JP2000064906A - Engine-drive type heat pump cycle - Google Patents

Engine-drive type heat pump cycle

Info

Publication number
JP2000064906A
JP2000064906A JP10231907A JP23190798A JP2000064906A JP 2000064906 A JP2000064906 A JP 2000064906A JP 10231907 A JP10231907 A JP 10231907A JP 23190798 A JP23190798 A JP 23190798A JP 2000064906 A JP2000064906 A JP 2000064906A
Authority
JP
Japan
Prior art keywords
refrigerant
intake air
engine
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10231907A
Other languages
Japanese (ja)
Inventor
Koichi Endo
浩一 遠藤
Hiroyuki Fukunaga
博之 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10231907A priority Critical patent/JP2000064906A/en
Publication of JP2000064906A publication Critical patent/JP2000064906A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease smoke concentration in exhaust gas in a case of a cooling load (a heat load) being high during a summer season by providing a cooler to effect heat-exchange between intake air sucked in a diesel engine and a low pressure refrigerant flowing out from a depressurizer and cool intake air during cooling operation. SOLUTION: When a four-way valve 7 is switched during cooling operation, a refrigerant increased in temperature and a pressure by a compressor 3 flows in an outdoor heat-exchanger 2, the refrigerant is cooled in the atmosphere and condensed and liquefied. A liquefied high pressure refrigerant is decreased in a pressure by an expansion valve 5 (a pressure reducer) and forms a low pressure refrigerant in a vapor-liquid two-phase state, and deprives air, supplied in a room by an indoor heat-exchanger 1, of heat for vaporization. In which case, after a refrigerant flowing out from the indoor heat-exchanger 1 flows in a cooler 8 through an intake air cooling circuit to cool intake air, the refrigerant flows in an accumulator 6 for separation into a vapor-phase refrigerant and a liquid phase refrigerant. This constitution prevents the decrease of an intake air amount by increasing density of air and reduces smoke concentration in exhaust gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機を駆動する
ディーゼルエンジン(以下、エンジンと略す。)を有す
るエンジン駆動式ヒートポンプサイクルに関するもの
で、空調装置に適用して有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine driven heat pump cycle having a diesel engine (hereinafter abbreviated as engine) for driving a compressor, and is effective when applied to an air conditioner.

【0002】[0002]

【従来の技術】エンジン駆動式ヒートポンプサイクルに
おいて、冷凍能力(冷房能力)を高めるには、エンジン
内に噴射する燃料を増大させて圧縮機が行う圧縮仕事を
増大させる必要がある。
2. Description of the Related Art In an engine-driven heat pump cycle, in order to increase the refrigerating capacity (cooling capacity), it is necessary to increase the amount of fuel injected into an engine to increase the compression work performed by a compressor.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のエン
ジン駆動式ヒートポンプサイクルにおいては、夏場等の
外気温度が高いときには、冷房負荷(熱負荷)が増大し
てエンジン内に噴射する燃料を増大させ必要があること
に加えて、エンジンに吸入される空気の密度が小さくな
るため、実際の吸入空気の量(質量)がエンジン内に噴
射される燃料噴射量に対して少なくなってしまう。この
ため、排気ガス中の未燃焼燃料(スモーク)の濃度が上
がってしまうという問題があった。
In the conventional engine-driven heat pump cycle, when the outside air temperature is high in summer or the like, the cooling load (heat load) increases and the amount of fuel injected into the engine must be increased. In addition to the above, since the density of the air taken into the engine is reduced, the actual amount (mass) of the intake air is smaller than the fuel injection amount injected into the engine. For this reason, there has been a problem that the concentration of unburned fuel (smoke) in the exhaust gas increases.

【0004】本発明は、上記点に鑑み、夏場等の冷房負
荷(熱負荷)が大きいときのスモーク濃度を低減するこ
とを目的とする。
[0004] In view of the above, it is an object of the present invention to reduce the smoke density when the cooling load (heat load) is large in summer or the like.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1に
記載の発明では、冷房運転時において、ディーゼルエン
ジン(4)に吸入される吸入空気と、減圧器(5)から
流出した低圧冷媒とを熱交換し、前記吸入空気を冷却す
る冷却器(8)を備えることを特徴とする。
The present invention uses the following technical means to achieve the above object. According to the first aspect of the present invention, during the cooling operation, heat exchange is performed between the intake air sucked into the diesel engine (4) and the low-pressure refrigerant flowing out of the pressure reducer (5) to cool the intake air. A vessel (8).

