JP2816525B2 - Multi-source refrigeration equipment - Google Patents

Multi-source refrigeration equipment

Info

Publication number
JP2816525B2
JP2816525B2 JP29738393A JP29738393A JP2816525B2 JP 2816525 B2 JP2816525 B2 JP 2816525B2 JP 29738393 A JP29738393 A JP 29738393A JP 29738393 A JP29738393 A JP 29738393A JP 2816525 B2 JP2816525 B2 JP 2816525B2
Authority
JP
Japan
Prior art keywords
stage
compressor
condenser
stage compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29738393A
Other languages
Japanese (ja)
Other versions
JPH07127934A (en
Inventor
正博 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP29738393A priority Critical patent/JP2816525B2/en
Publication of JPH07127934A publication Critical patent/JPH07127934A/en
Application granted granted Critical
Publication of JP2816525B2 publication Critical patent/JP2816525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数台の冷凍機を多段
に接続して超低温に冷却するために用いる多元冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage refrigerating apparatus used for connecting a plurality of refrigerating machines in multiple stages and cooling them to an extremely low temperature.

【0002】[0002]

【従来の技術】最近、マグロなどの鮮魚の冷凍保存温度
は、−60℃〜−70℃という超低温になってきてお
り、鮮魚の保管庫をこのように低い温度に冷却するには
多元冷凍装置が用いられる。
2. Description of the Related Art Recently, the freezing storage temperature of fresh fish such as tuna has been reduced to an extremely low temperature of -60.degree. C. to -70.degree. Is used.

【0003】この多元冷凍装置では、高元側冷凍機の凝
縮器を冷却水により冷却するとともに、この高元側の冷
却コイルを低元側冷凍機の圧縮機から吐出される冷媒ガ
スを凝縮する凝縮器のカスケードコンデンサに接続し
て、複数台の冷凍機を熱交換器(カスケードコンデン
サ)によって連結することで、低元側の冷却器によって
冷凍庫などの熱負荷を非常に低い温度に冷却するもので
ある。冷凍機を2段に接続した場合、高元側冷凍機は第
1元冷凍機となり、低元側冷凍機が第2元冷凍機とな
る。
In this multi-stage refrigeration apparatus, the condenser of the high-side refrigerator is cooled by cooling water, and the high-side cooling coil condenses the refrigerant gas discharged from the compressor of the low-side refrigerator. By connecting to a cascade condenser of a condenser and connecting multiple refrigerators by a heat exchanger (cascade condenser), the heat load of the freezer etc. is cooled to a very low temperature by the cooler on the lower side. It is. When the refrigerators are connected in two stages, the higher-stage refrigerator becomes the first-stage refrigerator and the lower-stage refrigerator becomes the second-stage refrigerator.

【0004】このような多元冷凍装置では、従来第2元
冷凍機の冷媒にフロンR13またはR503を使用して
いた。このため、第2元圧縮機で圧縮した吐出ガスは、
その温度がそれ程高くなく、小型装置では空気冷却し、
大型装置では水で冷却するか、または何も冷却せずカス
ケードコンデンサに送っていた。
In such a multi-stage refrigeration system, Freon R13 or R503 has conventionally been used as a refrigerant for the second-stage refrigeration unit. Therefore, the discharge gas compressed by the second source compressor is:
The temperature is not so high, small devices are air cooled,
Large equipment was cooled with water or sent to a cascade condenser without cooling.

【0005】[0005]

【発明が解決しようとする課題】従来は第2元冷凍機の
冷媒にフロンR13またはR503を使用していたが、
フロン規制によりこれらの冷媒が使用できなくなった。
このため、代替え冷媒としてHFC23を使用する必要
が生じた。しかし、HFC23は従来の冷媒と比較して
圧縮機で圧縮した吐出ガス温度が約20〜30℃程度上
昇する。したがって、第2元側の吐出ガス温度を低く抑
えるためには第1元側の圧縮機を二段圧縮機とし、第2
元圧縮機の圧縮比または凝縮圧力を低くする必要があ
る。
Conventionally, Freon R13 or R503 has been used as the refrigerant of the second refrigerating machine.
These refrigerants can no longer be used due to CFC regulations.
For this reason, it became necessary to use HFC23 as a substitute refrigerant. However, the temperature of the discharge gas compressed by the compressor of the HFC 23 rises by about 20 to 30 ° C. as compared with the conventional refrigerant. Therefore, in order to keep the discharge gas temperature on the second element side low, the compressor on the first element side should be a two-stage compressor,
It is necessary to lower the compression ratio or the condensing pressure of the main compressor.

【0006】本発明は上述の二段圧縮機を効果的に働か
せ、もって装置の小型化、省エネ化を図ることを目的と
する。
It is an object of the present invention to effectively operate the above-described two-stage compressor, thereby reducing the size of the apparatus and saving energy.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の多元冷凍装置は複数台の冷凍機を凝縮器を
なすカスケードコンデンサで多段に連結した多元冷凍装
置において、低元側圧縮機の吐出側とカスケードコンデ
ンサの入口との間に、低元側圧縮機からの吐出ガスを予
冷却する吐出ガス冷却器を設け、高元側圧縮機を低段圧
縮機と高段圧縮機からなる二段圧縮機で構成し、この高
段圧縮機から吐出される冷媒を凝縮器で液化したあとに
膨脹弁で高段圧縮機の吸入圧力まで減圧し、上記吐出ガ
ス冷却器のコイルに導いて低元側吐出ガスと熱交換させ
る構成としてある。
In order to achieve this object, a multi-stage refrigeration system according to the present invention is a multi-stage refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser. A discharge gas cooler is installed between the discharge side of the compressor and the inlet of the cascade condenser to pre-cool the discharge gas from the low-side compressor, and the high-side compressor is separated from the low-stage compressor and the high-stage compressor. After the refrigerant discharged from this high-stage compressor is liquefied by a condenser, the pressure is reduced to the suction pressure of the high-stage compressor by an expansion valve and guided to the coil of the discharge gas cooler. And heat exchange with the lower side discharge gas.

【0008】[0008]

【作用】上述した構成によれば、高元側圧縮機の低段圧
縮機で冷却するカスケードコンデンサの熱量が低減さ
れ、高元側圧縮機の小形化を図ることができる。
According to the above configuration, the amount of heat of the cascade condenser cooled by the low-stage compressor of the high-stage compressor is reduced, and the high-stage compressor can be downsized.

【0009】[0009]

【実施例】以下、本発明による多元冷凍装置の具体的な
実施例を図面に基づき詳細に説明する。図1の系統図
に、この多元冷凍装置の一実施例を示す。この図で、第
1元圧縮機1は、レシプロまたはスクリュタイプの二段
圧縮機で構成され、低段(前段)の圧縮機1aの吐出管
が高段(後段)の圧縮機1bの吸入管に接続される。高
段の圧縮機1bの吐出管は、コイル2aに冷却水が通さ
れる凝縮器2の入口に接続される。この凝縮器2で液化
した冷媒は、膨脹弁6で減圧され、デ・スーパーヒータ
(吐出ガス冷却器)7のコイル7aに送られて熱交換さ
れる。このデ・スーパーヒータ7で蒸発した冷媒は、高
段の圧縮機1bに吸入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific embodiment of a multi-stage refrigeration apparatus according to the present invention will be described in detail with reference to the drawings. The system diagram of FIG. 1 shows one embodiment of the multi-source refrigeration apparatus. In this figure, a first main compressor 1 is a reciprocating or screw type two-stage compressor, and a discharge pipe of a low-stage (front-stage) compressor 1a is a suction tube of a high-stage (rear-stage) compressor 1b. Connected to. The discharge pipe of the high-stage compressor 1b is connected to the inlet of the condenser 2 through which the cooling water flows through the coil 2a. The refrigerant liquefied in the condenser 2 is decompressed by an expansion valve 6 and sent to a coil 7a of a desuperheater (discharge gas cooler) 7 where heat is exchanged. The refrigerant evaporated by the desuperheater 7 is sucked into the high-stage compressor 1b.

