sixth embodiment, the decompression path 22 includes the first decompression device 30, the gas-liquid separator 32, and the ejector 61, and the subordinate four-way valve 1 is disposed at both ends of the decompression path 22. In both the cooling operation and the heating operation, the high-pressure refrigerant flows into the ejector 61, expands by isentropic change at the nozzle 59, and sucks the refrigerant vapor through the ejector pipe 62. After the pressure is recovered by the diffuser 60, it flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is further separated into the refrigerant vapor and the refrigerant liquid by the gas-liquid separator 32. The ejector 61 and the gas-liquid separator 32 function such that the refrigerant is decompressed by the first decompression device 30 after flowing out and the separated refrigerant vapor flows out through the gas-liquid separating return pipe 71. It is possible to form a flow of the refrigerant that operates. Therefore, the coefficient of performance can be increased in both the cooling operation and the heating operation of the air conditioner.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、ここでは、ノズル59とディフューザー60とを備えたエジェクタ61を示したが、膨張動力を回収できる膨張機構であればよい。   In addition, although the ejector 61 provided with the nozzle 59 and the diffuser 60 was shown here, what is necessary is just an expansion mechanism which can collect | recover expansion power.

また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。
また、本実施の形態6の空気調和機において、第1の減圧装置30およびエジェクタ用減圧装置63のいずれか少なくとも1つを削除してもかまわない。この場合、気液分離器32の液冷媒出口から従属四方弁1、室内熱交換器26(または室外熱交換器25)、主四方弁24、ノズル59の出口に至るまでの圧力損失を低減することがで、ノズル59を通過後の高速の冷媒(E点)に誘引される冷媒量を増加させて、室内熱交換器26の熱交換量を向上することができる。
また、本実施の形態6の空気調和機において、気液分離用戻し流量弁64を削除してもかまわない。この場合、気液分離器32の冷媒蒸気出口から圧縮機23の吸入口に至るまでの圧力損失を低減することができるので、圧縮機23の吸入圧力を上昇して、圧縮機23の電気入力を低減することができる。
また、本実施の形態6の空気調和機において、第1の減圧装置30を気液分離器32と従属四方弁1の間に設ける例を示したが、第1の減圧装置30を従属四方弁1とエジェクタ61との間またはエジェクタ61と気液分離器32との間に設けてもよい。第1の減圧装置30を減圧経路22に設けることにより、エジェクタ61で制御しきれない減圧量を調整することができる。
In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.
Further, in the air conditioner of the sixth embodiment, at least one of the first decompressor 30 and the ejector decompressor 63 may be deleted. In this case, pressure loss from the liquid refrigerant outlet of the gas-liquid separator 32 to the sub four-way valve 1, the indoor heat exchanger 26 (or the outdoor heat exchanger 25), the main four-way valve 24, and the nozzle 59 is reduced. Thus, the amount of refrigerant attracted by the high-speed refrigerant (point E) after passing through the nozzle 59 can be increased, and the heat exchange amount of the indoor heat exchanger 26 can be improved.
In the air conditioner of the sixth embodiment, the gas-liquid separation return flow valve 64 may be deleted. In this case, since the pressure loss from the refrigerant vapor outlet of the gas-liquid separator 32 to the inlet of the compressor 23 can be reduced, the suction pressure of the compressor 23 is increased and the electric input of the compressor 23 is increased. Can be reduced.
Moreover, in the air conditioner of the sixth embodiment, the example in which the first pressure reducing device 30 is provided between the gas-liquid separator 32 and the subordinate four-way valve 1 has been shown, but the first pressure reducing device 30 is provided as the subordinate four-way valve. 1 and the ejector 61 or between the ejector 61 and the gas-liquid separator 32. By providing the first decompression device 30 in the decompression path 22, it is possible to adjust the amount of decompression that cannot be controlled by the ejector 61.

実施の形態7.
図17はこの発明の実施の形態7による空気調和機の冷媒回路図である。本実施の形態7の空気調和機は、実施の形態1とは異なり、減圧経路22は気液分離器32を備えておらず、第1の減圧装置30と、第1の過冷却熱交換器53(第1の減圧装置30の下流側に設ける。)と、第2の過冷却熱交換器65(第1の過冷却熱交換器53の下流側に設ける。)と、第2の減圧装置31(第2の過冷却熱交換器65の下流側に設ける。)とを備える。また、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
また、本実施の形態7では、第1の過冷却熱交換器53の下流で第2の過冷却熱交換器65に至るまでの間から分岐した冷媒を、圧縮機23の中間圧縮過程に戻す過冷却用インジェクション配管55を設けている。また、過冷却用インジェクション配管55には、前記分岐した冷媒を中間圧力にするための過冷却用減圧装置54を備えると共に、過冷却用減圧装置54を通過後の冷媒と第1の減圧装置30を通過後の冷媒が第1の過冷却熱交換器53を介して熱交換するようにしている。さらに、第2の減圧装置31に流入する冷媒と、圧縮機23に流入する冷媒とが第2の過冷却熱交換器65を介して熱交換するようにしている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 7 FIG.
FIG. 17 is a refrigerant circuit diagram of an air conditioner according to Embodiment 7 of the present invention. The air conditioner of the seventh embodiment is different from the first embodiment in that the decompression path 22 is not provided with the gas-liquid separator 32, and the first decompressor 30 and the first supercooling heat exchanger. 53 (provided downstream of the first decompressor 30), a second supercooling heat exchanger 65 (provided downstream of the first supercooling heat exchanger 53), and a second decompressor. 31 (provided on the downstream side of the second subcooling heat exchanger 65). Further, the main path includes the subordinate four-way valve 1 so that the flow direction of the refrigerant passing through the decompression path 22 is constant in both the cooling operation and the heating operation.
Further, in the seventh embodiment, the refrigerant branched from the time until it reaches the second subcooling heat exchanger 65 downstream of the first subcooling heat exchanger 53 is returned to the intermediate compression process of the compressor 23. A supercooling injection pipe 55 is provided. The supercooling injection pipe 55 is provided with a supercooling decompression device 54 for setting the branched refrigerant to an intermediate pressure, and the refrigerant after passing through the supercooling decompression device 54 and the first decompression device 30. The refrigerant after passing through the heat exchanger exchanges heat via the first supercooling heat exchanger 53. Further, the refrigerant flowing into the second decompression device 31 and the refrigerant flowing into the compressor 23 exchange heat through the second subcooling heat exchanger 65.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図17および図18を用いて、実施の形態7に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図18は、圧力−エンタルピ線図であり、実線が本実施の形態7に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。図中のA〜Lは、図17および図29中に示したA〜Lのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air conditioner shown in Embodiment 7 performs the cooling operation and the heating operation will be described with reference to FIGS. 17 and 18.
FIG. 18 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the seventh embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. A to L in the figure correspond to points A to L shown in FIGS. 17 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図18においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態7に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as the conventional operation shown in FIG. 6, and in FIG. 18, the inclination of the straight line from the C point to the D point is ignored.
On the other hand, in the air conditioner shown in the seventh embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. The main four-way valve 24 is switched so as to communicate with each other.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、第1の減圧装置30で減圧され(F点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧P3の冷媒(K点〜L点)により冷却される(G点)。その後、さらに、第2の過冷却熱交換器65で対向して流れる低圧P4の冷媒(点J〜点D)により冷却された後(H点)、第2の減圧装置31で減圧され(I点)、従属四方弁1を介して室内熱交換器26へ進む。冷媒は、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発するが、完全に蒸発せず、気液二相状態で主四方弁24を介した後(J点)、第2の過冷却熱交換器65で、中間圧P2の冷媒(G点〜H点)から熱を奪って蒸発し(D点)、圧縮機23へ進む。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a condenser, and condensed. Is done. After the condensed refrigerant liquid passes through the subordinate four-way valve 1 (point B), it is depressurized by the first decompression device 30 (point F), and further flows through the first supercooling heat exchanger 53 in an opposite direction. It is cooled (point G) by the refrigerant with pressure P3 (points K to L). Thereafter, the refrigerant is further cooled by a low-pressure P4 refrigerant (point J to point D) that flows oppositely in the second subcooling heat exchanger 65 (point H to point D), and then decompressed by the second decompression device 31 (I Point), the process proceeds to the indoor heat exchanger 26 via the dependent four-way valve 1. The refrigerant takes the heat from the indoor air in the indoor heat exchanger 26 as an evaporator and evaporates, but does not completely evaporate and passes through the main four-way valve 24 in a gas-liquid two-phase state (point J). In the second subcooling heat exchanger 65, heat is taken from the refrigerant (G point to H point) at the intermediate pressure P2 to evaporate (D point), and the process proceeds to the compressor 23.

一方、G点で過冷却用インジェクション配管55に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力P3まで減圧された後(K点)、第1の過冷却熱交換器53で対向して流れる中間圧P2の冷媒(点F〜点G)から熱を奪って蒸発するが(L点)、完全に蒸発せず、気液二相状態で圧縮機23の圧縮工程の途中(M点)に注入され、L点の冷媒とM点の冷媒とが混合される(N点)。さらに冷媒はE点まで圧縮されて、再び吐出される。   On the other hand, a part of the refrigerant liquid branched to the supercooling injection pipe 55 at the point G is decompressed to the intermediate pressure P3 by the supercooling decompression device 54 (point K), and then the first supercooling heat exchanger. Although the heat is removed from the refrigerant (point F to point G) of the intermediate pressure P2 that flows oppositely at 53 (point L), it does not evaporate completely, and the compressor 23 of the compressor 23 is in a gas-liquid two-phase state. It is injected halfway (point M), and the refrigerant at point L and the refrigerant at point M are mixed (point N). Further, the refrigerant is compressed to point E and discharged again.

実施の形態7に示す空気調和機を冷房運転した場合、第1の過冷却熱交換器53および第2の過冷却熱交換器65を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h4−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、過冷却用インジェクション配管55を備えるので、圧縮機23を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に蒸発能力が大きいため、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。また、圧縮機から吐出したときの温度が、従来例よりも低下するため、圧縮機の信頼性が向上する。
When the air conditioner shown in Embodiment 7 is air-cooled, the first subcooling heat exchanger 53 and the second subcooling heat exchanger 65 are provided, so the enthalpy difference of the indoor heat exchanger 26 that is an evaporator. (H3−h1) becomes larger than the enthalpy difference (h4−h2) of the conventional air conditioner. Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, since the supercooling injection pipe 55 is provided, the flow rate of the refrigerant flowing through the compressor 23 is increased by the flow rate of the refrigerant injected from the supercooling injection pipe 55 into the compressor 23. Therefore, although the input of the compressor 23 also increases, since the evaporation capacity is larger than that, the coefficient of performance during the cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is increased as compared with the conventional example. Further, since the temperature when discharged from the compressor is lower than that of the conventional example, the reliability of the compressor is improved.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図18とほぼ等しくなる。ただし、図29に示す従来の空気調和機を暖房運転する場合は、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is substantially the same as FIG. However, when heating the conventional air conditioner shown in FIG. 29, the points B and C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後(B点)、第1の減圧装置30で減圧され(F点)、さらに第1の過冷却熱交換器53で対向して流れる中間圧P3の冷媒(K点〜L点)により冷却される(G点)。その後、さらに、第2の過冷却熱交換器65で対向して流れる低圧P4の冷媒(点J〜点D)により冷却された後(H点)、第2の減圧装置31で減圧され(I点)、従属四方弁1を介して室外熱交換器25へ進む。冷媒は、蒸発器である室外熱交換器25で外気から熱を奪って蒸発するが、完全に蒸発せず、気液二相状態で主四方弁24を介した後(J点)、第2の過冷却熱交換器65で、中間圧P2の冷媒(G点〜H点)から熱を奪って蒸発し(D点)、圧縮機23へ進む。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. , Condensed. After the condensed refrigerant liquid passes through the subordinate four-way valve 1 (point B), it is depressurized by the first decompression device 30 (point F), and further flows through the first supercooling heat exchanger 53 in an opposite direction. It is cooled (point G) by the refrigerant with pressure P3 (points K to L). Thereafter, the refrigerant is further cooled by a low-pressure P4 refrigerant (point J to point D) that flows oppositely in the second subcooling heat exchanger 65 (point H to point D), and then decompressed by the second decompression device 31 (I Point), the process proceeds to the outdoor heat exchanger 25 via the subordinate four-way valve 1. The refrigerant takes heat from the outside air in the outdoor heat exchanger 25 that is an evaporator and evaporates, but does not completely evaporate, and after passing through the main four-way valve 24 in the gas-liquid two-phase state (point J), the second In the subcooling heat exchanger 65, heat is taken from the refrigerant having the intermediate pressure P2 (G point to H point) to evaporate (D point), and the process proceeds to the compressor 23.

