JPH07127934A - Cascade freezing device - Google Patents

Cascade freezing device

Info

Publication number
JPH07127934A
JPH07127934A JP29738393A JP29738393A JPH07127934A JP H07127934 A JPH07127934 A JP H07127934A JP 29738393 A JP29738393 A JP 29738393A JP 29738393 A JP29738393 A JP 29738393A JP H07127934 A JPH07127934 A JP H07127934A
Authority
JP
Japan
Prior art keywords
compressor
stage
condenser
refrigerant
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29738393A
Other languages
Japanese (ja)
Other versions
JP2816525B2 (en
Inventor
Masahiro Nishihara
正博 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP29738393A priority Critical patent/JP2816525B2/en
Publication of JPH07127934A publication Critical patent/JPH07127934A/en
Application granted granted Critical
Publication of JP2816525B2 publication Critical patent/JP2816525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To reduce the size of a first main compressor, which forms an energy saving type by a method wherein after a refrigerant delivered from a high stage compressor is liquefied by a condenser, a refrigerant pressure is reduced to the suction pressure of the high stage compressor by an expansion valve and introduced to the coil of a delivery gas cooler and heat-exchanged with delivery gas on the low origin side. CONSTITUTION:A first unit compressor 1 comprises a recipro or a screw type two-stage compressor and the delivery pipe of a compressor la at a low stage (a front stage) is connected to the suction pipe of a compressor 1b at a high stage (a rear stage). The delivery pipe of the compressor 1b at the high stage is connected to the inlet of a condenser 2 through which cooling water flows to a coil 2a. A refrigerant liquefied by the condenser 2 is reduced in a pressure by an expansion valve 6 and fed to a coil 7a of a desuperheater (a delivery gas cooler) 7 for heat-exchange. A refrigerant vaporized by the desuperheater 7 is sucked to the compressor 1b at the high stage. This constitution reduces the quantity of heat of a cascade condenser 9 cooled at the low stage of the first main compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数台の冷凍機を多段
に接続して超低温に冷却するために用いる多元冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-source refrigerating apparatus used for connecting a plurality of refrigerators in multiple stages to cool them to an ultralow temperature.

【0002】[0002]

【従来の技術】最近、マグロなどの鮮魚の冷凍保存温度
は、−60℃〜−70℃という超低温になってきてお
り、鮮魚の保管庫をこのように低い温度に冷却するには
多元冷凍装置が用いられる。
2. Description of the Related Art Recently, the freezing storage temperature of fresh fish such as tuna is becoming as low as -60.degree. C. to -70.degree. C., and a multi-source freezing device is required to cool the fresh fish storage to such a low temperature. Is used.

【0003】この多元冷凍装置では、高元側冷凍機の凝
縮器を冷却水により冷却するとともに、この高元側の冷
却コイルを低元側冷凍機の圧縮機から吐出される冷媒ガ
スを凝縮する凝縮器のカスケードコンデンサに接続し
て、複数台の冷凍機を熱交換器(カスケードコンデン
サ)によって連結することで、低元側の冷却器によって
冷凍庫などの熱負荷を非常に低い温度に冷却するもので
ある。冷凍機を2段に接続した場合、高元側冷凍機は第
1元冷凍機となり、低元側冷凍機が第2元冷凍機とな
る。
In this multi-source refrigeration system, the condenser of the high-side refrigerator is cooled by cooling water, and the cooling coil on the high-side is condensed with the refrigerant gas discharged from the compressor of the low-side refrigerator. By connecting to a cascade condenser of a condenser and connecting multiple refrigerators with a heat exchanger (cascade condenser), the heat load of the freezer etc. is cooled to a very low temperature by the cooler on the low side. Is. When the refrigerators are connected in two stages, the high-source side refrigerator is the first source refrigerator and the low-source side refrigerator is the second source refrigerator.

【0004】このような多元冷凍装置では、従来第2元
冷凍機の冷媒にフロンR13またはR503を使用して
いた。このため、第2元圧縮機で圧縮した吐出ガスは、
その温度がそれ程高くなく、小型装置では空気冷却し、
大型装置では水で冷却するか、または何も冷却せずカス
ケードコンデンサに送っていた。
In such a multi-source refrigerating apparatus, conventionally, Freon R13 or R503 has been used as the refrigerant of the second source refrigerator. Therefore, the discharge gas compressed by the second source compressor is
The temperature is not so high, air cooling in a small device,
Large equipment either cooled it with water or sent it to the cascade condenser without cooling anything.