【0010】また、凝縮器2の出口は膨脹弁3を介して
中間冷却器4のコイル4aの入口に接続される。この中
間冷却器4のコイル4aの出口は、高段の圧縮機1bの
吸入管に接続される。また、凝縮器2の出口は中間冷却
器4の入口に接続され、この中間冷却器4の出口は電磁
弁、膨脹弁8を介してカスケードコンデンサ9のコイル
9aの入口に接続される。このカスケードコンデンサ9
のコイル9aの出口は、低段の圧縮機1aの吸入管に接
続される。
The outlet of the condenser 2 is connected through an expansion valve 3 to the inlet of a coil 4a of an intercooler 4. The outlet of the coil 4a of the intercooler 4 is connected to the suction pipe of the high-stage compressor 1b. The outlet of the condenser 2 is connected to the inlet of the intercooler 4, and the outlet of the intercooler 4 is connected to the inlet of the coil 9 a of the cascade condenser 9 via an electromagnetic valve and an expansion valve 8. This cascade capacitor 9
The outlet of the coil 9a is connected to the suction pipe of the low-stage compressor 1a.

【0011】一方、単段または二段圧縮機からなる第2
元圧縮機10で圧縮された吐出ガスは、冷却器11にお
いて従来の方法(水または空気)で冷却されたあとに、
デ・スーパーヒータ7に送られる。このデ・スーパーヒ
ータ7の出口は、カスケードコンデンサ9の入口に接続
され、このカスケードコンデンサ9の出口が膨脹弁12
を介して負荷冷却用の冷却器13の冷却コイル13aの
入口に接続される。この冷却コイル13aの出口は、圧
縮機10の吸入管に接続される。なお、デ・スーパーヒ
ータ7の入口は保護容器14を介して第2元圧縮機10
の吸入管に接続される。
On the other hand, a second compressor comprising a single-stage or two-stage compressor
The discharge gas compressed by the main compressor 10 is cooled in a cooler 11 by a conventional method (water or air),
It is sent to the desuperheater 7. The outlet of the desuperheater 7 is connected to the inlet of the cascade condenser 9, and the outlet of the cascade condenser 9 is connected to the expansion valve 12.
Is connected to the inlet of the cooling coil 13a of the cooler 13 for cooling the load. The outlet of the cooling coil 13a is connected to a suction pipe of the compressor 10. The inlet of the desuperheater 7 is connected via the protective container 14 to the second main compressor 10.
Connected to the suction pipe.

【0012】このように構成される多元冷凍装置では、
第2元圧縮機10から吐出される冷媒ガスを従来の方法
で冷却したあとに、デ・スーパーヒータ7に送り、第1
元側の凝縮器2で液化した冷媒と熱交換して冷却する。
第1元側の液冷媒は、このデ・スーパーヒータ7におい
て第2元側の吐出ガスと熱交換することでガス化し、第
1元圧縮機1の高段の吸入管に導かれる。
In the multi-unit refrigeration system configured as described above,
After cooling the refrigerant gas discharged from the second compressor 10 by a conventional method, the refrigerant gas is sent to the desuperheater 7 and
Cooling is performed by exchanging heat with the liquefied refrigerant in the condenser 2 on the original side.
The first-source liquid refrigerant is gasified by exchanging heat with the second-source discharge gas in the desuperheater 7, and is guided to a high-stage suction pipe of the first compressor 1.

【0013】これにより、第1元圧縮機1の低段で冷却
するカスケードコンデンサ9の熱量を減らすことがで
き、第1元圧縮機1の小型化(ピストン押し退け量の低
減)と省エネルギ化を図ることができる。
As a result, the amount of heat of the cascade condenser 9, which cools the first stage compressor 1 at a low stage, can be reduced, so that the size of the first stage compressor 1 (reduction of piston displacement) and energy saving can be reduced. Can be planned.

【0014】つぎに、図2に示す他の実施例を説明す
る。この実施例でも、第2元圧縮機10で圧縮した吐出
ガスを、従来の方法で冷却したあとに、デ・スーパーヒ
ータ7に導く。第1元側の凝縮器2で液化した冷媒を膨
脹弁3で減圧し、中間冷却器4のコイル4aに導き、低
段用冷媒を過冷却させるためにガス化した(一部液を含
む)冷媒を、デ・スーパーヒータ7に送り、第2元側の
吐出ガスと熱交換させる。蒸発した第1元側の冷媒は、
第1元圧縮機1の高段の吸入管に導く。
Next, another embodiment shown in FIG. 2 will be described. Also in this embodiment, the discharge gas compressed by the second compressor 10 is guided to the desuperheater 7 after being cooled by a conventional method. The refrigerant liquefied in the first condenser 2 is decompressed by the expansion valve 3 and guided to the coil 4a of the intercooler 4, and gasified to partially cool the low-stage refrigerant (including some liquid). The refrigerant is sent to the desuperheater 7 and exchanges heat with the discharge gas on the second source side. The evaporated primary refrigerant is
It is led to a high-stage suction pipe of the first main compressor 1.

【0015】つぎに、図3に示す他の実施例を説明す
る。第2元圧縮機10で圧縮した吐出ガスを、従来の方
法で冷却したあとに、デ・スーパーヒータ7に導く。第
1元側の凝縮器2で液化した冷媒を膨脹弁6で減圧し、
デ・スーパーヒータ7に送り、第2元側の吐出ガスと熱
交換させる。蒸発した(一部液を含む)冷媒を、中間冷
却器4のコイル4aに導き熱交換させる。蒸発した第1
元側の冷媒は、第1元圧縮機1の高段の吸入管に導く。
Next, another embodiment shown in FIG. 3 will be described. The discharge gas compressed by the second compressor 10 is guided to the desuperheater 7 after being cooled by a conventional method. The refrigerant liquefied in the first condenser 2 is decompressed by the expansion valve 6,
It is sent to the desuperheater 7 and exchanges heat with the discharge gas on the second source side. The evaporated refrigerant (including a part of the liquid) is led to the coil 4a of the intercooler 4 to exchange heat. First evaporated
The original refrigerant is guided to a high-stage suction pipe of the first original compressor 1.

【0016】つぎに、第2元よりの放熱量を10,00
0Kcal/hとして、第1元圧縮機1の冷媒循環量を
従来方式と本発明による方式とで比較する。図4に、第
1元側の冷凍機のモリエル線図を示す。この図で、Aは
第1元圧縮機1にレシプロタイプを用いた場合を示し、
Bはスクリュタイプを用いた場合を示す。図5に、第2
元側の冷凍機のモリエル線図を示す。
Next, the amount of heat radiation from the second element is set to 10,000
At 0 Kcal / h, the refrigerant circulation amount of the first main compressor 1 is compared between the conventional system and the system according to the present invention. FIG. 4 shows a Mollier diagram of the refrigerator on the first element side. In this figure, A shows a case where a reciprocating type is used for the first main compressor 1,
B shows a case where a screw type is used. FIG.
The Mollier diagram of the original refrigerator is shown.

【0017】まず、全熱量をカスケードコンデンサ9で
冷却する従来方式では、 低段冷媒循環量=10,000Kcal/h/46.53Kca
l/Kg =214.9Kg/h 過冷却熱量=214.9Kg/h×(112.77−9
8.59)Kcal/Kg =3,047Kcal/h 過冷却するために蒸発する冷媒量=3047Kcal/h/
35.68Kcal/Kg =85.4Kg/h よって低段圧縮量=214.9Kg/h 中段圧縮量=214.9+85.4=300.3Kg/h 一方、本発明による方式では、凝縮過程のエンタルピ差
60.095Kcal/Kgのうちデ・スーパーヒータ7の冷
却分は6Kcal/Kgで1割にあたるため、熱量10,00
0Kcal/hの内訳は、 カスケードコンデンサ熱量=9,000Kcal/h デ・スーパーヒータ熱量=1,000Kcal/hとなる。 低段冷媒循環量=9,000Kcal/h/46.53Kcal
/Kg =193.4Kg/h 過冷却熱量=193.4Kg/h×(112.77−9
8.59)Kcal/Kg =2742Kcal/h 過冷却するために蒸発する冷媒量=2,742Kcal/h
/35.68Kcal/Kg =76.9Kg/h デ・スーパーヒータで蒸発する冷媒量 =1,000Kcal/h/35.68Kcal/Kg =28.0Kg/h よって低段圧縮量=193.4Kg/h 中段圧縮量=193.4+76.9+28.0=28
8.3Kg/h このように、本発明による方式によれば、第1元圧縮機
1の動力およびピストン押し退け量を、表1に示すよう
に約7%低減することができる。
First, in the conventional system in which the total amount of heat is cooled by the cascade condenser 9, the low stage refrigerant circulation amount = 10,000 Kcal / h / 46.53 Kca
l / Kg = 214.9 kg / h Supercooling heat = 214.9 kg / h x (112.77-9
8.59) Kcal / Kg = 3,047 Kcal / h Refrigerant volume evaporated for supercooling = 3047 Kcal / h /
35.68Kcal / Kg = 85.4Kg / h Low stage compression amount = 214.9Kg / h Middle stage compression amount = 214.9 + 85.4 = 300.3Kg / h On the other hand, in the method according to the present invention, the enthalpy difference in the condensation process Of the 60.095 Kcal / Kg, the cooling amount of the desuperheater 7 is 6 Kcal / Kg, which is 10%, so the heat amount is 10,000.
The breakdown of 0 Kcal / h is as follows: Heat of cascade condenser = 9,000 Kcal / h Heat of desuper heater = 1,000 Kcal / h Low-stage refrigerant circulation amount = 9,000 Kcal / h / 46.53 Kcal
/Kg=193.4Kg/h Supercooling heat = 193.4Kg / h × (112.77-9
8.59) Kcal / Kg = 2742 Kcal / h Amount of refrigerant evaporated for supercooling = 2,742 Kcal / h
/35.68Kcal/Kg = 76.9Kg / h Amount of refrigerant evaporated by the desuperheater = 1,000Kcal / h / 35.68Kcal / Kg = 28.0Kg / h Therefore, the amount of low-stage compression = 193.4Kg / h Middle stage compression amount = 193.4 + 76.9 + 28.0 = 28
8.3 kg / h As described above, according to the method of the present invention, the power of the first main compressor 1 and the piston displacement can be reduced by about 7% as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明の多元冷凍装置は上述したよう
に、第2元冷凍機にR13またはR503の代替え冷媒
としてHFC23を使用する際、第1元側の凝縮器で液
化した冷媒を膨脹弁で高段圧縮機の吸入圧力まで減圧
し、第2元側の吐出ガスと吐出ガス冷却器において熱交
換するようにしているので、カスケードコンデンサの熱
量を減らすことができ、第1元圧縮機の小形化と省エネ
ルギ化を図ることができる。
As described above, when the HFC23 is used as a substitute refrigerant for R13 or R503 in the second chiller, the refrigerant liquefied in the first condenser is expanded by the expansion valve. In this case, the pressure is reduced to the suction pressure of the high-stage compressor and heat is exchanged between the discharge gas cooler and the discharge gas on the second source side. It is possible to reduce the size and save energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多元冷凍装置の一実施例を示す系
統図。
FIG. 1 is a system diagram showing one embodiment of a multi-source refrigeration apparatus according to the present invention.

【図2】他の実施例の多元冷凍装置の要部を示す系統
図。
FIG. 2 is a system diagram showing a main part of a multiple refrigerating apparatus according to another embodiment.

【図3】さらに他の実施例の多元冷凍装置の要部を示す
系統図。
FIG. 3 is a system diagram showing a main part of a multiple refrigerating apparatus according to still another embodiment.

【図4】第1元冷凍機のモリエル線図。FIG. 4 is a Mollier diagram of the first refrigerating machine.

【図5】第2元冷凍機のモリエル線図。FIG. 5 is a Mollier diagram of the second source refrigerator.