【0006】これにより、吸入空気の密度が大きくな
り、実際の吸入空気の量(質量)が燃料噴射量に対して
少なくなってしまうことを防止できる。したがって、デ
ィーゼルエンジン(4)の出力が向上するとともに、排
気ガス中の未燃焼燃料(スモーク)の濃度が上がってし
まうことを防止できる。請求項2に記載の発明では、デ
ィーゼルエンジン(4)に吸入される吸入空気と、減圧
器(5)から流出した低圧冷媒とを熱交換し、吸入空気
を冷却する冷却器(8)を備えることを特徴とする。
Accordingly, it is possible to prevent the density of the intake air from increasing and the actual amount (mass) of the intake air from decreasing relative to the fuel injection amount. Therefore, the output of the diesel engine (4) is improved, and the concentration of the unburned fuel (smoke) in the exhaust gas can be prevented from increasing. According to the second aspect of the present invention, there is provided a cooler (8) for exchanging heat between the intake air taken into the diesel engine (4) and the low-pressure refrigerant flowing out of the pressure reducer (5) to cool the intake air. It is characterized by the following.

【0007】これにより、請求項1に記載の発明と同様
に、ディーゼルエンジン(4)の出力が向上するととも
に、排気ガス中の未燃焼燃料(スモーク)の濃度が上が
ってしまうことを防止できる。因みに、上記各手段の括
弧内の符号は、後述する実施形態に記載の具体的手段と
の対応関係を示す一例である。
As a result, the output of the diesel engine (4) can be improved and the concentration of unburned fuel (smoke) in the exhaust gas can be prevented from increasing, as in the first aspect of the invention. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0008】[0008]

【発明の実施の形態】本実施形態は、本発明に係るエン
ジン駆動式ヒートポンプサイクルを室内の冷暖房を図る
空調装置に適用したものであり、図1は本実施形態に係
るヒートポンプ式空調装置の模式図である。図1中、1
は室内に吹き出す空気と冷媒(本実施形態ではフロン)
とを熱交換する室内熱交換器であり、2は室外空気と冷
媒とを熱交換する室外熱交換器である。3は冷媒を吸入
圧縮する圧縮機であり、4は圧縮機3を駆動するディー
ゼルエンジンである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, an engine-driven heat pump cycle according to the present invention is applied to an air conditioner for cooling and heating a room. FIG. 1 is a schematic diagram of a heat pump air conditioner according to this embodiment. FIG. In FIG. 1, 1
Is air and refrigerant blown into the room (CFC in this embodiment)
And 2 is an outdoor heat exchanger for exchanging heat between outdoor air and a refrigerant. Reference numeral 3 denotes a compressor that sucks and compresses the refrigerant, and reference numeral 4 denotes a diesel engine that drives the compressor 3.

【0009】なお、ディーゼルエンジン4(以下、エン
ジン4と略す。)は、周知のごとく、空気のみを吸入圧
縮し、圧縮して高温になった空気(燃焼室)内に燃料
(軽油)を噴射することにより、燃料を自然発火(爆
発)させて駆動力を得る内燃機関である。因みに、4a
はエンジン4の排気ガスを大気中に放出する排気管であ
り、4bは排気ガスの騒音を低減するマフラー(消音
器)である。
As is well known, a diesel engine 4 (hereinafter, abbreviated as engine 4) only sucks and compresses air, and injects fuel (light oil) into air (combustion chamber) which has been compressed to a high temperature. By doing so, the internal combustion engine obtains a driving force by spontaneously igniting (exploding) the fuel. By the way, 4a
Reference numeral 4 denotes an exhaust pipe for discharging exhaust gas from the engine 4 into the atmosphere, and reference numeral 4b denotes a muffler (muffler) for reducing noise of the exhaust gas.