【0005】[0005]

【発明が解決しようとする課題】従来は第2元冷凍機の
冷媒にフロンR13またはR503を使用していたが、
フロン規制によりこれらの冷媒が使用できなくなった。
このため、代替え冷媒としてHFC23を使用する必要
が生じた。しかし、HFC23は従来の冷媒と比較して
圧縮機で圧縮した吐出ガス温度が約20〜30℃程度上
昇する。したがって、第2元側の吐出ガス温度を低く抑
えるためには第1元側の圧縮機を二段圧縮機とし、第2
元圧縮機の圧縮比または凝縮圧力を低くする必要があ
る。
Conventionally, Freon R13 or R503 was used as the refrigerant of the second source refrigerator,
Due to CFC regulations, these refrigerants can no longer be used.
Therefore, it became necessary to use HFC23 as an alternative refrigerant. However, the discharge gas temperature of the HFC 23 compressed by the compressor rises by about 20 to 30 ° C. as compared with the conventional refrigerant. Therefore, in order to keep the discharge gas temperature on the second source side low, the compressor on the first source side should be a two-stage compressor, and
It is necessary to lower the compression ratio or condensing pressure of the former compressor.

【0006】本発明は上述の二段圧縮機を効果的に働か
せ、もって装置の小型化、省エネ化を図ることを目的と
する。
It is an object of the present invention to effectively operate the above-mentioned two-stage compressor, and thereby to downsize the device and save energy.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の多元冷凍装置は複数台の冷凍機を凝縮器を
なすカスケードコンデンサで多段に連結した多元冷凍装
置において、低元側圧縮機の吐出側とカスケードコンデ
ンサの入口との間に、低元側圧縮機からの吐出ガスを予
冷却する吐出ガス冷却器を設け、高元側圧縮機を低段圧
縮機と高段圧縮機からなる二段圧縮機で構成し、この高
段圧縮機から吐出される冷媒を凝縮器で液化したあとに
膨脹弁で高段圧縮機の吸入圧力まで減圧し、上記吐出ガ
ス冷却器のコイルに導いて低元側吐出ガスと熱交換させ
る構成としてある。
To achieve this object, a multi-source refrigeration system of the present invention is a multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser. A discharge gas cooler that pre-cools the discharge gas from the low side compressor is installed between the discharge side of the machine and the inlet of the cascade condenser, and the high side compressor is connected to the low stage compressor and the high stage compressor. It consists of a two-stage compressor, and the refrigerant discharged from this high-stage compressor is liquefied by a condenser, and then it is decompressed to the suction pressure of the high-stage compressor by an expansion valve and led to the coil of the discharge gas cooler. The heat is exchanged with the low-side discharge gas.

【0008】[0008]

【作用】上述した構成によれば、高元側圧縮機の低段圧
縮機で冷却するカスケードコンデンサの熱量が低減さ
れ、高元側圧縮機の小形化を図ることができる。
According to the above structure, the heat quantity of the cascade condenser cooled by the low-stage compressor of the high-pressure side compressor is reduced, and the high-pressure side compressor can be downsized.

【0009】[0009]

【実施例】以下、本発明による多元冷凍装置の具体的な
実施例を図面に基づき詳細に説明する。図1の系統図
に、この多元冷凍装置の一実施例を示す。この図で、第
1元圧縮機1は、レシプロまたはスクリュタイプの二段
圧縮機で構成され、低段(前段)の圧縮機1aの吐出管
が高段(後段)の圧縮機1bの吸入管に接続される。高
段の圧縮機1bの吐出管は、コイル2aに冷却水が通さ
れる凝縮器2の入口に接続される。この凝縮器2で液化
した冷媒は、膨脹弁6で減圧され、デ・スーパーヒータ
(吐出ガス冷却器)7のコイル7aに送られて熱交換さ
れる。このデ・スーパーヒータ7で蒸発した冷媒は、高
段の圧縮機1bに吸入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the multi-source refrigerating apparatus according to the present invention will be described below in detail with reference to the drawings. An example of this multiple refrigeration system is shown in the system diagram of FIG. In this figure, a first source compressor 1 is composed of a reciprocating or screw type two-stage compressor, and a discharge pipe of a low-stage (pre-stage) compressor 1a is a suction pipe of a high-stage (post-stage) compressor 1b. Connected to. The discharge pipe of the high-stage compressor 1b is connected to the inlet of the condenser 2 through which the cooling water is passed through the coil 2a. The refrigerant liquefied in the condenser 2 is decompressed by the expansion valve 6 and sent to the coil 7a of the de-super heater (discharge gas cooler) 7 for heat exchange. The refrigerant evaporated by the de-super heater 7 is sucked into the high-stage compressor 1b.

