JPS5824764A - Heat pump device - Google Patents
Heat pump deviceInfo
- Publication number
- JPS5824764A JPS5824764A JP56122981A JP12298181A JPS5824764A JP S5824764 A JPS5824764 A JP S5824764A JP 56122981 A JP56122981 A JP 56122981A JP 12298181 A JP12298181 A JP 12298181A JP S5824764 A JPS5824764 A JP S5824764A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat
- condenser
- cycle
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はヒートポンプ装置に係り、特に比較的低温の熱
源から熱を汲上げ、高い温熱を得るヒートポンプ装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump device, and particularly to a heat pump device that pumps heat from a relatively low-temperature heat source and obtains high temperature heat.
利用分野として、工場等における廃熱回収装置は、30
〜60℃の温水は利用しにくくまた、この熱を回収する
には設備費が高い。そのため多量にあるか捨てられてい
る低温熱源を回収するには、運転効率を高め運転費を低
下させる必要あり。As a field of use, waste heat recovery equipment in factories, etc. has 30
Hot water at ~60°C is difficult to use, and equipment costs are high to recover this heat. Therefore, in order to recover low-temperature heat sources that are in large quantities or are being discarded, it is necessary to improve operating efficiency and reduce operating costs.
本システムは高効率廃熱回収システムとして利用可能で
ある。またヒートボ/プ空調機は、外気から熱を汲み上
げて室内を暖房する空調機においては、室内凝縮器入口
の空気はおよそ20℃、出口は40〜50℃であり温度
差が大きい、このような場合に本装置を利用すると空調
機の効率を向上することができる。This system can be used as a highly efficient waste heat recovery system. In addition, HEATBO/P air conditioners pump heat from outside air to heat the room, and the air at the indoor condenser inlet is approximately 20℃ and the outlet temperature is 40 to 50℃, which is a large temperature difference. If you use this device, you can improve the efficiency of your air conditioner.
従来の基本的な冷凍サイクル系統図を第1図に示す。圧
縮機1から吐出された高温冷媒が凝縮器2で利用水と熱
交換して液化する。液化冷媒は膨張弁3で減圧し低温冷
媒になる。低温冷媒は蒸発器4で熱を受はガス化して圧
縮機1へ戻る。図中には一例として蒸発器及び凝縮器出
入口の熱源及び利用水の温度を示しである。一般に高温
水を得るための冷凍サイクルでは凝縮圧力が高くなるた
めに、凝縮器を大きくして冷媒の凝縮温度と利用水出口
水温の温度差が近い状態にする傾向にある。第2図は凝
縮器内冷媒と利用水の温度分布の一例を示したものであ
る。そのために式(1)で示される温度効率は1に近ず
き熱交換効率は低下する。A conventional basic refrigeration cycle system diagram is shown in Fig. 1. The high temperature refrigerant discharged from the compressor 1 exchanges heat with the water used in the condenser 2 and is liquefied. The liquefied refrigerant is depressurized by the expansion valve 3 and becomes a low-temperature refrigerant. The low-temperature refrigerant receives heat in the evaporator 4, gasifies it, and returns to the compressor 1. The figure shows, as an example, the temperature of the heat source and the water used at the inlet and outlet of the evaporator and condenser. Generally, in a refrigeration cycle for obtaining high-temperature water, the condensing pressure is high, so there is a tendency to increase the size of the condenser so that the temperature difference between the condensing temperature of the refrigerant and the water temperature at the outlet of the water used is close to that of the condenser. FIG. 2 shows an example of the temperature distribution of the refrigerant in the condenser and the water used. Therefore, the temperature efficiency expressed by equation (1) approaches 1, and the heat exchange efficiency decreases.
ここK ξ:温度効率、’w、:利用水の入ロ温度t%
:利宙水の出X:J違凝
to:凝縮温度
すなわち凝縮器出口部分では、少量の熱交換量を得るた
めに大きな伝熱面積を必要としている。Here K ξ: Temperature efficiency, 'w,: Inlet temperature of used water t%
: Utilization Water Output
凝縮器のどの部分でも熱流束を均一化できれば温度効率
の改善ができる。そのためには、凝縮器入口部分では凝
縮温度を低く又、出口部分では凝縮温度を高くすれば良
い。これについては詳細を後述する。Temperature efficiency can be improved if heat flux can be made uniform throughout the condenser. To achieve this, the condensing temperature may be lowered at the inlet of the condenser and raised at the outlet. Details regarding this will be described later.
本発明は上記に鑑みて発明されたもので、ヒートポンプ
を使って高温をえる装置で、その運転効率(cop’)
を高めることを目的とする。The present invention was invented in view of the above, and is a device that generates high temperature using a heat pump, and its operating efficiency (cop')
The purpose is to increase
本発明は上記目的を達成讐る″ため、熱交換器の効率を
高め有効に熱交換器を使うとともにに系統ある冷凍サイ
クルの内片側の凝縮圧力を低下させ(低下した部分では
圧縮機のCOPが高くなる)、系全体の効率(cop)
を高くする特徴を有する。In order to achieve the above object, the present invention improves the efficiency of the heat exchanger, uses the heat exchanger effectively, and lowers the condensing pressure on one side of the systematic refrigeration cycle (in the lowered part, the COP of the compressor ), the efficiency of the entire system (cop)
It has the characteristic of increasing the
本発明の一実施例を図示に基すき説明する。An embodiment of the present invention will be explained based on the drawings.
第3図は高温水製造装置の実施例を示している。熱源及
び利用温水の温度の例を同図に付記しである。冷凍サイ
クルは2系統になっており、それぞれをサイクル!(低
圧側)、サイクルl(高圧側)と呼ぶことにする。凝縮
器および蒸発器は水系統が1および菖に対してシリーズ
になっており、流れる方向が前述のようになっていれば
、図示のように凝縮器、蒸発器釜々一台ずつでも又はI
、■に対して独立の熱交換器でも良い。利用水は凝縮器
の1側から入りI側から出ていく。熱源(水)は、■側
から入り1側から出ていく。従って、皿は比較的低温の
負荷で運転されlは高温の負荷で運転される。凝縮器、
蒸発器及び圧縮機の全伝熱面積及び全容量が前図第1図
で示した場合と同一である場合についての性能を以下に
述べる。FIG. 3 shows an embodiment of the high temperature water production apparatus. Examples of the temperatures of the heat source and the hot water used are appended to the figure. The refrigeration cycle has two systems, and each can be cycled! (low pressure side) and cycle 1 (high pressure side). The condenser and evaporator are in series with the water system 1 and the irises, and if the flow direction is as described above, the condenser and evaporator pot can be installed one by one as shown in the figure, or one
, ■ may be provided with an independent heat exchanger. The water used enters the condenser from the 1 side and exits from the I side. The heat source (water) enters from the ■ side and exits from the 1 side. Therefore, the pan is operated at a relatively cold load and the l is operated at a hot load. Condenser,
The performance will be described below when the total heat transfer area and total capacity of the evaporator and compressor are the same as those shown in FIG. 1.
第4図には従来サイクルと同一熱交換量を得る場合の冷
媒凝縮温度と利用水の温度の分布が示されている。これ
は■の冷媒が受け4つ凝縮器面積と麗か受けもつ面積が
等しい場合である。この図でわかるように菖の凝縮温度
は、従来サイクル(第1図)の場合より微か上昇するだ
けであり反面Iの凝縮温度は非常に低くなっている。そ
のため1のCOPは高くなる。第5図は全伝熱面積、圧
縮機全容量を一定とし、それをサイクルIとlに内分し
た場合のCOPを求めた結果を示しである。低圧側サイ
クルIの容量が全体の40〜50%の場合に系全体のC
OPが最も高く表っている。FIG. 4 shows the distribution of the refrigerant condensation temperature and the temperature of the water used when the same amount of heat exchange as in the conventional cycle is obtained. This is the case when the refrigerant (2) has four condensers and the area of the condenser is equal to the area of the four condensers. As can be seen from this figure, the condensation temperature of the irises is only slightly higher than that of the conventional cycle (FIG. 1), whereas the condensation temperature of I is very low. Therefore, the COP of 1 becomes high. FIG. 5 shows the results of calculating the COP when the total heat transfer area and the total compressor capacity are kept constant and divided into cycles I and I. When the capacity of low pressure side cycle I is 40 to 50% of the total, C of the entire system
OP is the most highly expressed.
次に本発明の他の実施例として空気熱源ヒートポンプ装
置について説明する。Next, an air source heat pump device will be described as another embodiment of the present invention.
室外ユニットで外気から熱を汲み上げ室内を暖房する空
調機に本発明を適用すると第6図のようになる。各サイ
クルの容量が等しい場合で、外気が7℃DB、5℃WB
、室内が21℃の運転条件のもとでは、COPが単一サ
イクルの場合より約10%向上する計算結果をえている
。When the present invention is applied to an air conditioner that uses an outdoor unit to draw heat from outside air to heat a room, the result will be as shown in FIG. When the capacity of each cycle is equal, the outside air is 7℃ DB, 5℃ WB
Under operating conditions where the room temperature is 21°C, calculation results show that the COP is approximately 10% higher than in the case of a single cycle.
以上説明したように本発明によれば、ヒートポンプサイ
クルの成績係数を従来技術の場合よシ10〜16%向上
させることができる。As explained above, according to the present invention, the coefficient of performance of a heat pump cycle can be improved by 10 to 16% compared to the conventional technology.
第1図は従来の冷凍サイクル図、第2図は温度と伝熱面
積との関係を示す線図、第3図は本発明の一実施例を示
す高温水製造装置の冷凍サイクル図、第4図は温度と伝
熱直積との関係を示す縮図、第5図は成績係数の増加と
容量比との関係を示す線図、第6図は本発明の他の実施
例を示すヒートポンプ装置の冷凍サイクル図である。
1・・・圧縮機 2・・・凝縮器 3・・・蒸発器
6・・・室内熱交換器 7・・・室外熱交換器聯う圏
−
今
那4回Fig. 1 is a conventional refrigeration cycle diagram, Fig. 2 is a diagram showing the relationship between temperature and heat transfer area, Fig. 3 is a refrigeration cycle diagram of a high-temperature water production apparatus showing an embodiment of the present invention, and Fig. 4 is a diagram showing the relationship between temperature and heat transfer area. The figure is a miniature diagram showing the relationship between temperature and direct heat transfer product, Figure 5 is a diagram showing the relationship between increase in coefficient of performance and capacity ratio, and Figure 6 is a refrigeration diagram of a heat pump device showing another embodiment of the present invention. It is a cycle diagram. 1...Compressor 2...Condenser 3...Evaporator 6...Indoor heat exchanger 7...Outdoor heat exchanger connection area - Konana 4 times
Claims (1)
は凝縮器の水又は空気等の負荷系統を単一系としたこと
を特徴とするヒートポンプ装置。 2、凝縮器を通る水又は空気は低圧サイクル側から高圧
サイクル側に流れる特許請求の範囲第1項記載のヒート
ポンプ装置。 3、蒸発器を通る水又は空気は高圧側サイクルから低圧
側サイクルに流れる特許請求の範囲第1項記載のヒート
ポンプ装置。[Scope of Claims] 1. A heat pump device characterized in that, in a refrigeration cycle with multiple systems, the load system for water, air, etc. of the evaporator and/or condenser is a single system. 2. The heat pump device according to claim 1, wherein the water or air passing through the condenser flows from the low-pressure cycle side to the high-pressure cycle side. 3. The heat pump device according to claim 1, wherein the water or air passing through the evaporator flows from the high-pressure side cycle to the low-pressure side cycle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56122981A JPS5824764A (en) | 1981-08-07 | 1981-08-07 | Heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56122981A JPS5824764A (en) | 1981-08-07 | 1981-08-07 | Heat pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5824764A true JPS5824764A (en) | 1983-02-14 |
Family
ID=14849347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56122981A Pending JPS5824764A (en) | 1981-08-07 | 1981-08-07 | Heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5824764A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011052838A (en) * | 2009-08-31 | 2011-03-17 | Mitsubishi Electric Corp | Refrigerating air conditioning device |
JP2011518308A (en) * | 2008-04-25 | 2011-06-23 | エルエス エムトロン リミテッド | Dual refrigerator |
JP2012180970A (en) * | 2011-03-01 | 2012-09-20 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2012229916A (en) * | 2012-08-30 | 2012-11-22 | Mitsubishi Electric Corp | Refrigerating air conditioner |
JP2012237494A (en) * | 2011-05-11 | 2012-12-06 | Hoshizaki Electric Co Ltd | Refrigerating device |
JP2014134310A (en) * | 2013-01-08 | 2014-07-24 | Tokyo Electric Power Co Inc:The | Heat supply system |
JP2014178110A (en) * | 2014-05-28 | 2014-09-25 | Mitsubishi Electric Corp | Freezing air conditioner |
JP2015212616A (en) * | 2010-02-08 | 2015-11-26 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat exchanger having stacked coil section |
JP2016080179A (en) * | 2014-10-09 | 2016-05-16 | 日立アプライアンス株式会社 | Air conditioner |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5560158A (en) * | 1978-10-28 | 1980-05-07 | Masaharu Taniguchi | Counter current multiistage heat transmission method using refrigerating cycle |
-
1981
- 1981-08-07 JP JP56122981A patent/JPS5824764A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5560158A (en) * | 1978-10-28 | 1980-05-07 | Masaharu Taniguchi | Counter current multiistage heat transmission method using refrigerating cycle |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011518308A (en) * | 2008-04-25 | 2011-06-23 | エルエス エムトロン リミテッド | Dual refrigerator |
JP2011052838A (en) * | 2009-08-31 | 2011-03-17 | Mitsubishi Electric Corp | Refrigerating air conditioning device |
JP2017207274A (en) * | 2010-02-08 | 2017-11-24 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat exchanger having stacked coil sections |
JP2020038054A (en) * | 2010-02-08 | 2020-03-12 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat exchanger having stacked coil sections |
US10215444B2 (en) | 2010-02-08 | 2019-02-26 | Johnson Controls Technology Company | Heat exchanger having stacked coil sections |
JP2015212616A (en) * | 2010-02-08 | 2015-11-26 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | Heat exchanger having stacked coil section |
US9869487B2 (en) | 2010-02-08 | 2018-01-16 | Johnson Controls Technology Company | Heat exchanger having stacked coil sections |
JP2012180970A (en) * | 2011-03-01 | 2012-09-20 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2012237494A (en) * | 2011-05-11 | 2012-12-06 | Hoshizaki Electric Co Ltd | Refrigerating device |
JP2012229916A (en) * | 2012-08-30 | 2012-11-22 | Mitsubishi Electric Corp | Refrigerating air conditioner |
JP2014134310A (en) * | 2013-01-08 | 2014-07-24 | Tokyo Electric Power Co Inc:The | Heat supply system |
JP2014178110A (en) * | 2014-05-28 | 2014-09-25 | Mitsubishi Electric Corp | Freezing air conditioner |
JP2016080179A (en) * | 2014-10-09 | 2016-05-16 | 日立アプライアンス株式会社 | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204665596U (en) | Direct-expansion type heat-recycling air treatment device | |
JPS5824764A (en) | Heat pump device | |
CN108119953A (en) | Splitting heat pump air conditioner device | |
CN110319721A (en) | A kind of computer room heat pipe air conditioner system | |
CN105509202A (en) | Air conditioning system for machine room | |
CN211290619U (en) | Compact miniature refrigerating unit | |
CN105115089B (en) | air conditioning system | |
CN106440072B (en) | High-efficient unit formula air conditioner of many evaporating temperature | |
CN214665323U (en) | Novel refrigerating system containing phase change energy storage device | |
CN211854512U (en) | Structure for preventing frequent shutdown defrosting and air conditioner | |
CN109579357B (en) | Multi-online heat pump system with efficient heat recovery function and control method | |
CN110243098A (en) | A kind of special air-conditioning units using heat exchange of heat pipe as indoor heat exchanger | |
CN210463633U (en) | Special air conditioner using heat pipe heat exchanger as indoor heat exchanger | |
JPH01277146A (en) | Air-conditioning equipment | |
CN204880471U (en) | Heat pump air conditioning unit | |
CN219140968U (en) | High-temperature-resistant kitchen air conditioner refrigerating system | |
CN215260559U (en) | Carbon dioxide heat pump heating system with high backwater and small temperature difference | |
CN113803895B (en) | Module combination system for fresh air multistage refrigeration | |
CN217876200U (en) | High-efficiency industrial cooling and dehumidifying unit with heat recovery and evaporative cooling functions | |
CN220689309U (en) | Three-tube multifunctional refrigerating device with heat recovery function | |
CN115615057B (en) | Refrigerating system and reverse-position operation refrigerating method | |
CN212806126U (en) | Ultra-fast gas cooling automatic cascade refrigeration system for processing equipment | |
CN216048475U (en) | Four-pipe air source heat pump unit with variable-speed compressor | |
JPH03294750A (en) | Freezing apparatus | |
CN211290618U (en) | Single-stage compression low-temperature refrigeration equipment |