【0010】また、室内熱交換器1と室外熱交換器2と
を接続する冷媒通路には、圧縮機3にて圧縮された高圧
の冷媒を減圧して膨張させる膨張弁(減圧器)5が配設
されており、この膨張弁5は、開度が固定された固定絞
りを有するタイプのもである。6はヒートポンプサイク
ル中の余剰冷媒を蓄えるとともに、冷媒を気相冷媒と液
相冷媒とに分離して気相冷媒のみを圧縮機3の吸入側に
流出させるアキュムレータ(気液分離手段)であり、7
は圧縮機3から吐出する冷媒を室外熱交換器2に向けて
流通させる場合と、室内熱交換器1に向けて流通させる
場合とを切り換える電磁切換四方弁(以下、四方弁と略
す。)である。
In a refrigerant passage connecting the indoor heat exchanger 1 and the outdoor heat exchanger 2, an expansion valve (decompressor) 5 for decompressing and expanding the high-pressure refrigerant compressed by the compressor 3 is provided. The expansion valve 5 is of a type having a fixed throttle with a fixed opening. Reference numeral 6 denotes an accumulator (gas-liquid separation unit) that stores excess refrigerant in the heat pump cycle, separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, and allows only the gas-phase refrigerant to flow to the suction side of the compressor 3. 7
Is an electromagnetic switching four-way valve (hereinafter abbreviated as a four-way valve) that switches between a case where the refrigerant discharged from the compressor 3 is circulated toward the outdoor heat exchanger 2 and a case where the refrigerant is circulated toward the indoor heat exchanger 1. is there.

【0011】そして、四方弁7及びエンジン4の稼働状
態(エンジン4内に噴射する燃料噴射量)は、制御装置
(図示せず)によって制御されている。また、8は、後
述するように冷房運転時には、室内熱交換器1から流出
した冷媒とエンジン4に吸入される吸入空気とを熱交換
し、吸入空気を冷却する冷却器(インタクーラ)であ
り、この冷却器8は、吸気管4cのうち、吸入空気中塵
埃を除去するエアクリーナ(図示せず)とエンジン4と
の間に配設されている。
The operating states of the four-way valve 7 and the engine 4 (the amount of fuel injected into the engine 4) are controlled by a control device (not shown). Reference numeral 8 denotes a cooler (intercooler) that exchanges heat between the refrigerant flowing out of the indoor heat exchanger 1 and intake air drawn into the engine 4 during cooling operation to cool the intake air, as described below. The cooler 8 is provided between the engine 4 and an air cleaner (not shown) for removing dust in the intake air in the intake pipe 4c.

【0012】なお、9a、9bは、冷媒が一方向のみ流
通することを許容する逆止弁であり、これら逆止弁9
a、9bにより、後述するように、暖房運転時に冷媒が
吸気冷却回路10に流通することが防止される。次に、
本実施形態の作動を述べる。 1.冷房運転時(図1参照) 冷房運転時では、四方弁7は、圧縮機3から吐出する冷
媒が室外熱交換器2に向けて流通するように作動する。
Reference numerals 9a and 9b denote check valves which allow the refrigerant to flow in only one direction.
The a and 9b prevent the refrigerant from flowing to the intake cooling circuit 10 during the heating operation, as described later. next,
The operation of the present embodiment will be described. 1. At the time of cooling operation (see FIG. 1) At the time of cooling operation, the four-way valve 7 operates so that the refrigerant discharged from the compressor 3 flows toward the outdoor heat exchanger 2.

【0013】このため、圧縮機3にて高温高圧となった
(気相)冷媒は、室外熱交換器2にて大気にて冷却され
て凝縮し液化する。その後、液化した高圧冷媒は、膨張
弁5にて減圧されて気液2相状態の低圧冷媒となり、室
内熱交換器1にて室内に吹き出す空気から熱を奪って
(室内に吹き出す空気を冷却して)蒸発する。そして、
室内熱交換器1から流出した冷媒は、吸気冷却回路10
を経由して冷却器8に流入して吸入空気を冷却した後に
アキュムレータ6に流入し、気相冷媒と液相冷媒とに分
離された後、再び気相冷媒のみが圧縮機3に吸入され
る。
For this reason, the high temperature and high pressure (gas phase) refrigerant in the compressor 3 is cooled in the atmosphere by the outdoor heat exchanger 2 and condensed and liquefied. Thereafter, the liquefied high-pressure refrigerant is reduced in pressure by the expansion valve 5 to become a low-pressure refrigerant in a gas-liquid two-phase state, and takes heat from the air blown into the room by the indoor heat exchanger 1 (cools the air blown into the room). E) evaporate. And
The refrigerant flowing out of the indoor heat exchanger 1 is supplied to the intake cooling circuit 10
Flows into the cooler 8 to cool the intake air, flows into the accumulator 6, is separated into the gaseous refrigerant and the liquid refrigerant, and then only the gaseous refrigerant is sucked into the compressor 3 again. .