【0010】また、凝縮器2の出口は膨脹弁3を介して
中間冷却器4のコイル4aの入口に接続される。この中
間冷却器4のコイル4aの出口は、高段の圧縮機1bの
吸入管に接続される。また、凝縮器2の出口は中間冷却
器4の入口に接続され、この中間冷却器4の出口は電磁
弁、膨脹弁8を介してカスケードコンデンサ9のコイル
9aの入口に接続される。このカスケードコンデンサ9
のコイル9aの出口は、低段の圧縮機1aの吸入管に接
続される。
The outlet of the condenser 2 is connected to the inlet of the coil 4a of the intercooler 4 via the expansion valve 3. The outlet of the coil 4a of the intercooler 4 is connected to the suction pipe of the high-stage compressor 1b. The outlet of the condenser 2 is connected to the inlet of the intercooler 4, and the outlet of the intercooler 4 is connected to the inlet of the coil 9a of the cascade condenser 9 via the solenoid valve and the expansion valve 8. This cascade capacitor 9
The outlet of the coil 9a is connected to the suction pipe of the low-stage compressor 1a.

【0011】一方、単段または二段圧縮機からなる第2
元圧縮機10で圧縮された吐出ガスは、冷却器11にお
いて従来の方法(水または空気)で冷却されたあとに、
デ・スーパーヒータ7に送られる。このデ・スーパーヒ
ータ7の出口は、カスケードコンデンサ9の入口に接続
され、このカスケードコンデンサ9の出口が膨脹弁12
を介して負荷冷却用の冷却器13の冷却コイル13aの
入口に接続される。この冷却コイル13aの出口は、圧
縮機10の吸入管に接続される。なお、デ・スーパーヒ
ータ7の入口は保護容器14を介して第2元圧縮機10
の吸入管に接続される。
On the other hand, a second stage consisting of a single-stage or two-stage compressor
The discharge gas compressed by the former compressor 10 is cooled by the conventional method (water or air) in the cooler 11,
De-super heater 7 is sent. The outlet of the de-superheater 7 is connected to the inlet of the cascade condenser 9, and the outlet of the cascade condenser 9 is connected to the expansion valve 12
Is connected to the inlet of the cooling coil 13a of the cooler 13 for cooling the load. The outlet of the cooling coil 13a is connected to the suction pipe of the compressor 10. The inlet of the de-super heater 7 is connected to the second source compressor 10 via the protective container 14.
Connected to the suction pipe.

【0012】このように構成される多元冷凍装置では、
第2元圧縮機10から吐出される冷媒ガスを従来の方法
で冷却したあとに、デ・スーパーヒータ7に送り、第1
元側の凝縮器2で液化した冷媒と熱交換して冷却する。
第1元側の液冷媒は、このデ・スーパーヒータ7におい
て第2元側の吐出ガスと熱交換することでガス化し、第
1元圧縮機1の高段の吸入管に導かれる。
In the multi-source refrigeration system constructed as described above,
After cooling the refrigerant gas discharged from the second source compressor 10 by a conventional method, it is sent to the de-super heater 7,
It cools by exchanging heat with the liquefied refrigerant in the condenser 2 on the original side.
The liquid refrigerant on the first source side is gasified by exchanging heat with the discharge gas on the second source side in the de-super heater 7, and is guided to the high-stage suction pipe of the first source compressor 1.

【0013】これにより、第1元圧縮機1の低段で冷却
するカスケードコンデンサ9の熱量を減らすことがで
き、第1元圧縮機1の小型化(ピストン押し退け量の低
減)と省エネルギ化を図ることができる。
As a result, the amount of heat of the cascade condenser 9 cooled in the low stage of the first source compressor 1 can be reduced, and the size of the first source compressor 1 (reduction of piston displacement) and energy saving can be achieved. Can be planned.