一方、G点で過冷却用インジェクション配管55に分岐された冷媒液の一部は、過冷却用減圧装置54で中間圧力P3まで減圧された後(K点)、第1の過冷却熱交換器53で対向して流れる中間圧P2の冷媒(点F〜点G)から熱を奪って蒸発するが(L点)、完全に蒸発せず、気液二相状態で圧縮機23の圧縮工程の途中(M点)に注入され、L点の冷媒とM点の冷媒とが混合される(N点)。さらに冷媒はE点まで圧縮されて、再び吐出される。   On the other hand, a part of the refrigerant liquid branched to the supercooling injection pipe 55 at the point G is decompressed to the intermediate pressure P3 by the supercooling decompression device 54 (point K), and then the first supercooling heat exchanger. Although the heat is removed from the refrigerant (point F to point G) of the intermediate pressure P2 that flows oppositely at 53 (point L), it does not evaporate completely, and the compressor 23 of the compressor 23 is in a gas-liquid two-phase state. It is injected halfway (point M), and the refrigerant at point L and the refrigerant at point M are mixed (point N). Further, the refrigerant is compressed to point E and discharged again.

実施の形態7に示す空気調和機を暖房運転した場合、過冷却用インジェクション配管55を備えるので、凝縮器である室内熱交換器26を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、凝縮能力つまり暖房能力は従来例よりも増加する。
また、圧縮機23を流れる冷媒流量は、過冷却用インジェクション配管55から圧縮機23に注入される冷媒流量により増加する。そのため、圧縮機23の入力も増加するが、それ以上に凝縮能力が大きいため、凝縮能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。また、圧縮機から吐出したときの温度が、従来例よりも低下するため、圧縮機の信頼性が向上する。
When the air conditioner shown in Embodiment 7 is heated, the supercooling injection pipe 55 is provided, so that the refrigerant flow rate flowing through the indoor heat exchanger 26 as a condenser is changed from the supercooling injection pipe 55 to the compressor 23. It increases with the flow rate of the refrigerant injected into the tank. For this reason, the condensing capacity, that is, the heating capacity is increased as compared with the conventional example.
Further, the flow rate of the refrigerant flowing through the compressor 23 increases due to the flow rate of the refrigerant injected into the compressor 23 from the subcooling injection pipe 55. Therefore, although the input of the compressor 23 also increases, since the condensing capacity is larger than that, the coefficient of performance during the heating operation obtained by dividing the condensing capacity by the input of the compressor 23 is increased as compared with the conventional example. Further, since the temperature when discharged from the compressor is lower than that of the conventional example, the reliability of the compressor is improved.

以上のように、本実施の形態7の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、この従属四方弁1を用いて冷房運転、暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7との圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, the subordinate four-way valve 1 used in the air conditioner of the seventh embodiment has the configuration shown in FIGS. 1 and 2, and thus the subordinate four-way valve 1 was used for cooling operation and heating operation. In this case, the switching valve 12 of the dependent four-way valve 1 can be automatically switched in response to a pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. it can. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態7に示した空気調和機は、減圧経路22を第1の減圧装置30と、第1の過冷却熱交換器53と、第2の過冷却熱交換器65と、第2の減圧装置31とで構成する共に、減圧経路22の両端に従属四方弁1を接続し、冷房運転または暖房運転のどちらにおいても、第1の過冷却熱交換器53は過冷却用インジェクション配管55を通過する冷媒と熱交換し、第2の過冷却熱交換器65は圧縮機に戻る冷媒と熱交換するようにできる。そのため、能力および成績係数を増加させることができる。また、圧縮機23の信頼性が向上する。   In the air conditioner shown in the seventh embodiment, the decompression path 22 is routed through the first decompression device 30, the first supercooling heat exchanger 53, the second supercooling heat exchanger 65, and the first 2, the sub four-way valve 1 is connected to both ends of the pressure reducing path 22, and the first supercooling heat exchanger 53 is connected to the supercooling injection pipe in both the cooling operation and the heating operation. The second subcooling heat exchanger 65 can exchange heat with the refrigerant passing through 55, and the second subcooling heat exchanger 65 can exchange heat with the refrigerant returning to the compressor. Therefore, ability and a coefficient of performance can be increased. Further, the reliability of the compressor 23 is improved.

また、冷房運転または暖房運転のどちらにおいても、第1の過冷却熱交換器53および第2の過冷却熱交換器65において、熱交換器内を流れる冷媒が対向して流れるようにしたので、第1の過冷却熱交換器53および第2の過冷却熱交換器65の熱交換性能を向上させることができる。   Further, in both the cooling operation and the heating operation, in the first subcooling heat exchanger 53 and the second subcooling heat exchanger 65, the refrigerant flowing in the heat exchanger is caused to flow oppositely. The heat exchange performance of the first subcooling heat exchanger 53 and the second subcooling heat exchanger 65 can be improved.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、第1の過冷却熱交換器53および第2の過冷却熱交換器65の構造は任意であり、異なる圧力を有する冷媒が熱交換できるものであればよい。   In addition, the structure of the 1st subcooling heat exchanger 53 and the 2nd subcooling heat exchanger 65 is arbitrary, and the refrigerant | coolant which has a different pressure should just be heat-exchangeable.

また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

実施の形態8.
図19はこの発明の実施の形態8による空気調和機の冷媒回路図である。本実施の形態8の空気調和機は、実施の形態1とは異なり、気液分離器32、インジェクション用流量制御弁33、インジェクション配管36を具備しておらず、これに代わり、膨張機72、膨張動力伝達手段73、副圧縮機74、膨張用バイパス配管75、膨張用流量制御弁76を備える。また、第1の減圧装置30と第2の減圧装置31との間に膨張機72を接続し、主四方弁24から圧縮機23の吸入側に至る間に副圧縮機74を接続し、流入配管41と流出配管42に膨張用バイパス配管75を接続し、膨張用バイパス配管75に膨張用流量制御弁76を配置している。
また、膨張機72と副圧縮機74とは膨張動力伝達手段73により連結されており、膨張機72で回収した膨張動力が副圧縮機74に伝達されるようになっている。膨張機72および副圧縮機74の構造としては、たとえば、レシプロ式、ロータリ式、スクロール式などが考えられる。減圧経路22は第1の減圧装置30と膨張機72と第2の減圧装置31とを備え、主経路は従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 8 FIG.
FIG. 19 is a refrigerant circuit diagram of an air conditioner according to Embodiment 8 of the present invention. Unlike the first embodiment, the air conditioner of the eighth embodiment does not include the gas-liquid separator 32, the injection flow control valve 33, and the injection pipe 36. Instead, the expander 72, An expansion power transmission means 73, a sub compressor 74, an expansion bypass pipe 75, and an expansion flow control valve 76 are provided. Further, an expander 72 is connected between the first pressure reducing device 30 and the second pressure reducing device 31, and a sub compressor 74 is connected between the main four-way valve 24 and the suction side of the compressor 23, and the inflow An expansion bypass pipe 75 is connected to the pipe 41 and the outflow pipe 42, and an expansion flow control valve 76 is arranged in the expansion bypass pipe 75.
The expander 72 and the sub-compressor 74 are connected by an expansion power transmission means 73 so that the expansion power recovered by the expander 72 is transmitted to the sub-compressor 74. As the structure of the expander 72 and the sub compressor 74, for example, a reciprocating type, a rotary type, a scroll type, and the like are conceivable. The decompression path 22 includes the first decompression device 30, the expander 72, and the second decompression apparatus 31, and the main path includes the subordinate four-way valve 1, thereby reducing the decompression path 22 in both the cooling operation and the heating operation. The flow direction of the refrigerant passing through is made constant.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図19および図20を用いて、実施の形態8に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図20は、圧力−エンタルピ線図であり、実線が本実施の形態8に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。ここでは、冷媒が二酸化炭素である場合を示しており、高圧側が超臨界状態となっている。図中のA〜Fは、図19および図29中に示したA〜Fのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 8 performs the cooling operation and the heating operation will be described with reference to FIGS. 19 and 20.
FIG. 20 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the eighth embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. Here, the case where the refrigerant is carbon dioxide is shown, and the high pressure side is in a supercritical state. A to F in the figure correspond to points A to F shown in FIGS. 19 and 29.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図20においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態8に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、第1の減圧装置30、第2の減圧装置31を全開にし、膨張用流量制御弁76を閉じた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as the conventional operation shown in FIG. 6, and in FIG. 20, the inclination of the straight line from the point C to the point D is ignored.
On the other hand, in the air conditioner shown in the eighth embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate, and the suction side connection port 45 and the second connection port 47. The main four-way valve 24 is switched so as to communicate with each other. Further, the first decompressor 30 and the second decompressor 31 are fully opened, and the expansion flow control valve 76 is closed.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室外熱交換器25へ進み、放熱器である室外熱交換器25で外気により冷却されて、放熱される。放熱された冷媒は、従属四方弁1を介した後(B点)、第1の減圧装置30を介して、膨張機72へ流入する。膨張機72では、冷媒がもつエネルギを膨張機72の回転運動または振幅運動に与えながら冷媒を等エントロピ変化で膨張させる。このとき、膨張機72の回転運動や往復運動は、膨張動力伝達手段73を介して副圧縮機74に伝達され、副圧縮機74が駆動される。膨張機72を通過した冷媒は、第2の減圧装置31を介した後(E点)、従属四方弁1を介して室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、副圧縮機74に流入する。副圧縮機74に流入した冷媒はF点まで圧縮された後、さらに、圧縮機23でA点まで圧縮されて、再び吐出される。   The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a radiator, to dissipate heat. Is done. The radiated refrigerant flows through the dependent four-way valve 1 (point B) and then flows into the expander 72 through the first pressure reducing device 30. In the expander 72, the refrigerant is expanded by isentropic change while giving the energy of the refrigerant to the rotational motion or amplitude motion of the expander 72. At this time, the rotational motion and the reciprocating motion of the expander 72 are transmitted to the sub compressor 74 via the expansion power transmission means 73, and the sub compressor 74 is driven. The refrigerant that has passed through the expander 72 passes through the second pressure reducing device 31 (point E), then proceeds to the indoor heat exchanger 26 via the dependent four-way valve 1, and is indoors in the indoor heat exchanger 26 that is an evaporator. Removes heat from the air and evaporates. The evaporated refrigerant vapor flows into the sub compressor 74 after passing through the main four-way valve 24 (D point). The refrigerant flowing into the sub-compressor 74 is compressed to the point F, and further compressed to the point A by the compressor 23 and discharged again.

実施の形態8に示す空気調和機を冷房運転した場合、膨張機72を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、膨張機72で得た膨張動力を用いて副圧縮機74で冷媒を圧縮するため、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
When the air conditioner shown in Embodiment 8 is air-cooled, the expander 72 is provided. Therefore, the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is equal to the enthalpy difference ( larger than h3-h2). Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, since the refrigerant is compressed by the sub-compressor 74 using the expansion power obtained by the expander 72, the input of the compressor 23 is reduced, and the cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 is performed. The coefficient of performance increases compared to the conventional example.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図20とほぼ等しくなる。ただし、図29に示す従来の空気調和機を暖房運転する場合は、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。また、第1の減圧装置30、第2の減圧装置31を全開にし、膨張用流量制御弁76を閉じた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost the same as FIG. However, when heating the conventional air conditioner shown in FIG. 29, the points B and C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other. Further, the first decompressor 30 and the second decompressor 31 are fully opened, and the expansion flow control valve 76 is closed.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(A点)は、主四方弁24を介して、室内熱交換器26へ進み、放熱器である室内熱交換器26で屋内の空気により冷却されて、放熱される。放熱された冷媒は、従属四方弁1を介した後(B点)、第1の減圧装置30を介して、膨張機72へ流入する。膨張機72では、冷媒がもつエネルギを膨張機72の回転運動または振幅運動に与えながら冷媒を等エントロピ変化で膨張させる。このとき、膨張機72の回転運動や往復運動は、膨張動力伝達手段73を介して副圧縮機74に伝達され、副圧縮機74が駆動される。膨張機72を通過した冷媒は、第2の減圧装置31を介した後(E点)。従属四方弁1を介して室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、副圧縮機74に流入する。副圧縮機74に流入した冷媒はF点まで圧縮された後、さらに、圧縮機23でA点まで圧縮されて、再び吐出される。   The high-pressure refrigerant vapor (point A) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and is cooled by indoor air in the indoor heat exchanger 26 that is a radiator. The heat is dissipated. The radiated refrigerant flows through the dependent four-way valve 1 (point B) and then flows into the expander 72 through the first pressure reducing device 30. In the expander 72, the refrigerant is expanded by isentropic change while giving the energy of the refrigerant to the rotational motion or amplitude motion of the expander 72. At this time, the rotational motion and the reciprocating motion of the expander 72 are transmitted to the sub compressor 74 via the expansion power transmission means 73, and the sub compressor 74 is driven. The refrigerant that has passed through the expander 72 passes through the second decompression device 31 (point E). It progresses to the outdoor heat exchanger 25 via the subordinate four-way valve 1, and evaporates by taking heat from outside air in the outdoor heat exchanger 25 which is an evaporator. The evaporated refrigerant vapor flows into the sub compressor 74 after passing through the main four-way valve 24 (D point). The refrigerant flowing into the sub-compressor 74 is compressed to the point F, and further compressed to the point A by the compressor 23 and discharged again.

実施の形態8に示す空気調和機を暖房運転した場合、膨張機72で得た膨張動力を用いて副圧縮機74で冷媒を圧縮する。そのため、圧縮機23の入力が減少し、放熱能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。   When the air conditioner shown in Embodiment 8 is heated, the refrigerant is compressed by the sub compressor 74 using the expansion power obtained by the expander 72. Therefore, the input of the compressor 23 decreases, and the coefficient of performance at the time of heating operation obtained by dividing the heat radiation capacity by the input of the compressor 23 is increased as compared with the conventional example.

以上のように、本実施の形態8の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the eighth embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. The valve 12 can be switched. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態8に示した空気調和機は、減圧経路22に膨張機72を備えるとともに、減圧経路22の両端に接続する従属四方弁1を備えるので、冷房運転または暖房運転のどちらにおいても、従属四方弁1の切替弁12の切り替わりにより、膨張機72を通過する冷媒が、流入配管41から膨張機72に流入して、等エントロピ変化しながら膨張されるとともに膨張動力を得るといった、膨張機72が機能する冷媒の流れを形成することができる。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても、成績係数を増加させることができる。特に、圧力差の大きな二酸化炭素を冷媒とする空気調和機においては、成績係数の改善効果が大きい。   In addition, the air conditioner shown in the eighth embodiment includes the expander 72 in the decompression path 22 and the dependent four-way valve 1 connected to both ends of the decompression path 22, so that in either the cooling operation or the heating operation However, by switching the switching valve 12 of the subordinate four-way valve 1, the refrigerant passing through the expander 72 flows into the expander 72 from the inflow pipe 41 and is expanded while changing the isentropy, and obtains expansion power. A refrigerant flow in which the expander 72 functions can be formed. Therefore, the coefficient of performance can be increased in both the cooling operation and the heating operation of the air conditioner. Particularly in an air conditioner using carbon dioxide having a large pressure difference as a refrigerant, the effect of improving the coefficient of performance is large.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、前記実施の形態8では、冷房運転または暖房運転のどちらにおいても、第1の減圧装置30、第2の減圧装置31を全開にし、膨張機72により減圧しているが、さらに第1の減圧装置30または第2の減圧装置31を用いて冷媒を減圧して、空気調和機を制御するようにしてもよい。
さらに、前記実施の形態8では、冷房運転または暖房運転のどちらにおいても、膨張用流量制御弁76を閉じた状態にしているが、起動時などにおいて膨張機72の運転が安定しない場合や、膨張機72に冷媒を通過させるだけでは十分に制御しきれない場合などには、膨張用流量制御弁76を調整して、膨張用バイパス配管75に冷媒を流すようにするとよい。
また、前記実施の形態8では、減圧経路22における減圧動作は主に膨張機72において行われるため、第1の減圧装置30または、第2の減圧装置31のどちらか一方を削除してもよく、さらに両方を冷媒回路から削除してもかまわない。
In the eighth embodiment, the first decompression device 30 and the second decompression device 31 are fully opened and decompressed by the expander 72 in both the cooling operation and the heating operation. The air conditioner may be controlled by decompressing the refrigerant using the decompression device 30 or the second decompression device 31.
Further, in the eighth embodiment, the expansion flow control valve 76 is closed in both the cooling operation and the heating operation. However, when the operation of the expander 72 is not stable at the time of starting or the like, If sufficient control cannot be achieved by simply passing the refrigerant through the machine 72, the expansion flow control valve 76 may be adjusted so that the refrigerant flows through the expansion bypass pipe 75.
In the eighth embodiment, since the pressure reducing operation in the pressure reducing path 22 is mainly performed in the expander 72, either the first pressure reducing device 30 or the second pressure reducing device 31 may be deleted. Further, both may be deleted from the refrigerant circuit.

また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

また、膨張機72と副圧縮機74とを同じ容器に入れて構成してよく、さらに、膨張機72と副圧縮機27とを一体で構成してもよい。
また、圧縮機23と副圧縮機74とを同じ容器に入れて構成してもよく、さらに圧縮機23と副圧縮機74とを一体で構成してもよい。
また、圧縮機23と副圧縮機74と膨張機72とのすべてを同じ容器にいれて構成してもよく、さらに、圧縮機23と副圧縮機74と膨張機72とを一体で構成してもよい。
さらに、副圧縮機74を圧縮機23の吐出側に配置してもよい。
また、副圧縮機74を用いず、膨張動力伝達手段73を圧縮機23に連結するようにして圧縮機23のモータ動力を減少するようにしてもよい。
Further, the expander 72 and the sub compressor 74 may be configured in the same container, and the expander 72 and the sub compressor 27 may be configured integrally.
Further, the compressor 23 and the sub compressor 74 may be configured in the same container, and the compressor 23 and the sub compressor 74 may be configured integrally.
Further, the compressor 23, the sub compressor 74, and the expander 72 may all be put in the same container, and the compressor 23, the sub compressor 74, and the expander 72 may be configured integrally. Also good.
Further, the sub compressor 74 may be arranged on the discharge side of the compressor 23.
Further, the motor power of the compressor 23 may be reduced by connecting the expansion power transmission means 73 to the compressor 23 without using the sub-compressor 74.

実施の形態9.
図21はこの発明の実施の形態9による空気調和機の冷媒回路図である。本実施の形態9の空気調和機においては、減圧経路22は、実施の形態8の構成に加え、気液分離器32を備える。また、インジェクション用流量制御弁33、インジェクション配管36を備えている。
気液分離器32は、膨張機72の下流に配置され、気液分離器32に接続されたインジェクション配管36は、冷媒蒸気をインジェクション用流量制御弁33を介して、圧縮機32の圧縮工程の途中に設けられたインジェクション用のポートに接続される。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 9 FIG.
FIG. 21 is a refrigerant circuit diagram of an air conditioner according to Embodiment 9 of the present invention. In the air conditioner of the ninth embodiment, the decompression path 22 includes a gas-liquid separator 32 in addition to the configuration of the eighth embodiment. Further, an injection flow control valve 33 and an injection pipe 36 are provided.
The gas-liquid separator 32 is disposed downstream of the expander 72, and an injection pipe 36 connected to the gas-liquid separator 32 is configured to compress refrigerant vapor through the injection flow control valve 33 in the compression process of the compressor 32. It is connected to an injection port provided on the way.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、図21および図22を用いて、実施の形態9に示す空気調和機が冷房運転および暖房運転を実施する場合の冷媒回路の動作について説明する。
図22は、圧力−エンタルピ線図であり、実線が本実施の形態9に示す空気調和機の冷媒回路の動作を、一点鎖線(A−B−C−D−Aを結ぶ線)が図29に示す従来の空気調和機の冷媒回路の動作を示している。ここでは、冷媒が二酸化炭素である場合を示しており、高圧側が超臨界状態となっている。図中のA〜I,Kは、図21および図29中に示したA〜I,Kのポイントに相当する。
Hereinafter, the operation of the refrigerant circuit when the air-conditioning apparatus shown in Embodiment 9 performs the cooling operation and the heating operation will be described with reference to FIGS. 21 and 22.
FIG. 22 is a pressure-enthalpy diagram, where the solid line indicates the operation of the refrigerant circuit of the air conditioner shown in the ninth embodiment, and the alternate long and short dash line (the line connecting A-B-C-D-A). The operation | movement of the refrigerant circuit of the conventional air conditioner shown in FIG. Here, the case where the refrigerant is carbon dioxide is shown, and the high pressure side is in a supercritical state. A to I and K in the figure correspond to points A to I and K shown in FIGS.

まず、空気調和機が冷房運転する場合について説明する。
従来の空気調和機での動作は図6に示した従来動作と同様であり、図22においてもC点からD点への直線の傾きを無視して図示している。
一方、実施の形態9に示す空気調和機では、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。また、第1の減圧装置30を全開にし、膨張用流量制御弁76を閉じた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
First, a case where the air conditioner performs a cooling operation will be described.
The operation of the conventional air conditioner is the same as the conventional operation shown in FIG. 6, and in FIG. 22, the inclination of the straight line from the C point to the D point is ignored.
On the other hand, in the air conditioner shown in the ninth embodiment, the solenoid valve 43 is driven, the discharge side connection port 44 and the first connection port 46 communicate with each other, and the suction side connection port 45 and the second connection port 47 are connected. The main four-way valve 24 is switched so as to communicate with each other. Further, the first pressure reducing device 30 is fully opened, and the expansion flow control valve 76 is closed.
When the compressor 23 is driven, the fourth pipe 7 of the subordinate four-way valve 1 communicating with the discharge side of the compressor 23 becomes high pressure, while the third pipe of the subordinate four-way valve 1 communicating with the suction side of the compressor 23 is increased. The pipe 6 has a low pressure. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室外熱交換器25へ進み、放熱器である室外熱交換器25で外気により冷却されて、放熱される。放熱された冷媒は、従属四方弁1を介した後(B点)、第1の減圧装置30を介して、膨張機72へ流入する。膨張機72では、冷媒がもつエネルギを膨張機72の回転運動または振幅運動に与えながら冷媒を等エントロピ変化で膨張させる。このとき、膨張機72の回転運動や往復運動は、膨張動力伝達手段73を介して副圧縮機74に伝達され、副圧縮機74が駆動される。膨張機72を通過した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(K点)と冷媒液(G点)とに分離される。分離された冷媒液(G点)は、第2の減圧装置31で減圧された後(H点)、従属四方弁1を介して室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、副圧縮機74に流入する。副圧縮機74に流入した冷媒はI点まで圧縮された後、さらに、圧縮機23でJ点まで圧縮される。   The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled by the outdoor air in the outdoor heat exchanger 25, which is a radiator, to dissipate heat. Is done. The radiated refrigerant flows through the dependent four-way valve 1 (point B) and then flows into the expander 72 through the first pressure reducing device 30. In the expander 72, the refrigerant is expanded by isentropic change while giving the energy of the refrigerant to the rotational motion or amplitude motion of the expander 72. At this time, the rotational motion and the reciprocating motion of the expander 72 are transmitted to the sub compressor 74 via the expansion power transmission means 73, and the sub compressor 74 is driven. The refrigerant that has passed through the expander 72 flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point K) and refrigerant liquid (point G). The separated refrigerant liquid (point G) is depressurized by the second decompression device 31 (point H), and then proceeds to the indoor heat exchanger 26 via the dependent four-way valve 1 to be an evaporator indoor heat exchanger. At 26, heat is taken from indoor air and evaporated. The evaporated refrigerant vapor flows into the sub compressor 74 after passing through the main four-way valve 24 (D point). The refrigerant that has flowed into the sub-compressor 74 is compressed to the point I, and further compressed to the point J by the compressor 23.

一方、気液分離器32で分離された中間圧力の冷媒蒸気(K点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(J点)に注入され、K点の冷媒とJ点の冷媒とが混合される(L点)。さらに冷媒はE点まで圧縮されて、再び吐出される。   On the other hand, the flow rate of the intermediate-pressure refrigerant vapor (point K) separated by the gas-liquid separator 32 is adjusted by the injection flow control valve 33 and passes through the injection pipe 36 in the middle of the compression process of the compressor 23 ( The refrigerant at point K is mixed with the refrigerant at point K and the refrigerant at point J (point L). Further, the refrigerant is compressed to point E and discharged again.

実施の形態9に示す空気調和機を冷房運転した場合、膨張機72および気液分離機32を備えるので、蒸発器である室内熱交換器26のエンタルピ差(h3−h1)が、従来の空気調和機のエンタルピ差(h3−h2)より大きくなる。そのため、蒸発能力つまり冷房能力は従来例よりも増加する。
また、膨張機72で得た膨張動力を用いて副圧縮機74で冷媒を圧縮する。そのため、圧縮機23の入力が減少し、蒸発能力を圧縮機23の入力で割ることで得られる冷房運転時の成績係数は、従来例よりも増加する。
また、インジェクション配管36を有するので、圧縮機23から吐出したときの温度(E点)は、従来例(A点)よりも低下するため、圧縮機23の信頼性が向上する。
When the air conditioner shown in Embodiment 9 is air-cooled, the expander 72 and the gas-liquid separator 32 are provided. Therefore, the enthalpy difference (h3-h1) of the indoor heat exchanger 26 that is an evaporator is the conventional air. It becomes larger than the enthalpy difference (h3-h2) of the harmony machine. Therefore, the evaporation capacity, that is, the cooling capacity is increased as compared with the conventional example.
Further, the refrigerant is compressed by the sub compressor 74 using the expansion power obtained by the expander 72. Therefore, the input of the compressor 23 decreases, and the coefficient of performance during the cooling operation obtained by dividing the evaporation capacity by the input of the compressor 23 increases compared to the conventional example.
Further, since the injection pipe 36 is provided, the temperature (point E) when discharged from the compressor 23 is lower than that of the conventional example (point A), so that the reliability of the compressor 23 is improved.

次に、暖房運転の動作を説明する。暖房運転を実施している場合の圧力−エンタルピ線図の形は、図22とほぼ等しくなる。ただし、図29に示す従来の空気調和機を暖房運転する場合は、B点とC点が入れ替わる。
電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。また、第1の減圧装置30を全開にし、膨張用流量制御弁76を閉じた状態にする。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は高圧となり、一方、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7は低圧となる。そのため、前述した従属四方弁1の動作から、切替弁12は第2の端蓋20の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Next, the heating operation will be described. The shape of the pressure-enthalpy diagram when the heating operation is performed is almost equal to that in FIG. However, when heating the conventional air conditioner shown in FIG. 29, the points B and C are interchanged.
The solenoid valve 43 is driven to switch the main four-way valve 24 so that the discharge side connection port 44 and the second connection port 47 communicate with each other and the suction side connection port 45 and the first connection port 46 communicate with each other. Further, the first pressure reducing device 30 is fully opened, and the expansion flow control valve 76 is closed.
When the compressor 23 is driven, the third pipe 6 of the subordinate four-way valve 1 that communicates with the discharge side of the compressor 23 becomes high pressure, while the fourth pipe of the subordinate four-way valve 1 that communicates with the suction side of the compressor 23. The piping 7 becomes a low pressure. Therefore, the switching valve 12 moves to the second end cover 20 side from the operation of the subordinate four-way valve 1 described above, and the state shown in FIG. 2 is established. The second pipe 5 and the fourth pipe 7 communicate with each other via the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気(E点)は、主四方弁24を介して、室内熱交換器26へ進み、放熱器である室内熱交換器26で屋内の空気により冷却されて、放熱される。放熱された冷媒は、従属四方弁1を介した後(B点)、第1の減圧装置30を介して、膨張機72へ流入する。膨張機72では、冷媒がもつエネルギを膨張機72の回転運動または振幅運動に与えながら冷媒を等エントロピ変化で膨張させる。このとき、膨張機72の回転運動や往復運動は、膨張動力伝達手段73を介して副圧縮機74に伝達され、副圧縮機74が駆動される。膨張機72を通過した冷媒は、気液二相状態で気液分離器32に流入し、冷媒蒸気(K点)と冷媒液(G点)とに分離される。分離された冷媒液(G点)は、第2の減圧装置31で減圧された後(H点)、従属四方弁1を介して室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後(D点)、副圧縮機74に流入する。副圧縮機74に流入した冷媒はI点まで圧縮された後、さらに、圧縮機23でJ点まで圧縮される。
また、気液分離器32で分離された中間圧力の冷媒蒸気(K点)は、インジェクション用流量制御弁33により流量を調節され、インジェクション配管36を通って、圧縮機23の圧縮工程の途中(J点)に注入され、K点の冷媒とJ点の冷媒とが混合される(L点)。さらに冷媒はE点まで圧縮されて、再び吐出される。
The high-pressure refrigerant vapor (point E) discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24, and is cooled by indoor air in the indoor heat exchanger 26 that is a radiator. The heat is dissipated. The radiated refrigerant flows into the expander 72 through the first pressure reducing device 30 after passing through the dependent four-way valve 1 (point B). In the expander 72, the refrigerant is expanded by isentropic change while giving the energy of the refrigerant to the rotational motion or amplitude motion of the expander 72. At this time, the rotational motion and the reciprocating motion of the expander 72 are transmitted to the sub compressor 74 via the expansion power transmission means 73, and the sub compressor 74 is driven. The refrigerant that has passed through the expander 72 flows into the gas-liquid separator 32 in a gas-liquid two-phase state, and is separated into refrigerant vapor (point K) and refrigerant liquid (point G). The separated refrigerant liquid (point G) is depressurized by the second decompression device 31 (point H), and then proceeds to the outdoor heat exchanger 25 via the dependent four-way valve 1 to be an evaporator outdoor heat exchanger. At 25, it takes heat from the outside air and evaporates. The evaporated refrigerant vapor flows into the sub compressor 74 after passing through the main four-way valve 24 (D point). The refrigerant flowing into the sub-compressor 74 is compressed to the point I and further compressed to the point J by the compressor 23.
The intermediate-pressure refrigerant vapor (point K) separated by the gas-liquid separator 32 is adjusted in flow rate by the injection flow control valve 33, passes through the injection pipe 36 and is in the middle of the compression process of the compressor 23 ( The refrigerant at point K) is mixed with the refrigerant at point K and the refrigerant at point J (point L). Further, the refrigerant is compressed to point E and discharged again.

実施の形態9に示す空気調和機を暖房運転した場合、膨張機72で得た膨張動力を用いて副圧縮機74で冷媒を圧縮する。そのため、圧縮機23の入力が減少し、放熱能力を圧縮機23の入力で割ることで得られる暖房運転時の成績係数は、従来例よりも増加する。
また、インジェクション配管36を有するので、圧縮機から吐出したときの温度(E点)は、従来例(A点)よりも低下する。そのため、圧縮機の信頼性が向上する。
When the air conditioner shown in Embodiment 9 is operated for heating, the refrigerant is compressed by the sub compressor 74 using the expansion power obtained by the expander 72. Therefore, the input of the compressor 23 decreases, and the coefficient of performance at the time of heating operation obtained by dividing the heat radiation capacity by the input of the compressor 23 is increased as compared with the conventional example.
Moreover, since it has the injection piping 36, the temperature (E point) when discharging from a compressor falls rather than a prior art example (A point). Therefore, the reliability of the compressor is improved.

以上のように、本実施の形態9の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the ninth embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. The valve 12 can be switched. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、本実施の形態9に示した空気調和機は、減圧経路22に膨張機72および気液分離機32を備えるとともに、減圧経路22の両端に接続する従属四方弁1を備えるので、冷房運転または暖房運転のどちらにおいても、従属四方弁1の切替弁12の切り替わりにより、膨張機72を通過する冷媒が、流入配管41から膨張機72に流入して、等エントロピ変化しながら膨張されるとともに膨張動力を得るといった、膨張機72が機能する冷媒の流れを形成するとともに、膨張機72を通過した気液二相状態の冷媒が、気液分離器32において冷媒蒸気と冷媒液とに分離されるといった、気液分離器32が機能する冷媒の流れを形成することができる。そのため、空気調和機の冷房運転と暖房運転とのどちらにおいても、成績係数を増加させることができる。特に、圧力差の大きな二酸化炭素を冷媒とする空気調和機においては、成績係数の改善効果が大きい。また、圧縮機23の信頼性が向上する。   Further, the air conditioner shown in the ninth embodiment includes the expander 72 and the gas-liquid separator 32 in the decompression path 22 and the subordinate four-way valve 1 connected to both ends of the decompression path 22, so that the cooling operation is performed. In both the heating operation and the switching valve 12 of the dependent four-way valve 1, the refrigerant passing through the expander 72 flows into the expander 72 from the inflow pipe 41 and is expanded while changing the isentropy. A refrigerant flow in which the expander 72 functions, such as obtaining expansion power, is formed, and the gas-liquid two-phase refrigerant that has passed through the expander 72 is separated into refrigerant vapor and refrigerant liquid in the gas-liquid separator 32. The refrigerant flow in which the gas-liquid separator 32 functions can be formed. Therefore, the coefficient of performance can be increased in both the cooling operation and the heating operation of the air conditioner. Particularly in an air conditioner using carbon dioxide having a large pressure difference as a refrigerant, the effect of improving the coefficient of performance is large. Further, the reliability of the compressor 23 is improved.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、本実施の形態9では、冷房運転または暖房運転のどちらにおいても、第1の減圧装置30を全開にし、膨張機72により減圧しているが、さらに第1の減圧装置30を用いて冷媒を減圧して、空気調和機を制御するようにしてもよい。
また、本実施の形態9の空気調和装置においては、第1の減圧装置30を削除してもよい。
また、本実施の形態9では、冷房運転または暖房運転のどちらにおいても、膨張用流量制御弁76を閉じた状態にしているが、起動時などにおいて冷凍サイクルが安定しない場合や、膨張機72に冷媒を通過させるだけでは十分に制御しきれない場合などには、膨張用流量制御弁76を調整して、膨張用バイパス配管75に冷媒を流すようにするとよい。
In the ninth embodiment, the first decompression device 30 is fully opened and decompressed by the expander 72 in both the cooling operation and the heating operation. The air conditioner may be controlled by reducing the pressure.
Further, in the air conditioner of the ninth embodiment, the first pressure reducing device 30 may be deleted.
In the ninth embodiment, the expansion flow control valve 76 is closed in both the cooling operation and the heating operation. However, when the refrigeration cycle is not stable at the time of startup or the like, In cases where sufficient control cannot be achieved simply by passing the refrigerant, the expansion flow control valve 76 may be adjusted so that the refrigerant flows through the expansion bypass pipe 75.

また、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

また、実施の形態8と同様、膨張機72と副圧縮機74とを同じ容器に入れて構成してよく、さらに、膨張機72と副圧縮機27とを一体で構成してもよい。
また、圧縮機23と副圧縮機74とを同じ容器に入れて構成してもよく、さらに圧縮機23と副圧縮機74とを一体で構成してもよい。
また、圧縮機23と副圧縮機74と膨張機72とのすべてを同じ容器にいれて構成してもよく、さらに、圧縮機23と副圧縮機74と膨張機72とを一体で構成してもよい。
さらに、副圧縮機74を圧縮機23の吐出側に配置してもよい。
また、副圧縮機74を用いず、膨張動力伝達手段73を圧縮機23に連結するようにして圧縮機23のモータ動力を減少するようにしてもよい。
Similarly to the eighth embodiment, the expander 72 and the subcompressor 74 may be configured in the same container, and the expander 72 and the subcompressor 27 may be configured integrally.
Further, the compressor 23 and the sub compressor 74 may be configured in the same container, and the compressor 23 and the sub compressor 74 may be configured integrally.
Further, the compressor 23, the sub compressor 74, and the expander 72 may all be put in the same container, and the compressor 23, the sub compressor 74, and the expander 72 may be configured integrally. Also good.
Further, the sub compressor 74 may be arranged on the discharge side of the compressor 23.
Further, the motor power of the compressor 23 may be reduced by connecting the expansion power transmission means 73 to the compressor 23 without using the sub-compressor 74.

また、気液分離器32を膨張機72の下流に設けるのではなく、膨張機72の上流に設けてもよい。   Further, the gas-liquid separator 32 may be provided upstream of the expander 72 instead of being provided downstream of the expander 72.