【0014】なお、上述の説明から明らかなように、冷
房運転時には、室外熱交換器2は冷媒を冷却凝縮させる
凝縮器として作動し、室内熱交換器1は冷媒を蒸発させ
る蒸発器として作動する。 2.暖房運転時(図2参照) 暖房運転時では、四方弁7は、圧縮機3から吐出する冷
媒が室内熱交換器1に向けて流通するように作動する。
このとき、逆止弁9a、9bにより、圧縮機3から吐出
した冷媒は、吸気冷却回路10に流入せずに室内熱交換
器1に流入する。
As apparent from the above description, during the cooling operation, the outdoor heat exchanger 2 operates as a condenser for cooling and condensing the refrigerant, and the indoor heat exchanger 1 operates as an evaporator for evaporating the refrigerant. . 2. During the heating operation (see FIG. 2) During the heating operation, the four-way valve 7 operates so that the refrigerant discharged from the compressor 3 flows toward the indoor heat exchanger 1.
At this time, the refrigerant discharged from the compressor 3 by the check valves 9a and 9b flows into the indoor heat exchanger 1 without flowing into the intake air cooling circuit 10.

【0015】このため、圧縮機3にて高温高圧となった
(気相)冷媒は、室内熱交換器1にて室内に吹き出す空
気にて冷却されて凝縮し、凝縮熱を室内に向けて放出
(放熱)する。その後、液化した高圧冷媒は、膨張弁5
にて減圧されて気液2相状態の低圧冷媒となり、室外熱
交換器12て大気中から熱を奪って蒸発する。そして、
室外熱交換器2から流出した冷媒は、アキュムレータ6
に流入して気相冷媒と液相冷媒とに分離された後、再び
気相冷媒のみが圧縮機3に吸入される。
Therefore, the (gas-phase) refrigerant which has become high temperature and high pressure in the compressor 3 is cooled and condensed by the air blown into the room by the indoor heat exchanger 1, and the condensed heat is discharged toward the room. (Heat dissipation). Thereafter, the liquefied high-pressure refrigerant is supplied to the expansion valve 5.
Is reduced to a low-pressure refrigerant in a gas-liquid two-phase state. The outdoor heat exchanger 12 removes heat from the atmosphere and evaporates. And
The refrigerant flowing out of the outdoor heat exchanger 2 is supplied to the accumulator 6
, And is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and then only the gas-phase refrigerant is sucked into the compressor 3 again.

【0016】なお、上述の説明から明らかなように、暖
房運転時には、室内熱交換器1は冷媒を冷却凝縮させる
凝縮器として作動し、室外熱交換器2は冷媒を蒸発させ
る蒸発器として作動する。そして、本実施形態では、圧
縮機3、室内熱交換器1、室外熱交換器2、膨張弁5、
アキュムレータ6及び四方弁7により、冷暖房切換可能
なヒートポンプサイクルRcを構成している。
As apparent from the above description, during the heating operation, the indoor heat exchanger 1 operates as a condenser for cooling and condensing the refrigerant, and the outdoor heat exchanger 2 operates as an evaporator for evaporating the refrigerant. . And in this embodiment, the compressor 3, the indoor heat exchanger 1, the outdoor heat exchanger 2, the expansion valve 5,
The accumulator 6 and the four-way valve 7 constitute a heat pump cycle Rc capable of switching between cooling and heating.

【0017】次に、本実施形態の特徴を述べる。冷房運
転時において、エンジン4の吸入空気が室内熱交換器1
から流出する低圧冷媒によって冷却されるので、吸入空
気の密度が大きくなり、実際の吸入空気の量(質量)が
燃料噴射量に対して少なくなってしまうことを防止でき
る。したがって、エンジン4の出力が向上するととも
に、排気ガス中の未燃焼燃料(スモーク)の濃度が上が
ってしまうことを防止できる。
Next, the features of this embodiment will be described. During the cooling operation, the intake air of the engine 4 is supplied to the indoor heat exchanger 1.
Since the air is cooled by the low-pressure refrigerant flowing out of the fuel cell, the density of the intake air is increased, and it is possible to prevent the actual amount (mass) of the intake air from decreasing relative to the fuel injection amount. Therefore, the output of the engine 4 can be improved and the concentration of the unburned fuel (smoke) in the exhaust gas can be prevented from increasing.

【0018】なお、図3は吸気温度とスモーク濃度及び
エンジン出力との関係を示す試験結果であり、図3から
明らかなように、吸入空気温度が低下するほど、スモー
ク濃度が低下するとともに、エンジン出力が向上してい
ることが判る。因みに、負荷率とは、エンジン出力(W
1)対する圧縮機3の消費動力(W2)の比(W2 /W1
)を示している。このため、冷凍能力(熱負荷)が一
定とすると、圧縮機3の消費動力(W2 )は一定となる
ので、吸入空気温度が低下するほど、負荷率が低下す
る。
FIG. 3 is a test result showing the relationship between the intake air temperature, the smoke concentration and the engine output. As is clear from FIG. 3, as the intake air temperature decreases, the smoke concentration decreases and the engine concentration decreases. It can be seen that the output has improved. Incidentally, the load factor is the engine output (W
1) Ratio of power consumption (W2) of compressor 3 to the ratio (W2 / W1)
). For this reason, if the refrigerating capacity (heat load) is constant, the power consumption (W2) of the compressor 3 is constant, so that the load factor decreases as the intake air temperature decreases.

【0019】また、スモーク濃度が低下するとともにエ
ンジン出力が向上するので、エンジン4の燃料消費率が
向上する。なお、上述の実施形態では、ヒートポンプサ
イクルRcの発揮する冷凍能力(冷房能力)により、吸
入空気を冷却しているので、厳密には、冷房に寄与する
冷凍能力が減少するが、発明者等の試算によれば、その
減少量は約1%と僅かであり、冷房運転に関しては実用
上問題がない。
Further, since the smoke concentration is reduced and the engine output is improved, the fuel consumption rate of the engine 4 is improved. In the above-described embodiment, since the intake air is cooled by the refrigeration capacity (cooling capacity) exhibited by the heat pump cycle Rc, strictly speaking, the refrigeration capacity contributing to cooling is reduced. According to trial calculations, the amount of reduction is as small as about 1%, and there is no practical problem with cooling operation.

【0020】ところで、上述の実施形態では、室内熱交
換器1(蒸発器)から流出した冷媒にて吸入空気を冷却
しているので、冷媒の顕熱で吸入空気を冷却しているこ
ととなる。しかし、本発明は、膨張弁5から流出した低
圧冷媒にて吸入空気を冷却するものであるので、液相低
圧冷媒の蒸発潜熱にて吸入空気を冷却してもよい。ま
た、上述の実施形態では、減圧器として固定絞り手段を
用いた膨張弁を用いたが、圧縮機3の入口側の冷媒過熱
度が所定値となるように膨張弁の開度を調節する、いわ
ゆる温度式膨張弁でもよい。
In the above-described embodiment, since the intake air is cooled by the refrigerant flowing out of the indoor heat exchanger 1 (evaporator), the intake air is cooled by the sensible heat of the refrigerant. . However, in the present invention, the intake air is cooled by the low-pressure refrigerant flowing out of the expansion valve 5, so that the intake air may be cooled by the latent heat of vaporization of the liquid-phase low-pressure refrigerant. Further, in the above-described embodiment, the expansion valve using the fixed restrictor is used as the pressure reducing device. However, the opening degree of the expansion valve is adjusted so that the degree of superheat of the refrigerant on the inlet side of the compressor 3 becomes a predetermined value. A so-called temperature type expansion valve may be used.

【0021】また、上述の実施形態では、フロンを冷媒
とするヒートポンプサイクルであったが、二酸化炭素を
冷媒として高圧側の圧力が冷媒の臨界圧力を越える超臨
界冷凍サイクルであってもよい。なお、この場合、高圧
側では冷媒が凝縮しないので、高圧側の熱交換器は、冷
媒を冷却のみする単純な放熱器となる。
In the above-described embodiment, the heat pump cycle uses chlorofluorocarbon as a refrigerant. However, a supercritical refrigeration cycle using carbon dioxide as a refrigerant and the pressure on the high pressure side exceeding the critical pressure of the refrigerant may be used. In this case, since the refrigerant does not condense on the high pressure side, the heat exchanger on the high pressure side is a simple radiator that only cools the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷房運転時のエンジン駆動式ヒートポンプサイ
クルの模式図である。
FIG. 1 is a schematic diagram of an engine-driven heat pump cycle during a cooling operation.

【図2】暖房運転時のエンジン駆動式ヒートポンプサイ
クルの模式図である。
FIG. 2 is a schematic diagram of an engine-driven heat pump cycle during a heating operation.

【図3】吸気温度とスモーク濃度及びエンジン出力との
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between intake air temperature, smoke concentration, and engine output.

【符号の説明】 1…室内熱交換器、2…室外熱交換器、3…圧縮機、4
…ディーゼルエンジン、5…膨張弁(減圧器)、6…ア
キュムレータ、7…電磁切換四方弁、8…冷却器。
[Explanation of Signs] 1 ... Indoor heat exchanger, 2 ... Outdoor heat exchanger, 3 ... Compressor, 4
... Diesel engine, 5 ... Expansion valve (decompressor), 6 ... Accumulator, 7 ... Electromagnetic switching four-way valve, 8 ... Cooler.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(3)、室内熱交換器(1)、室
外熱交換器(2)及び減圧器(5)を有して構成され、
冷暖房切換可能なヒートポンプサイクル(Rc)と、 前記圧縮機(3)を駆動するディーゼルエンジン(4)
と、 冷房運転時において、前記ディーゼルエンジン(4)に
吸入される吸入空気と、前記減圧器(5)から流出した
低圧冷媒とを熱交換し、前記吸入空気を冷却する冷却器
(8)とを備えることを特徴とするエンジン駆動式ヒー
トポンプサイクル。
1. It comprises a compressor (3), an indoor heat exchanger (1), an outdoor heat exchanger (2), and a pressure reducer (5),
A heat pump cycle (Rc) capable of switching between cooling and heating, and a diesel engine (4) for driving the compressor (3)
And a cooler (8) that exchanges heat between the intake air sucked into the diesel engine (4) and the low-pressure refrigerant flowing out of the pressure reducer (5) during cooling operation to cool the intake air. An engine-driven heat pump cycle comprising:
【請求項2】 冷媒を冷却する放熱器(2)と、 前記放熱器(2)から流出した冷媒を減圧する減圧器
(5)と、 前記減圧器(5)から流出した冷媒を蒸発させる蒸発器
(1)と、 前記蒸発器(1)から流出した冷媒を吸入圧縮し、前記
放熱器(2)に向けて吐出する圧縮機(3)と、 前記圧縮機(3)を駆動するディーゼルエンジン(4)
と、 前記ディーゼルエンジン(4)に吸入される吸入空気
と、前記減圧器(5)から流出した低圧冷媒とを熱交換
し、前記吸入空気を冷却する冷却器(8)とを備えるこ
とを特徴とするエンジン式冷凍サイクル。
2. A radiator (2) for cooling the refrigerant, a decompressor (5) for decompressing the refrigerant flowing out of the radiator (2), and an evaporator for evaporating the refrigerant flowing out of the decompressor (5). Device (1), a compressor (3) that sucks and compresses refrigerant flowing out of the evaporator (1), and discharges the refrigerant toward the radiator (2); and a diesel engine that drives the compressor (3). (4)
And a cooler (8) that exchanges heat between the intake air sucked into the diesel engine (4) and the low-pressure refrigerant flowing out of the pressure reducer (5) to cool the intake air. The engine type refrigeration cycle.
JP10231907A 1998-08-18 1998-08-18 Engine-drive type heat pump cycle Pending JP2000064906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10231907A JP2000064906A (en) 1998-08-18 1998-08-18 Engine-drive type heat pump cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10231907A JP2000064906A (en) 1998-08-18 1998-08-18 Engine-drive type heat pump cycle

Publications (1)

Publication Number Publication Date
JP2000064906A true JP2000064906A (en) 2000-03-03

Family

ID=16930932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10231907A Pending JP2000064906A (en) 1998-08-18 1998-08-18 Engine-drive type heat pump cycle

Country Status (1)

Country Link
JP (1) JP2000064906A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170498A1 (en) * 2000-07-06 2002-01-09 Peugeot Citroen Automobiles SA Device for thermal control of the intake air of an internal combustion engine of an automotive vehicle
KR101341533B1 (en) * 2012-02-17 2014-01-03 엘지전자 주식회사 gas heat pump system and control method thereof
KR101391320B1 (en) 2011-12-22 2014-05-07 삼성중공업 주식회사 Engine room cooling system using cabin air-conditioning system
JP2017531764A (en) * 2014-10-03 2017-10-26 ユニバーシティ オブ マリボルUniversity Of Maribor Utilization method and apparatus of waste heat source of cogeneration power plant using water source high temperature heat pump
KR20180055412A (en) * 2016-11-17 2018-05-25 엘지전자 주식회사 Gas heat pump
KR20190046080A (en) * 2017-10-25 2019-05-07 엘지전자 주식회사 Gas heat-pump system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170498A1 (en) * 2000-07-06 2002-01-09 Peugeot Citroen Automobiles SA Device for thermal control of the intake air of an internal combustion engine of an automotive vehicle
FR2811376A1 (en) * 2000-07-06 2002-01-11 Peugeot Citroen Automobiles Sa DEVICE FOR THERMAL REGULATION OF THE INTAKE AIR OF A MOTOR VEHICLE INTERNAL COMBUSTION ENGINE
KR101391320B1 (en) 2011-12-22 2014-05-07 삼성중공업 주식회사 Engine room cooling system using cabin air-conditioning system
KR101341533B1 (en) * 2012-02-17 2014-01-03 엘지전자 주식회사 gas heat pump system and control method thereof
JP2017531764A (en) * 2014-10-03 2017-10-26 ユニバーシティ オブ マリボルUniversity Of Maribor Utilization method and apparatus of waste heat source of cogeneration power plant using water source high temperature heat pump
KR20180055412A (en) * 2016-11-17 2018-05-25 엘지전자 주식회사 Gas heat pump
KR101944831B1 (en) * 2016-11-17 2019-02-01 엘지전자 주식회사 Gas heat pump
KR20190046080A (en) * 2017-10-25 2019-05-07 엘지전자 주식회사 Gas heat-pump system
KR102042238B1 (en) * 2017-10-25 2019-11-07 엘지전자 주식회사 Gas heat-pump system

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
US20020050143A1 (en) Cooling cycle and control method thereof
JPH1194380A (en) Refrigeration cycle
JP4396004B2 (en) Ejector cycle
JP2002156161A (en) Air conditioner
JP3610402B2 (en) Heat pump equipment
JPH0849943A (en) Engine driven heat pump equipment
JP2000064906A (en) Engine-drive type heat pump cycle
JP2001235245A (en) Freezer
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2002188865A (en) Multiple stage compression type refrigerating machine
JP2003336927A (en) Combined refrigerating system
JP4380834B2 (en) Gas heat pump air conditioner
JP2004322933A (en) Refrigerating cycle device for vehicle
JP3155645B2 (en) Air conditioner
JP2006029714A (en) Ejector cycle
JP2004116978A (en) Controller for multi-room air conditioner
JP3942501B2 (en) Air conditioner for vehicles
JP2969801B2 (en) Engine-driven air conditioner
JP3601122B2 (en) Refrigeration equipment
JP2003106688A (en) Refrigerating cycle
JP2003175722A (en) Vehicular air conditioner
JPH07248163A (en) Air conditioner
JPH10253171A (en) Air conditioner