【0014】つぎに、図2に示す他の実施例を説明す
る。この実施例でも、第2元圧縮機10で圧縮した吐出
ガスを、従来の方法で冷却したあとに、デ・スーパーヒ
ータ7に導く。第1元側の凝縮器2で液化した冷媒を膨
脹弁3で減圧し、中間冷却器4のコイル4aに導き、低
段用冷媒を過冷却させるためにガス化した(一部液を含
む)冷媒を、デ・スーパーヒータ7に送り、第2元側の
吐出ガスと熱交換させる。蒸発した第1元側の冷媒は、
第1元圧縮機1の高段の吸入管に導く。
Next, another embodiment shown in FIG. 2 will be described. In this embodiment as well, the discharge gas compressed by the second source compressor 10 is guided to the de-super heater 7 after being cooled by the conventional method. The refrigerant liquefied in the condenser 2 on the first source side is decompressed by the expansion valve 3, guided to the coil 4a of the intercooler 4, and gasified to supercool the low-stage refrigerant (including part of the liquid). The refrigerant is sent to the de-super heater 7 to exchange heat with the discharge gas on the second source side. The evaporated first-side refrigerant is
Guide to the high-stage suction pipe of the first source compressor 1.

【0015】つぎに、図3に示す他の実施例を説明す
る。第2元圧縮機10で圧縮した吐出ガスを、従来の方
法で冷却したあとに、デ・スーパーヒータ7に導く。第
1元側の凝縮器2で液化した冷媒を膨脹弁6で減圧し、
デ・スーパーヒータ7に送り、第2元側の吐出ガスと熱
交換させる。蒸発した(一部液を含む)冷媒を、中間冷
却器4のコイル4aに導き熱交換させる。蒸発した第1
元側の冷媒は、第1元圧縮機1の高段の吸入管に導く。
Next, another embodiment shown in FIG. 3 will be described. The discharge gas compressed by the second source compressor 10 is guided to the de-super heater 7 after being cooled by a conventional method. The expansion valve 6 decompresses the refrigerant liquefied in the condenser 2 on the first source side,
It is sent to the de-super heater 7 to exchange heat with the discharge gas on the second source side. The evaporated refrigerant (including part of the liquid) is introduced into the coil 4a of the intercooler 4 to exchange heat. First evaporated
The refrigerant on the former side is guided to the high-stage suction pipe of the first former compressor 1.

【0016】つぎに、第2元よりの放熱量を10,00
0Kcal/hとして、第1元圧縮機1の冷媒循環量を
従来方式と本発明による方式とで比較する。図4に、第
1元側の冷凍機のモリエル線図を示す。この図で、Aは
第1元圧縮機1にレシプロタイプを用いた場合を示し、
Bはスクリュタイプを用いた場合を示す。図5に、第2
元側の冷凍機のモリエル線図を示す。
Next, the heat radiation amount from the second element is set to 10,000
Assuming that 0 Kcal / h, the refrigerant circulation amount of the first source compressor 1 is compared between the conventional method and the method according to the present invention. FIG. 4 shows a Mollier diagram of the first-side refrigerator. In this figure, A indicates a case where a reciprocating type is used for the first source compressor 1,
B shows the case where a screw type is used. In FIG.
The Mollier diagram of the refrigerator of the former side is shown.

【0017】まず、全熱量をカスケードコンデンサ9で
冷却する従来方式では、 低段冷媒循環量=10,000Kcal/h/46.53Kca
l/Kg =214.9Kg/h 過冷却熱量=214.9Kg/h×(112.77−9
8.59)Kcal/Kg =3,047Kcal/h 過冷却するために蒸発する冷媒量=3047Kcal/h/
35.68Kcal/Kg =85.4Kg/h よって低段圧縮量=214.9Kg/h 中段圧縮量=214.9+85.4=300.3Kg/h 一方、本発明による方式では、凝縮過程のエンタルピ差
60.095Kcal/Kgのうちデ・スーパーヒータ7の冷
却分は6Kcal/Kgで1割にあたるため、熱量10,00
0Kcal/hの内訳は、 カスケードコンデンサ熱量=9,000Kcal/h デ・スーパーヒータ熱量=1,000Kcal/hとなる。 低段冷媒循環量=9,000Kcal/h/46.53Kcal
/Kg =193.4Kg/h 過冷却熱量=193.4Kg/h×(112.77−9
8.59)Kcal/Kg =2742Kcal/h 過冷却するために蒸発する冷媒量=2,742Kcal/h
/35.68Kcal/Kg =76.9Kg/h デ・スーパーヒータで蒸発する冷媒量 =1,000Kcal/h/35.68Kcal/Kg =28.0Kg/h よって低段圧縮量=193.4Kg/h 中段圧縮量=193.4+76.9+28.0=28
8.3Kg/h このように、本発明による方式によれば、第1元圧縮機
1の動力およびピストン押し退け量を、表1に示すよう
に約7%低減することができる。
First, in the conventional system in which the total amount of heat is cooled by the cascade condenser 9, the low-stage refrigerant circulation amount = 10,000 Kcal / h / 46.53 Kca.
l / Kg = 214.9 Kg / h Supercooling heat amount = 214.9 Kg / h × (112.77-9
8.59) Kcal / Kg = 3,047 Kcal / h Amount of refrigerant evaporated for supercooling = 3047 Kcal / h /
35.68 Kcal / Kg = 85.4 Kg / h Therefore, low stage compression amount = 214.9 Kg / h middle stage compression amount = 214.9 + 85.4 = 300.3 Kg / h On the other hand, in the method according to the present invention, the enthalpy difference of the condensation process Of the 60.095 Kcal / Kg, the cooling amount of the de-super heater 7 is 6 Kcal / Kg, which is 10%, so the heat amount is 10,000.
The breakdown of 0 Kcal / h is: Cascade condenser calorific value = 9000 Kcal / h De-superheater calorific value = 1,000 Kcal / h. Low-stage refrigerant circulation rate = 9000Kcal / h / 46.53Kcal
/Kg=193.4Kg/h Supercooling heat amount = 193.4Kg / h × (112.77-9
8.59) Kcal / Kg = 2742 Kcal / h Amount of refrigerant evaporated for supercooling = 2,742 Kcal / h
/35.68Kcal/Kg = 76.9Kg / h Degassing amount of refrigerant by super heater = 1,000Kcal / h / 35.68Kcal / Kg = 28.0Kg / h Therefore, low stage compression amount = 193.4Kg / h Middle compression amount = 193.4 + 76.9 + 28.0 = 28
8.3 Kg / h As described above, according to the method of the present invention, the power of the first source compressor 1 and the piston displacement can be reduced by about 7% as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明の多元冷凍装置は上述したよう
に、第2元冷凍機にR13またはR503の代替え冷媒
としてHFC23を使用する際、第1元側の凝縮器で液
化した冷媒を膨脹弁で高段圧縮機の吸入圧力まで減圧
し、第2元側の吐出ガスと吐出ガス冷却器において熱交
換するようにしているので、カスケードコンデンサの熱
量を減らすことができ、第1元圧縮機の小形化と省エネ
ルギ化を図ることができる。
As described above, the multi-source refrigeration system of the present invention uses the expansion valve to expand the liquefied refrigerant in the condenser on the first source side when using the HFC23 as a substitute refrigerant for R13 or R503 in the second source refrigerator. Since the pressure is reduced to the suction pressure of the high-stage compressor and heat is exchanged between the discharge gas on the second source side and the discharge gas cooler, the heat quantity of the cascade condenser can be reduced, and the heat of the first source compressor can be reduced. It is possible to reduce the size and save energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による多元冷凍装置の一実施例を示す系
統図。
FIG. 1 is a system diagram showing an embodiment of a multi-source refrigeration system according to the present invention.

【図2】他の実施例の多元冷凍装置の要部を示す系統
図。
FIG. 2 is a system diagram showing a main part of a multi-source refrigeration system of another embodiment.

【図3】さらに他の実施例の多元冷凍装置の要部を示す
系統図。
FIG. 3 is a system diagram showing a main part of a multi-source refrigeration system of yet another embodiment.

【図4】第1元冷凍機のモリエル線図。FIG. 4 is a Mollier diagram of the first original refrigerator.

【図5】第2元冷凍機のモリエル線図。FIG. 5 is a Mollier diagram of the second original refrigerator.

【符号の説明】[Explanation of symbols]

1 第1元圧縮機 1a 低段圧縮機 1b 高段圧縮機 2 凝縮器 3 膨脹弁 4 中間冷却器 6 膨脹弁 7 デ・スーパーヒータ 7a 熱交換用のコイル 8 膨脹弁 9 カスケードコンデンサ 10 第2元圧縮機 12 膨脹弁 13 冷却器 13a 冷却コイル 14 保護容器 1 1st original compressor 1a Low stage compressor 1b High stage compressor 2 Condenser 3 Expansion valve 4 Intercooler 6 Expansion valve 7 De-super heater 7a Heat exchange coil 8 Expansion valve 9 Cascade condenser 10 2nd element Compressor 12 Expansion valve 13 Cooler 13a Cooling coil 14 Protective container

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数台の冷凍機を凝縮器をなすカスケード
コンデンサで多段に連結した多元冷凍装置において、低
元側圧縮機の吐出側とカスケードコンデンサの入口との
間に、低元側圧縮機からの吐出ガスを予冷却する吐出ガ
ス冷却器を設け、 高元側圧縮機を低段圧縮機と高段圧
縮機からなる二段圧縮機で構成し、この高段圧縮機から
吐出される冷媒を凝縮器で液化したあとに膨脹弁で高段
圧縮機の吸入圧力まで減圧し、上記吐出ガス冷却器のコ
イルに導いて低元側吐出ガスと熱交換させることを特徴
とする多元冷凍装置。
1. A multi-source refrigeration system in which a plurality of refrigerators are connected in multiple stages by a cascade condenser forming a condenser, wherein a low-source side compressor is provided between a discharge side of the low-source side compressor and an inlet of the cascade condenser. A discharge gas cooler that pre-cools the discharge gas from the compressor is installed, the high-side compressor is composed of a two-stage compressor consisting of a low-stage compressor and a high-stage compressor, and the refrigerant discharged from this high-stage compressor Is liquefied by a condenser, then decompressed by an expansion valve to the suction pressure of the high-stage compressor, and led to the coil of the discharge gas cooler to exchange heat with the low-side discharge gas.
JP29738393A 1993-11-02 1993-11-02 Multi-source refrigeration equipment Expired - Fee Related JP2816525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29738393A JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29738393A JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07127934A true JPH07127934A (en) 1995-05-19
JP2816525B2 JP2816525B2 (en) 1998-10-27

Family

ID=17845784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29738393A Expired - Fee Related JP2816525B2 (en) 1993-11-02 1993-11-02 Multi-source refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2816525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099378A1 (en) * 2005-03-14 2006-09-21 York International Corporation Hvac system with powered subcooler
KR100897131B1 (en) * 2008-03-05 2009-05-14 유인석 System of heat pump for cooling and heating of middle pressure binary cycle for cold areas
WO2011149152A1 (en) * 2010-05-28 2011-12-01 Lg Electronics Inc. Hot water supply device associated with heat pump
US10823470B2 (en) 2016-02-03 2020-11-03 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099378A1 (en) * 2005-03-14 2006-09-21 York International Corporation Hvac system with powered subcooler
US7908881B2 (en) 2005-03-14 2011-03-22 York International Corporation HVAC system with powered subcooler
KR100897131B1 (en) * 2008-03-05 2009-05-14 유인석 System of heat pump for cooling and heating of middle pressure binary cycle for cold areas
WO2011149152A1 (en) * 2010-05-28 2011-12-01 Lg Electronics Inc. Hot water supply device associated with heat pump
US9234675B2 (en) 2010-05-28 2016-01-12 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
US9234676B2 (en) 2010-05-28 2016-01-12 Lg Electronics Inc. Hot water supply apparatus associated with heat pump
US10823470B2 (en) 2016-02-03 2020-11-03 Carrier Corporation Liquid accumulator for heat exchange system, refrigeration system having the same, cascade refrigeration system and control method thereof

Also Published As

Publication number Publication date
JP2816525B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Arpagaus et al. Multi-temperature heat pumps: A literature review
CN101688697B (en) Refrigerant vapor compression system with dual economizer circuits
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20180245821A1 (en) Refrigerant vapor compression system with intercooler
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
US6237359B1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
CN101273239B (en) Thermal converter for condensation and refrigeration system using the same
US20090223232A1 (en) Defrost system
JPH10103800A (en) Composite type refrigerating plant
US11402134B2 (en) Outdoor unit and control method thereof
TWI564524B (en) Refrigeration cycle
US11885533B2 (en) Refrigerant vapor compression system
US7582223B2 (en) Refrigerant composition for refrigeration systems
CN107024048A (en) Variable disengagement area fluidised form ice-making system
EP3584519B1 (en) Cooling system
JPH07127934A (en) Cascade freezing device
JP2007051788A (en) Refrigerating device
CN102997527B (en) Gas-liquid heat exchange type refrigeration device
CN212274334U (en) Defrosting device for supercooling main pipeline refrigerant by using defrosting medium
CN211625758U (en) Four-stage cascade refrigeration device with multi-stage water cooler
KR20110116334A (en) Refrigerator and freezer with subcooler
CN110953741A (en) Four-stage cascade refrigeration device with multi-stage water cooler
JPS58178159A (en) Multistage cascade cooling system
JP3894222B2 (en) Refrigeration equipment
CN215260625U (en) Ultra-low temperature cascade refrigerating unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees