JP2003336927A - Combined refrigerating system - Google Patents

Combined refrigerating system

Info

Publication number
JP2003336927A
JP2003336927A JP2002145626A JP2002145626A JP2003336927A JP 2003336927 A JP2003336927 A JP 2003336927A JP 2002145626 A JP2002145626 A JP 2002145626A JP 2002145626 A JP2002145626 A JP 2002145626A JP 2003336927 A JP2003336927 A JP 2003336927A
Authority
JP
Japan
Prior art keywords
heat
refrigerator
driven
exhaust heat
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002145626A
Other languages
Japanese (ja)
Inventor
Kanetoshi Hayashi
謙年 林
Hidemasa Ogose
英雅 生越
Naoyuki Furumoto
直行 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002145626A priority Critical patent/JP2003336927A/en
Publication of JP2003336927A publication Critical patent/JP2003336927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined refrigerating system capable of meeting the necessary cool heat demand by effectively utilizing waste heat from a heat engine, always driving a compression refrigerating machine as a base to get ready for the insufficient discharge of heat from the heat engine and when the waste heat from the heat engine is sufficient, driving a waste heat driven refrigerating machine. <P>SOLUTION: The compression refrigerating machine driven by the heat engine 10 comprises a compressor 12, open/close valves 13 and 15, a condenser 14, and a first evaporator 18. The refrigerating cycle circuit B of the waste heat driven refrigerating machine having a waste heat collector 20, a second evaporator 22, an ejector 24, the compressor 12, and open/close valves 19, 26, and 27, the condenser 14, an expansion valve 28, and a pump 29 and a refrigerating cycle circuit C of the compression refrigerating machine having the compressor 12, the open/close valve 19, a second evaporator 23, an expansion valve 16, and a first evaporator 18 are joined to a refrigerating cycle circuit A. The cooling necessary for the condensation of compression refrigerant in the compression refrigerating machine can be selected from an air cooling by the outside air and a cooling by the waste heat driven refrigerating machine. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮式冷凍機と排
熱駆動冷凍機とを組み合わせた複合冷凍システムに関
し、特に熱機関駆動によるコジェネシステムや車載空調
装置において有効な複合冷凍システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined refrigeration system in which a compression refrigerating machine and an exhaust heat driven refrigerating machine are combined, and more particularly to a combined refrigerating system effective in a cogeneration system driven by a heat engine and an in-vehicle air conditioner.

【0002】[0002]

【従来の技術】図3は従来の熱機関駆動圧縮式冷凍機の
構成図である。この熱機関駆動圧縮式冷凍機は、ガソリ
ンエンジン、ディーゼルエンジン等の熱機関10で圧縮
機12を駆動してガス冷媒(例えば、水蒸気)を吸入・
圧縮し、この高圧のガス冷媒は凝縮器14に送られ、凝
縮器14にて冷却流体に放熱して凝縮され低温の液冷媒
となり、この液冷媒はさらに膨張弁16にて減圧されて
蒸発器18に入り、蒸発器18にて被冷却流体の熱を吸
収して蒸発し低圧のガス冷媒となって圧縮機12に戻る
冷凍サイクルを繰り返すものである。
2. Description of the Related Art FIG. 3 is a block diagram of a conventional heat engine driven compression type refrigerator. In this heat engine driven compression refrigerator, a compressor 12 is driven by a heat engine 10 such as a gasoline engine or a diesel engine to draw in a gas refrigerant (for example, water vapor).
The compressed high-pressure gas refrigerant is sent to the condenser 14, and the condenser 14 dissipates heat to the cooling fluid to be condensed and becomes a low-temperature liquid refrigerant. This liquid refrigerant is further decompressed by the expansion valve 16 and evaporated. The refrigeration cycle is repeated by entering 18 and absorbing the heat of the fluid to be cooled in the evaporator 18 to evaporate and become a low-pressure gas refrigerant and return to the compressor 12.

【0003】しかし、この熱機関駆動圧縮式冷凍機で
は、熱機関の排熱を冷凍のために利用することはでき
ず、温熱用途に利用する以外は廃棄しているのが実情で
ある。特に車載用の冷凍システムでは、熱機関の排熱は
すべて廃棄されている。
However, in this heat engine driven compression refrigerator, the waste heat of the heat engine cannot be used for freezing, and is actually discarded except for the purpose of heating. Especially in a vehicle-mounted refrigeration system, all the exhaust heat of the heat engine is discarded.

【0004】一方、熱機関の排熱を駆動源として利用す
る従来のエジェクタ方式(蒸気噴射式)の排熱駆動冷凍
機の構成を図4に示す。この排熱駆動冷凍機の構成によ
ると、熱機関10からの排熱をボイラ20の排熱回収用
熱交換器21に導き、熱交換により高温・高圧となった
蒸気冷媒をエジェクタ24のノズル(図示せず)より高
速で噴出させるとともに、このときの負圧で蒸発器18
から低温・低圧の蒸気冷媒を吸引して、高温・高圧の蒸
気冷媒と低温・低圧の蒸気冷媒とを混合してエジェクタ
24のディフューザ部25で昇圧して凝縮器14に入れ
る。凝縮器14では、図3と同様に蒸気冷媒を凝縮・冷
却して液冷媒となし、その液冷媒の一部は膨張弁16を
介して蒸発器18に戻し、残りの液冷媒はポンプ29で
ボイラ20に戻すという冷凍サイクルを繰り返す。
On the other hand, FIG. 4 shows the configuration of a conventional ejector type (steam injection type) exhaust heat driven refrigerator that uses exhaust heat of a heat engine as a drive source. According to the configuration of this exhaust heat driven refrigerator, the exhaust heat from the heat engine 10 is guided to the exhaust heat recovery heat exchanger 21 of the boiler 20, and the vapor refrigerant that has become high temperature and high pressure by heat exchange is ejected to the nozzle of the ejector 24 ( (Not shown) is ejected at a higher speed, and the negative pressure at this time causes the evaporator 18 to
The low-temperature, low-pressure vapor refrigerant is sucked from the mixture, the high-temperature, high-pressure vapor refrigerant is mixed with the low-temperature, low-pressure vapor refrigerant, the pressure is increased by the diffuser portion 25 of the ejector 24, and the mixture is put into the condenser 14. In the condenser 14, as in FIG. 3, the vapor refrigerant is condensed and cooled to form a liquid refrigerant, a part of the liquid refrigerant is returned to the evaporator 18 through the expansion valve 16, and the remaining liquid refrigerant is pumped by the pump 29. The refrigeration cycle of returning to the boiler 20 is repeated.