【符号の説明】[Explanation of symbols]

1 第1元圧縮機 1a 低段圧縮機 1b 高段圧縮機 2 凝縮器 3 膨脹弁 4 中間冷却器 6 膨脹弁 7 デ・スーパーヒータ 7a 熱交換用のコイル 8 膨脹弁 9 カスケードコンデンサ 10 第2元圧縮機 12 膨脹弁 13 冷却器 13a 冷却コイル 14 保護容器 DESCRIPTION OF REFERENCE NUMERALS 1 First-stage compressor 1a Low-stage compressor 1b High-stage compressor 2 Condenser 3 Expansion valve 4 Intercooler 6 Expansion valve 7 Desuperheater 7a Heat exchange coil 8 Expansion valve 9 Cascade condenser 10 Second element Compressor 12 Expansion valve 13 Cooler 13a Cooling coil 14 Protection container

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数台の冷凍機を凝縮器をなすカスケード
コンデンサで多段に連結した多元冷凍装置において、低
元側圧縮機の吐出側とカスケードコンデンサの入口との
間に、低元側圧縮機からの吐出ガスを予冷却する吐出ガ
ス冷却器を設け、 高元側圧縮機を低段圧縮機と高段圧
縮機からなる二段圧縮機で構成し、この高段圧縮機から
吐出される冷媒を凝縮器で液化したあとに膨脹弁で高段
圧縮機の吸入圧力まで減圧し、上記吐出ガス冷却器のコ
イルに導いて低元側吐出ガスと熱交換させることを特徴
とする多元冷凍装置。
1. A multi-stage refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser, wherein a low-stage compressor is provided between a discharge side of a low-stage compressor and an inlet of the cascade condenser. A discharge gas cooler for pre-cooling the discharge gas from the compressor is provided. The high-stage compressor is composed of a two-stage compressor consisting of a low-stage compressor and a high-stage compressor. The refrigerant discharged from this high-stage compressor Liquefied by a condenser, reduced by an expansion valve to the suction pressure of a high-stage compressor, and guided to a coil of the discharge gas cooler to exchange heat with a lower discharge gas.
JP29738393A 1993-11-02 1993-11-02 Multi-source refrigeration equipment Expired - Fee Related JP2816525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29738393A JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29738393A JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07127934A JPH07127934A (en) 1995-05-19
JP2816525B2 true JP2816525B2 (en) 1998-10-27

Family

ID=17845784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29738393A Expired - Fee Related JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2816525B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2593405A1 (en) 2005-03-14 2006-09-21 York International Corporation Hvac system with powered subcooler
KR100897131B1 (en) * 2008-03-05 2009-05-14 유인석 System of heat pump for cooling and heating of middle pressure binary cycle for cold areas
KR101175516B1 (en) 2010-05-28 2012-08-23 엘지전자 주식회사 Hot water supply device associated with heat pump
CN107036344B (en) 2016-02-03 2021-06-15 开利公司 Refrigerating system, cascade refrigerating system and control method thereof

Also Published As

Publication number Publication date
JPH07127934A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
CN101688697B (en) Refrigerant vapor compression system with dual economizer circuits
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20180245821A1 (en) Refrigerant vapor compression system with intercooler
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
EP2019272B1 (en) Combined receiver and heat exchanger for a secondary refrigerant
EP2223021B1 (en) Refrigerating system and method for refrigerating
US11402134B2 (en) Outdoor unit and control method thereof
US20220221202A1 (en) Heat treatment system
US7582223B2 (en) Refrigerant composition for refrigeration systems
JP2816525B2 (en) Multi-source refrigeration equipment
TWI564524B (en) Refrigeration cycle
JPH03125863A (en) Refrigerating cycle unit with two stage compression
JP2007051788A (en) Refrigerating device
CN211625758U (en) Four-stage cascade refrigeration device with multi-stage water cooler
JPH05340619A (en) Low pressure stage refrigerant system in double-pressure type freezer device
CN110953741A (en) Four-stage cascade refrigeration device with multi-stage water cooler
CN210861850U (en) Double-stage throttling non-azeotropic working medium mechanical supercooling CO2Transcritical refrigeration cycle system
JP3248235B2 (en) Operating method of binary refrigeration apparatus and its apparatus
JP2001041598A (en) Multi-stage compression refrigerating machine
JP3278973B2 (en) Cryogenic refrigerator
JP3894222B2 (en) Refrigeration equipment
CN215260625U (en) Ultra-low temperature cascade refrigerating unit
JP2001201194A (en) Cold storage system with deep freezer
JPS58178159A (en) Multistage cascade cooling system
JPH0664071U (en) Multi-source refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees