JPH10103800A - Composite type refrigerating plant - Google Patents

Composite type refrigerating plant

Info

Publication number
JPH10103800A
JPH10103800A JP25708796A JP25708796A JPH10103800A JP H10103800 A JPH10103800 A JP H10103800A JP 25708796 A JP25708796 A JP 25708796A JP 25708796 A JP25708796 A JP 25708796A JP H10103800 A JPH10103800 A JP H10103800A
Authority
JP
Japan
Prior art keywords
refrigeration
condenser
refrigerant
evaporator
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25708796A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawanishi
康裕 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25708796A priority Critical patent/JPH10103800A/en
Publication of JPH10103800A publication Critical patent/JPH10103800A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance an overall efficiency. SOLUTION: A cold side device is provided with a cold storage side compressor 3, a condenser 4, a liquid receiver 22, a cold storage side evaporator 13 and a cold storage side evaporator 28. A freezing side device is provided with a freezing side compressor 2, a condenser 29 and a freezing side evaporator 19. A cascade condenser 24 heat-exchanges an evaporated refrigerant by the cold storage side evaporator 28 with a refrigerant gas flowing to the freezing side condenser 29 by unifying the cold storage side evaporator 28 with the freezing side evaporator 29 and condenses the refrigerant gas, thereby dropping the condensation temperature and increasing the degree of supercooling so that the overall efficiency may be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍ショーケース
や冷蔵ショーケース、さらに、空調室内機等の複数の温
度帯の異なる冷却負荷へ高効率的に冷熱を供給する複合
型冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration showcase and a refrigeration showcase, and more particularly, to a combined refrigeration apparatus for efficiently supplying cold to cooling loads in different temperature zones such as an air conditioner indoor unit.

【0002】[0002]

【従来の技術】例えば、コンビニエンスストアーなどで
は、冷凍機と冷蔵機とが1組として設置し、あるいは、
これに室内空調機を加えたものが多く採用されている。
このような場合には、冷凍用,冷蔵用,空調用の各負荷
に対してそれぞれの冷凍機を設けてそれぞれの負荷に別
々に冷熱を供給する場合がある。また、高圧部の系統を
冷凍・冷蔵共通にして低圧部を別々にしたユニットから
各負荷へ冷熱を供給する場合がある。
2. Description of the Related Art For example, in a convenience store, a refrigerator and a refrigerator are installed as one set, or
Many of them have an indoor air conditioner added.
In such a case, a refrigerator may be provided for each of the loads for refrigeration, refrigeration, and air conditioning, and cold heat may be separately supplied to each load. Further, there is a case where the system of the high-pressure section is made common to the refrigeration and the refrigeration, and the low-pressure section is separately supplied to each load from the unit having the low-pressure section.

【0003】図5は上記後者の場合の複合型冷凍装置の
構成図である。
FIG. 5 is a diagram showing the structure of a combined refrigeration system in the latter case.

【0004】コンデンシングユニット1内には、冷凍側
圧縮機2と冷蔵側圧縮機3と凝縮器4とが配置され冷凍
側圧縮機2と冷蔵側圧縮機3との出口側を共通の高圧ガ
ス管5によって凝縮器4へ接続し、凝縮器4の出口側の
高圧液管6を冷蔵用と冷凍用とに分岐した分岐管7と分
岐管8とに接続している。
In the condensing unit 1, a refrigerating-side compressor 2, a refrigerating-side compressor 3, and a condenser 4 are arranged, and an outlet side of the refrigerating-side compressor 2 and the refrigerating-side compressor 3 is connected to a common high-pressure gas. The pipe 5 is connected to the condenser 4, and the high-pressure liquid pipe 6 on the outlet side of the condenser 4 is connected to a branch pipe 7 and a branch pipe 8 branched for refrigeration and freezing.

【0005】分岐管7は、電磁弁9と膨張弁10を配設
して低圧液管11に接続し、低圧液管11は冷蔵ショー
ケース12に配置する蒸発器13の入口側に接続する一
方、蒸発器13の出口側に接続される低圧ガス管14は
冷蔵側圧縮機3へ接続している。
The branch pipe 7 is provided with a solenoid valve 9 and an expansion valve 10 and is connected to a low-pressure liquid pipe 11. The low-pressure liquid pipe 11 is connected to the inlet side of an evaporator 13 arranged in a refrigerated showcase 12. The low-pressure gas pipe 14 connected to the outlet side of the evaporator 13 is connected to the refrigerator 3.

【0006】また、同様に分岐管8は、電磁弁15と膨
張弁16を配設して低圧液管17に接続し、低圧液管1
7は冷凍ショーケース18に配置する蒸発器19の入口
側に接続する一方、蒸発器19の出口側に接続される低
圧ガス管20は冷凍側圧縮機2に接続している。
[0006] Similarly, the branch pipe 8 is provided with an electromagnetic valve 15 and an expansion valve 16 and connected to the low-pressure liquid pipe 17.
7 is connected to the inlet side of an evaporator 19 disposed in the freezing showcase 18, while the low-pressure gas pipe 20 connected to the outlet side of the evaporator 19 is connected to the freezing side compressor 2.

【0007】この構成によれば、共通の高圧ガス管5か
ら一台の凝縮器4へ高圧高温の冷媒ガスを送り、高圧液
管6から分岐させた分岐管7および分岐管8によって複
数の温度帯の異なる負荷ユニットである冷蔵ショーケー
ス12と冷凍ショーケース18へ冷熱を供給することが
できる。
According to this configuration, a high-pressure and high-temperature refrigerant gas is sent from a common high-pressure gas pipe 5 to one condenser 4, and a plurality of temperatures are supplied by a branch pipe 7 and a branch pipe 8 branched from the high-pressure liquid pipe 6. Cold heat can be supplied to the refrigerated showcase 12 and the frozen showcase 18, which are load units having different bands.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、複合型
冷凍装置は、冷凍側の効率が悪いという問題がある。
However, the combined refrigeration system has a problem that the efficiency on the refrigeration side is poor.

【0009】すなわち、図5において、冷凍側圧縮機2
と冷蔵側圧縮機3の出口側の高圧ガス管5は高温高圧で
吐出され、冷蔵側の低圧液管11および低圧ガス管14
の冷媒も比較的圧力が高く冷蔵側圧縮機3の入口側も圧
力が高く、冷蔵側圧縮機3は効率良く運転できる。
[0009] That is, in FIG.
The high-pressure gas pipe 5 on the outlet side of the refrigeration compressor 3 is discharged at a high temperature and a high pressure, and the low-pressure liquid pipe 11 and the low-pressure gas pipe 14 on the refrigeration side are discharged.
Is relatively high in pressure also on the inlet side of the refrigeration-side compressor 3, and the refrigeration-side compressor 3 can be operated efficiently.

【0010】一方、冷凍側では、冷凍ショーケース18
で冷蔵ショーケース12より低い庫内温度が要求される
ので低圧液管17および低圧ガス管20が比較的に圧力
を低くする必要があり、冷凍側圧縮機2の入口側の圧力
が低く、効率が悪い運転がされる。さらに、冷凍ショー
ケース18の庫内温度を維持するために冷凍側圧縮機2
の運転時間も冷蔵側圧縮機3に比べ長く、総合的な効率
の低下の要因となっている。
On the other hand, on the freezing side, the frozen showcase 18
Therefore, the low-pressure liquid pipe 17 and the low-pressure gas pipe 20 need to have a relatively low pressure, and the pressure on the inlet side of the freezing-side compressor 2 is low, and the efficiency is low. Is driving badly. Further, in order to maintain the inside temperature of the freezing showcase 18, the freezing side compressor 2 is used.
Is longer than that of the refrigeration-side compressor 3, which causes a reduction in overall efficiency.

【0011】そこで、本発明は、冷凍側と冷蔵側の各効
率の調和を図って総合的に効率を向上させるとともに、
環境汚染の原因とされる冷媒の封入量を減少し、リーク
による冷媒大気放出量を最小限に抑える複合型冷凍装置
を提供することを目的とする。
Therefore, the present invention aims to improve the overall efficiency by harmonizing the respective efficiencies of the freezing side and the refrigerated side,
It is an object of the present invention to provide a combined refrigeration system that reduces the amount of refrigerant that causes environmental pollution and minimizes the amount of refrigerant released to the atmosphere due to leakage.

【0012】[0012]

【課題を解決するための手段】請求項1の発明は、冷蔵
側圧縮機と凝縮器と受液器と第1冷蔵側蒸発器とを備え
順次接続して冷蔵側冷凍サイクルを形成すると共に、第
2冷蔵側蒸発器を備える冷蔵側装置と、冷凍側圧縮機と
凝縮器と受液器と冷凍側蒸発器とを備え順次接続して冷
凍側冷凍サイクルを形成する冷凍側装置と、第2冷蔵側
蒸発器と冷凍側の凝縮器とを一体化して第2冷蔵側蒸発
器による蒸発冷媒と冷凍側の凝縮器へ流れる冷媒ガスと
熱交換させて冷媒ガスを凝縮させるカスケードコンデン
サとを設けるようにしたものである。この手段によれ
ば、第2冷蔵側蒸発器による蒸発冷媒によって冷凍側の
凝縮器の冷媒ガスが凝縮される。これによって、冷凍側
の凝縮温度を低下させ、冷媒液の過冷却度を増大させる
ことができる。従って、冷凍側の冷凍能力が増加するの
で冷蔵側を含めて総合効率を向上させることができる。
According to a first aspect of the present invention, a refrigeration-side refrigeration cycle is formed by sequentially connecting a refrigeration-side compressor, a condenser, a liquid receiver, and a first refrigeration-side evaporator. A refrigeration-side apparatus including a second refrigeration-side evaporator, a refrigeration-side apparatus including a refrigeration-side compressor, a condenser, a receiver, and a refrigeration-side evaporator and sequentially connected to form a refrigeration-side refrigeration cycle; A cascade condenser for integrating the refrigeration-side evaporator and the refrigeration-side condenser and exchanging heat between the refrigerant evaporated by the second refrigeration-side evaporator and the refrigerant gas flowing to the refrigeration-side condenser to condense the refrigerant gas may be provided. It was made. According to this means, the refrigerant gas in the condenser on the freezing side is condensed by the refrigerant evaporated by the second refrigeration side evaporator. Thereby, the condensation temperature on the refrigeration side can be reduced, and the degree of supercooling of the refrigerant liquid can be increased. Therefore, since the refrigerating capacity of the refrigerating side increases, the overall efficiency including the refrigerating side can be improved.

【0013】請求項2の発明は、請求項1記載の複合型
冷凍装置において、第1冷蔵側蒸発器は、蒸発冷媒と冷
蔵側負荷ユニットへ供給する二次冷媒であるブライン液
と熱交換可能とする熱交換手段を備える一方、冷凍側蒸
発器は、蒸発冷媒と冷凍負荷ユニットへ供給する二次冷
媒であるブライン液と熱交換可能とする熱交換手段を設
けるようにしたものである。この手段によれば、冷蔵側
負荷ユニットおよび冷凍側負荷ユニットへブライン液が
供給され負荷が冷蔵または冷凍される。従って、冷媒封
入量とリークによる冷媒大気放出量を最小限に抑えられ
る。
According to a second aspect of the present invention, in the combined refrigerating apparatus according to the first aspect, the first refrigeration-side evaporator can exchange heat with the evaporated refrigerant and a brine liquid as a secondary refrigerant supplied to the refrigeration-side load unit. On the other hand, the refrigerating side evaporator is provided with a heat exchanging means capable of exchanging heat with the evaporated refrigerant and a brine liquid as a secondary refrigerant supplied to the refrigerating load unit. According to this means, the brine liquid is supplied to the refrigeration load unit and the refrigeration load unit, and the load is refrigerated or frozen. Therefore, the amount of refrigerant enclosed and the amount of refrigerant released to the atmosphere due to leakage can be minimized.

【0014】請求項3の発明は請求項1または請求項2
記載の複合型冷凍装置において、冷蔵側冷凍サイクルに
配設する凝縮器に対応して冷凍側冷凍サイクルの冷凍側
凝縮器を併設して、凝縮器へ供給する凝縮熱を利用して
冷凍側凝縮器の冷媒ガスを凝縮可能とするようにしたも
のである。また、凝縮器と受液器の間に過冷却器を配置
し、冷凍側冷媒液の過冷却度を増大可能とするようにし
たものである。この手段によれば、冷凍側の過冷却度が
増大し、冷凍能力が増加するので、総合効率を向上させ
ることができる。
[0014] The invention of claim 3 is claim 1 or claim 2.
In the combined type refrigeration apparatus described above, a refrigeration-side condenser of the refrigeration-side refrigeration cycle is provided in parallel with a condenser disposed in the refrigeration-side refrigeration cycle, and the refrigeration-side condensation is performed by utilizing the condensation heat supplied to the condenser. The refrigerant gas of the vessel can be condensed. Further, a supercooler is arranged between the condenser and the liquid receiver so that the degree of supercooling of the refrigerant liquid on the freezing side can be increased. According to this means, the degree of supercooling on the freezing side increases, and the refrigerating capacity increases, so that the overall efficiency can be improved.

【0015】請求項4の発明は、空調側圧縮機と空調側
凝縮器と受液器と第1空調側蒸発器とを備え順次接続し
て空調側冷凍サイクルを形成すると共に、第2空調側蒸
発器を備える空調側装置と、冷蔵側圧縮機と凝縮器と受
液器と冷蔵側蒸発器とを備え順次接続して冷蔵側冷凍サ
イクルを形成する冷蔵側装置と、冷凍側圧縮機と凝縮器
と受液器と冷凍側蒸発器とを備え順次接続して冷凍側冷
凍サイクルを形成する冷凍側装置と、第2空調側蒸発器
と冷蔵側の凝縮器と冷凍側の凝縮器とを一体化して第2
空調側蒸発器による蒸発冷媒と冷蔵側および冷凍側の各
凝縮器へ流れる冷媒ガスと熱交換させて冷凍ガスを凝縮
させるカスケードコンデンサとを設けるようにしたもの
である。この手段によれば、第2空調側蒸発器による蒸
発冷媒によって冷蔵側および冷凍側の凝縮器の冷媒ガス
が凝縮される。これによって、冷蔵側および冷凍側の凝
縮温度を低下させ、冷媒液の過冷却度を増大させる。従
って、冷凍側および冷蔵側の冷凍能力が増加するので空
調側を含めて総合効率を向上させることができる。
According to a fourth aspect of the present invention, an air conditioning side refrigeration cycle is formed by sequentially connecting an air conditioning side compressor, an air conditioning side condenser, a liquid receiver, and a first air conditioning side evaporator to form a second air conditioning side refrigeration cycle. An air-conditioning device including an evaporator; a refrigeration device including a refrigeration-side compressor, a condenser, a receiver, and a refrigeration-side evaporator and sequentially connected to form a refrigeration-side refrigeration cycle; A refrigeration-side device, which comprises a condenser, a receiver, and a refrigeration-side evaporator and is sequentially connected to form a refrigeration-side refrigeration cycle, and a second air-conditioning-side evaporator, a refrigeration-side condenser, and a refrigeration-side condenser integrated with each other Second
A cascade condenser for condensing the frozen gas by heat exchange between the refrigerant evaporated by the air-conditioning side evaporator and the refrigerant gas flowing to each of the condensers on the refrigeration side and the freezing side is provided. According to this means, the refrigerant gas in the condensers on the refrigeration side and the freezing side is condensed by the refrigerant evaporated by the second air conditioning side evaporator. As a result, the condensation temperatures on the refrigeration side and the freezing side are reduced, and the degree of supercooling of the refrigerant liquid is increased. Therefore, since the refrigerating capacity on the freezing side and the refrigerating side increases, the overall efficiency including the air conditioning side can be improved.

【0016】請求項5の発明は、請求項4記載の複合型
冷凍装置において、第1空調側の蒸発器は、蒸発冷媒と
空調側負荷ユニットへ供給する二次冷媒であるブライン
液と熱交換可能とする熱交換手段を備える一方、冷蔵側
蒸発器は、蒸発冷媒と冷蔵負荷ユニットへ供給する二次
冷媒であるブライン液と熱交換可能とする熱交換手段を
備え、さらに、冷凍側蒸発器は、蒸発冷媒と冷凍負荷ユ
ニットへ供給する二次冷媒であるブライン液と熱交換可
能とする熱交換手段を設けるようにしたものである。こ
の手段によれば、空調側負荷ユニット、冷蔵側負荷ユニ
ットおよび冷凍側負荷ユニットへブライン液が供給され
各負荷が冷房、冷蔵または冷凍される。従って、冷媒封
入量とリークによる冷媒大気放出量を最小限に抑えられ
る。
According to a fifth aspect of the present invention, in the combined refrigerating apparatus of the fourth aspect, the first air conditioner-side evaporator exchanges heat with the evaporated refrigerant and a brine liquid as a secondary refrigerant supplied to the air conditioner-side load unit. The refrigerating-side evaporator is provided with a heat-exchanging means capable of exchanging heat with the evaporated refrigerant and a brine liquid as a secondary refrigerant to be supplied to the refrigeration load unit. Is provided with a heat exchanging means capable of exchanging heat with the evaporated refrigerant and a brine liquid as a secondary refrigerant supplied to the refrigeration load unit. According to this means, the brine liquid is supplied to the air-conditioning-side load unit, the refrigeration-side load unit, and the freezing-side load unit, and each load is cooled, refrigerated, or frozen. Therefore, the amount of refrigerant enclosed and the amount of refrigerant released to the atmosphere due to leakage can be minimized.

【0017】請求項6の発明は請求項4または請求項5
記載の複合型冷凍装置において、空調側冷凍サイクルに
配設する空調側凝縮器に対応して冷蔵側冷凍サイクルの
冷蔵側凝縮器と冷凍側冷凍サイクルの冷凍側凝縮器とを
併設して、空調側凝縮器へ供給する凝縮熱を利用して冷
蔵側凝縮器および冷凍側凝縮器の冷媒ガスを凝縮可能と
したものである。また、凝縮器と受液器の間に過冷却器
を配置し、冷蔵側および冷凍側の冷媒液の過冷却度を増
大可能としたものである。この手段によれば、冷蔵側お
よび冷凍側の過冷却度が増大し冷凍能力が増加するの
で、総合効率を向上させることができる。
The invention of claim 6 is the invention of claim 4 or claim 5.
In the combined refrigeration apparatus described above, the refrigeration-side condenser of the refrigeration-side refrigeration cycle and the refrigeration-side condenser of the refrigeration-side refrigeration cycle are provided side by side in correspondence with the air-conditioning-side condenser disposed in the air-conditioning-side refrigeration cycle. The refrigerant gas in the refrigeration-side condenser and the refrigeration-side condenser can be condensed using the heat of condensation supplied to the side condenser. In addition, a supercooler is arranged between the condenser and the liquid receiver so that the degree of supercooling of the refrigerant liquid on the refrigeration side and the freezing side can be increased. According to this means, the degree of supercooling on the refrigeration side and the freezing side increases and the refrigerating capacity increases, so that the overall efficiency can be improved.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は、本発明の第1実施の形態を示す複
合型冷凍装置の構成図である。
FIG. 1 is a configuration diagram of a combined refrigerating apparatus showing a first embodiment of the present invention.

【0020】図において、コンデンシングユニット1A
の冷蔵側では冷蔵側圧縮機3と凝縮器4と受液器22と
2台の冷蔵ショーケース12を経てアキュームレータ2
3へ戻る冷蔵側の冷凍サイクルを形成すると共に、冷蔵
ショーケース12に並列して高圧液管6と低圧ガス管1
4との間にカスケードコンデンサ24が接続されてい
る。
In the figure, condensing unit 1A
On the refrigeration side, the accumulator 2 passes through the refrigeration side compressor 3, the condenser 4, the liquid receiver 22, and the two refrigeration showcases 12.
3 and a high-pressure liquid pipe 6 and a low-pressure gas pipe 1 are arranged in parallel with the refrigeration showcase 12 while forming a refrigeration cycle on the refrigeration side.
4, a cascade capacitor 24 is connected.

【0021】一方、コンデンシングユニット1Aの冷凍
側では、冷凍側圧縮機2と前述したカスケードコンデン
サ24と受液器25と冷凍ショーケース18とアキュー
ムレータ26とを順次接続して冷凍側の冷凍サイクルを
形成している。
On the other hand, on the refrigerating side of the condensing unit 1A, the refrigerating-side compressor 2, the cascade condenser 24, the receiver 25, the refrigerating showcase 18, and the accumulator 26 are connected in order to perform a refrigerating cycle on the refrigerating side. Has formed.

【0022】カスケードコンデンサ24は、冷蔵側の分
岐管6aに入口側が接続し、出口側が低圧ガス管14に
接続する蒸発器28と、冷凍側の入口側が高圧ガス管5
aに接続し、出口側が受液器25に接続する凝縮器29
とから構成されている。
The cascade condenser 24 has an evaporator 28 having an inlet connected to the branch pipe 6a on the refrigeration side and an outlet connected to the low-pressure gas pipe 14, and a high-pressure gas pipe 5 connected to the inlet on the refrigeration side.
a, the outlet side of which is connected to the receiver 25
It is composed of

【0023】2台の冷蔵ショーケース12は、並列に接
続され、電磁弁9と膨張弁10と蒸発器13とをそれぞ
れ備えている。また、冷凍ショーケース18は、電磁弁
15と膨張弁16と蒸発器19とを備えている。
The two refrigerated showcases 12 are connected in parallel, and include a solenoid valve 9, an expansion valve 10, and an evaporator 13, respectively. Further, the freezing showcase 18 includes an electromagnetic valve 15, an expansion valve 16, and an evaporator 19.

【0024】この構成で、冷蔵側の冷凍サイクルによっ
て各冷蔵ショーケース12へ冷熱が供給されて負荷を冷
蔵すると共に、高圧液管6の分岐管6aに配設される電
磁弁30を介して膨張弁31へ液冷媒が供給される。こ
れによって、カスケードコンデンサ24の蒸発器28で
液冷媒が蒸発して低温低圧となって低圧ガス管14へ流
出する一方、対応する冷凍側の凝縮器29の高温高圧冷
媒ガスを凝縮させ液化させ受液器25へ貯える。
With this configuration, cold load is supplied to each refrigerated showcase 12 by the refrigeration cycle on the refrigerated side to refrigerate the load, and expansion is performed via the electromagnetic valve 30 disposed in the branch pipe 6 a of the high-pressure liquid pipe 6. The liquid refrigerant is supplied to the valve 31. As a result, the liquid refrigerant evaporates in the evaporator 28 of the cascade condenser 24 and becomes low-temperature and low-pressure and flows out to the low-pressure gas pipe 14, while the high-temperature and high-pressure refrigerant gas in the corresponding condenser 29 on the freezing side is condensed and liquefied and received. Store in liquid container 25.

【0025】この場合に、カスケードコンデンサ24の
凝縮器29に流れる冷凍側の高圧ガス管5aからの高温
高圧ガスが冷蔵側の蒸発器28によって凝縮され、高圧
を比較的低く維持でき、過冷却を増大することができ
る。従って、冷凍側圧縮機2の圧縮比が高くなるのを軽
減し、冷凍側の効率の低下を防止し、冷蔵側と冷凍側と
の総合効率を向上させることができる。
In this case, the high-temperature and high-pressure gas from the high-pressure gas pipe 5a on the refrigeration side flowing to the condenser 29 of the cascade condenser 24 is condensed by the evaporator 28 on the refrigeration side, so that the high pressure can be kept relatively low and the supercooling can be achieved. Can increase. Therefore, it is possible to reduce an increase in the compression ratio of the refrigerating-side compressor 2, prevent the efficiency of the refrigerating side from decreasing, and improve the overall efficiency of the refrigerating side and the refrigerating side.

【0026】図2は、本発明の第2実施の形態を示す複
合型冷凍装置の構成図である。
FIG. 2 is a configuration diagram of a combined type refrigeration apparatus showing a second embodiment of the present invention.

【0027】図2において、第1実施の形態を示す図1
と同一符号は、同一部分または相当部分を示し、第2実
施の形態は複数の冷蔵ショーケース12と冷凍ショーケ
ース18とに第2冷媒であるブライン液を供給するよう
にしたものである。
FIG. 2 shows a first embodiment of the present invention.
In the second embodiment, a brine liquid as a second refrigerant is supplied to a plurality of refrigerated showcases 12 and a frozen showcase 18.

【0028】図において、冷蔵側の蒸発器13は、入口
側で低圧液管11に接続し、出口側が低圧ガス管14に
接続し、蒸発器13内に蒸発冷媒とブライン液と熱交換
可能とする熱交換手段34を備えている。この熱交換手
段34は、冷媒配管35によって冷蔵ショーケース12
に接続し、ポンプ36によって冷蔵ショーケース12の
電磁弁37を介して熱交換器38へ冷熱を供給するよう
になっている。
In the drawing, the evaporator 13 on the refrigeration side is connected to the low-pressure liquid pipe 11 on the inlet side, and connected to the low-pressure gas pipe 14 on the outlet side, so that the evaporator 13 can exchange heat with the evaporated refrigerant and the brine liquid. The heat exchange means 34 is provided. The heat exchange means 34 is connected to the refrigerated showcase 12 by a refrigerant pipe 35.
And a pump 36 supplies cold heat to a heat exchanger 38 via an electromagnetic valve 37 of the refrigerated showcase 12.

【0029】一方、冷凍側の蒸発器19は入口側が低圧
液管17に接続し、出口側が低圧ガス管20に接続し、
蒸発器19内に蒸発冷媒と熱交換してブライン液を冷却
する熱交換手段40を備えている。この熱交換手段40
は、冷媒配管41によって冷凍ショーケース18に接続
し、ポンプ42によって冷凍ショーケース18の電磁弁
43を介して熱交換器44へ冷熱を供給するようになっ
ている。
On the other hand, the evaporator 19 on the freezing side has the inlet side connected to the low-pressure liquid pipe 17 and the outlet side connected to the low-pressure gas pipe 20,
The evaporator 19 is provided with heat exchange means 40 for exchanging heat with the evaporated refrigerant to cool the brine liquid. This heat exchange means 40
Is connected to the refrigeration showcase 18 by a refrigerant pipe 41, and supplies cold heat to a heat exchanger 44 via a solenoid valve 43 of the refrigeration showcase 18 by a pump 42.

【0030】このように第2実施の形態によれば、冷蔵
ショーケース12と冷凍ショーケース18へブライン液
を介して冷熱が供給されるので、冷媒配管距離が短くな
り、冷凍サイクルの冷媒封入量が減少し、リークによる
冷媒大気放出量を最小限に抑えることができる。
As described above, according to the second embodiment, since cold heat is supplied to the refrigerated showcase 12 and the frozen showcase 18 via the brine solution, the distance between the refrigerant pipes is reduced, and the amount of refrigerant charged in the refrigeration cycle is reduced. And the amount of refrigerant released to the atmosphere due to leakage can be minimized.

【0031】図3は、本発明の第3実施の形態を示す複
合型冷凍装置の構成図である。
FIG. 3 is a configuration diagram of a combined type refrigeration apparatus showing a third embodiment of the present invention.

【0032】図3において、第1実施の形態を示す図1
と同一符号は、同一部分または相当部分を示し第3実施
の形態は、凝縮器4を設け、冷凍側圧縮機2の吐出側の
高圧ガス管5aを冷凍用凝縮器4bに接続して冷凍用凝
縮器4bの出力配管をカスケードコンデンサ24の過冷
却器101に接続している。
Referring to FIG. 3, FIG.
In the third embodiment, a condenser 4 is provided, and a high-pressure gas pipe 5a on the discharge side of the refrigerating-side compressor 2 is connected to a refrigerating condenser 4b to designate a refrigerating condenser. The output pipe of the condenser 4 b is connected to the subcooler 101 of the cascade condenser 24.

【0033】この構成で、冷凍側の高圧高温の冷媒ガス
が冷凍用凝縮器4bで凝縮され、さらに、カスケードコ
ンデンサ24の過冷却器101により凝縮される。これ
によって、冷凍側冷媒液が冷蔵側を利用して過冷却さ
れ、冷凍側の冷凍能力が増加するので、冷凍側の効率が
高められ、総合効率を向上させることができる。
With this configuration, the high-pressure high-temperature refrigerant gas on the refrigeration side is condensed by the refrigeration condenser 4b, and further condensed by the supercooler 101 of the cascade condenser 24. As a result, the refrigeration side refrigerant liquid is supercooled by using the refrigeration side, and the refrigeration side refrigeration capacity is increased. Therefore, the efficiency of the refrigeration side is increased, and the overall efficiency can be improved.

【0034】図4は、本発明の第4実施の形態を示す複
合型冷凍装置の構成図である。
FIG. 4 is a configuration diagram of a combined type refrigeration apparatus showing a fourth embodiment of the present invention.

【0035】図4において、図3と同一符号は、同一部
分または相当部分を示し、第4実施の形態は、空調側の
冷凍サイクルを形成し、空調室内機へ冷熱を供給する一
方、他の冷蔵側と冷凍側と協調して総合的に効率を向上
させるようにしたものである。
In FIG. 4, the same reference numerals as those in FIG. 3 denote the same or corresponding parts, and the fourth embodiment forms a refrigeration cycle on the air-conditioning side and supplies cold heat to the air-conditioning indoor unit, while providing other heat. The efficiency is improved comprehensively in cooperation with the refrigeration side and the freezing side.

【0036】図において、空調側では空調用圧縮機46
と凝縮器4cと受液器47と空調用室内機48とアキュ
ームレータ49とによって空調用の冷凍サイクルを形成
している。そして、高圧液管50から分岐する分岐管5
0aに電磁弁51と膨張弁52とを配設し、膨張弁52
の出口の低圧液管53にカスケードコンデンサ24の蒸
発器28を接続し蒸発器28の出口側に低圧ガス管54
が接続している。カスケードコンデンサ24は、冷凍側
の過冷却器101と冷蔵側の過冷却器100と空調側の
蒸発器28とが一体化されている。空調用室内機48
は、電磁弁55と電磁弁56と蒸発器57とをそれぞれ
備えている。
In the figure, on the air conditioning side, an air conditioning compressor 46 is provided.
The condenser 4c, the liquid receiver 47, the indoor unit 48 for air conditioning, and the accumulator 49 form a refrigeration cycle for air conditioning. And a branch pipe 5 branched from the high-pressure liquid pipe 50.
0a, a solenoid valve 51 and an expansion valve 52 are provided.
The evaporator 28 of the cascade condenser 24 is connected to the low-pressure liquid pipe 53 at the outlet of the evaporator 28, and the low-pressure gas pipe 54
Is connected. In the cascade condenser 24, the subcooler 101 on the freezing side, the subcooler 100 on the refrigeration side, and the evaporator 28 on the air conditioning side are integrated. Air conditioning indoor unit 48
Has an electromagnetic valve 55, an electromagnetic valve 56, and an evaporator 57, respectively.

【0037】この構成で、空調用の冷凍サイクルでは、
空調用室内機48の蒸発器57へ液冷媒が供給されると
共に、カスケードコンデンサ24の蒸発器28へ液冷媒
が供給され、蒸発冷媒によって過冷却器101と冷蔵側
の過冷却器100と熱交換して冷凍側と冷蔵側の冷媒液
の過冷却度を増大される。これによって、冷凍側および
冷蔵側の冷凍能力が増加し、冷凍側と冷蔵側の効率の低
下を抑え総合的な効率を向上させる。
With this configuration, in the refrigeration cycle for air conditioning,
The liquid refrigerant is supplied to the evaporator 57 of the indoor unit 48 for air conditioning, and the liquid refrigerant is supplied to the evaporator 28 of the cascade condenser 24. The evaporative refrigerant exchanges heat with the supercooler 101 and the supercooler 100 on the refrigeration side. Thus, the degree of supercooling of the refrigerant liquid on the freezing side and the refrigeration side is increased. As a result, the refrigerating capacity of the freezing side and the refrigerating side is increased, and a reduction in the efficiency of the freezing side and the refrigerating side is suppressed, and the overall efficiency is improved.

【0038】[0038]

【発明の効果】以上説明したように請求項1の発明によ
れば、第2冷蔵側蒸発器による蒸発冷媒によって冷凍側
の凝縮器の冷媒ガスを凝縮し、凝縮温度を低下させ、冷
媒液の過冷却度を増大することができるので冷凍能力が
増大する冷蔵側を含めて総合効率を向上させることがで
きる。
As described above, according to the first aspect of the present invention, the refrigerant gas in the condenser on the freezing side is condensed by the refrigerant evaporated by the second refrigeration side evaporator, the condensing temperature is reduced, and the refrigerant liquid is condensed. Since the degree of supercooling can be increased, the overall efficiency can be improved including the refrigeration side where the refrigerating capacity increases.

【0039】請求項2の発明によれば、冷蔵側負荷ユニ
ットおよび冷凍側負荷ユニットへブライン液を供給して
負荷を冷蔵または冷凍するので、冷媒配管距離が極端に
短くなり冷媒封入量が減少する。また、リークの可能性
が低下し、冷媒大気放出量を最小限に抑えることができ
る。
According to the second aspect of the present invention, since the load is refrigerated or frozen by supplying the brine liquid to the refrigeration side load unit and the refrigeration side load unit, the refrigerant piping distance becomes extremely short, and the amount of refrigerant charged is reduced. . Further, the possibility of leakage is reduced, and the amount of refrigerant discharged into the atmosphere can be minimized.

【0040】請求項3の発明によれば、過冷却器によ
り、冷凍側の過冷却度が増大し、冷凍能力が増加し総合
効率を向上させることができる。
According to the third aspect of the present invention, the degree of supercooling on the refrigeration side is increased by the subcooler, the refrigeration capacity is increased, and the overall efficiency can be improved.

【0041】請求項4の発明によれば、第2空調側蒸発
器による蒸発冷媒によって冷蔵側および冷凍側の凝縮器
の冷媒ガスを凝縮し、凝縮温度(高圧)を比較的低く維
持し、過冷却度を増大することができる。従って、冷凍
側および冷蔵側圧縮機の効率が向上でき空調側を含めて
総合効率を向上させることができる。
According to the fourth aspect of the present invention, the refrigerant gas in the condensers on the refrigeration side and the refrigeration side is condensed by the refrigerant evaporated by the second air conditioner-side evaporator, and the condensing temperature (high pressure) is kept relatively low. The degree of cooling can be increased. Therefore, the efficiency of the compressor on the freezing side and the refrigerator side can be improved, and the overall efficiency including the air conditioning side can be improved.

【0042】請求項5の発明によれば、空調側負荷ユニ
ット、冷蔵側負荷ユニットおよび冷凍側負荷ユニットへ
ブライン液を供給して各負荷を冷房、冷蔵または冷凍す
るので、冷媒封入量とリークによる冷媒大気放出量を最
小限に抑えることができる。
According to the fifth aspect of the present invention, since the brine liquid is supplied to the air-conditioning side load unit, the refrigeration side load unit, and the freezing side load unit to cool, refrigerate, or freeze each load, the amount of refrigerant charged and the leakage are reduced. The amount of refrigerant discharged into the atmosphere can be minimized.

【0043】請求項6の発明によれば、過冷却器により
冷蔵側および冷凍側の冷凍能力が増加するので総合効率
が向上できる。
According to the invention of claim 6, since the refrigerating capacity on the refrigeration side and the freezing side is increased by the supercooler, the overall efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施の形態を示す複合型冷凍装置
の構成図。
FIG. 1 is a configuration diagram of a combined refrigeration apparatus showing a first embodiment of the present invention.

【図2】本発明の第2実施の形態を示す複合型冷凍装置
の構成図。
FIG. 2 is a configuration diagram of a combined refrigeration apparatus showing a second embodiment of the present invention.

【図3】本発明の第3実施の形態を示す複合型冷凍装置
の構成図。
FIG. 3 is a configuration diagram of a combined refrigeration apparatus showing a third embodiment of the present invention.

【図4】本発明の第4実施の形態を示す複合型冷凍装置
の構成図。
FIG. 4 is a configuration diagram of a combined refrigeration apparatus showing a fourth embodiment of the present invention.

【図5】従来の複合型冷凍装置を示す構成図。FIG. 5 is a configuration diagram showing a conventional combined refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 コンデンシングユニット 2 冷凍側圧縮機 3 冷蔵側圧縮機 4,29 凝縮器 4a 冷蔵用凝縮器 4b 冷凍用凝縮器 4c 空調用凝縮器 5 高圧ガス管 6 高圧液管 12 冷蔵ショーケース 13 蒸発器 18 冷凍ショーケース 19,28 蒸発器 22,47 受液器 24 カスケードコンデンサ 25 受液器 33 熱交換器 46 空調用圧縮機 48 空調用室内機 100,101 過冷却器 DESCRIPTION OF SYMBOLS 1 Condensing unit 2 Refrigeration side compressor 3 Refrigeration side compressor 4,29 Condenser 4a Refrigeration condenser 4b Refrigeration condenser 4c Air conditioning condenser 5 High pressure gas pipe 6 High pressure liquid pipe 12 Refrigeration showcase 13 Evaporator 18 Refrigeration showcase 19,28 Evaporator 22,47 Liquid receiver 24 Cascade condenser 25 Liquid receiver 33 Heat exchanger 46 Air conditioning compressor 48 Air conditioning indoor unit 100,101 Subcooler

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷蔵側圧縮機と凝縮器と受液器と第1冷
蔵側蒸発器とを備え順次接続して冷蔵側冷凍サイクルを
形成すると共に、第2冷蔵側蒸発器を備える冷蔵側装置
と、冷凍側圧縮機と凝縮器と受液器と冷凍側蒸発器とを
備え順次接続して冷凍側冷凍サイクルを形成する冷凍側
装置と、前記第2冷蔵側蒸発器と前記冷凍側の凝縮器と
を一体化して前記第2冷蔵側蒸発器による蒸発冷媒と前
記冷凍側の凝縮器へ流れる冷媒ガスと熱交換させて冷媒
ガスを凝縮させるカスケードコンデンサとを設けること
を特徴とする複合型冷凍装置。
1. A refrigeration-side apparatus comprising a refrigeration-side compressor, a condenser, a liquid receiver, and a first refrigeration-side evaporator and sequentially connected to form a refrigeration-side refrigeration cycle, and a second refrigeration-side evaporator. A refrigeration-side device that includes a refrigeration-side compressor, a condenser, a receiver, and a refrigeration-side evaporator and that is sequentially connected to form a refrigeration-side refrigeration cycle; a second refrigeration-side evaporator; And a cascade condenser for exchanging heat between the refrigerant evaporated by the second refrigeration side evaporator and the refrigerant gas flowing to the condenser on the refrigeration side to condense the refrigerant gas. apparatus.
【請求項2】 前記第1冷蔵側蒸発器は、蒸発冷媒と冷
蔵側負荷ユニットへ供給する二次冷媒であるブライン液
と熱交換可能とする熱交換手段を備える一方、前記冷凍
側蒸発器は、蒸発冷媒と冷凍負荷ユニットへ供給する二
次冷媒であるブライン液と熱交換可能とする熱交換手段
を備えることを特徴とする請求項1記載の複合型冷凍装
置。
2. The first refrigeration-side evaporator includes heat exchange means for exchanging heat with an evaporative refrigerant and a brine liquid as a secondary refrigerant to be supplied to a refrigeration-side load unit. 2. The combined refrigerating apparatus according to claim 1, further comprising a heat exchanging means for exchanging heat with the evaporating refrigerant and a brine liquid as a secondary refrigerant supplied to the refrigerating load unit.
【請求項3】 前記冷蔵側冷凍サイクルに配設する前記
凝縮器に対応して前記冷凍側冷凍サイクルの冷凍側凝縮
器を併設して、前記凝縮器へ供給する凝縮熱を利用して
前記冷凍側凝縮器の冷媒ガスを凝縮し、凝縮器と受液器
の間に過冷却器を配置し冷媒液の過冷却度を増大可能と
することを特徴とする請求項1または請求項2記載の複
合型冷凍装置。
3. A refrigeration-side condenser of the refrigeration-side refrigeration cycle is provided in association with the condenser disposed in the refrigeration-side refrigeration cycle, and the refrigeration is performed by utilizing condensation heat supplied to the condenser. 3. The refrigerant gas in the side condenser is condensed, and a supercooler is arranged between the condenser and the liquid receiver so that the degree of supercooling of the refrigerant liquid can be increased. Combined refrigeration equipment.
【請求項4】 空調側圧縮機と空調側凝縮器と受液器と
第1空調側蒸発器とを備え順次接続して空調側冷凍サイ
クルを形成すると共に、第2空調側蒸発器を備える空調
側装置と、冷蔵側圧縮機と凝縮器と受液器と冷蔵側蒸発
器とを備え順次接続して冷蔵側冷凍サイクルを形成する
冷蔵側装置と、冷凍側圧縮機と凝縮器と受液器と冷凍側
蒸発器とを備え順次接続して冷凍側冷凍サイクルを形成
する冷凍側装置と、前記第2空調側蒸発器と前記冷蔵側
の凝縮器と前記冷凍側の凝縮器とを一体化して前記第2
空調側蒸発器による蒸発冷媒と前記冷蔵側および前記冷
凍側の各凝縮器へ流れる冷媒ガスと熱交換させて冷凍ガ
スを凝縮させるカスケードコンデンサとを設けることを
特徴とする複合型冷凍装置。
4. An air conditioner comprising an air conditioner-side compressor, an air conditioner-side condenser, a liquid receiver, and a first air conditioner-side evaporator and sequentially connected to form an air conditioner-side refrigeration cycle and a second air conditioner-side evaporator. A refrigeration-side device that includes a refrigeration-side compressor, a condenser, a receiver, and a refrigeration-side evaporator and that is sequentially connected to form a refrigeration-side refrigeration cycle; a refrigeration-side compressor, a condenser, and a receiver And a refrigerating side evaporator, which is sequentially connected to form a refrigerating side refrigerating cycle, and the second air conditioning side evaporator, the refrigerating side condenser, and the refrigerating side condenser are integrated. The second
A combined refrigeration apparatus comprising a cascade condenser for exchanging heat between refrigerant evaporated by an air conditioning-side evaporator and refrigerant gas flowing to each of the condensers on the refrigeration side and the freezing side to condense the refrigeration gas.
【請求項5】 前記第1空調側の蒸発器は、蒸発冷媒と
空調側負荷ユニットへ供給する二次冷媒であるブライン
液と熱交換可能とする熱交換手段を備える一方、前記冷
蔵側蒸発器は、蒸発冷媒と冷蔵負荷ユニットへ供給する
二次冷媒であるブライン液と熱交換可能とする熱交換手
段を備え、さらに、前記冷凍側蒸発器は、蒸発冷媒と冷
凍負荷ユニットへ供給する二次冷媒であるブライン液と
熱交換可能とする熱交換手段を備えることを特徴とする
請求項4記載の複合型冷凍装置。
5. The refrigeration-side evaporator, wherein the first air-conditioner-side evaporator includes heat exchange means for allowing heat exchange between the evaporated refrigerant and a brine liquid as a secondary refrigerant to be supplied to the air-conditioning-side load unit. Further comprises heat exchange means capable of exchanging heat with the evaporative refrigerant and brine liquid as a secondary refrigerant to be supplied to the refrigeration load unit, and the refrigeration-side evaporator further comprises a secondary refrigerant supplied to the evaporative refrigerant and the refrigeration load unit. 5. The combined refrigeration apparatus according to claim 4, further comprising a heat exchange means capable of exchanging heat with a brine liquid as a refrigerant.
【請求項6】 前記空調側冷凍サイクルに配設する前記
空調側凝縮器に対応して前記冷蔵側冷凍サイクルの冷蔵
側副凝縮器と前記冷凍側冷凍サイクルの冷凍側副凝縮器
とを併設して、前記空調側凝縮器へ供給する凝縮熱を利
用して前記冷蔵側凝縮器および前記冷凍側凝縮器の冷媒
ガスを凝縮し、凝縮器と受液器の間に冷蔵側過冷却器、
冷凍側過冷却器を配置し冷蔵側および冷凍側冷媒液の過
冷却度を増大可能としたことを特徴とする請求項4また
は請求項5記載の複合型冷凍装置。
6. A refrigeration-side sub-condenser of the refrigeration-side refrigeration cycle and a refrigeration-side sub-condenser of the refrigeration-side refrigeration cycle are provided side by side corresponding to the air-conditioning-side condenser disposed in the air-conditioning-side refrigeration cycle. Utilizing the condensation heat supplied to the air-conditioning side condenser to condense the refrigerant gas of the refrigeration side condenser and the refrigeration side condenser, and a refrigeration side subcooler between the condenser and the receiver.
6. The combined refrigerating apparatus according to claim 4, wherein a refrigerating-side subcooler is arranged to increase the degree of subcooling of the refrigerating-side and refrigerating-side refrigerant liquids.
JP25708796A 1996-09-27 1996-09-27 Composite type refrigerating plant Pending JPH10103800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25708796A JPH10103800A (en) 1996-09-27 1996-09-27 Composite type refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25708796A JPH10103800A (en) 1996-09-27 1996-09-27 Composite type refrigerating plant

Publications (1)

Publication Number Publication Date
JPH10103800A true JPH10103800A (en) 1998-04-21

Family

ID=17301570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25708796A Pending JPH10103800A (en) 1996-09-27 1996-09-27 Composite type refrigerating plant

Country Status (1)

Country Link
JP (1) JPH10103800A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039510A1 (en) * 1998-12-25 2000-07-06 Daikin Industries, Ltd. Refrigerating device
JP2005282888A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Outdoor unit for air conditioning refrigerating device
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
WO2010119591A1 (en) * 2009-04-17 2010-10-21 シャープ株式会社 Freezer-refrigerator and cooling storage unit
JP2010249444A (en) * 2009-04-17 2010-11-04 Sharp Corp Freezer-refrigerator
JP2011117685A (en) * 2009-12-04 2011-06-16 Sharp Corp Freezer-refrigerator
CN102364266A (en) * 2011-10-31 2012-02-29 浙江大学 Two-temperature level vapor compression cold converter
KR20130081437A (en) * 2012-01-09 2013-07-17 엘지전자 주식회사 A cascade heat pump
CN106403466A (en) * 2015-07-28 2017-02-15 Lg电子株式会社 Refrigerator
KR101708642B1 (en) * 2015-09-11 2017-02-21 엘지전자 주식회사 A cooling receiver of air conditioner and an air conditioner
CN106524651A (en) * 2016-10-27 2017-03-22 青岛海尔特种电冰柜有限公司 Split type double-flow-path refrigerating equipment
CN106556203A (en) * 2016-10-27 2017-04-05 青岛海尔特种电冰柜有限公司 Split type pair of refrigerating plant
CN106556201A (en) * 2016-10-27 2017-04-05 青岛海尔特种电冰柜有限公司 Double loop separating refrigerating equipment
CN106568276A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Double-loop split refrigeration device
CN106568278A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split multi-temperature-area double-refrigeration device
CN106568219A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multiple-temperature-zone double-flow-way refrigeration equipment
CN106568275A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-flowing-way refrigeration device
CN106568277A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-refrigeration equipment
CN106568279A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split type dual refrigerating device
CN106595106A (en) * 2016-10-27 2017-04-26 青岛海尔特种电冰柜有限公司 Double-loop multi-temperature-zone refrigerating device
KR20180031256A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Air conditioner
KR20180031255A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Air conditioner
EP3399253A1 (en) * 2017-05-04 2018-11-07 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039510A1 (en) * 1998-12-25 2000-07-06 Daikin Industries, Ltd. Refrigerating device
US6298683B1 (en) 1998-12-25 2001-10-09 Daikin Industries, Ltd. Refrigerating device
JP2005282888A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Outdoor unit for air conditioning refrigerating device
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
CN102395840A (en) * 2009-04-17 2012-03-28 夏普株式会社 Freezer-refrigerator and cooling storage unit
JP2010249444A (en) * 2009-04-17 2010-11-04 Sharp Corp Freezer-refrigerator
WO2010119591A1 (en) * 2009-04-17 2010-10-21 シャープ株式会社 Freezer-refrigerator and cooling storage unit
RU2496063C2 (en) * 2009-04-17 2013-10-20 Шарп Кабусики Кайся Refrigerator with low-temperature separation, and refrigerating storage device
JP2011117685A (en) * 2009-12-04 2011-06-16 Sharp Corp Freezer-refrigerator
CN102364266A (en) * 2011-10-31 2012-02-29 浙江大学 Two-temperature level vapor compression cold converter
KR20130081437A (en) * 2012-01-09 2013-07-17 엘지전자 주식회사 A cascade heat pump
CN106403466A (en) * 2015-07-28 2017-02-15 Lg电子株式会社 Refrigerator
US10627143B2 (en) 2015-07-28 2020-04-21 Lg Electronics Inc. Refrigerator
CN106403466B (en) * 2015-07-28 2019-03-26 Lg电子株式会社 Refrigerator
KR101708642B1 (en) * 2015-09-11 2017-02-21 엘지전자 주식회사 A cooling receiver of air conditioner and an air conditioner
US10330357B2 (en) 2015-09-11 2019-06-25 Lg Electronics Inc. Air conditioner and cooling receiver of air conditioner
KR20180031256A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Air conditioner
KR20180031255A (en) * 2016-09-19 2018-03-28 엘지전자 주식회사 Air conditioner
CN106556203A (en) * 2016-10-27 2017-04-05 青岛海尔特种电冰柜有限公司 Split type pair of refrigerating plant
CN106568275A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-flowing-way refrigeration device
CN106568277A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multi-temperature-area double-refrigeration equipment
CN106568279A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split type dual refrigerating device
CN106595106A (en) * 2016-10-27 2017-04-26 青岛海尔特种电冰柜有限公司 Double-loop multi-temperature-zone refrigerating device
CN106568219A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Multiple-temperature-zone double-flow-way refrigeration equipment
CN106568278A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Split multi-temperature-area double-refrigeration device
CN106568276A (en) * 2016-10-27 2017-04-19 青岛海尔特种电冰柜有限公司 Double-loop split refrigeration device
CN106556201A (en) * 2016-10-27 2017-04-05 青岛海尔特种电冰柜有限公司 Double loop separating refrigerating equipment
CN106524651A (en) * 2016-10-27 2017-03-22 青岛海尔特种电冰柜有限公司 Split type double-flow-path refrigerating equipment
EP3399253A1 (en) * 2017-05-04 2018-11-07 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system
CN108800637A (en) * 2017-05-04 2018-11-13 伟思技术北美有限公司 With the climatic test cabinet for stablizing cascade direc expansion refrigeration system
US10655895B2 (en) 2017-05-04 2020-05-19 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system

Similar Documents

Publication Publication Date Title
JPH10103800A (en) Composite type refrigerating plant
DK1895246T3 (en) Cooling circuits and method for operating a cooling circuit
EP2019272B1 (en) Combined receiver and heat exchanger for a secondary refrigerant
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
KR20010037714A (en) Refrigeration system of refrigerator with two evaporators
US6170272B1 (en) Refrigeration system with inertial subcooling
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
US4528823A (en) Heat pump apparatus
WO1998055809A1 (en) Refrigerating plant
US7582223B2 (en) Refrigerant composition for refrigeration systems
JP2005221194A (en) Air conditioning, refrigerating and freezing facility
JP2007051788A (en) Refrigerating device
JPH11248273A (en) Refrigerating air conditioner and facility selecting method therefor
CN110284553A (en) A kind of air water machine
KR20190128360A (en) Cooling system for a low temperature storage
JP4660334B2 (en) Refrigeration system
JPS58178159A (en) Multistage cascade cooling system
CN102997527A (en) Gas-liquid heat exchange type refrigeration device
KR20190120115A (en) Refrigeration system of refrigerator vehicle for low-temperature transportation
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
JP2000240980A (en) Refrigerator/air conditioner
JP3454644B2 (en) Combined refrigeration system
JP2001304619A (en) Ice storage type air conditioner
CN220062199U (en) Air conditioning system
CN217274926U (en) Refrigerating system and refrigerating equipment with same