【0005】しかし、このような排熱駆動冷凍機のみの
構成では、熱源となる熱機関からの排熱が不足すると冷
熱需要が賄えないという問題がある。
However, with such a structure comprising only an exhaust heat driven refrigerator, there is a problem that the demand for cold heat cannot be met if exhaust heat from the heat engine as a heat source is insufficient.

【0006】また、図5は特開平6−33125号公報
に示された排熱駆動冷凍機の構成図である。この排熱駆
動冷凍機は、熱機関の温水排熱を駆動源とする冷凍サイ
クル回路Pを、温水排熱ボイラ32、エジェクタ33、
熱交換器34、膨張弁16、蒸発器18、およびポンプ
35から構成し、熱機関の排気排熱を駆動源とする冷凍
サイクル回路Rを、排気排熱ボイラ20、エジェクタ2
4、凝縮器14、膨張弁36、熱交換器37、およびポ
ンプ38から構成するものである。そして、この構成に
よれば、熱交換器34が冷凍サイクル回路Pの凝縮器の
働きをし、熱交換器37が冷凍サイクル回路Rの蒸発器
の働きをするため、冷凍サイクル回路Pの熱交換器(凝
縮器)34内の冷媒が冷凍サイクル回路Rの熱交換器
(蒸発器)37内の低温の冷媒と熱交換されることによ
って凝縮されるので、蒸発器18内の冷媒温度を低くす
ることができ、そのため冷凍能力を向上させることがで
きるとされている。
FIG. 5 is a block diagram of the exhaust heat driven refrigerator shown in JP-A-6-33125. This exhaust heat driven refrigerator includes a refrigeration cycle circuit P that uses hot water exhaust heat of a heat engine as a drive source, a hot water exhaust heat boiler 32, an ejector 33,
A refrigeration cycle circuit R that includes a heat exchanger 34, an expansion valve 16, an evaporator 18, and a pump 35, and that uses exhaust heat of exhaust heat of a heat engine as a drive source, includes an exhaust heat exhaust boiler 20, an ejector 2
4, the condenser 14, the expansion valve 36, the heat exchanger 37, and the pump 38. Further, according to this configuration, the heat exchanger 34 functions as a condenser of the refrigeration cycle circuit P, and the heat exchanger 37 functions as an evaporator of the refrigeration cycle circuit R, so that the heat exchange of the refrigeration cycle circuit P is performed. Since the refrigerant in the condenser (condenser) 34 is condensed by exchanging heat with the low temperature refrigerant in the heat exchanger (evaporator) 37 of the refrigeration cycle circuit R, the refrigerant temperature in the evaporator 18 is lowered. Therefore, it is said that the refrigerating capacity can be improved.

【0007】しかし、図5の排熱駆動冷凍機は、熱機関
からの排気排熱および温水排熱が十分に得られる場合に
は有効であるが、常にそのような事情にあるとはいえな
いケースが多く、その場合には図4の排熱駆動冷凍機の
場合と同様の問題がある。すなわち、図5の排熱駆動冷
凍機は排熱駆動冷凍機のみで構成されているので、熱源
となる熱機関からの排熱が十分でない場合には冷房能力
の低下を招くことになる。
However, the exhaust heat driven refrigerator shown in FIG. 5 is effective when exhaust heat exhausted from the heat engine and hot water exhaust heat are sufficiently obtained, but is not always in such a situation. There are many cases, in which case there is the same problem as in the case of the exhaust heat driven refrigerator of FIG. That is, since the exhaust heat driven refrigerator of FIG. 5 is composed only of the exhaust heat driven refrigerator, if the exhaust heat from the heat engine as a heat source is not sufficient, the cooling capacity will be deteriorated.

【0008】そこで、熱機関の排熱を有効利用しつつ、
必要な冷熱需要に対応させることが考えられる。そのよ
うな冷凍機に駆動圧縮式冷凍機と排熱駆動冷凍機とを組
み合わせた複合型の冷凍システムがあり、例えば、特開
昭57−35256号公報で提案されている。
Therefore, while effectively utilizing the exhaust heat of the heat engine,
It may be possible to meet the required cold heat demand. There is a combined refrigeration system in which a drive compression refrigerator and an exhaust heat driven refrigerator are combined with such a refrigerator, and is proposed in, for example, Japanese Patent Laid-Open No. 57-35256.

【0009】図6に上記特開昭57−35256号公報
による複合冷凍システムの構成を示す。この複合冷凍シ
ステムにおいては、熱機関10から排出される排熱を熱
交換器30に導入する一方、その熱機関10で圧縮機1
2を駆動し凝縮器14から出る蒸気冷媒の一部をポンプ
29で加圧して熱交換器31に送入し、熱交換器30と
の間で熱交換を行って高温・高圧の蒸気冷媒となして、
この高温・高圧の蒸気冷媒をエジェクタ24に導入しノ
ズル(図示せず)より噴出させる。その一方、蒸発器1
8からの低温・低圧の蒸気冷媒の一部をエジェクタ24
内のノズル噴出時の負圧によって吸引し、ノズルより高
速で噴出される高温・高圧の蒸気冷媒と混合し昇圧し
て、この蒸気冷媒を圧縮機12にて圧縮された高温・高
圧の蒸気冷媒の出側流路に送入するようにしている。
FIG. 6 shows the structure of a composite refrigeration system according to the above-mentioned JP-A-57-35256. In this combined refrigeration system, the exhaust heat discharged from the heat engine 10 is introduced to the heat exchanger 30, while the heat engine 10 causes the compressor 1
2 is driven and a part of the vapor refrigerant discharged from the condenser 14 is pressurized by the pump 29 and fed into the heat exchanger 31, and heat is exchanged with the heat exchanger 30 to generate high-temperature and high-pressure vapor refrigerant. No
This high-temperature, high-pressure vapor refrigerant is introduced into the ejector 24 and ejected from a nozzle (not shown). On the other hand, the evaporator 1
A part of the low temperature and low pressure vapor refrigerant from 8 is ejected by the ejector 24.
The high temperature and high pressure vapor refrigerant that is sucked by the negative pressure when the nozzle is ejected, is mixed with the high temperature and high pressure vapor refrigerant that is ejected from the nozzle at high speed, and the pressure is increased by the compressor 12 It is designed to be fed into the outlet side flow path.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
複合冷凍システムでは、圧縮式冷凍機の圧縮機と排熱駆
動冷凍機のエジェクタとが並列に接続されているため、
双方の圧縮圧力比を同一にする必要があり、運転範囲が
限定されるという問題がある。特に、エジェクタの圧縮
性能が不足するような場合には、エジェクタを介して冷
媒が圧縮機出口から蒸発器へ逆流してしまう場合もあり
得る。
However, in the conventional combined refrigeration system, since the compressor of the compression type refrigerator and the ejector of the exhaust heat driven refrigerator are connected in parallel,
Both compression pressure ratios must be the same, which causes a problem that the operating range is limited. In particular, when the compression performance of the ejector is insufficient, the refrigerant may flow back from the compressor outlet to the evaporator via the ejector.

【0011】したがって、本発明の目的は、熱機関から
の排熱を有効利用するとともに、熱機関からの排熱が十
分でない場合に備えて常に圧縮式冷凍機をベースとして
駆動しておき、熱機関からの排熱が十分ある場合にはさ
らに排熱駆動冷凍機を駆動して、必要な冷熱需要を賄う
ことができるようにした複合冷凍システムを提供するこ
とにある。
Therefore, an object of the present invention is to effectively utilize the exhaust heat from the heat engine, and to always drive the compression type refrigerator as a base in case the exhaust heat from the heat engine is not sufficient. It is an object of the present invention to provide a combined refrigeration system capable of supplying a required cold heat demand by further driving an exhaust heat driven refrigerator when the exhaust heat from the engine is sufficient.

【0012】[0012]

【課題を解決するための手段】本発明に係る複合冷凍シ
ステムは、外部動力で駆動される圧縮式冷凍機と、熱源
からの排熱で駆動される排熱駆動冷凍機とから構成さ
れ、前記圧縮式冷凍機における圧縮冷媒の凝縮に必要な
冷却を、外気による空冷と前記排熱駆動冷凍機による冷
却の2方式から選択できるように回路構成してなること
を特徴とするものである。
A composite refrigeration system according to the present invention comprises a compression type refrigerator driven by external power and an exhaust heat driven refrigerator driven by exhaust heat from a heat source. The circuit is configured so that the cooling required for condensing the compressed refrigerant in the compression type refrigerator can be selected from two methods: air cooling by the outside air and cooling by the exhaust heat driven refrigerator.

【0013】本発明の複合冷凍システムでは、熱機関か
らの排熱が十分でない場合に備えて常に圧縮式冷凍機を
ベースとして駆動しておくものである。このときには圧
縮式冷凍機の凝縮器を外気により冷却するので、必要な
冷熱需要を圧縮式冷凍機で賄うことができる。そして、
熱機関からの排熱が十分に得られるようになった場合に
は、さらに排熱駆動冷凍機の運転を行うものである。こ
のときには、第2蒸発器における冷媒の蒸発により圧縮
機からの圧縮冷媒の冷却を行い凝縮させるので、外気に
よる凝縮に比べて圧縮式冷凍機の凝縮温度を低減するこ
とが可能となり、圧縮式冷凍機の駆動に必要な熱機関の
軸動力を低減できるというメリットがある。したがっ
て、軸動力の低減分、熱機関の他の用途への転用を可能
とする。
In the combined refrigeration system of the present invention, the compression refrigeration machine is always driven as a base in case the exhaust heat from the heat engine is not sufficient. At this time, since the condenser of the compression refrigerator is cooled by the outside air, the required cooling heat can be covered by the compression refrigerator. And
When exhaust heat from the heat engine is sufficiently obtained, the exhaust heat driven refrigerator is further operated. At this time, since the compressed refrigerant from the compressor is cooled and condensed by the evaporation of the refrigerant in the second evaporator, it is possible to reduce the condensation temperature of the compression refrigerator as compared with the condensation by the outside air, and the compression refrigerator. There is a merit that the shaft power of the heat engine necessary for driving the machine can be reduced. Therefore, the reduced amount of shaft power enables the heat engine to be used for other purposes.

【0014】また、本発明の複合冷凍システムにおいて
は、圧縮式冷凍機の動力源に熱機関を用いるか、あるい
は熱機関により発電した電力で駆動される電動モータを
用いるものである。また、排熱駆動冷凍機の動力源には
熱機関の排熱を用いる。また、排熱駆動冷凍機は、エジ
ェクタ式冷凍機、吸収式冷凍機、あるいは吸着式冷凍機
など熱によって駆動されるものであればよい。そして、
冷熱需要量に応じて前記圧縮式冷凍機の凝縮熱量を求
め、その凝縮熱量と熱源からの排熱量に基づいて前記排
熱駆動冷凍機の運転時期を判断する。
In the combined refrigeration system of the present invention, a heat engine is used as a power source of the compression refrigerator, or an electric motor driven by electric power generated by the heat engine is used. The exhaust heat of the heat engine is used as the power source of the exhaust heat driven refrigerator. Further, the exhaust heat driven refrigerator may be one driven by heat such as an ejector refrigerator, an absorption refrigerator, or an adsorption refrigerator. And
The condensation heat amount of the compression type refrigerator is obtained according to the cold heat demand, and the operation timing of the exhaust heat driven refrigerator is determined based on the condensation heat amount and the heat exhaust amount from the heat source.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は本発明の実施の形態の一例を示
す複合冷凍システムの構成図である。この複合冷凍シス
テムは、熱機関10により駆動される圧縮機12、開閉
弁13、凝縮器14、開閉弁15、膨張弁16、および
第1蒸発器18からなる圧縮式冷凍機の冷凍サイクル回
路Aと、熱機関10からの排熱で冷媒蒸気を発生させる
排熱回収器20、圧縮機12により圧縮された冷媒を開
閉弁19を介して導入する第2蒸発器22、エジェクタ
24、開閉弁26、凝縮器14、開閉弁27、膨張弁2
8からなる排熱駆動冷凍機の冷凍サイクル回路Bと、並
びに圧縮機12、開閉弁19、第2蒸発器22、膨張弁
16、第1蒸発器18からなる圧縮式冷凍機の冷凍サイ
クル回路Cとを結合して構成される。なお、29は凝縮
器14からの凝縮水の一部を排熱回収器20へ戻すポン
プである。また、図1に示す白抜きの弁13、15は
「開」の状態をあらわしており、黒塗りの弁19、2
6、27は「閉」の状態をあらわしており、これらの弁
はセットで開閉を行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a combined refrigeration system showing an example of an embodiment of the present invention. This combined refrigeration system includes a compressor 12, which is driven by a heat engine 10, an on-off valve 13, a condenser 14, an on-off valve 15, an expansion valve 16, and a first evaporator 18, and a refrigeration cycle circuit A of a compression refrigerator. And an exhaust heat recovery device 20 for generating a refrigerant vapor by exhaust heat from the heat engine 10, a second evaporator 22 for introducing the refrigerant compressed by the compressor 12 through an on-off valve 19, an ejector 24, an on-off valve 26. , Condenser 14, on-off valve 27, expansion valve 2
Refrigeration cycle circuit B of the exhaust heat driven refrigerator composed of 8 and refrigeration cycle circuit C of the compression type refrigerator composed of the compressor 12, the opening / closing valve 19, the second evaporator 22, the expansion valve 16 and the first evaporator 18. It is composed by combining and. In addition, 29 is a pump which returns a part of condensed water from the condenser 14 to the exhaust heat recovery device 20. In addition, the white valves 13 and 15 shown in FIG. 1 represent the “open” state, and the black valves 19 and 2 are shown.
Reference numerals 6 and 27 represent a "closed" state, and these valves are opened and closed as a set.

【0016】この複合冷凍システムでは、まず、開閉弁
13、15は「開」とし、開閉弁19、26、27は
「閉」として、圧縮式冷凍機をベースとして熱機関10
により駆動しておく。このとき、凝縮器14は外気によ
り空冷されている。したがって、この場合は従来技術の
熱機関駆動圧縮式冷凍機(図3)と同様に作動し、冷凍
効果を発揮する。すなわち、第1蒸発器18にて発生す
る冷熱を図示しない送風ファンで送風することにより室
内や車内等の冷房空調に供する。
In this combined refrigeration system, first, the opening / closing valves 13 and 15 are set to “open” and the opening / closing valves 19, 26 and 27 are set to “close”, and the heat engine 10 is based on the compression refrigerator.
Driven by. At this time, the condenser 14 is air-cooled by the outside air. Therefore, in this case, the compressor operates in the same manner as the heat engine driven compression refrigerator (FIG. 3) of the prior art and exhibits the refrigerating effect. That is, the cold heat generated in the first evaporator 18 is blown by a blower fan (not shown) so as to be used for cooling and air conditioning in the room, inside the vehicle, or the like.

【0017】そして、熱機関10からの排熱が十分に得
られるようになった場合には、逆に開閉弁19、26、
27は「開」とし、開閉弁13、15は「閉」とする。
このとき、熱機関10からの排熱は排熱回収器20内の
排熱回収用熱交換器21に導入され、熱交換によって排
熱回収器20は高温・高圧の冷媒蒸気を発生する。ま
た、圧縮機12で圧縮された冷媒蒸気は開閉弁19を介
して第2蒸発器22内の熱交換器23に導入される。エ
ジェクタ24では、排熱回収器20からの高温・高圧の
冷媒蒸気をノズル(図示せず)より噴出し、そのときの
負圧で第2蒸発器22からの低温・低圧の冷媒蒸気を吸
引し、ディフューザ部25で両者の冷媒蒸気を混合・昇
圧して噴出する。エジェクタ24から噴出された冷媒蒸
気は開閉弁26を介して凝縮器14内に流入され、ここ
で外気により冷却されて凝縮される。凝縮器14からの
凝縮水は、開閉弁27を介して、その一部はポンプ29
により排熱回収器20へ戻され、残りは膨張弁28で減
圧されて第2蒸発器22へ戻される。そのため、第2蒸
発器22における冷媒の蒸発により、圧縮機12からの
高温・高圧の圧縮冷媒を冷却し凝縮させる。したがっ
て、第2蒸発器22は圧縮式冷凍機の冷凍サイクル回路
Cにおける凝縮器の作用を行う。
When the exhaust heat from the heat engine 10 is sufficiently obtained, conversely, the on-off valves 19, 26,
27 is "open" and the on-off valves 13 and 15 are "closed".
At this time, the exhaust heat from the heat engine 10 is introduced into the exhaust heat recovery heat exchanger 21 in the exhaust heat recovery device 20, and the exhaust heat recovery device 20 generates high temperature and high pressure refrigerant vapor by heat exchange. Further, the refrigerant vapor compressed by the compressor 12 is introduced into the heat exchanger 23 in the second evaporator 22 via the opening / closing valve 19. In the ejector 24, the high-temperature and high-pressure refrigerant vapor from the exhaust heat recovery device 20 is ejected from a nozzle (not shown), and the negative pressure at that time sucks the low-temperature and low-pressure refrigerant vapor from the second evaporator 22. In the diffuser section 25, both refrigerant vapors are mixed, pressurized, and ejected. The refrigerant vapor ejected from the ejector 24 flows into the condenser 14 through the opening / closing valve 26, and is cooled and condensed by the outside air. Condensed water from the condenser 14 passes through the opening / closing valve 27, and a part of the condensed water is supplied to the pump 29.
Is returned to the exhaust heat recovery device 20, and the rest is decompressed by the expansion valve 28 and returned to the second evaporator 22. Therefore, the high-temperature and high-pressure compressed refrigerant from the compressor 12 is cooled and condensed by the evaporation of the refrigerant in the second evaporator 22. Therefore, the second evaporator 22 acts as a condenser in the refrigeration cycle circuit C of the compression refrigerator.

【0018】また、このとき、第2蒸発器22にて凝縮
された凝縮水は、冷凍サイクル回路Cにおいて膨張弁1
6を介して第1蒸発器18に流入し、ここで送風空気の
熱を吸収して蒸発し冷媒蒸気となって圧縮機12へ戻
る。すなわち、第1蒸発器18からの冷熱が上記同様に
冷房空調に供される。
At this time, the condensed water condensed in the second evaporator 22 is expanded in the refrigeration cycle circuit C by the expansion valve 1
It flows into the 1st evaporator 18 via 6, and absorbs the heat of ventilation air here, evaporates, and returns to the compressor 12 as a refrigerant vapor. That is, the cold heat from the first evaporator 18 is supplied to the cooling air conditioning in the same manner as above.

【0019】したがって、この複合冷凍システムによれ
ば、圧縮式冷凍機の冷凍サイクル回路Aと、排熱駆動冷
凍機の冷凍サイクル回路Bおよび圧縮式冷凍機の冷凍サ
イクル回路Cとを開閉弁13、15と開閉弁19、2
6、27の開閉で選択的に切り替えるようになっている
ので、熱機関からの排熱が十分でない場合には常にベー
スとして駆動されている圧縮式冷凍機の圧縮冷媒の凝縮
に必要な冷却を外気による空冷を行うことによって、す
なわち凝縮器14を外気により空冷することによって、
必要な冷熱需要を賄うことができる。そしてさらに、熱
機関からの排熱が十分に得られるようになった場合に、
排熱駆動冷凍機を運転することによって、第2蒸発器2
2が圧縮機12からの圧縮冷媒の凝縮器として働くの
で、同様に必要な冷熱需要を賄うことができる。しか
も、第2蒸発器22では、圧縮式冷凍機の凝縮器14に
おける外気による凝縮に比べて圧縮式冷凍機の凝縮温度
を低減することが可能となり、圧縮式冷凍機の駆動に必
要な熱機関の軸動力を低減できるというメリットがあ
る。また、圧縮式冷凍機の駆動動力を低減できることか
ら、熱機関の燃料の節約が可能となるほか、熱機関の軸
動力を他の用途、例えば発電機の駆動を行ったりするこ
とも可能となる(コジェネシステムへの用途)。
Therefore, according to this composite refrigeration system, the refrigeration cycle circuit A of the compression refrigeration machine, the refrigeration cycle circuit B of the exhaust heat driven refrigeration machine, and the refrigeration cycle circuit C of the compression refrigeration machine are opened and closed. 15 and open / close valve 19, 2
Since the switch is selectively opened / closed by opening / closing 6, 27, when the exhaust heat from the heat engine is not sufficient, the cooling necessary for the condensation of the compressed refrigerant of the compression refrigerator driven as the base is always provided. By performing air cooling by the outside air, that is, by cooling the condenser 14 by the outside air,
It is possible to meet the required cold heat demand. And, furthermore, when exhaust heat from the heat engine becomes sufficient,
The second evaporator 2 is operated by operating the exhaust heat driven refrigerator.
Since 2 acts as a condenser for the compressed refrigerant from the compressor 12, it is possible to meet the required cold heat demand as well. Moreover, in the second evaporator 22, it becomes possible to reduce the condensation temperature of the compression refrigerator as compared with the condensation by the outside air in the condenser 14 of the compression refrigerator, and the heat engine required to drive the compression refrigerator. There is an advantage that the shaft power of can be reduced. Further, since the driving power of the compression type refrigerator can be reduced, it is possible to save the fuel of the heat engine, and it is also possible to use the shaft power of the heat engine for other purposes such as driving a generator. (Application to cogeneration system).

【0020】図2は排熱駆動冷凍機の運転時期を判断す
るためのフローチャートである。まず、圧縮式冷凍機を
駆動しておく(ステップS1)。そして、その圧縮式冷
凍機の冷熱需要量Qcを計算で求める(ステップS
2)。また、熱機関からの排熱温度Tと排熱量Qを計測
する(ステップS3)。さらに、外気による凝縮温度T
2を計測し(ステップS4)、駆動条件T,Q,T2にお
ける排熱駆動冷凍機の冷凍能力Q1、冷凍温度T1を計算
する(ステップS5)。また、凝縮温度T1における圧
縮式冷凍機の効率η2を計算する(ステップS6)。そ
して、排熱駆動冷凍機の冷凍能力Q1が、圧縮式冷凍機
の凝縮熱量より大きいか否かを次式より計算する(ステ
ップS7)。 Q1>Qc*(1+η2)/η2 排熱駆動冷凍機の冷凍能力Q1が圧縮式冷凍機の凝縮熱
量より大きいときには、排熱駆動冷凍機をONにし(ス
テップS8)、排熱駆動冷凍機の冷凍能力Q1が圧縮式
冷凍機の凝縮熱量より小さいときにはステップS2に戻
って上記フローを繰り返す。排熱駆動冷凍機が運転開始
された場合には、さらに圧縮式冷凍機の圧縮機圧力比を
調整し、その駆動動力を低減させる(ステップS9)。
FIG. 2 is a flow chart for determining the operating time of the exhaust heat driven refrigerator. First, the compression refrigerator is driven (step S1). Then, the cold heat demand Qc of the compression refrigerator is calculated (step S
2). Further, the exhaust heat temperature T and the exhaust heat amount Q from the heat engine are measured (step S3). Furthermore, the condensation temperature T due to the outside air
2 is measured (step S4), and the refrigerating capacity Q 1 and the refrigerating temperature T 1 of the exhaust heat driven refrigerator under the driving conditions T, Q and T 2 are calculated (step S5). Further, the efficiency η 2 of the compression refrigerator at the condensing temperature T 1 is calculated (step S6). Then, it is calculated from the following equation whether or not the refrigerating capacity Q 1 of the exhaust heat driven refrigerator is larger than the condensation heat amount of the compression refrigerator (step S7). Q 1 > Qc * (1 + η 2 ) / η 2 When the refrigerating capacity Q 1 of the exhaust heat drive refrigerator is larger than the condensation heat amount of the compression refrigerator, the exhaust heat drive refrigerator is turned on (step S 8), and exhaust heat drive When the refrigerating capacity Q 1 of the refrigerator is smaller than the heat of condensation of the compression refrigerator, the process returns to step S2 and the above flow is repeated. When the exhaust heat driven refrigerator is started, the compressor pressure ratio of the compression refrigerator is further adjusted to reduce the driving power thereof (step S9).

【0021】本実施形態では、同じ熱機関10から圧縮
式冷凍機の動力と排熱駆動冷凍機の熱源を得る構成で説
明したが、各々別の熱機関から動力および熱源をそれぞ
れ得る構成であってもよい。さらに動力、熱源が得られ
るものであれば熱機関には限定されない。例えば、圧縮
式冷凍機の動力源を熱機関により発電される電力を利用
した電動モータとしてもよいものである。また、排熱駆
動冷凍機は、上記のエジェクタ24を吸収・吸着の原理
に基づく吸収式あるいは吸着式の冷凍機としてもよい。
また、冷凍サイクル回路A、B、Cの冷媒には作動圧力
・温度に応じた任意の冷媒を使用することができる。
In the present embodiment, the structure in which the power of the compression refrigerator and the heat source of the exhaust heat driven refrigerator are obtained from the same heat engine 10 has been described, but the power and heat source are obtained from different heat engines. May be. Further, it is not limited to the heat engine as long as the power and heat source can be obtained. For example, the power source of the compression refrigerator may be an electric motor using electric power generated by a heat engine. Further, the exhaust heat driven refrigerator may be an absorption type or adsorption type refrigerator based on the principle of absorption / adsorption of the ejector 24.
Further, as the refrigerant of the refrigeration cycle circuits A, B, C, any refrigerant corresponding to the operating pressure / temperature can be used.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、外部動
力で駆動される圧縮式冷凍機と、熱源からの排熱で駆動
される排熱駆動冷凍機とから構成され、前記圧縮式冷凍
機における圧縮冷媒の凝縮に必要な冷却を、外気による
空冷と前記排熱駆動冷凍機による冷却の2方式から選択
できるように回路構成したので、熱機関からの排熱が十
分でない場合には常に圧縮式冷凍機をベースとして駆動
しておき、熱機関からの排熱を十分にある場合に限りさ
らに排熱駆動冷凍機の運転を行うことにより、排熱を有
効利用しつつ必要な冷熱需要を賄うことができる。
As described above, according to the present invention, the compression type refrigerator driven by external power and the exhaust heat driven refrigerator driven by the exhaust heat from the heat source are used. Since the cooling required for the condensation of the compressed refrigerant in the refrigerator can be selected from the two methods of air cooling by the outside air and cooling by the exhaust heat driven refrigerator, when the exhaust heat from the heat engine is not sufficient. The compression type refrigerator is always driven as a base, and if the exhaust heat from the heat engine is sufficient, the exhaust heat drive refrigerator is operated further so that the required cold heat demand can be achieved while effectively utilizing the exhaust heat. Can be covered.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態による複合冷凍システム
の構成図である。
FIG. 1 is a configuration diagram of a combined refrigeration system according to an embodiment of the present invention.

【図2】 排熱駆動冷凍機の運転時期を判断するための
フローチャートである。
FIG. 2 is a flow chart for determining the operation timing of the exhaust heat driven refrigerator.

【図3】 従来の熱機関駆動圧縮式冷凍機の構成図であ
る。
FIG. 3 is a configuration diagram of a conventional heat engine driven compression refrigerator.

【図4】 従来の排熱駆動冷凍機の構成図である。FIG. 4 is a configuration diagram of a conventional exhaust heat driven refrigerator.

【図5】 特開平6−33125号公報による複合冷凍
システムの構成図である。
FIG. 5 is a configuration diagram of a combined refrigeration system according to Japanese Patent Laid-Open No. 6-33125.

【図6】 特開昭57−35256号公報による複合冷
凍システムの構成図である。
FIG. 6 is a configuration diagram of a combined refrigeration system according to Japanese Patent Laid-Open No. 57-35256.

【符号の説明】[Explanation of symbols]

10 熱機関 12 圧縮機 13 開閉弁 14 凝縮器 15 開閉弁 16 膨張弁 18 第1蒸発器 19 開閉弁 20 排熱回収器 22 第2蒸発器 24 エジェクタ 26 開閉弁 27 開閉弁 28 膨張弁 29 ポンプ 10 heat engine 12 compressor 13 open / close valve 14 condenser 15 on-off valve 16 Expansion valve 18 First evaporator 19 open / close valve 20 Exhaust heat recovery device 22 Second evaporator 24 ejector 26 on-off valve 27 on-off valve 28 Expansion valve 29 pumps

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古本 直行 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Naoyuki Furumoto             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外部動力で駆動される圧縮式冷凍機と、
熱源からの排熱で駆動される排熱駆動冷凍機とから構成
され、前記圧縮式冷凍機における圧縮冷媒の凝縮に必要
な冷却を、外気による空冷と前記排熱駆動冷凍機による
冷却の2方式から選択できるように回路構成してなるこ
とを特徴とする複合冷凍システム。
1. A compression type refrigerator driven by external power,
An exhaust heat driven refrigerator driven by exhaust heat from a heat source, and two types of cooling required for condensing the compressed refrigerant in the compression refrigerator are air cooling by outside air and cooling by the exhaust heat driven refrigerator. A composite refrigeration system characterized in that the circuit is configured so that it can be selected from
【請求項2】 前記圧縮式冷凍機の動力源に熱機関を用
いることを特徴とする請求項1記載の複合冷凍システ
ム。
2. The combined refrigeration system according to claim 1, wherein a heat engine is used as a power source of the compression refrigerator.
【請求項3】 前記圧縮式冷凍機の動力源に前記熱機関
により発電した電力で駆動される電動モータを用いるこ
とを特徴とする請求項2記載の複合冷凍システム。
3. The combined refrigeration system according to claim 2, wherein an electric motor driven by electric power generated by the heat engine is used as a power source of the compression refrigerator.
【請求項4】 前記排熱駆動冷凍機の動力源に熱機関の
排熱を用いることを特徴とする請求項1〜3のいずれか
に記載の複合冷凍システム。
4. The combined refrigeration system according to claim 1, wherein exhaust heat of a heat engine is used as a power source of the exhaust heat driven refrigerator.
【請求項5】 前記排熱駆動冷凍機がエジェクタ式冷凍
機であることを特徴とする請求項4記載の複合冷凍シス
テム。
5. The combined refrigeration system according to claim 4, wherein the exhaust heat driven refrigerator is an ejector refrigerator.
【請求項6】 前記排熱駆動冷凍機が吸収式冷凍機であ
ることを特徴とする請求項4記載の複合冷凍システム。
6. The combined refrigeration system according to claim 4, wherein the exhaust heat driven refrigerator is an absorption refrigerator.
【請求項7】 前記排熱駆動冷凍機が吸着式冷凍機であ
ることを特徴とする請求項4記載の複合冷凍システム。
7. The combined refrigeration system according to claim 4, wherein the exhaust heat driven refrigerator is an adsorption refrigerator.
【請求項8】 冷熱需要量に応じて前記圧縮式冷凍機の
凝縮熱量を求め、その凝縮熱量と熱源からの排熱量に基
づいて前記排熱駆動冷凍機の運転時期を判断することを
特徴とする請求項1〜7のいずれかに記載の複合冷凍シ
ステム。
8. The condensation heat quantity of the compression type refrigerator is determined according to the cold heat demand, and the operation timing of the waste heat drive refrigerator is determined based on the condensation heat quantity and the heat discharge quantity from the heat source. The combined refrigeration system according to any one of claims 1 to 7.
JP2002145626A 2002-05-21 2002-05-21 Combined refrigerating system Pending JP2003336927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145626A JP2003336927A (en) 2002-05-21 2002-05-21 Combined refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145626A JP2003336927A (en) 2002-05-21 2002-05-21 Combined refrigerating system

Publications (1)

Publication Number Publication Date
JP2003336927A true JP2003336927A (en) 2003-11-28

Family

ID=29704857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145626A Pending JP2003336927A (en) 2002-05-21 2002-05-21 Combined refrigerating system

Country Status (1)

Country Link
JP (1) JP2003336927A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657472B1 (en) 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
KR101127042B1 (en) * 2010-07-22 2012-03-26 (주)대주기계 Equipment to reduce inlet air temperature using waste heat of a large-capacity compressor
CN102563987A (en) * 2012-03-01 2012-07-11 浙江大学 Vapor-compression refrigerating plant driven by organic Rankine cycle and method
CN104567089A (en) * 2014-12-23 2015-04-29 广西大学 Compression-ejection compound refrigerating system using Knudsen compressor
CN105241115A (en) * 2015-09-22 2016-01-13 东南大学 Steam compressing-jet coupling refrigeration circulating device and method
CN105698431A (en) * 2016-03-16 2016-06-22 北京建筑大学 Double-heat-source efficient compressing-ejecting composite heat pump system and application
CN106440487A (en) * 2016-11-25 2017-02-22 天津大学 Combined type dual-stage steam heat pump system
CN106766352A (en) * 2016-11-12 2017-05-31 浙江理工大学 Steam jet type cooling device and its refrigerating method that heat/work(joint drives
CN112268376A (en) * 2020-09-15 2021-01-26 珠海格力电器股份有限公司 Fluorine pump type heat pipe and jet refrigeration cycle composite system and control method thereof
CN114719457A (en) * 2022-03-17 2022-07-08 西北工业大学 Novel energy-saving data center refrigeration composite system and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657472B1 (en) 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
JP2012017925A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
KR101127042B1 (en) * 2010-07-22 2012-03-26 (주)대주기계 Equipment to reduce inlet air temperature using waste heat of a large-capacity compressor
CN102563987A (en) * 2012-03-01 2012-07-11 浙江大学 Vapor-compression refrigerating plant driven by organic Rankine cycle and method
CN104567089A (en) * 2014-12-23 2015-04-29 广西大学 Compression-ejection compound refrigerating system using Knudsen compressor
CN105241115A (en) * 2015-09-22 2016-01-13 东南大学 Steam compressing-jet coupling refrigeration circulating device and method
CN105698431A (en) * 2016-03-16 2016-06-22 北京建筑大学 Double-heat-source efficient compressing-ejecting composite heat pump system and application
CN105698431B (en) * 2016-03-16 2017-11-10 北京建筑大学 A kind of double heat source high-efficiency compression injection combined heat-pump system and application
CN106766352A (en) * 2016-11-12 2017-05-31 浙江理工大学 Steam jet type cooling device and its refrigerating method that heat/work(joint drives
CN106766352B (en) * 2016-11-12 2019-03-12 浙江理工大学 Heat/function joint driving steam jet type cooling device and its refrigerating method
CN106440487A (en) * 2016-11-25 2017-02-22 天津大学 Combined type dual-stage steam heat pump system
CN112268376A (en) * 2020-09-15 2021-01-26 珠海格力电器股份有限公司 Fluorine pump type heat pipe and jet refrigeration cycle composite system and control method thereof
CN114719457A (en) * 2022-03-17 2022-07-08 西北工业大学 Novel energy-saving data center refrigeration composite system and method
CN114719457B (en) * 2022-03-17 2023-05-30 西北工业大学 Energy-saving data center refrigeration composite system and method

Similar Documents

Publication Publication Date Title
US7178358B2 (en) Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
US7536869B2 (en) Vapor compression refrigerating apparatus
US6675609B2 (en) Refrigerant cycle system with ejector pump
US20020050351A1 (en) Outdoor heat exchanger unit, outdoor unit, and gas heat pump type air conditioner
JPH06331225A (en) Steam jetting type refrigerating device
JP2005329843A (en) Exhaust heat recovery system for vehicle
JP2003336927A (en) Combined refrigerating system
KR20200049648A (en) Device for an air conditioning system of a motor vehicle and method for operating the device
JP2009002307A (en) Engine exhaust emission control device and engine-driven type air conditioner
JP2004198045A (en) Vapor compression type refrigerator
JP4265228B2 (en) Refrigerator using ejector pump
KR101125328B1 (en) Air Conditioner In Hybrid Electricalvehicle
JP2004340520A (en) Refrigerating cycle device
EP1728657A1 (en) Air conditioning system
JP2004322933A (en) Refrigerating cycle device for vehicle
JP2004205154A (en) Refrigerating machine
CN107351645A (en) A kind of CO for combining auxiliary supercooling based on waste heat overbottom pressure2Automotive air-conditioning system
JP2000064906A (en) Engine-drive type heat pump cycle
JP4196817B2 (en) Vapor compression refrigerator
JP3942501B2 (en) Air conditioner for vehicles
JPH08145496A (en) Refrigerator
JP2600482Y2 (en) Automotive air conditioners
KR20060032815A (en) Fuel cell system and fuel cell stack cooling device thereof
JP3626927B2 (en) Gas heat pump type air conditioner
JP2002188438A (en) Power recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127