実施の形態10.
図23はこの発明の実施の形態10による空気調和機の冷媒回路図である。本実施の形態10の空気調和機は、実施の形態1とは異なり、第2の減圧装置31、気液分離器32、インジェクション配管36、インジェクション用流量制御弁33を具備しておらず、減圧経路22は第1の減圧装置30のみを備える。また、従属四方弁1を備えることにより、冷房運転および暖房運転のいずれにおいても、減圧経路22を通過する冷媒の流れ方向が一定になるようにしている。
図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 10 FIG.
FIG. 23 is a refrigerant circuit diagram of an air conditioner according to Embodiment 10 of the present invention. Unlike the first embodiment, the air conditioner of the tenth embodiment does not include the second decompression device 31, the gas-liquid separator 32, the injection pipe 36, and the injection flow control valve 33, and the decompression The path 22 includes only the first pressure reducing device 30. In addition, by providing the subordinate four-way valve 1, the flow direction of the refrigerant passing through the decompression path 22 is constant in both the cooling operation and the heating operation.
In the figure, the solid arrow indicates the refrigerant flow direction during the cooling operation, and the broken arrow indicates the refrigerant flow direction during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、実施の形態10に示す空気調和機が冷房運転および暖房運転を実施する場合の動作について説明する。
冷房運転において、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
Hereinafter, the operation when the air conditioner shown in Embodiment 10 performs the cooling operation and the heating operation will be described.
In the cooling operation, the main four-way valve is driven so that the discharge side connection port 44 and the first connection port 46 communicate with each other and the suction side connection port 45 and the second connection port 47 communicate with each other by driving the electromagnetic valve 43. 24 is switched.
When the compressor 23 is driven, the fourth pipe 7 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the third pipe 6 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後、第1の減圧装置30により減圧され、従属四方弁1を介した後、室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled and condensed by the outdoor air in the outdoor heat exchanger 25 that is a condenser. The condensed refrigerant liquid is depressurized by the first pressure reducing device 30 after passing through the subordinate four-way valve 1, passes through the subordinate four-way valve 1, and then proceeds to the indoor heat exchanger 26 to exchange the indoor heat as an evaporator. The vessel 26 evaporates by taking heat from indoor air. The evaporated refrigerant vapor passes through the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

また、暖房運転において、電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Further, in the heating operation, the solenoid valve 43 is driven so that the discharge side connection port 44 and the second connection port 47 communicate with each other, and the suction side connection port 45 and the first connection port 46 communicate with each other. The four-way valve 24 is switched.
When the compressor 23 is driven, the third pipe 6 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the fourth pipe 7 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the subordinate four-way valve 1 described above and enters the state shown in FIG. 2, and the first pipe 4 and the third pipe 6 are connected to the valve chamber 3. The second pipe 5 and the fourth pipe 7 communicate with each other through the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後、第1の減圧装置30で減圧され、再び従属四方弁1を介した後、室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24, and is cooled and condensed by indoor air in the indoor heat exchanger 26 that is a condenser. . The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the subordinate four-way valve 1, and again passes through the subordinate four-way valve 1, and then proceeds to the outdoor heat exchanger 25, where outdoor heat as an evaporator is obtained. The exchanger 25 evaporates by taking heat from the outside air. The evaporated refrigerant vapor passes through the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

以上のように、本実施の形態10の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができる。その結果、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the tenth embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. The valve 12 can be switched. As a result, it is possible to reduce the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring, so that the air conditioner can be made compact, and the control is simplified and the cost is reduced. Can be realized.

また、従来の空気調和機では、図29に示すように、第1の減圧装置30を通過する冷媒の流れ方向が、冷房運転と暖房運転で逆転する。このため、減圧装置30が冷媒の流れ方向に対し方向性を有し、冷媒の流れ方向によって、減圧装置30の減圧量や流量制御量の精度が悪化する場合や、減圧装置の構造上、流動抵抗が大きくなるような場合は、減圧装置30の制御性能が低下するとともに、装置自体の寿命が低下する。
一方、本実施の形態10に示す空気調和機では、減圧経路22の両端に接続する従属四方弁1を備えるので、冷房運転と暖房運転とのどちらの運転においても、第1の減圧装置30を通過する冷媒の流れ方向を一定にすることができる。そのため、第1の減圧装置30が有する減圧量、流量制御量を満足することが出来るとともに、第1の減圧装置30の構造寿命を延ばすことが可能となる。
In the conventional air conditioner, as shown in FIG. 29, the flow direction of the refrigerant passing through the first pressure reducing device 30 is reversed between the cooling operation and the heating operation. For this reason, the decompression device 30 has directivity with respect to the flow direction of the refrigerant, and the accuracy of the decompression amount and the flow rate control amount of the decompression device 30 is deteriorated depending on the flow direction of the refrigerant. When the resistance increases, the control performance of the decompression device 30 decreases and the lifetime of the device itself decreases.
On the other hand, since the air conditioner shown in the tenth embodiment includes the dependent four-way valve 1 connected to both ends of the pressure reducing path 22, the first pressure reducing device 30 is provided for both the cooling operation and the heating operation. The flow direction of the refrigerant passing therethrough can be made constant. Therefore, it is possible to satisfy the pressure reduction amount and the flow rate control amount of the first pressure reducing device 30, and it is possible to extend the structural life of the first pressure reducing device 30.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

実施の形態11.
図24はこの発明の実施の形態11による空気調和機の冷媒回路図である。本実施の形態11の空気調和機は、実施の形態10とは異なり、第1の減圧装置30を室外熱交換器25と従属四方弁1の第4の配管7とを接続する室外側液配管38に配置している。また、室内熱交換器26を流入配管41と流出配管42との間に配置し、室内側ガス配管39の一端を従属四方弁1の第3の配管6に接続し、従属四方弁1により、冷房運転および暖房運転のいずれにおいても、室内熱交換器26を通過する冷媒の流れ方向が一定になるようにしている。
図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 11 FIG.
FIG. 24 is a refrigerant circuit diagram of an air conditioner according to Embodiment 11 of the present invention. The air conditioner of the eleventh embodiment is different from the tenth embodiment in the outdoor liquid pipe that connects the first pressure reducing device 30 to the outdoor heat exchanger 25 and the fourth pipe 7 of the subordinate four-way valve 1. 38. Further, the indoor heat exchanger 26 is disposed between the inflow pipe 41 and the outflow pipe 42, and one end of the indoor side gas pipe 39 is connected to the third pipe 6 of the subordinate four-way valve 1. In both the cooling operation and the heating operation, the flow direction of the refrigerant passing through the indoor heat exchanger 26 is made constant.
In the figure, the solid arrow indicates the refrigerant flow direction during the cooling operation, and the broken arrow indicates the refrigerant flow direction during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、実施の形態11に示す空気調和機が冷房運転および暖房運転を実施する場合の動作について説明する。
冷房運転において、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
Hereinafter, the operation in the case where the air conditioner shown in Embodiment 11 performs the cooling operation and the heating operation will be described.
In the cooling operation, the main four-way valve is driven so that the discharge side connection port 44 and the first connection port 46 communicate with each other and the suction side connection port 45 and the second connection port 47 communicate with each other by driving the electromagnetic valve 43. 24 is switched.
When the compressor 23 is driven, the fourth pipe 7 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the third pipe 6 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、第1の減圧装置30により減圧され、従属四方弁1を介した後、室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、従属四方弁1、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 via the main four-way valve 24, and is cooled and condensed by the outdoor air in the outdoor heat exchanger 25 that is a condenser. The condensed refrigerant liquid is depressurized by the first pressure reducing device 30, passes through the subordinate four-way valve 1, proceeds to the indoor heat exchanger 26, and heats the indoor air by the indoor heat exchanger 26 that is an evaporator. Take away and evaporate. The evaporated refrigerant vapor passes through the dependent four-way valve 1 and the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

また、暖房運転において、電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Further, in the heating operation, the solenoid valve 43 is driven so that the discharge side connection port 44 and the second connection port 47 communicate with each other, and the suction side connection port 45 and the first connection port 46 communicate with each other. The four-way valve 24 is switched.
When the compressor 23 is driven, the third pipe 6 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the fourth pipe 7 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the subordinate four-way valve 1 described above and enters the state shown in FIG. 2, and the first pipe 4 and the third pipe 6 are connected to the valve chamber 3. The second pipe 5 and the fourth pipe 7 communicate with each other through the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24、従属四方弁1を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後、第1の減圧装置30により減圧され、室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24 and the subordinate four-way valve 1, and is cooled by indoor air in the indoor heat exchanger 26 that is a condenser. And condensed. The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the subordinate four-way valve 1, proceeds to the outdoor heat exchanger 25, and takes heat from the outside air in the outdoor heat exchanger 25 that is an evaporator. Evaporate. The evaporated refrigerant vapor passes through the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

以上のように、本実施の形態11の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができるため、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the eleventh embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. Since the valve 12 can be switched, the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring can be reduced, the air conditioner can be made compact, and the control Simplification and cost reduction can be realized.

また、従来の空気調和機では、図29に示すように、室内熱交換器104を通過する冷媒の流れ方向が、冷房運転と暖房運転で逆転する。一方、本実施の形態11に示す空気調和機では、室内熱交換器26の両端に接続する従属四方弁1を備えるので、室内熱交換器26を通過する冷媒の流れ方向が一定となる。
図25および図30は、室内熱交換器の例として、並行に積層されたフィン67に直交するように伝熱管68を設けたフィンアンドチューブ型の熱交換器69の端部の様子を示しており、図25は本実施の形態11の空気調和機における室内熱交換器26の様子を、図30は従来の空気調和機における室内熱交換器104の様子を示している。各図中に示す実線の矢印および破線の矢印は、伝熱管68のUターン部を通過する冷媒の流れ方向を示す。実線の矢印が冷房運転時の冷媒の流れ方向、破線の矢印が暖房運転時の冷媒の流れ方向を示している。
In the conventional air conditioner, as shown in FIG. 29, the flow direction of the refrigerant passing through the indoor heat exchanger 104 is reversed between the cooling operation and the heating operation. On the other hand, since the air conditioner shown in the eleventh embodiment includes the dependent four-way valve 1 connected to both ends of the indoor heat exchanger 26, the flow direction of the refrigerant passing through the indoor heat exchanger 26 is constant.
25 and 30 show the state of the end of a fin-and-tube heat exchanger 69 in which heat transfer tubes 68 are provided so as to be orthogonal to the fins 67 stacked in parallel as an example of the indoor heat exchanger. FIG. 25 shows the state of the indoor heat exchanger 26 in the air conditioner of Embodiment 11, and FIG. 30 shows the state of the indoor heat exchanger 104 in the conventional air conditioner. A solid line arrow and a broken line arrow shown in each figure indicate the flow direction of the refrigerant passing through the U-turn portion of the heat transfer tube 68. The solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation.

積層されたフィン67の間を通過する空気の流れ方向66は、ファンなどにより一定方向に送風される。冷媒は、熱交換器の下側に位置する一方の伝熱管68から流入し、フィン端部でUターンしながら上昇し、最上部で折り返して、再びUターンしながら下降し、下側に位置するもう一方の伝熱管68から流出する。このとき、冷媒が風下の伝熱管68aから風上の伝熱管68bへ流れる対向流の場合、冷媒が風上の伝熱管68bから風下の伝熱管68aへ流れる並行流の場合に比べて熱交換器69の伝熱性能は増加する。
従来の空気調和機では、図30に示すように、室内熱交換器104を通過する冷媒の流れ方向が、冷房運転と暖房運転とで逆転するため、どちらか一方の運転で、冷媒の流れが並行流となり、熱交換器の伝熱性能が低下する。
一方、本実施の形態11では、室内熱交換器26の両端に接続する従属四方弁1を備えるので、冷房運転においても暖房運転においても、室内熱交換器26を通過する冷媒の流れ方向が一定であるため、図25に示すように、室内熱交換器26を通過する冷媒の流れを、冷房運転においても暖房運転においても対向流にすることができる。その結果、室内熱交換器26の伝熱性能を冷房運転と暖房運転とのどちらの運転においても高くすることができ、従来の空気調和機にくらべて冷房能力および暖房能力を向上できる。
A flow direction 66 of air passing between the stacked fins 67 is blown in a certain direction by a fan or the like. The refrigerant flows in from one heat transfer tube 68 located on the lower side of the heat exchanger, rises while making a U-turn at the end of the fin, turns back at the top, descends again while making a U-turn, and is located on the lower side. It flows out from the other heat transfer tube 68. At this time, in the case of the counter flow in which the refrigerant flows from the leeward heat transfer tube 68a to the windward heat transfer tube 68b, the heat exchanger is compared to the case of the parallel flow in which the refrigerant flows from the leeward heat transfer tube 68b to the leeward heat transfer tube 68a. The heat transfer performance of 69 increases.
In the conventional air conditioner, as shown in FIG. 30, the flow direction of the refrigerant passing through the indoor heat exchanger 104 is reversed between the cooling operation and the heating operation. It becomes a parallel flow, and the heat transfer performance of the heat exchanger decreases.
On the other hand, in the eleventh embodiment, since the dependent four-way valve 1 connected to both ends of the indoor heat exchanger 26 is provided, the flow direction of the refrigerant passing through the indoor heat exchanger 26 is constant in both the cooling operation and the heating operation. Therefore, as shown in FIG. 25, the flow of the refrigerant passing through the indoor heat exchanger 26 can be counterflowed in both the cooling operation and the heating operation. As a result, the heat transfer performance of the indoor heat exchanger 26 can be increased in both the cooling operation and the heating operation, and the cooling capacity and the heating capacity can be improved as compared with the conventional air conditioner.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、本実施の形態では、再熱除湿の運転の説明を省略したが、室内熱交換器26の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidification operation is omitted, but the reheat dehumidification operation can be performed by making the configuration of the indoor heat exchanger 26 the same as in the first embodiment.

実施の形態12.
図26はこの発明の実施の形態12による空気調和機の冷媒回路図である。本実施の形態12の空気調和機は、実施の形態10とは異なり、第1の減圧装置30を室内熱交換器26と従属四方弁1の第3の配管6とを接続する室内側液配管40に配置している。また、室外熱交換器25を流入配管41と流出配管42との間に配置し、室外側ガス配管37の一端を従属四方弁1の第4の配管7に接続し、従属四方弁1により、冷房運転および暖房運転のいずれにおいても、室外熱交換器25を通過する冷媒の流れ方向が一定になるようにしている。
また、図中、実線の矢印が冷房運転時の冷媒の流れ方向を示し、破線の矢印が暖房運転時の冷媒の流れ方向を示す。なお、図において、各四方弁1,24は冷房運転時の状態を示している。
Embodiment 12 FIG.
FIG. 26 is a refrigerant circuit diagram of an air conditioner according to Embodiment 12 of the present invention. The air conditioner of the twelfth embodiment differs from the tenth embodiment in that an indoor side liquid pipe that connects the first decompressor 30 to the indoor heat exchanger 26 and the third pipe 6 of the subordinate four-way valve 1. 40. Further, the outdoor heat exchanger 25 is arranged between the inflow pipe 41 and the outflow pipe 42, one end of the outdoor gas pipe 37 is connected to the fourth pipe 7 of the subordinate four-way valve 1, and the subordinate four-way valve 1 In both the cooling operation and the heating operation, the flow direction of the refrigerant passing through the outdoor heat exchanger 25 is made constant.
Moreover, in the figure, the solid line arrows indicate the flow direction of the refrigerant during the cooling operation, and the broken line arrows indicate the flow direction of the refrigerant during the heating operation. In the figure, each of the four-way valves 1 and 24 shows a state during cooling operation.

以下、実施の形態12に示す空気調和機が冷房運転および暖房運転を実施する場合の動作について説明する。
冷房運転において、電磁弁43を駆動して、吐出側接続口44と第1の接続口46とが連通し、吸込み側接続口45と第2の接続口47とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第4の配管7は、圧縮機23の吸入側に連通する従属四方弁1の第3の配管6よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図1の状態となり、第1の配管4と第4の配管7とが弁室3を介して連通し、第2の配管5と第3の配管6とが折り返し流路11aを介して連通する。
Hereinafter, the operation when the air conditioner shown in Embodiment 12 performs the cooling operation and the heating operation will be described.
In the cooling operation, the main four-way valve is driven so that the discharge side connection port 44 and the first connection port 46 communicate with each other and the suction side connection port 45 and the second connection port 47 communicate with each other by driving the electromagnetic valve 43. 24 is switched.
When the compressor 23 is driven, the fourth pipe 7 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the third pipe 6 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the dependent four-way valve 1 described above, and the state shown in FIG. 1 is established, and the first pipe 4 and the fourth pipe 7 are connected to the valve chamber 3. The second pipe 5 and the third pipe 6 communicate with each other via the return channel 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24、従属四方弁1を介して、室外熱交換器25へ進み、凝縮器である室外熱交換器25で外気により冷却されて、凝縮される。凝縮された冷媒液は、従属四方弁1を介した後、第1の減圧装置30により減圧され、室内熱交換器26へ進み、蒸発器である室内熱交換器26で屋内の空気から熱を奪って蒸発する。蒸発した冷媒蒸気は、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the outdoor heat exchanger 25 through the main four-way valve 24 and the subordinate four-way valve 1, and is cooled by the outside air in the outdoor heat exchanger 25 that is a condenser. Condensed. The condensed refrigerant liquid is reduced in pressure by the first pressure reducing device 30 after passing through the subordinate four-way valve 1, proceeds to the indoor heat exchanger 26, and heat is taken from indoor air by the indoor heat exchanger 26 that is an evaporator. Take away and evaporate. The evaporated refrigerant vapor passes through the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

また、暖房運転において、電磁弁43を駆動して、吐出側接続口44と第2の接続口47とが連通し、吸込み側接続口45と第1の接続口46とが連通するように主四方弁24を切り替える。
圧縮機23を駆動させると、圧縮機23の吐出側に連通する従属四方弁1の第3の配管6は、圧縮機23の吸入側に連通する従属四方弁1の第4の配管7よりも圧力が高くなる。そのため、前述した従属四方弁1の動作から、切替弁12は第1の端蓋19の側へ移動して図2の状態となり、第1の配管4と第3の配管6とが弁室3を介して連通し、第2の配管5と第4の配管7とが折り返し流路11aを介して連通する。
Further, in the heating operation, the solenoid valve 43 is driven so that the discharge side connection port 44 and the second connection port 47 communicate with each other, and the suction side connection port 45 and the first connection port 46 communicate with each other. The four-way valve 24 is switched.
When the compressor 23 is driven, the third pipe 6 of the dependent four-way valve 1 communicating with the discharge side of the compressor 23 is more than the fourth pipe 7 of the dependent four-way valve 1 communicating with the suction side of the compressor 23. Pressure increases. Therefore, the switching valve 12 moves to the first end cover 19 side from the operation of the subordinate four-way valve 1 described above and enters the state shown in FIG. 2, and the first pipe 4 and the third pipe 6 are connected to the valve chamber 3. The second pipe 5 and the fourth pipe 7 communicate with each other through the folded flow path 11a.

圧縮機23から吐出された高圧の冷媒蒸気は、主四方弁24を介して、室内熱交換器26へ進み、凝縮器である室内熱交換器26で屋内の空気により冷却されて、凝縮される。凝縮された冷媒液は、第1の減圧装置30で減圧され、従属四方弁1を介した後、室外熱交換器25へ進み、蒸発器である室外熱交換器25で外気から熱を奪って蒸発する。蒸発した冷媒蒸気は、従属四方弁1、主四方弁24を介した後、圧縮機23へ進み、圧縮されて、再び吐出される。   The high-pressure refrigerant vapor discharged from the compressor 23 proceeds to the indoor heat exchanger 26 via the main four-way valve 24, and is cooled and condensed by indoor air in the indoor heat exchanger 26 that is a condenser. . The condensed refrigerant liquid is depressurized by the first pressure reducing device 30, passes through the dependent four-way valve 1, proceeds to the outdoor heat exchanger 25, and takes heat from the outside air by the outdoor heat exchanger 25 that is an evaporator. Evaporate. The evaporated refrigerant vapor passes through the dependent four-way valve 1 and the main four-way valve 24 and then proceeds to the compressor 23 where it is compressed and discharged again.

以上のように、本実施の形態12の空気調和機に用いる従属四方弁1は、図1、図2に示す構成であるため、実施の形態1と同様、この従属四方弁1を用いて冷房運転および暖房運転を実施した場合、従属四方弁1のみを制御する電磁弁を用いることなく、第3の配管6と第4の配管7の圧力差を受けて自動的に従属四方弁1の切替弁12を切り替えることができるため、空気調和機に使用する電磁弁、電磁弁を動作させるための制御部、配線の数を減らすことができ、空気調和機のコンパクト化を実現するとともに、制御の簡易化、低コスト化を実現することができる。   As described above, since the subordinate four-way valve 1 used in the air conditioner of the twelfth embodiment has the configuration shown in FIGS. 1 and 2, the subordinate four-way valve 1 is used for cooling as in the first embodiment. When the operation and the heating operation are performed, the switching of the dependent four-way valve 1 is automatically performed in response to the pressure difference between the third pipe 6 and the fourth pipe 7 without using an electromagnetic valve that controls only the dependent four-way valve 1. Since the valve 12 can be switched, the number of solenoid valves used in the air conditioner, the control unit for operating the solenoid valves, and the wiring can be reduced, the air conditioner can be made compact, and the control Simplification and cost reduction can be realized.

また、従来の空気調和機では、図29に示すように、室外熱交換器102を通過する冷媒の流れ方向が冷房運転と暖房運転とで逆転する。そのため、実施の形態11で述べたと同様、図30に示すように、冷房運転と暖房運転とのどちらか一方の運転で、冷媒の流れが並行流となり、熱交換器の伝熱性能が低下する。
一方、本実施の形態12では、室外熱交換器25の両端に接続する従属四方弁1を備えるので、冷房運転においても暖房運転においても、室外熱交換器25を通過する冷媒の流れ方向が一定であるため、図25に示すように、室外熱交換器25を通過する冷媒の流れを、冷房運転においても暖房運転においても対向流にすることができる。その結果、室外熱交換器25の伝熱性能を冷房運転と暖房運転とのどちらの運転においても高くすることができ、従来の空気調和機にくらべて冷房能力および暖房能力を向上できる。
In the conventional air conditioner, as shown in FIG. 29, the flow direction of the refrigerant passing through the outdoor heat exchanger 102 is reversed between the cooling operation and the heating operation. Therefore, as described in the eleventh embodiment, as shown in FIG. 30, the refrigerant flow becomes a parallel flow in either one of the cooling operation and the heating operation, and the heat transfer performance of the heat exchanger decreases. .
On the other hand, in the twelfth embodiment, since the dependent four-way valve 1 connected to both ends of the outdoor heat exchanger 25 is provided, the flow direction of the refrigerant passing through the outdoor heat exchanger 25 is constant in both the cooling operation and the heating operation. Therefore, as shown in FIG. 25, the flow of the refrigerant passing through the outdoor heat exchanger 25 can be counterflowed in both the cooling operation and the heating operation. As a result, the heat transfer performance of the outdoor heat exchanger 25 can be increased in both the cooling operation and the heating operation, and the cooling capacity and the heating capacity can be improved as compared with the conventional air conditioner.

また、冷房運転または暖房運転のどちらにおいても、従属四方弁1の弁室3の圧力は、折り返し流路11aの圧力よりも高くなり、弁体11は、弁座21に強く押し付けられるため、冷媒が、従属四方弁1内で第4の配管7から第2の配管5へショートカットすることはなく、所望の運転を実施するための冷媒回路を形成することができる。   Further, in both the cooling operation and the heating operation, the pressure in the valve chamber 3 of the subordinate four-way valve 1 becomes higher than the pressure in the return flow path 11a, and the valve body 11 is strongly pressed against the valve seat 21. However, there is no shortcut from the fourth pipe 7 to the second pipe 5 in the dependent four-way valve 1, and a refrigerant circuit for performing a desired operation can be formed.

なお、本実施の形態では、再熱除湿の運転の説明を省略したが、室外熱交換器25の構成を実施の形態1と同様にすることにより再熱除湿運転を実施できる。   In the present embodiment, the description of the reheat dehumidifying operation is omitted, but the reheat dehumidifying operation can be performed by making the configuration of the outdoor heat exchanger 25 the same as in the first embodiment.

以上、実施の形態1〜実施の形態12に示した空気調和機においては、従属四方弁1の第1のシリンダ室13につながる第1の導管15を第3の配管6に、第2のシリンダ室14につながる第2の導管16を第4の配管7に接続するようにしたが、主四方弁24により主経路を流れる流体の流れ方向が切り替わっても、従属四方弁1の切替弁12が動作して、従属四方弁1に両端が接続される冷媒経路に常に同じ方向に流体が流れるようにできるのであれば、第1の導管15および第2の導管16を、第3の配管6および第4の配管7に接続しなくてもよい。すなわち、空気調和機を構成する要素のうち、流体の圧力が異なり、かつ主四方弁24による切り替えにより圧力の大小関係が逆転する2点に、第1の導管15および第2の導管16をそれぞれ接続し、前記2点をそれぞれ流れる流体の一部を第1の導管15および第2の導管16を用いて取り込み弁体を駆動するようにしてもよい。
たとえば、主四方弁24が、電磁弁43の動作により、高圧と低圧が切り替わる一対の導管を有しているのであれば、その一対の導管の一方が接続している位置に第1の導管15を、もう一方の導管が接続している位置に第2の導管16を接続してもかまわない。
ただし、その際に弁室3と折り返し通路11aとの圧力差が小さく、弁体11が弁座21に押し付けられる力が小さい場合には、冷媒が第4の配管7と第3の配管6との間でショートカットするので、このようなショートカットを防ぐ密閉構造が必要である。
As described above, in the air conditioner shown in the first to twelfth embodiments, the first pipe 15 connected to the first cylinder chamber 13 of the subordinate four-way valve 1 is connected to the third pipe 6 and the second cylinder. Although the second conduit 16 connected to the chamber 14 is connected to the fourth pipe 7, even if the flow direction of the fluid flowing through the main path is switched by the main four-way valve 24, the switching valve 12 of the subordinate four-way valve 1 is If it is possible to operate so that the fluid always flows in the same direction in the refrigerant path connected at both ends to the subordinate four-way valve 1, the first conduit 15 and the second conduit 16 are connected to the third pipe 6 and It is not necessary to connect to the fourth pipe 7. That is, among the elements constituting the air conditioner, the first conduit 15 and the second conduit 16 are respectively connected to two points where the pressure of the fluid is different and the magnitude relationship of the pressure is reversed by switching by the main four-way valve 24. A part of the fluid flowing through the two points may be connected and the first conduit 15 and the second conduit 16 may be used to drive the valve body.
For example, if the main four-way valve 24 has a pair of conduits that are switched between high pressure and low pressure by the operation of the electromagnetic valve 43, the first conduit 15 is located at a position where one of the pair of conduits is connected. Alternatively, the second conduit 16 may be connected to the position where the other conduit is connected.
However, in this case, when the pressure difference between the valve chamber 3 and the return passage 11a is small and the force with which the valve body 11 is pressed against the valve seat 21 is small, the refrigerant flows between the fourth pipe 7 and the third pipe 6. Therefore, a sealed structure that prevents such a shortcut is necessary.

また、本実施の形態1〜12に示した従属四方弁1では、弁室3の圧力を折り返し流路11aの圧力よりも大きくして、弁体11を弁座21に押し付けるようにするために、第1の配管4に流入配管41、第2の配管5に流出配管42、第3の配管6に室内側液配管40または室内側ガス配管39、第4の配管7に室外側液配管38をそれぞれ接続したが、従属四方弁1が弁体11を弁座21に押し付ける必要がない構造であれば、従属四方弁1と冷媒回路とがつながる4箇所の接続部の組合せは前記組合せに限らない。
たとえば、弁体11を弁座21に押し付ける必要のない従属四方弁1の構造としては、図27に示すように、ピストン軸10を備えず、弁体11が第1のピストン8および第2のピストン9に接合して切替弁12を形成し、また、弁体11が弁座21および四方弁本体2に密接しており、弁体11に第1の配管4から第3の配管6もしくは第1の配管4から第4の配管7へ選択的につながる第1の連通路77および第2の連通路78を設けた構成としてもよい。このような構成とすることにより、図1および図2に示した従属四方弁と同様、第1のシリンダ室13および第2のシリンダ室14の圧力差により切替弁12が安定して四方弁本体2内を摺動する。
In the dependent four-way valve 1 shown in the first to twelfth embodiments, the pressure of the valve chamber 3 is made larger than the pressure of the folded flow path 11a to press the valve body 11 against the valve seat 21. The first pipe 4 has an inflow pipe 41, the second pipe 5 has an outflow pipe 42, the third pipe 6 has an indoor side liquid pipe 40 or an indoor side gas pipe 39, and the fourth pipe 7 has an outdoor side liquid pipe 38. However, if the subordinate four-way valve 1 does not need to press the valve body 11 against the valve seat 21, the combination of the four connecting portions connecting the subordinate four-way valve 1 and the refrigerant circuit is limited to the above combination. Absent.
For example, as shown in FIG. 27, the structure of the subordinate four-way valve 1 that does not require the valve body 11 to be pressed against the valve seat 21 does not include the piston shaft 10, and the valve body 11 includes the first piston 8 and the second piston 8. The switching valve 12 is formed by being joined to the piston 9, and the valve body 11 is in close contact with the valve seat 21 and the four-way valve main body 2, and the first pipe 4 to the third pipe 6 or the third pipe 6 are connected to the valve body 11. It is good also as a structure which provided the 1st communicating path 77 and the 2nd communicating path 78 which connect selectively from the 1 piping 4 to the 4th piping 7. FIG. By adopting such a configuration, the switching valve 12 is stably stabilized by the pressure difference between the first cylinder chamber 13 and the second cylinder chamber 14 as in the subordinate four-way valve shown in FIGS. 1 and 2. Slide in 2.

また、室外熱交換器25と室内熱交換器26とを入れ替えて接続してもよく、入れ替えた後の冷媒回路にあわせて、冷媒の流れ方向を決定するにように、主四方弁24および従属四方弁1を切り替えればよい。
また、冷媒回路に設けられる熱交換器を室外熱交換器25および室内熱交換器26としたが、両者ともに冷媒回路を通過する冷媒が熱交換できる熱交換器であればよく、その構造は任意である。
また、冷媒が熱交換する媒体は任意であり、空気でも水でもかまわない。
In addition, the outdoor heat exchanger 25 and the indoor heat exchanger 26 may be interchanged and connected, and the main four-way valve 24 and the subordinate are determined so as to determine the flow direction of the refrigerant in accordance with the refrigerant circuit after the exchange. The four-way valve 1 may be switched.
Moreover, although the heat exchanger provided in the refrigerant circuit is the outdoor heat exchanger 25 and the indoor heat exchanger 26, both may be any heat exchanger that can exchange heat between the refrigerant passing through the refrigerant circuit, and the structure thereof is arbitrary. It is.
Moreover, the medium in which the refrigerant exchanges heat is arbitrary, and air or water may be used.

また、第1の減圧装置30の絞り量および第2の減圧装置31の絞り量は任意であり、弁開度が可変の減圧装置を用いることにより、空気調和機の冷房運転および暖房運転の各運転において、成績係数が最大となるような最適な運転が可能となる。   The throttle amount of the first decompressor 30 and the throttle amount of the second decompressor 31 are arbitrary, and each of the cooling operation and the heating operation of the air conditioner can be performed by using a decompressor having a variable valve opening. In operation, the optimum operation that maximizes the coefficient of performance is possible.

また、圧縮機23の構造は任意であり、前段と後段との2段圧縮機として、前段と後段との間に冷媒をインジェクションするようにしてもよい。   The structure of the compressor 23 is arbitrary, and a refrigerant may be injected between the front stage and the rear stage as a two-stage compressor of the front stage and the rear stage.

また、前記各実施の形態1〜12に示した空気調和機に使用する冷媒としてはフロンや、自然冷媒である二酸化炭素や炭化水素などを用いてもよい。とくに、高圧冷媒である二酸化炭素を従来の空気調和機に用いる場合、圧縮機仕事の大きい超臨界冷凍サイクルとなるが、実施の形態1〜9に示した空気調和機を用いることにより、冷房運転および暖房運転の成績係数を向上することができる。   Moreover, as a refrigerant used for the air conditioner shown in each of the first to twelfth embodiments, chlorofluorocarbon, natural refrigerant such as carbon dioxide or hydrocarbon may be used. In particular, when carbon dioxide, which is a high-pressure refrigerant, is used in a conventional air conditioner, it becomes a supercritical refrigeration cycle with a large compressor work. By using the air conditioner shown in Embodiments 1 to 9, cooling operation is performed. And the coefficient of performance of the heating operation can be improved.

なお、実施の形態1〜7,9においては、各実施の形態の圧力−エンタルピ線図からわかるように、室内熱交換器26(冷房運転時)または室外熱交換器25(暖房運転時)に流入する冷媒のエンタルピは図29に示す従来例の場合よりも小さく、冷媒蒸気の量が少ない。そのため、室内熱交換器26(冷房運転時)または室外熱交換器25(暖房運転時)の圧力損失が減少し、圧縮機23の吸入圧力が上昇するため、冷房運転と暖房運転とのどちらにおいても成績係数を増加させることができる。このような効果は実施の形態2,4において説明したが、他の実施の形態1,3,5〜7,9においても言える。   In the first to seventh and ninth embodiments, as can be seen from the pressure-enthalpy diagram of each embodiment, the indoor heat exchanger 26 (at the time of cooling operation) or the outdoor heat exchanger 25 (at the time of heating operation) is used. The enthalpy of the refrigerant flowing in is smaller than that of the conventional example shown in FIG. 29, and the amount of refrigerant vapor is small. For this reason, the pressure loss of the indoor heat exchanger 26 (during cooling operation) or the outdoor heat exchanger 25 (during heating operation) decreases and the suction pressure of the compressor 23 increases, so that in either the cooling operation or the heating operation. Can also increase the coefficient of performance. Such an effect has been described in the second and fourth embodiments, but the same can be said in the other first, third, fifth, and seventh embodiments.

また、前記各実施の形態1〜12では、電磁弁等の電力を利用して弁体を駆動し、主経路の流れ方向を切り替える主四方弁24を1個、減圧経路22、室外熱交換器25、室内熱交換器26のいずれかに流れる冷媒の方向が一定の方向となるように従属四方弁1を1個設けた冷媒回路を示したが、従属四方弁1の設置位置や、従属四方弁1の数、主四方弁24の数は任意である。その場合、従属四方弁の弁体を電力ではなく、主四方弁による切り替えにより主経路に発生する圧力変化を用いて駆動し、主四方弁24により切り替えられた流れ方向を所望の位置で局所的に所望の方向に切り替えることができるよう、従属四方弁の設置位置、および従属四方弁と接続する主経路の配管を決定すればよい。
また、冷媒回路の構成も前記各実施の形態の冷媒回路に限らない。
In each of the first to twelfth embodiments, one main four-way valve 24 for switching the flow direction of the main path, one main four-way valve 24 for switching the flow direction of the main path by using electric power of an electromagnetic valve or the like, and the outdoor heat exchanger 25, the refrigerant circuit in which one dependent four-way valve 1 is provided so that the direction of the refrigerant flowing into any one of the indoor heat exchangers 26 is a constant direction is shown. The number of valves 1 and the number of main four-way valves 24 are arbitrary. In that case, the valve body of the subordinate four-way valve is driven not by electric power but by the pressure change generated in the main path by switching by the main four-way valve, and the flow direction switched by the main four-way valve 24 is locally at a desired position. It is only necessary to determine the installation position of the subordinate four-way valve and the piping of the main path connected to the subordinate four-way valve so that the desired direction can be switched.
Further, the configuration of the refrigerant circuit is not limited to the refrigerant circuit of each of the embodiments.

また、四方弁を用いた冷媒回路について説明をしたが、従属四方弁1に相当する切替手段は四方弁に限るものではなく、電磁弁等を用いることなく冷媒の流れ方向を切り替えて、所望の空気調和機の運転が可能なように冷媒回路を形成できる従属切替手段であれば、切り替えられる流路の数は任意である。たとえば、四方弁以外の切替手段としては、図28に示すように、図1に示す従属四方弁1の第2の配管5と弁体11の折り返し流路11aを除いた三方弁が考えられる。   Further, although the refrigerant circuit using the four-way valve has been described, the switching means corresponding to the subordinate four-way valve 1 is not limited to the four-way valve, and the flow direction of the refrigerant can be switched without using an electromagnetic valve or the like. The number of flow paths to be switched is arbitrary as long as the switching means can form a refrigerant circuit so that the air conditioner can be operated. For example, as the switching means other than the four-way valve, as shown in FIG. 28, a three-way valve excluding the second pipe 5 of the dependent four-way valve 1 and the return flow path 11a of the valve body 11 shown in FIG.

また、前記各実施の形態1〜12では空気調和機で説明したが、空気調和機に限るものではなく、冷媒を用いて加熱、冷却をおこなう冷凍サイクル装置において同様の構成が適用できる。   Moreover, although each said Embodiment 1-12 demonstrated with the air conditioner, it is not restricted to an air conditioner, The same structure is applicable in the refrigerating-cycle apparatus which heats and cools using a refrigerant | coolant.

Claims (12)

圧縮機、第1の熱交換器、減圧経路、および第2の熱交換器を複数の配管により接続して形成される主経路、および前記主経路に設置され、前記主経路の少なくとも3つの配管を接続すると共に、弁体の位置を移動させて内部の流路を切り替え、前記主経路を流れる流体の流れ方向を切り替える切替手段を備えた冷凍サイクル装置であって、前記切替手段は、電力を利用して前記弁体を駆動する少なくとも1つの主切替手段と、前記主切替手段による前記主経路の流れ方向の切り替えにより前記主経路に発生する圧力変化を用いて前記弁体を駆動する少なくとも1つの従属切替手段とを有することを特徴とする冷凍サイクル装置。 A main path formed by connecting a compressor, a first heat exchanger, a decompression path, and a second heat exchanger by a plurality of pipes, and at least three pipes of the main path installed in the main path A refrigeration cycle apparatus comprising switching means for switching the flow direction of the fluid flowing through the main path by moving the position of the valve body and switching the internal flow path, wherein the switching means And at least one main switching means for driving the valve body by using the pressure change generated in the main path by switching the flow direction of the main path by the main switching means. A refrigeration cycle apparatus comprising two subordinate switching means. 従属切替手段は、流体の圧力が異なり、かつ主切替手段による流れ方向の切り替えにより圧力の大小関係が逆転する2点に接続する一対の導管を有し、前記導管を用いて前記2点をそれぞれ流れる流体の一部を取り込んで弁体を駆動することを特徴とする請求項1に記載の冷凍サイクル装置。 The subordinate switching means has a pair of conduits connected to two points where the pressure of the fluid is different and the magnitude relation of the pressure is reversed by switching of the flow direction by the main switching means, and the two points are respectively connected using the conduits. The refrigeration cycle apparatus according to claim 1, wherein a part of the flowing fluid is taken in to drive the valve body. 従属切替手段は四方弁であり、従属切替手段本体内を気密状に摺動する一対のピストン、前記ピストン間に設けられた弁室、前記弁室内の弁座面との間に切替通路を形成し、前記ピストンと連動して前記弁座面を摺動する弁体、前記ピストンを介して前記弁室の両側にそれぞれ設けた一対のシリンダ室、前記弁室に常時連通の第1の配管、前記弁座面に開口し、前記切替通路に常時連通の第2の配管、前記弁座面に開口し、前記弁体の切替移動によって互いに相反する関係で前記弁室あるいは前記切替通路のいずれかに連通接続する第3の配管および第4の配管、並びに前記一対のシリンダ室にそれぞれ接続した一対の導管を備えたことを特徴とする請求項2に記載の冷凍サイクル装置。 The subordinate switching means is a four-way valve, and a switching passage is formed between a pair of pistons that slide in an airtight manner in the main body of the subordinate switching means, a valve chamber provided between the pistons, and a valve seat surface in the valve chamber. A valve body that slides on the valve seat surface in conjunction with the piston, a pair of cylinder chambers provided on both sides of the valve chamber via the piston, a first pipe that is always in communication with the valve chamber, A second pipe that opens to the valve seat surface and is always in communication with the switching passage, opens to the valve seat surface, and has either one of the valve chamber or the switching passage in a mutually contradictory relationship due to the switching movement of the valve body. 3. The refrigeration cycle apparatus according to claim 2, further comprising a third pipe and a fourth pipe communicating with each other, and a pair of conduits respectively connected to the pair of cylinder chambers. 一対の導管の一方は、従属切替手段の第3の配管に接続され、他方は前記従属切替手段の第4の配管に接続されることを特徴とする請求項3に記載の冷凍サイクル装置。 4. The refrigeration cycle apparatus according to claim 3, wherein one of the pair of conduits is connected to a third pipe of the subordinate switching unit, and the other is connected to a fourth pipe of the subordinate switching unit. 主切替手段は、圧縮機から吐出した冷媒を、第1の熱交換器または第2の熱交換器へ選択して流すことができるように配置され、従属切替手段は、第1の配管と第2の配管とが減圧経路の両端に接続され、第3の配管と第4の配管とのいずれか一方が前記第1の熱交換器に接続され、他方が前記第2の熱交換器に接続されたことを特徴とする請求項3または4に記載の冷凍サイクル装置。 The main switching means is arranged so that the refrigerant discharged from the compressor can be selectively flowed to the first heat exchanger or the second heat exchanger, and the subordinate switching means is connected to the first pipe and the first heat exchanger. 2 pipes are connected to both ends of the decompression path, and either one of the third pipe and the fourth pipe is connected to the first heat exchanger, and the other is connected to the second heat exchanger. The refrigeration cycle apparatus according to claim 3 or 4, wherein the refrigeration cycle apparatus is provided. 減圧経路は、減圧装置、気液分離器、過冷却熱交換器、エジェクタ、膨張機のうちの少なくとも1つを備えたことを特徴とする請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein the decompression path includes at least one of a decompression device, a gas-liquid separator, a supercooling heat exchanger, an ejector, and an expander. 主切替手段は、圧縮機から吐出した冷媒を、第1の熱交換器または第2の熱交換器へ選択して流すことができるように配置され、従属切替手段は、第1の配管と第2の配管とが前記第1の熱交換器の両端に接続され、第3の配管と第4の配管とのいずれか一方が前記主切替手段に接続され、他方が減圧経路に接続されたことを特徴とする請求項3または4に記載の冷凍サイクル装置。 The main switching means is arranged so that the refrigerant discharged from the compressor can be selectively flowed to the first heat exchanger or the second heat exchanger, and the subordinate switching means is connected to the first pipe and the first heat exchanger. 2 pipes are connected to both ends of the first heat exchanger, one of the third pipe and the fourth pipe is connected to the main switching means, and the other is connected to the decompression path. The refrigeration cycle apparatus according to claim 3 or 4, wherein: 主切替手段は、圧縮機から吐出した冷媒を、第1の熱交換器または第2の熱交換器へ選択して流すことができるように配置され、従属切替手段は、第1の配管と第2の配管とが前記第2の熱交換器の両端に接続され、第3の配管と第4の配管とのいずれか一方が前記主切替手段に接続され、他方が減圧経路に接続されたことを特徴とする請求項3または4に記載の冷凍サイクル装置。 The main switching means is arranged so that the refrigerant discharged from the compressor can be selectively flowed to the first heat exchanger or the second heat exchanger, and the subordinate switching means is connected to the first pipe and the first heat exchanger. 2 pipes are connected to both ends of the second heat exchanger, one of the third pipe and the fourth pipe is connected to the main switching means, and the other is connected to the decompression path. The refrigeration cycle apparatus according to claim 3 or 4, wherein: 第2の熱交換器は、前段熱交換器、後段熱交換器、および前記前段熱交換器と前記後段熱交換器との間に設けられた再熱除湿用減圧装置を有することを特徴とする請求項1〜8のいずれか1項に記載の冷凍サイクル装置。 The second heat exchanger includes a pre-stage heat exchanger, a post-stage heat exchanger, and a reheat dehumidification decompression device provided between the pre-stage heat exchanger and the post-stage heat exchanger. The refrigeration cycle apparatus according to any one of claims 1 to 8. 圧縮機は、二段圧縮機であることを特徴とする請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the compressor is a two-stage compressor. 主経路を流れる流体は、自然冷媒である二酸化炭素であることを特徴とする請求項1〜10のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 10, wherein the fluid flowing through the main path is carbon dioxide, which is a natural refrigerant. 本体内を気密状に摺動する一対のピストン、前記ピストン間に設けられた弁室、前記弁室内の弁座面との間に切替通路を形成し、前記ピストンと連動して前記弁座面を摺動する弁体、前記ピストンを介して前記弁室の両側にそれぞれ設けた一対のシリンダ室、前記弁室に常時連通の第1の配管、前記弁座面に開口し、前記切替通路に常時連通の第2の配管、前記弁座面に開口し、前記弁体の切替移動によって互いに相反する関係で前記弁室あるいは前記切替通路のいずれかに連通接続する第3の配管および第4の配管、並びに前記一対のシリンダ室にそれぞれ接続し、一方が前記第3の配管に、他方が前記第4の配管に接続する一対の導管を備えた四方弁であって、前記第3の配管および前記第4の配管にそれぞれ流れる流体の圧力の大小関係の変化により前記弁体を駆動することを特徴とする四方弁。 A switching passage is formed between a pair of pistons that slide in an airtight manner in the main body, a valve chamber provided between the pistons, and a valve seat surface in the valve chamber, and the valve seat surface in conjunction with the piston A valve body that slides through the piston, a pair of cylinder chambers provided on both sides of the valve chamber via the piston, a first pipe that is always in communication with the valve chamber, an opening in the valve seat surface, and the switching passage A second pipe that is always in communication, a third pipe that opens to the valve seat surface and communicates with either the valve chamber or the switching passage in a mutually contradictory relationship by the switching movement of the valve body; A four-way valve comprising a pipe and a pair of conduits respectively connected to the pair of cylinder chambers, one connected to the third pipe and the other connected to the fourth pipe, The magnitude of the pressure of the fluid flowing through each of the fourth pipes Four-way valve and drives the valve body by the change.
JP2009548813A 2008-01-07 2008-12-25 Refrigeration cycle equipment and four-way valve Pending JPWO2009087733A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008000486 2008-01-07
JP2008000486 2008-01-07
PCT/JP2008/003941 WO2009087733A1 (en) 2008-01-07 2008-12-25 Refrigeration cycle device and four-way valve

Publications (1)

Publication Number Publication Date
JPWO2009087733A1 true JPWO2009087733A1 (en) 2011-05-19

Family

ID=40852858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548813A Pending JPWO2009087733A1 (en) 2008-01-07 2008-12-25 Refrigeration cycle equipment and four-way valve

Country Status (2)

Country Link
JP (1) JPWO2009087733A1 (en)
WO (1) WO2009087733A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293054B2 (en) * 2008-09-30 2013-09-18 ダイキン工業株式会社 Refrigeration equipment
JP5297968B2 (en) * 2009-10-14 2013-09-25 株式会社日立製作所 Air conditioner
EP2541168A1 (en) * 2010-02-24 2013-01-02 Hitachi, Ltd. Air conditioner
JP2012093051A (en) * 2010-10-28 2012-05-17 Fuji Koki Corp Gas-liquid separator for heat pump and injection type heat pump system
JP5982871B2 (en) * 2011-03-24 2016-08-31 株式会社富士通ゼネラル Four-way valve and heat pump device equipped with it
JP2012233676A (en) * 2011-04-21 2012-11-29 Denso Corp Heat pump cycle
CN103032999B (en) * 2011-10-08 2014-12-03 陈则韶 Dual-heat source heat pump water heating all-in-one machine employing dual four-way valves for switching
JP2013134040A (en) * 2011-12-27 2013-07-08 Daikin Industries Ltd Refrigeration device
JP6179172B2 (en) * 2013-04-19 2017-08-16 ダイキン工業株式会社 Refrigeration equipment
RU2680447C1 (en) * 2015-08-14 2019-02-21 Данфосс А/С Steam compression system with at least two external installations
CN108375255B (en) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 Air conditioner system
JP7033967B2 (en) * 2018-03-16 2022-03-11 三菱電機株式会社 Refrigeration cycle device
CN109186129A (en) * 2018-08-23 2019-01-11 珠海格力电器股份有限公司 Heat pump system and heat pump system control method
US11906206B2 (en) * 2018-10-26 2024-02-20 Turboalgor S.R.L. Refrigeration apparatus and operating method thereof
CN111503914B (en) * 2019-01-31 2022-07-15 日立江森自控空调有限公司 Refrigerant distribution adjusting device, air conditioning system and air conditioning system control method
EP4001716A4 (en) * 2019-07-16 2022-07-13 Mitsubishi Electric Corporation Refrigeration cycle device
CN110686424A (en) * 2019-10-23 2020-01-14 陈希禄 Energy storage air conditioner
JP7317224B2 (en) * 2020-04-30 2023-07-28 三菱電機株式会社 refrigeration cycle equipment
CN113175768B (en) * 2021-02-09 2023-03-21 三花控股集团有限公司 Fluid control assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137339U (en) * 1976-04-14 1977-10-18
JPS5840457A (en) * 1981-09-03 1983-03-09 株式会社日立製作所 Heat pump cycle
JPH11108397A (en) * 1997-10-08 1999-04-23 Daikin Ind Ltd Refrigerating device
JP2004125254A (en) * 2002-10-02 2004-04-22 Hitachi Ltd Heat storage type air conditioner
JP2006125656A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137339U (en) * 1976-04-14 1977-10-18
JPS5840457A (en) * 1981-09-03 1983-03-09 株式会社日立製作所 Heat pump cycle
JPH11108397A (en) * 1997-10-08 1999-04-23 Daikin Ind Ltd Refrigerating device
JP2004125254A (en) * 2002-10-02 2004-04-22 Hitachi Ltd Heat storage type air conditioner
JP2006125656A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner

Also Published As

Publication number Publication date
WO2009087733A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2009087733A1 (en) Refrigeration cycle device and four-way valve
JP5288020B1 (en) Refrigeration equipment
JP5195364B2 (en) Ejector refrigeration cycle
US7367202B2 (en) Refrigerant cycle device with ejector
CN110770517B (en) Air conditioning apparatus
JP4501984B2 (en) Ejector refrigeration cycle
JP5018724B2 (en) Ejector refrigeration cycle
WO2010038762A1 (en) Refrigeration cycle device
US20110192181A1 (en) Refrigerant system
JP5359231B2 (en) Ejector refrigeration cycle
JP2011214753A (en) Refrigerating device
JP2006138525A (en) Freezing device, and air conditioner
JP2008051474A (en) Supercritical refrigerating cycle device
JP2007205596A (en) Air conditioner
WO2020071293A1 (en) Refrigeration cycle device
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP5958022B2 (en) Refrigeration equipment
JP5895662B2 (en) Refrigeration equipment
JP2008261512A (en) Ejector type refrigerating cycle
JP2014149103A (en) Refrigeration cycle device
JP2013210158A (en) Refrigerating device
JP2009204183A (en) Refrigerating cycle device
JP6354209B2 (en) Refrigeration equipment
JP5045677B2 (en) Ejector refrigeration cycle
JP7201912B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911