JP2011052838A - Refrigerating air conditioning device - Google Patents

Refrigerating air conditioning device Download PDF

Info

Publication number
JP2011052838A
JP2011052838A JP2009199308A JP2009199308A JP2011052838A JP 2011052838 A JP2011052838 A JP 2011052838A JP 2009199308 A JP2009199308 A JP 2009199308A JP 2009199308 A JP2009199308 A JP 2009199308A JP 2011052838 A JP2011052838 A JP 2011052838A
Authority
JP
Japan
Prior art keywords
load
side heat
temperature
heat exchanger
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009199308A
Other languages
Japanese (ja)
Other versions
JP5283589B2 (en
Inventor
Hisahira Kato
央平 加藤
Takashi Okazaki
多佳志 岡崎
Makoto Saito
信 齊藤
Yoshihiro Sumida
嘉裕 隅田
Takuya Ito
拓也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009199308A priority Critical patent/JP5283589B2/en
Publication of JP2011052838A publication Critical patent/JP2011052838A/en
Application granted granted Critical
Publication of JP5283589B2 publication Critical patent/JP5283589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To properly control the operating capacity of a compressor, the degree of supercooling at an outlet of a condenser, and the degree of superheating at an outlet of an evaporator, according to operating conditions. <P>SOLUTION: This refrigerating air-conditioning device is composed of a plurality of refrigerating cycles 2, utilizes a liquid medium on a heat source side and a load side, and supplies cold/heat to the load side by heating/cooling a heat medium. A total value of the compressor operating capacities of the refrigerating cycles, and the degree of supercooling of the outlet of the condenser and the degree of superheating of the outlet of the evaporator, are controlled to keep temperature difference between a load-side heat medium inflow temperature of a load-side heat exchanger of the refrigerating cycle positioned in the most upstream to a flow channel of the load-side heat medium and a load-side heat medium outflow temperature of the load-side heat exchanger of the refrigerating cycle positioned in the most downstream to the flow channel of the load-side heat medium, at a prescribed value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍空調装置、特に水・ブラインなどの液媒体を熱源側および負荷側で利用し、熱媒体を加熱・冷却することにより冷温熱を負荷側に供給する冷凍空調装置に関する。   The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner that uses liquid media such as water and brine on a heat source side and a load side, and supplies cold and hot heat to the load side by heating and cooling the heat medium.

従来、この種の装置として、例えば圧縮機、凝縮器、加熱熱交換器、膨張機構、蒸発器からなる冷凍サイクルで構成されるヒートポンプ給湯機を2台備え、2台のヒートポンプ給湯機の凝縮器を被加熱流体の回路に対して直列に接続することで、被加熱流体の流れ方向に沿って凝縮温度が段階的に上昇していくようにしたものが提案されている(例えば、特許文献1参照)。
このようなものにおいては、上流側ヒートポンプ給湯機の凝縮温度を下げることができるため、単一の冷凍サイクルで構成されているヒートポンプ給湯機に比べて高い効率で運転できるとされている。
Conventionally, as this type of apparatus, for example, two heat pump water heaters configured with a refrigeration cycle comprising a compressor, a condenser, a heating heat exchanger, an expansion mechanism, and an evaporator are provided, and the condensers of two heat pump water heaters Has been proposed in which the condensing temperature is increased stepwise along the flow direction of the fluid to be heated (see, for example, Patent Document 1). reference).
In such a thing, since the condensation temperature of an upstream heat pump water heater can be lowered | hung, it is supposed that it can drive | operate with high efficiency compared with the heat pump water heater comprised with the single refrigerating cycle.

また、冷温熱を供給する冷凍空調装置の例として、圧縮機、凝縮器、膨張弁、蒸発器からなる冷凍サイクルを複数台設け、各蒸発器は被冷却流体の回路に対して直列に接続することで、被冷却流体の流れ方向に沿って各冷凍サイクルの蒸発温度が段階的に低下していくようにしたものが提案されている(例えば、特許文献2参照)。
このようなものにおいては、被冷却流体として例えば温度差の大きい冷水を段階的に冷却する場合に、各冷凍サイクルの蒸発器の蒸発温度を冷水の流れ方向から順に低く設定できるため、高い効率で運転できるとされている。
In addition, as an example of a refrigeration air conditioner that supplies cold and hot heat, a plurality of refrigeration cycles including a compressor, a condenser, an expansion valve, and an evaporator are provided, and each evaporator is connected in series to a circuit of a fluid to be cooled. Thus, there has been proposed one in which the evaporation temperature of each refrigeration cycle is lowered stepwise along the flow direction of the fluid to be cooled (see, for example, Patent Document 2).
In such a case, for example, when chilled water having a large temperature difference is cooled in stages as the fluid to be cooled, the evaporation temperature of the evaporator of each refrigeration cycle can be set in order from the flow direction of the chilled water. It is said that it can drive.

特許第3987990号公報(図5,図6)Japanese Patent No. 3987990 (FIGS. 5 and 6) 特開2006−329601号公報(図1)JP 2006-329601 A (FIG. 1)

しかしながら、2台のヒートポンプ給湯機の凝縮器を被加熱流体の回路に対して直列に接続することで、被加熱流体の流れ方向に沿って凝縮温度が段階的に上昇していくようにしたものにあっては、各ヒートポンプ給湯機の圧縮機運転容量をどのように制御すれば高効率な運転が実現できるか、また熱源となる蒸発器側の熱媒体が直列に接続された場合はどうなのか、ということについての考察がなく、負荷や運転条件に応じた高効率な運転を実現できないのが実状であった。   However, by connecting the condensers of the two heat pump water heaters in series with the circuit of the fluid to be heated, the condensation temperature is increased stepwise along the flow direction of the fluid to be heated. If so, how can the compressor operating capacity of each heat pump water heater be controlled to achieve high-efficiency operation, and what if the evaporator-side heat medium that is the heat source is connected in series? In fact, there is no consideration about the fact that it is impossible to realize high-efficiency operation according to the load and operating conditions.

また、複数の冷凍サイクルの蒸発器を被冷却流体の回路に対して直列に接続することで、被冷却流体の流れ方向に沿って各冷凍サイクルの蒸発温度が段階的に低下していくようにしたものにあっては、各冷凍サイクルの圧縮機の容量を、外気温度や冷媒圧力に基づいてインバーターにより制御するとしているが、蒸発器出口過熱度等の運転条件に対して各圧縮機の容量をどのように制御すれば高効率な運転を実現できるかについての考察がなく、負荷や運転条件に応じた高効率な運転を実現できないのが実状であった。   In addition, by connecting the evaporators of a plurality of refrigeration cycles in series with the circuit of the fluid to be cooled, the evaporation temperature of each refrigeration cycle decreases stepwise along the flow direction of the fluid to be cooled. The compressor capacity of each refrigeration cycle is controlled by an inverter based on the outside air temperature and the refrigerant pressure, but the capacity of each compressor with respect to operating conditions such as evaporator outlet superheat However, there is no consideration on how to control high-efficiency operation, and the fact is that high-efficiency operation according to load and operating conditions cannot be realized.

本発明は、以上の点に鑑み、複数の冷凍サイクルで構成され、液媒体を熱源側および負荷側で利用し、熱媒体を加熱・冷却することにより冷温熱を負荷側に供給する冷凍空調装置において、運転条件に対応して圧縮機の運転容量制御や凝縮器出口過冷却度および蒸発器出口過熱度の制御を適切に行えるようにすることを目的とする。   In view of the above, the present invention is a refrigeration air conditioner configured by a plurality of refrigeration cycles, using a liquid medium on a heat source side and a load side, and heating / cooling the heat medium to supply cold / hot heat to the load side. Therefore, it is an object of the present invention to appropriately control the operation capacity of the compressor and the degree of supercooling of the condenser outlet and the degree of superheat of the evaporator outlet in accordance with the operating conditions.

本発明に係る冷凍空調装置は、運転容量が可変な圧縮機と、熱源側熱交換器と、減圧装置と、負荷側熱交換器とを環状に接続して構成される冷凍サイクルを複数備え、各冷凍サイクルの熱源側熱交換器は熱源側熱媒体へ放熱または吸熱するとともに、熱源側熱媒体の流路が各冷凍サイクルの熱源側熱交換器を直列に流れるように構成され、各冷凍サイクルの負荷側熱交換器は負荷側熱媒体を冷却または加熱し、冷温熱を供給するとともに、負荷側熱媒体の流路が各冷凍サイクルの負荷側熱交換器を直列に流れるように構成され、負荷側熱媒体の流路に対して最上流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流入温度と負荷側熱媒体の流路に対して最下流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流出温度を検出する熱媒体温度検出手段と、前記負荷側熱媒体流入温度と前記負荷側熱媒体流出温度の温度差が所定値となるように、各冷凍サイクルの圧縮機運転容量の合計値を制御する制御装置と、を備えたものである。   The refrigeration air conditioner according to the present invention includes a plurality of refrigeration cycles configured by annularly connecting a compressor having a variable operating capacity, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger, The heat source side heat exchanger of each refrigeration cycle is configured to radiate or absorb heat to the heat source side heat medium, and the flow path of the heat source side heat medium is configured to flow in series through the heat source side heat exchanger of each refrigeration cycle. The load-side heat exchanger is configured to cool or heat the load-side heat medium and supply cold / heat, and the flow path of the load-side heat medium flows in series through the load-side heat exchanger of each refrigeration cycle, The load-side heat medium inflow temperature of the load-side heat exchanger of the refrigeration cycle positioned upstream with respect to the flow path of the load-side heat medium and the load of the refrigeration cycle positioned downstream of the load-side heat medium flow path Detects the load side heat medium outflow temperature of the side heat exchanger And a control device that controls the total value of the compressor operating capacity of each refrigeration cycle so that the temperature difference between the load-side heat medium inflow temperature and the load-side heat medium outflow temperature becomes a predetermined value. And.

本発明の冷凍空調装置によれば、負荷側熱媒体の流路に対して最上流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流入温度と、負荷側熱媒体の流路に対して最下流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流出温度と、の温度差が所定値となるように、各冷凍サイクルの圧縮機運転容量の合計値を制御するので、複数の冷凍サイクルを備えていても簡易な熱媒体温度検出手段の構成で、負荷側熱媒体流出温度を冷凍空調装置の使用者が設定する目標水温に調整することができ、かつ各冷凍サイクルがバランスよく熱負荷をまかなうことができ、装置全体の運転効率が高まり、高効率な冷凍空調装置を得ることができる。   According to the refrigerating and air-conditioning apparatus of the present invention, the load-side heat medium inflow temperature of the load-side heat exchanger of the refrigeration cycle located in the uppermost stream with respect to the flow path of the load-side heat medium and the flow path of the load-side heat medium On the other hand, since the total value of the compressor operating capacity of each refrigeration cycle is controlled so that the temperature difference between the load side heat medium outflow temperature of the load side heat exchanger of the refrigeration cycle located on the most downstream side becomes a predetermined value. Even with a plurality of refrigeration cycles, the load side heat medium outflow temperature can be adjusted to the target water temperature set by the user of the refrigeration air conditioner with a simple heat medium temperature detecting means, and each refrigeration cycle However, it is possible to cover the heat load in a well-balanced manner, increasing the operating efficiency of the entire apparatus and obtaining a highly efficient refrigeration air conditioner.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置のモリエル線図である。It is a Mollier diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置の熱源側水熱交換器および負荷側水熱交換器の温度状態を示す図である。It is a figure which shows the temperature state of the heat-source side water heat exchanger and load side water heat exchanger of the refrigerating air-conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the refrigerating air-conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の制御特性を示す図である。It is a figure which shows the control characteristic of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の制御特性を示す図である。It is a figure which shows the control characteristic of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の制御特性を示す図である。It is a figure which shows the control characteristic of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置の回路図である。It is a circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置と従来の冷凍サイクルとの違いを示す図である。It is a figure which shows the difference with the refrigeration air conditioning apparatus which concerns on Embodiment 1 of this invention, and the conventional refrigeration cycle. 本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置の特性を示す図である。It is a figure which shows the characteristic of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍空調装置のモリエル線図である。It is a Mollier diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍空調装置の蒸発器出口過熱度とCOPの関係を示す図である。It is a figure which shows the relationship between the evaporator exit superheat degree and COP of the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍空調装置で用いる内部熱交換器の形態を示す図である。It is a figure which shows the form of the internal heat exchanger used with the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.

実施の形態1.
以下、本発明の実施の形態1を図1に示す。図1は本発明の冷凍空調装置の冷媒回路図である。冷凍空調装置である熱源機1内には、同一回路構成の冷凍サイクル2a,2bが搭載されている。冷凍サイクル2aには、圧縮機3a、熱源側熱交換器である熱源側水熱交換器4a、減圧装置である膨張弁5a、負荷側熱交換器である負荷側水熱交換器6aが内蔵され、図示されるように環状に接続され冷媒回路を構成する。また、冷凍サイクル2bにおいても、同様にして、圧縮機3b、熱源側水熱交換器4b、膨張弁5b、負荷側水熱交換器5bが内蔵されており、図示されるように環状に接続され冷媒回路を構成する。なお、以下の説明においては、例えば冷凍サイクル2a及び2bを総称するときには冷凍サイクル2と称するものとし、このことは他の機器および他の実施の形態においても同様とし、圧縮機3、熱源側水熱交換器4、膨張弁5、負荷側水熱交換器6とそれぞれ称するものとする。
Embodiment 1 FIG.
A first embodiment of the present invention is shown in FIG. FIG. 1 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus of the present invention. A refrigeration cycle 2a, 2b having the same circuit configuration is mounted in a heat source machine 1 which is a refrigeration air conditioner. The refrigeration cycle 2a includes a compressor 3a, a heat source side water heat exchanger 4a that is a heat source side heat exchanger, an expansion valve 5a that is a pressure reducing device, and a load side water heat exchanger 6a that is a load side heat exchanger. As shown in the figure, the refrigerant circuit is configured in an annular connection. Similarly, the refrigeration cycle 2b also includes a compressor 3b, a heat source side water heat exchanger 4b, an expansion valve 5b, and a load side water heat exchanger 5b, which are connected in an annular shape as shown. A refrigerant circuit is configured. In the following description, for example, when the refrigeration cycles 2a and 2b are collectively referred to as the refrigeration cycle 2, the same applies to other devices and other embodiments. The heat exchanger 4, the expansion valve 5, and the load-side water heat exchanger 6 are called respectively.

冷凍サイクル2を循環する冷媒は、擬似共沸混合冷媒であるR410Aが用いられている。圧縮機3は、インバーター(図示しない)により回転数を制御することで容量制御されるもので、例えばDCブラシレスモーターを搭載したスクロール圧縮機で構成されている。熱源側水熱交換器4および負荷側水熱交換器6は、プレート式熱交換器から構成され、熱媒体と冷媒との間で熱交換を行う。膨張弁5は、開度が可変に制御される電子膨張弁から構成される。冷媒回路は、環状に接続され、圧縮機3、熱源側水熱交換器4、膨張弁5、負荷側水熱交換器6の順で冷媒が流れる。熱源側水熱交換器4と負荷側水熱交換器6は、それぞれを流通する熱媒体と冷媒とが対向流的に流れるように、熱媒体の流路を構成している。ここで、熱媒体としては、水やブラインなどがある。   As the refrigerant circulating in the refrigeration cycle 2, R410A which is a pseudo azeotropic refrigerant mixture is used. The compressor 3 is capacity-controlled by controlling the number of revolutions by an inverter (not shown), and is constituted by, for example, a scroll compressor equipped with a DC brushless motor. The heat source side water heat exchanger 4 and the load side water heat exchanger 6 are configured by plate heat exchangers, and perform heat exchange between the heat medium and the refrigerant. The expansion valve 5 is composed of an electronic expansion valve whose opening degree is variably controlled. The refrigerant circuit is connected in a ring shape, and the refrigerant flows in the order of the compressor 3, the heat source side water heat exchanger 4, the expansion valve 5, and the load side water heat exchanger 6. The heat-source-side water heat exchanger 4 and the load-side water-heat exchanger 6 constitute a heat medium flow path so that the heat medium and the refrigerant that circulate each flow countercurrently. Here, examples of the heat medium include water and brine.

冷凍サイクル2には、冷媒圧力検出器23a,23cが圧縮機3の吐出側に、冷媒圧力検出器23b,23dが圧縮機3の吸入側に設けられており、それぞれの設置場所の冷媒圧力を計測する。また、負荷側水熱交換器6の負荷側熱媒体流入側に熱媒体温度検出器21a,21cを、負荷側水熱交換器6の負荷側熱媒体流出側に熱媒体温度検出器21b,21dを設けており、それぞれ設定場所の熱媒体温度を検出する。さらに、熱源側水熱交換器5の熱源側熱媒体流入側に熱媒体温度検出器21e,21gを、熱源側水熱交換器5の熱源側熱媒体流出側に熱媒体温度検出器21f,21hを設けており、それぞれ設定場所の熱媒体温度を検出する。さらにまた、圧縮機3の吐出側に冷媒温度検出器22a,22cを、圧縮機3の吸入側に冷媒温度検出器22b,22dを、熱源側水熱交換器4の冷媒流出側に冷媒温度検出器22e,22fを設けており、それぞれ設置場所の冷媒温度を検出する。なお、以下の説明においては、熱媒体温度検出器を総称するときには熱媒体温度検出器21と称し、冷媒温度検出器を総称するときには冷媒温度検出器22、冷媒圧力検出器を総称するときには冷媒圧力検出器23とそれぞれ称するものとする。   In the refrigeration cycle 2, refrigerant pressure detectors 23 a and 23 c are provided on the discharge side of the compressor 3, and refrigerant pressure detectors 23 b and 23 d are provided on the suction side of the compressor 3. measure. Further, the heat medium temperature detectors 21 a and 21 c are disposed on the load side heat medium inflow side of the load side water heat exchanger 6, and the heat medium temperature detectors 21 b and 21 d are disposed on the load side heat medium outflow side of the load side water heat exchanger 6. Are provided to detect the temperature of the heat medium at each set location. Furthermore, the heat medium temperature detectors 21e and 21g are arranged on the heat source side heat medium inflow side of the heat source side water heat exchanger 5, and the heat medium temperature detectors 21f and 21h are arranged on the heat source side heat medium outflow side of the heat source side water heat exchanger 5. Are provided to detect the temperature of the heat medium at each set location. Furthermore, refrigerant temperature detectors 22a and 22c are provided on the discharge side of the compressor 3, refrigerant temperature detectors 22b and 22d are provided on the suction side of the compressor 3, and refrigerant temperature detection is provided on the refrigerant outflow side of the heat source side water heat exchanger 4. Containers 22e and 22f are provided to detect the refrigerant temperature at the installation location. In the following description, the heat medium temperature detector is generically referred to as the heat medium temperature detector 21, the refrigerant temperature detector is generically referred to as the refrigerant temperature detector 22, and the refrigerant pressure detector is generically referred to as the refrigerant pressure. Each detector will be referred to as a detector 23.

冷凍サイクル2a,2bは、負荷側水熱交換器6が負荷側熱媒体回路51aに対して直列となるように構成され、また熱源側水熱交換器4が熱源側熱媒体回路51bに対して直列になるように構成されている。さらに、負荷側熱媒体回路51aは、流入口が冷凍サイクル2a側、流出口が冷凍サイクル2b側となるように配置され、また熱源側熱媒体回路51bは、流入口が冷凍サイクル2b側、流出口が冷凍サイクル2a側となるように、それぞれ構成されている。   The refrigeration cycles 2a and 2b are configured such that the load-side water heat exchanger 6 is in series with the load-side heat medium circuit 51a, and the heat-source-side water heat exchanger 4 is connected to the heat-source-side heat medium circuit 51b. It is configured to be in series. Further, the load-side heat medium circuit 51a is arranged so that the inlet is on the refrigeration cycle 2a side and the outlet is on the refrigeration cycle 2b side, and the heat source-side heat medium circuit 51b is on the refrigeration cycle 2b side. Each outlet is configured to be on the refrigeration cycle 2a side.

次に、この冷凍空調装置での運転動作について図2および図3を用いて説明する。   Next, the operation | movement operation | movement in this refrigeration air conditioner is demonstrated using FIG. 2 and FIG.

まず、冷媒回路動作について説明するが、冷凍サイクルの動作は冷凍サイクル2a,2bとも同様なので、代表として冷凍サイクル2aについて説明する。圧縮機3aから吐出された高温高圧のガス冷媒(A1)は、熱源側水熱交換器4aに流入し、熱源側熱媒体である冷却水へ放熱することで凝縮、液化する(B1)。熱源側水熱交換器4aを流出した高圧の液冷媒は膨張弁5aで減圧され低圧二相冷媒となり、負荷側水熱交換器6aに流入する(C1)。負荷側水熱交換器6aでは、負荷側熱媒体である冷水から吸熱することで蒸発、ガス化し(D1)、水を冷却し冷水を生成する。負荷側水熱交換器6aを流出した低圧ガス冷媒は圧縮機3aへ吸引される。   First, the refrigerant circuit operation will be described. Since the operation of the refrigeration cycle is the same as that of the refrigeration cycles 2a and 2b, the refrigeration cycle 2a will be described as a representative. The high-temperature and high-pressure gas refrigerant (A1) discharged from the compressor 3a flows into the heat source side water heat exchanger 4a, and is condensed and liquefied by releasing heat to the cooling water that is the heat source side heat medium (B1). The high-pressure liquid refrigerant that has flowed out of the heat-source-side water heat exchanger 4a is decompressed by the expansion valve 5a, becomes a low-pressure two-phase refrigerant, and flows into the load-side water heat exchanger 6a (C1). The load-side water heat exchanger 6a evaporates and gasifies by absorbing heat from the cold water that is the load-side heat medium (D1), cools the water, and generates cold water. The low-pressure gas refrigerant that has flowed out of the load-side water heat exchanger 6a is sucked into the compressor 3a.

次に、熱源側熱媒体回路51bと負荷側熱媒体回路51aの動作について説明する。冷却水と冷水は水ポンプ31b,31aで搬送される。   Next, operations of the heat source side heat medium circuit 51b and the load side heat medium circuit 51a will be described. Cooling water and cold water are conveyed by water pumps 31b and 31a.

まず、熱源側熱媒体回路51bの動作について説明する。例えば、熱源側熱媒体である35℃の冷却水は、冷却塔などの熱源側装置(図示しない)に流入し、例えば30℃まで低下した後、熱源機1、つまり冷凍サイクル2bの熱源側水熱交換器4bに流入する。熱源機1に流入した冷却水は、熱源側水熱交換器6bの冷媒によって加熱され温度が上昇し、例えば32.5℃となって流出し、次いで冷凍サイクル2aの熱源側水熱交換器4aへ流入する。ここでも冷却水は冷媒によって加熱され、さらに温度が上昇し、例えば35℃となって熱源機1を流出する。その後、冷却水は再び熱源側装置に流入する。冷凍サイクル2の凝縮温度は熱源側流路下流ほど高く、熱源側熱媒体回路に対して上流に位置するほど冷凍サイクル2bの凝縮温度は低くなる。   First, the operation of the heat source side heat medium circuit 51b will be described. For example, the cooling water at 35 ° C. that is the heat source side heat medium flows into a heat source side device (not shown) such as a cooling tower and drops to 30 ° C., for example, and then the heat source side water of the heat source unit 1, that is, the refrigeration cycle 2b. It flows into the heat exchanger 4b. The cooling water that has flowed into the heat source unit 1 is heated by the refrigerant of the heat source side water heat exchanger 6b and the temperature rises, for example, flows out to 32.5 ° C., and then flows out, and then the heat source side water heat exchanger 4a of the refrigeration cycle 2a. Flow into. Again, the cooling water is heated by the refrigerant, and the temperature further rises, for example, 35 ° C. and flows out of the heat source unit 1. Thereafter, the cooling water again flows into the heat source side device. The condensation temperature of the refrigeration cycle 2 is higher at the downstream of the heat source side flow path, and the condensation temperature of the refrigeration cycle 2b is lower as it is positioned upstream of the heat source side heat medium circuit.

次に、負荷側熱媒体回路51aの動作について説明する。例えば、負荷側熱媒体である7℃の冷水は、ファンコイルなどの負荷側装置(図示しない)に流入し、例えば12℃まで上昇した後、熱源機1、具体的には冷凍サイクル2aの負荷側水熱交換器6aに流入する。熱源機1に流入した冷水は、負荷側水熱交換器6aの冷媒によって冷却され温度が低下し、例えば9.5℃となって流出し、次いで冷凍サイクル2bの負荷側水熱交換器6bへ流入する。ここでも冷水は冷媒によって冷却され、さらに温度が低下し、例えば7℃となって熱源機1を流出する。その後、冷水は再び負荷側装置に流入する。このとき冷凍サイクル2の蒸発温度は、負荷側流路下流ほど低くなる。   Next, the operation of the load side heat medium circuit 51a will be described. For example, cold water of 7 ° C., which is a load-side heat medium, flows into a load-side device (not shown) such as a fan coil and rises to, for example, 12 ° C., and then the load of the heat source unit 1, specifically the refrigeration cycle 2a. It flows into the side water heat exchanger 6a. The cold water that has flowed into the heat source unit 1 is cooled by the refrigerant of the load-side water heat exchanger 6a and the temperature thereof drops, for example, becomes 9.5 ° C., then flows out, and then flows to the load-side water heat exchanger 6b of the refrigeration cycle 2b. Inflow. Again, the cold water is cooled by the refrigerant, and the temperature further decreases, for example, reaches 7 ° C. and flows out of the heat source unit 1. Thereafter, the cold water flows into the load side device again. At this time, the evaporating temperature of the refrigeration cycle 2 becomes lower as the downstream side of the load side flow path.

次に、この冷凍空調装置の制御動作について図4のフローチャートに基づき説明する。なお、冷凍サイクル2の動作については各冷凍サイクル2a,2bで共通なので、ここでも主に冷凍サイクル2aについて説明する。まず、熱源機1が運転を開始すると、制御装置41によって初期設定が行われる。すなわち、冷凍空調装置の使用者によって設定される冷水の目標出口水温、熱源側装置および負荷側装置のそれぞれの水ポンプ31b,31aの流量、熱源側装置から熱源機1へ供給される熱媒体温度検出器21gで検出した冷却水入口水温、負荷側装置から熱源機1へ供給される熱媒体温度検出器21aで検出した冷水入口水温などから、圧縮機3aの回転数、膨張弁5aの開度が設定される(ステップS1)。この状態で運転開始後、各アクチュエーターは運転状態に応じて自動的に制御され、圧縮機3aの回転数は、固定値もしくは冷水入口温度と目標値との差に基づいて決められ、膨張弁開度は、熱源入口水温と冷水入口水温に基づいて定められる。   Next, the control operation of this refrigeration air conditioner will be described based on the flowchart of FIG. Since the operation of the refrigeration cycle 2 is common to the refrigeration cycles 2a and 2b, only the refrigeration cycle 2a will be described here. First, when the heat source device 1 starts operation, the control device 41 performs initial setting. That is, the target outlet water temperature of cold water set by the user of the refrigeration air conditioner, the flow rates of the water pumps 31b and 31a of the heat source side device and the load side device, and the heat medium temperature supplied from the heat source side device to the heat source unit 1 From the cooling water inlet water temperature detected by the detector 21g, the cold water inlet water temperature detected by the heat medium temperature detector 21a supplied from the load side device to the heat source unit 1, and the like, the rotational speed of the compressor 3a and the opening of the expansion valve 5a Is set (step S1). After starting operation in this state, each actuator is automatically controlled according to the operation state, and the rotation speed of the compressor 3a is determined based on a fixed value or a difference between the cold water inlet temperature and the target value, and the expansion valve is opened. The degree is determined based on the heat source inlet water temperature and the cold water inlet water temperature.

圧縮機3の合計運転容量は、熱媒体温度検出器21aで検出される冷水入口水温と、負荷側装置で設定される目標値の差と、各冷凍サイクル2a,2bの負荷側水熱交換器容量に応じて決定される。例えば、負荷側水熱交換器6aと6bの容量が同じ場合、負荷側水熱交換器6で処理する熱量の半分ずつを各冷凍サイクル2a,2bに振り分けてそれぞれ処理すれば良いので、圧縮機3aと圧縮機3bの運転容量はそれぞれ等しくなるように設定される。   The total operating capacity of the compressor 3 is the difference between the cold water inlet water temperature detected by the heat medium temperature detector 21a, the target value set by the load side device, and the load side water heat exchangers of the refrigeration cycles 2a and 2b. It is determined according to the capacity. For example, if the load-side water heat exchangers 6a and 6b have the same capacity, half of the amount of heat to be processed by the load-side water heat exchanger 6 may be distributed to the refrigeration cycles 2a and 2b and processed. The operation capacities of 3a and compressor 3b are set to be equal to each other.

このとき、圧縮機3の合計運転容量が負荷に対して大きければ、冷水出口水温が低下し、逆に、合計運転容量が負荷に対して小さければ、冷水出口水温は上昇する。したがって、この冷水出口水温をみて、圧縮機3の合計運転容量を制御する。   At this time, if the total operating capacity of the compressor 3 is larger than the load, the chilled water outlet water temperature decreases, and conversely, if the total operating capacity is smaller than the load, the chilled water outlet water temperature increases. Therefore, the total operating capacity of the compressor 3 is controlled based on the cold water outlet water temperature.

すなわち、冷水出口水温が設定値(設定温度)であるか否かをみて(ステップS2)、冷水出口水温が設定温度であると判断されれば、処理をステップS6に移す。また、ステップS2にて冷水出口水温が設定値でないと判断されれば、次に冷水出口水温が設定温度よりも低いか否かをみて(ステップS3)、冷水出口水温が設定温度よりも低いと判断されれば、合計圧縮機運転容量を減少させてから(ステップS4)、処理をステップS6に移す。   That is, it is determined whether or not the cold water outlet water temperature is a set value (set temperature) (step S2). If it is determined that the cold water outlet water temperature is the set temperature, the process proceeds to step S6. If it is determined in step S2 that the chilled water outlet water temperature is not the set value, then it is checked whether or not the chilled water outlet water temperature is lower than the set temperature (step S3), and if the chilled water outlet water temperature is lower than the set temperature. If it is determined, the total compressor operating capacity is reduced (step S4), and then the process proceeds to step S6.

また、ステップS3にて冷水出口水温は設定温度より低くないと判断されれば、冷水出口水温は設定温度よりも高いと断定して合計圧縮機運転容量を増加させてから(ステップS5)、処理をステップS6に移す。   Further, if it is determined in step S3 that the chilled water outlet water temperature is not lower than the set temperature, it is determined that the chilled water outlet water temperature is higher than the set temperature and the total compressor operating capacity is increased (step S5), and then the processing is performed. To step S6.

圧縮機3a,3bの運転容量は回転数の増減で変化させ、運転容量を増加させる場合は回転数を増加させ、運転容量を減少させる場合は回転数を減少させる。これにより、目標とする運転容量を実現する。   The operating capacities of the compressors 3a and 3b are changed by increasing or decreasing the rotational speed, the rotational speed is increased when the operating capacity is increased, and the rotational speed is decreased when the operating capacity is decreased. Thereby, the target operating capacity is realized.

ステップS6では冷凍サイクル2の圧力検出器23aもしくは23cで検出した圧力から換算した凝縮温度が熱源機1の運転範囲内にあるか否か判断する。そして、ステップS6にて凝縮温度が熱源機1の運転範囲内にあると判断されれば、処理をステップS10に移す。また、ステップS6にて凝縮温度が熱源機1の運転範囲内にないと判断されれば、次に凝縮温度は上限値を超えたか否かをみて(ステップS7)、凝縮温度が上限値を超えたと判断されれば、該当する冷凍サイクル2の圧縮機3の運転容量を減じ、それ以外の冷凍サイクル2の圧縮機3の運転容量を増加させてから(ステップS8)、処理をステップS10に移す。   In step S6, it is determined whether or not the condensation temperature converted from the pressure detected by the pressure detector 23a or 23c of the refrigeration cycle 2 is within the operation range of the heat source unit 1. If it is determined in step S6 that the condensation temperature is within the operating range of the heat source unit 1, the process proceeds to step S10. If it is determined in step S6 that the condensing temperature is not within the operating range of the heat source unit 1, then it is checked whether the condensing temperature exceeds the upper limit (step S7), and the condensing temperature exceeds the upper limit. If it is determined that the operating capacity of the compressor 3 of the corresponding refrigeration cycle 2 is decreased and the operating capacity of the compressor 3 of the other refrigeration cycle 2 is increased (step S8), the process proceeds to step S10. .

ステップS7にて凝縮温度は上限値を超えていないと判断されれば、凝縮温度は下限値以下であると断定して該当する冷凍サイクル2の圧縮機3の運転容量を増加させ、それ以外の冷凍サイクル2の圧縮機3の運転容量を減少させてから(ステップS9)、処理をステップS10に移す。   If it is determined in step S7 that the condensing temperature does not exceed the upper limit value, it is determined that the condensing temperature is lower than the lower limit value, and the operating capacity of the compressor 3 of the corresponding refrigeration cycle 2 is increased. After reducing the operating capacity of the compressor 3 of the refrigeration cycle 2 (step S9), the process proceeds to step S10.

これにより、合計圧縮機運転容量を一定としながら、凝縮温度の上昇を抑制することができる。   Thereby, it is possible to suppress an increase in the condensation temperature while keeping the total compressor operating capacity constant.

ステップS10では蒸発器として作用する負荷側水熱交換器6の出口の冷媒過熱度SHを演算し、冷媒過熱度SHが目標とする設定値(例えば3℃)であるか否かを判断する。ここで、負荷側水熱交換器6の出口の冷媒過熱度SHは、冷媒温度検出器22bで検出した値と、圧縮機3の吸入側の圧力検出器23bで検出した値から飽和ガス温度を演算した値と、の差で演算される値を用いる。膨張弁5の開度が小さいと、負荷側水熱交換器6を流れる冷媒流量が減るため、負荷側水熱交換器出口の冷媒過熱度SHが大きくなり、逆に膨張弁5の開度が大きいと、負荷側水熱交換器出口の冷媒過熱度SHは小さくなる。そしてステップS10にて負荷側水熱交換器出口の冷媒過熱度SH(以下、吸入SHという)が設定値であると判断されれば、ステップS2に戻る。   In step S10, the refrigerant superheat degree SH at the outlet of the load-side water heat exchanger 6 acting as an evaporator is calculated, and it is determined whether or not the refrigerant superheat degree SH is a target set value (eg, 3 ° C.). Here, the refrigerant superheat degree SH at the outlet of the load-side water heat exchanger 6 is obtained by calculating the saturation gas temperature from the value detected by the refrigerant temperature detector 22b and the value detected by the pressure detector 23b on the suction side of the compressor 3. A value calculated by the difference between the calculated value and the calculated value is used. If the opening degree of the expansion valve 5 is small, the flow rate of the refrigerant flowing through the load-side water heat exchanger 6 decreases, so the refrigerant superheat degree SH at the outlet of the load-side water heat exchanger increases, and conversely the opening degree of the expansion valve 5 increases. If larger, the refrigerant superheat degree SH at the outlet of the load side water heat exchanger becomes smaller. If it is determined in step S10 that the refrigerant superheat degree SH (hereinafter referred to as intake SH) at the outlet of the load-side water heat exchanger is a set value, the process returns to step S2.

また、ステップS10にて吸入SHが設定値(3℃)でないと判断されれば、次に吸入SHは設定値(3℃)を超えたか否かをみて(ステップS11)、吸入SHが設定値(3℃)を超えたと判断されれば、膨張弁5の開度を大きくしてから(ステップS12)、ステップS2に戻る。   If it is determined in step S10 that the inhalation SH is not the set value (3 ° C.), it is next determined whether or not the inhalation SH has exceeded the set value (3 ° C.) (step S11). If it is determined that the temperature has exceeded (3 ° C.), the opening degree of the expansion valve 5 is increased (step S12), and the process returns to step S2.

また、ステップS11にて吸入SHが設定値(3℃)を超えていないと判断されれば、膨張弁5の開度を小さくしてから(ステップS13)、ステップS2に戻る。   If it is determined in step S11 that the suction SH does not exceed the set value (3 ° C.), the opening of the expansion valve 5 is reduced (step S13), and the process returns to step S2.

これにより、目標とする負荷側水熱交換器出口の冷媒過熱度SH(吸入SH)を実現することができる。   Thereby, the refrigerant | coolant superheat degree SH (suction | inhalation SH) of the target load side water heat exchanger exit is realizable.

次に、圧縮機3の合計容量(合計圧縮機運転容量)、圧縮機3a,3bの運転容量と運転効率の関係について図5に基づき説明する。図5は冷凍サイクル2a,2bが同じ仕様、構成であり、熱源機1が負荷側熱媒体を冷却する運転を行ったときの特性を示した図である。図の横軸は圧縮機3aと3bの容量比を示す。圧縮機3aと3bの容量が一致する場合、圧縮機容量比は100%となる。COPとは熱源機1の運転効率を示し、熱源機1の冷却能力(=負荷側水熱交換器2aと2bの能力の合計値)と、熱源機1の合計入力(圧縮機3aと3bおよびアクチュエーター、制御装置41の各電力の合計値)との比を示す。COP比は、圧縮機容量比が100%のときのCOPを基準としたCOP比率である。圧縮機回転数比は、圧縮機容量比100%のときの圧縮機3a,3bの回転数を基準とした場合の各圧縮機の回転数比を示す。合計容量は、圧縮機3aと3bの回転数の合計を圧縮機容量比100%のときの回転数で除した値を示す。   Next, the relationship between the total capacity of the compressor 3 (total compressor operating capacity), the operating capacity of the compressors 3a and 3b, and the operating efficiency will be described with reference to FIG. FIG. 5 is a diagram showing characteristics when the refrigeration cycles 2a and 2b have the same specifications and configuration, and the heat source apparatus 1 performs an operation of cooling the load-side heat medium. The horizontal axis of the figure shows the capacity ratio of the compressors 3a and 3b. When the capacities of the compressors 3a and 3b coincide, the compressor capacity ratio is 100%. COP indicates the operation efficiency of the heat source unit 1, the cooling capacity of the heat source unit 1 (= total value of the capacities of the load-side water heat exchangers 2a and 2b), and the total input of the heat source unit 1 (compressors 3a and 3b and The ratio of the electric power of the actuator and the control device 41). The COP ratio is a COP ratio based on the COP when the compressor capacity ratio is 100%. The compressor rotational speed ratio indicates the rotational speed ratio of each compressor based on the rotational speed of the compressors 3a and 3b when the compressor capacity ratio is 100%. The total capacity indicates a value obtained by dividing the total rotational speed of the compressors 3a and 3b by the rotational speed when the compressor capacity ratio is 100%.

図5のように圧縮機容量比が100%のときにCOP比が100%となる。つまり、圧縮機3aと3bの回転数が同一回転数のときに、運転効率が最大となる。また、圧縮機運転容量比が90〜110%の間であれば、COP比は−1%以内となり、この範囲の運転容量比とすれば、効率の高い運転が可能となる。   As shown in FIG. 5, when the compressor capacity ratio is 100%, the COP ratio is 100%. That is, the operating efficiency is maximized when the rotation speeds of the compressors 3a and 3b are the same. Further, if the compressor operating capacity ratio is between 90% and 110%, the COP ratio is within -1%. If the operating capacity ratio is within this range, highly efficient operation is possible.

図6は、本実施の形態の冷凍サイクル2a,2bの平均凝縮温度、平均蒸発温度および圧縮機運転容量比と圧縮機3a,3bの圧縮機効率の平均値の関係を示す。圧縮機効率は、凝縮温度、蒸発温度、圧縮機回転数によって決まる。ここで、圧縮機効率は、全能力に対する冷凍サイクル2aと2bの能力比を考慮した加重平均値を用いる。COP比が最大となる圧縮機容量比100%のときに平均圧縮機効率も最大となる。つまり、現在の凝縮温度、蒸発温度から平均圧縮機効率が最大となるように圧縮機運転容量比を決定すれば、効率の高い運転が行える。   FIG. 6 shows the relationship between the average condensation temperature, average evaporation temperature and compressor operating capacity ratio of the refrigeration cycles 2a and 2b of this embodiment and the average value of the compressor efficiency of the compressors 3a and 3b. The compressor efficiency is determined by the condensation temperature, evaporation temperature, and compressor speed. Here, the compressor efficiency uses a weighted average value considering the capacity ratio of the refrigeration cycles 2a and 2b with respect to the full capacity. When the compressor capacity ratio at which the COP ratio is maximized is 100%, the average compressor efficiency is also maximized. That is, if the compressor operating capacity ratio is determined so as to maximize the average compressor efficiency from the current condensing temperature and evaporation temperature, highly efficient operation can be performed.

図7は圧縮機容量比と熱源機1の冷却能力に対する冷凍サイクル2a,2bの冷却能力比の関係を示す。COP比が最大となる圧縮機容量比100%のとき、冷凍サイクル2aの冷却能力比は52.7%、冷凍サイクル2bの冷却能力比は47.3%となり、冷凍サイクル2aの冷却能力が冷凍サイクル2bよりも大きくなる。これは、図3で示したように、負荷側熱媒体回路の上流側となる冷凍サイクル2aの蒸発温度が冷凍サイクル2bよりも大きいため、冷媒流量が増加するためである。   FIG. 7 shows the relationship between the compressor capacity ratio and the cooling capacity ratio of the refrigeration cycles 2 a and 2 b with respect to the cooling capacity of the heat source apparatus 1. When the compressor capacity ratio at which the COP ratio is maximum is 100%, the cooling capacity ratio of the refrigeration cycle 2a is 52.7%, the cooling capacity ratio of the refrigeration cycle 2b is 47.3%, and the cooling capacity of the refrigeration cycle 2a is refrigeration. It becomes larger than cycle 2b. This is because the refrigerant flow rate increases because the evaporation temperature of the refrigeration cycle 2a on the upstream side of the load-side heat medium circuit is higher than that of the refrigeration cycle 2b, as shown in FIG.

また、本実施の形態では、熱源側水熱交換器4を熱源側流路に対して、負荷側水熱交換器5を負荷側流路に対してそれぞれ直列に接続している。熱交換器を直列に接続することによる効果について熱源側を例に述べる。図8は熱源機1の冷却水入口温度が30℃、出口温度が35℃である条件で、熱源側水熱交換器4が1つしかない場合(1凝縮回路)と、本実施の形態のように熱源側水熱交換器4が直列に配置されている場合(2凝縮回路)の、熱交換器での冷却水と冷媒との温度差の特性を表した図である。この場合の2凝縮回路での温度変化は図3のように表され、冷凍サイクル2bは凝縮温度CTbで、冷凍サイクル2aは凝縮温度CTaで運転され、それぞれのサイクルの冷却水と凝縮温度との温度差はΔCTb、ΔCTaとなる。例えば、各熱源側水熱交換器4での冷却水出入口温度との温度差が同じく制御される場合にはΔCTb=ΔCTaとなる。このとき熱源側水熱交換器4aの冷却水出入口温度は熱源側水熱交換器4bに比べ2.5℃高くなるので、冷凍サイクル2aの凝縮温度CTaは冷凍サイクル2bの凝縮温度CTbより2.5℃高くなる。   In the present embodiment, the heat source side water heat exchanger 4 is connected in series to the heat source side flow path, and the load side water heat exchanger 5 is connected in series to the load side flow path. The effect of connecting the heat exchangers in series will be described taking the heat source side as an example. FIG. 8 shows a condition where the cooling water inlet temperature of the heat source unit 1 is 30 ° C. and the outlet temperature is 35 ° C., and there is only one heat source side water heat exchanger 4 (one condensing circuit). It is the figure showing the characteristic of the temperature difference of the cooling water and refrigerant | coolant in a heat exchanger when the heat source side water heat exchanger 4 is arrange | positioned in series (2 condensation circuit). The temperature change in the two-condensing circuit in this case is expressed as shown in FIG. 3, the refrigeration cycle 2b is operated at the condensation temperature CTb, and the refrigeration cycle 2a is operated at the condensation temperature CTa. The temperature difference is ΔCTb and ΔCTa. For example, when the temperature difference with the cooling water inlet / outlet temperature in each heat source side water heat exchanger 4 is controlled similarly, ΔCTb = ΔCTa. At this time, since the cooling water inlet / outlet temperature of the heat source side water heat exchanger 4a is 2.5 ° C. higher than that of the heat source side water heat exchanger 4b, the condensation temperature CTa of the refrigeration cycle 2a is 2. 5 ° C higher.

図8の横軸は冷媒凝縮温度を表し、2凝縮回路では各冷凍サイクル2の平均値、(CTa+CTb)/2を表す。図8のグラフ(A)の縦軸温度差は、冷却水と冷媒凝縮温度との対数平均温度差を表し、1凝縮回路の場合は、温度差=(冷却水出口温度35℃−冷水入口温度30℃)/ln{(冷媒凝縮温度−冷水入口温度30℃)/(冷媒凝縮温度−冷却水出口温度35℃)}となる。2凝縮回路の場合は、冷凍サイクル2aの温度差=(冷却水出口温度35℃−冷却水入口温度32.5℃)/ln{(冷媒凝縮温度CTa−冷水入口温度32.5℃)/(冷媒凝縮温度CTa−冷却水出口温度35℃)}と、冷凍サイクル2bの温度差=(冷却水出口温度32.5℃−冷却水入口温度30℃)/ln{(冷媒凝縮温度CTb−冷水入口温度30℃)/(冷媒凝縮温度CTb−冷却水出口温度2.5℃)}との平均値を表す。
図8のグラフ(B)の縦軸温度差は、上記のようにして求めた2凝縮回路の温度差と1凝縮回路の温度差の差を表す。
The horizontal axis in FIG. 8 represents the refrigerant condensing temperature, and in the two condensing circuit, the average value of each refrigeration cycle 2 (CTa + CTb) / 2. The vertical axis temperature difference in the graph (A) of FIG. 8 represents the logarithm average temperature difference between the cooling water and the refrigerant condensing temperature, and in the case of one condensing circuit, the temperature difference = (cooling water outlet temperature 35 ° C.−cold water inlet temperature). 30 ° C.) / Ln {(refrigerant condensation temperature−cold water inlet temperature 30 ° C.) / (Refrigerant condensation temperature−cooling water outlet temperature 35 ° C.)}. In the case of the two-condensing circuit, the temperature difference of the refrigeration cycle 2a = (cooling water outlet temperature 35 ° C.−cooling water inlet temperature 32.5 ° C.) / Ln {(refrigerant condensing temperature CTa−cold water inlet temperature 32.5 ° C.) / ( Refrigerant condensing temperature CTa−cooling water outlet temperature 35 ° C.)} and refrigeration cycle 2b temperature difference = (cooling water outlet temperature 32.5 ° C.−cooling water inlet temperature 30 ° C.) / Ln {(refrigerant condensing temperature CTb−cold water inlet) Temperature 30 ° C.) / (Refrigerant condensation temperature CTb−cooling water outlet temperature 2.5 ° C.)}.
The vertical axis temperature difference in the graph (B) of FIG. 8 represents the difference between the temperature difference of the two condensation circuits and the temperature difference of the one condensation circuit obtained as described above.

図8に示されるように、冷却水と冷媒凝縮温度との温度差は1凝縮回路に比べ、2凝縮回路の方が大きく、その分、2凝縮回路の熱交換量は大きくなる。同一熱交換量の運転を行う場合は、1凝縮回路よりも2凝縮回路の方が凝縮温度を低く運転でき、その分、高効率な運転を行うことができる。また、2凝縮回路の温度差増加幅は、冷媒凝縮温度が低いほど拡大する。つまり、1凝縮よりも平均凝縮温度が低い条件、熱源側出入口温度差が大きい運転条件で、2凝縮回路の効果が大きくなる。   As shown in FIG. 8, the temperature difference between the cooling water and the refrigerant condensing temperature is larger in the two condensing circuit than in the one condensing circuit, and the heat exchange amount in the two condensing circuit is increased accordingly. In the case of performing the operation with the same heat exchange amount, the condensing temperature can be lowered in the 2 condensing circuit than in the 1 condensing circuit, and thus the operation can be performed with higher efficiency. Further, the temperature difference increase width of the two condensing circuit is increased as the refrigerant condensing temperature is lower. That is, the effect of the two condensing circuit is increased under the condition that the average condensing temperature is lower than that of one condensing and the operating condition where the heat source side inlet / outlet temperature difference is large.

ここまで、熱交換器を直列に接続した効果について熱源側熱交換器の場合を例に説明したが、蒸発器として利用される負荷側水熱交換器でも同様の効果が得られる。   Up to this point, the effect of connecting the heat exchangers in series has been described by taking the case of the heat source side heat exchanger as an example, but the same effect can be obtained with a load side water heat exchanger used as an evaporator.

次に、熱源および負荷側温度差を拡大した条件での効果について説明する。まず、熱源側出入口温度差について説明する。熱源側熱媒体は熱源側装置である冷却塔が熱源機1に対して十分に大きい場合、冷却塔を流出する水温がほぼ外気と一致するため、熱源機1へ流入する熱媒体温度は一定となる。図9は負荷側熱媒体回路出入口温度差一定の条件で、流入温度一定として熱源側温度差を拡大、つまり出口水温を上昇させた場合のCOPと平均凝縮温度の関係を示す。横軸は熱源側水熱交換器4の流入、流出温度差を示し、COP比は出入口温度差5℃のときのCOPを基準とした場合の値を示す。2凝縮の平均凝縮温度は冷凍サイクル2aと2bの凝縮温度の算術平均値を示す。   Next, the effect under the condition in which the heat source and the load side temperature difference are enlarged will be described. First, the heat source side inlet / outlet temperature difference will be described. When the cooling tower, which is the heat source side device, is sufficiently larger than the heat source unit 1, the temperature of the water flowing out of the cooling tower is almost the same as the outside air. Therefore, the temperature of the heat medium flowing into the heat source unit 1 is constant. Become. FIG. 9 shows the relationship between the COP and the average condensing temperature when the heat source side temperature difference is increased, that is, the outlet water temperature is increased under the condition that the load side heat medium circuit inlet / outlet temperature difference is constant. The horizontal axis indicates the difference between the inflow and outflow temperatures of the heat source side water heat exchanger 4, and the COP ratio indicates a value based on the COP when the inlet / outlet temperature difference is 5 ° C. The average condensation temperature of 2 condensation indicates the arithmetic average value of the condensation temperatures of the refrigeration cycles 2a and 2b.

熱源側温度差拡大に伴いCOP比が低下するが、1凝縮回路に比べて2凝縮回路のCOP比は高く、COPの差も大きくなる。これは平均凝縮温度が下がり、熱源機1の入力が低下するためである。このように、2凝縮回路では温度差拡大によるCOP低下を抑制できるので、1凝縮よりも効率の高い運転が可能となる。   Although the COP ratio decreases as the temperature difference on the heat source side increases, the COP ratio of the two condensing circuit is higher than that of the one condensing circuit, and the COP difference also increases. This is because the average condensation temperature is lowered and the input of the heat source unit 1 is lowered. As described above, since the COP drop due to the temperature difference expansion can be suppressed in the two-condensing circuit, the operation can be performed more efficiently than the single condensation.

次に、負荷側出入口温度差の影響について説明する。負荷側出口水温は冷凍空調装置設置者によって目標とする水温が決定されることから、熱源機1は出口水温が一定となるように制御される。図10は熱源側熱媒体回路出入口温度差を一定とし、負荷側入口水温を変化させて負荷側温度差を拡大させた場合のCOPと平均蒸発温度の関係を示す。横軸およびCOP比のとり方は熱源側の例と同じで、2蒸発の平均蒸発温度は冷凍サイクル2aと2bの蒸発温度の算術平均値を示す。   Next, the influence of the load side inlet / outlet temperature difference will be described. Since the load-side outlet water temperature is determined by the refrigeration air conditioner installer, the heat source unit 1 is controlled so that the outlet water temperature is constant. FIG. 10 shows the relationship between COP and average evaporation temperature when the heat source side heat medium circuit inlet / outlet temperature difference is constant and the load side inlet water temperature is changed to increase the load side temperature difference. The horizontal axis and the COP ratio are the same as in the heat source side example, and the average evaporation temperature of two evaporations indicates the arithmetic average value of the evaporation temperatures of the refrigeration cycles 2a and 2b.

負荷側温度差拡大に伴いCOPは向上するが、1蒸発回路に比べて2蒸発回路のCOPは高く、COPの差も大きくなる。これは、平均蒸発温度が上昇するため、熱源機1の入力が低下するためである。このように、2蒸発回路では温度差拡大によりCOPが向上するので、1蒸発回路よりも効率の高い運転が可能となる。   Although the COP is improved as the load side temperature difference is increased, the COP of the two evaporation circuit is higher than that of the one evaporation circuit, and the difference of the COP is also increased. This is because the input of the heat source device 1 decreases because the average evaporation temperature increases. As described above, in the two evaporation circuit, the COP is improved by the temperature difference expansion, so that the operation can be performed more efficiently than the one evaporation circuit.

なお、この運転を実現するには、インバーターによる圧縮機の容量制御が必須であり、逆に、インバーター圧縮機による容量制御と熱源側熱媒体回路および負荷側熱媒体回路の熱交換器を直列に接続することで、2凝縮、2蒸発の効果を同時に得られることから、1凝縮1蒸発回路に比べて格段に効率の高い運転が可能となる。   In order to realize this operation, capacity control of the compressor by the inverter is essential, and conversely, capacity control by the inverter compressor and the heat exchanger of the heat source side heat medium circuit and the load side heat medium circuit are connected in series. By connecting, the effects of 2 condensation and 2 evaporation can be obtained at the same time, so that operation with remarkably high efficiency is possible as compared with the 1 condensation and 1 evaporation circuit.

本実施の形態のように、運転容量が可変な圧縮機3を搭載した冷凍サイクル2を複数備え、熱源側水熱交換器4と負荷側水熱交換器6をそれぞれ熱源側熱媒体回路および負荷側熱媒体回路に対して直列に接続する場合、負荷側流入温度と流出温度差から圧縮機3の合計運転容量を決定することで、負荷側流出温度を目標値に一致させることができる。   As in the present embodiment, a plurality of refrigeration cycles 2 equipped with a compressor 3 having a variable operating capacity are provided, and a heat source side water heat exchanger 4 and a load side water heat exchanger 6 are respectively connected to a heat source side heat medium circuit and a load. When connecting in series with the side heat medium circuit, the load side outflow temperature can be matched with the target value by determining the total operating capacity of the compressor 3 from the difference between the load side inflow temperature and the outflow temperature.

なお、本実施の形態は負荷側熱媒体回路入口を冷凍サイクル2a側、熱源側熱媒体回路入口を冷凍サイクル2b側としているが、熱源側熱媒体回路入口を冷凍サイクル2a側にしてもよい。冷凍サイクル2aは冷却能力が大きいため、熱源側入口温度が同じ場合は、冷凍サイクル2bよりも凝縮温度が上がりやすい。よって、冷凍サイクル2a側に熱源側熱媒体回路入口を設けることで、冷凍サイクル2aの凝縮温度上昇を抑制するこができる。   In this embodiment, the load side heat medium circuit inlet is on the refrigeration cycle 2a side and the heat source side heat medium circuit inlet is on the refrigeration cycle 2b side, but the heat source side heat medium circuit inlet may be on the refrigeration cycle 2a side. Since the refrigeration cycle 2a has a large cooling capacity, when the heat source side inlet temperature is the same, the condensation temperature is more likely to rise than the refrigeration cycle 2b. Therefore, by providing the heat source side heat medium circuit inlet on the refrigeration cycle 2a side, an increase in the condensation temperature of the refrigeration cycle 2a can be suppressed.

また、負荷側熱交換機容量や圧縮機定格容量に応じて各冷凍サイクル2の圧縮機3の容量比を決定することで、効率の高い運転が実現できる。   Further, by determining the capacity ratio of the compressor 3 of each refrigeration cycle 2 according to the load-side heat exchanger capacity and the compressor rated capacity, it is possible to realize highly efficient operation.

また、各冷凍サイクル2の凝縮温度、蒸発温度、圧縮機回転数と各負荷側水熱交換器6の出入口温度差から求まる平均圧縮機効率が最大となるように圧縮機3の運転容量を決定することで、効率の高い運転が実現できる。   Further, the operating capacity of the compressor 3 is determined so that the average compressor efficiency obtained from the condensing temperature, the evaporating temperature, the compressor rotation speed of each refrigeration cycle 2 and the inlet / outlet temperature difference of each load-side water heat exchanger 6 is maximized. By doing so, highly efficient operation can be realized.

また、熱源側水流量が低下して熱源側熱媒体回路の出入口温度差が拡大した場合でも、運転効率の低下を抑制できる。一方、負荷側出口水温を一定で運転する場合、負荷側出入口温度差を拡大させることで、効率の高い運転が実現できる。そしてこれらの相乗効果により、熱源および負荷側温度差によらず、通常回路に比べて常に効率の高い運転が実現できる。   Moreover, even when the heat source side water flow rate decreases and the temperature difference between the inlet and outlet of the heat source side heat medium circuit increases, it is possible to suppress a decrease in operation efficiency. On the other hand, when the load-side outlet water temperature is operated at a constant level, a highly efficient operation can be realized by increasing the load-side inlet / outlet temperature difference. Due to these synergistic effects, it is possible to realize an operation that is always more efficient than a normal circuit regardless of the heat source and the load side temperature difference.

また、熱源側熱媒体回路下流の冷凍サイクルは凝縮温度が上昇しやすいので、凝縮温度が所定値以上となった場合に、該当する冷凍サイクルの圧縮機容量を低下させることで凝縮温度上昇を抑制することができる。そして、合計運転容量が一致するように、凝縮温度の低い冷凍サイクルの圧縮機運転容量を大きくすることで、凝縮温度が所定値以上になった場合でも、冷水出口温度を目標値に安定させることができる。   Also, since the condensation temperature tends to rise in the refrigeration cycle downstream of the heat source side heat medium circuit, when the condensation temperature exceeds the specified value, the compressor capacity of the corresponding refrigeration cycle is reduced to suppress the condensation temperature rise. can do. Then, by increasing the compressor operating capacity of the refrigeration cycle with a low condensing temperature so that the total operating capacity matches, the chilled water outlet temperature can be stabilized at the target value even when the condensing temperature exceeds a predetermined value. Can do.

また、負荷側熱媒体回路上流側の冷凍サイクルは蒸発温度が上昇しやすいので、蒸発温度が所定値以上になった場合に、該当する冷凍サイクル2の圧縮機容量を増加させることで、蒸発温度上昇を抑制することができる。そして、合計運転容量が一致するように、蒸発温度の低い冷凍サイクルの圧縮機運転容量を小さくすることで、蒸発温度が所定値以上になった場合でも冷水出口温度を目標値に安定させることができる。   Further, since the evaporating temperature of the refrigeration cycle upstream of the load side heat medium circuit is likely to increase, the evaporating temperature can be increased by increasing the compressor capacity of the corresponding refrigeration cycle 2 when the evaporating temperature exceeds a predetermined value. The rise can be suppressed. Then, by reducing the compressor operating capacity of the refrigeration cycle having a low evaporation temperature so that the total operating capacity matches, the chilled water outlet temperature can be stabilized at the target value even when the evaporation temperature exceeds a predetermined value. it can.

また、熱源側熱媒体回路のポンプが可変である場合、もしくは熱源側熱媒体回路の出入口を流量調整弁を介してバイパスする回路を設けるなどの手段(図示しない)を用いて、熱源側水熱交換器を通過する流量を調整できるような構成とすることで、熱源側水熱交換器4が凝縮利用時に凝縮温度が所定値以下となった場合、もしくは熱源側水熱交換器4が蒸発利用時に蒸発温度が所定値以上になった場合に、熱源側水熱交換器を通過する流量を減少させることで、各熱源側水熱交換器の流出温度が上昇するため、凝縮温度を上昇させることができる。   In addition, when the pump of the heat source side heat medium circuit is variable, or using means (not shown) such as providing a circuit that bypasses the inlet / outlet of the heat source side heat medium circuit via a flow rate adjustment valve, By adopting a configuration in which the flow rate passing through the exchanger can be adjusted, when the heat source side water heat exchanger 4 is condensed and the condensation temperature becomes a predetermined value or less, or the heat source side water heat exchanger 4 is used by evaporation. When the evaporation temperature sometimes exceeds a predetermined value, reducing the flow rate that passes through the heat source side water heat exchanger increases the outflow temperature of each heat source side water heat exchanger, thus increasing the condensation temperature. Can do.

また、負荷側熱媒体回路のポンプが可変である場合、もしくは負荷側熱媒体回路の出入口を流量調整弁を介してバイパスする回路を設けるなどの手段(図示しない)を用いて、負荷側水熱交換器を通過する流量を調整できるような構成とすることで、負荷側水熱交換器6が凝縮利用時に凝縮温度が所定値以下となった場合、もしくは負荷側水熱交換器6が蒸発利用時に蒸発温度が所定値以上になった場合に、負荷側水熱交換器を通過する流量を減少させることで、各負荷側水熱交換器の流出温度が低下するため、蒸発温度を低下させることができる。   Further, when the load-side heat medium circuit pump is variable, or using means (not shown) such as providing a circuit for bypassing the inlet / outlet of the load-side heat medium circuit via a flow rate adjustment valve, By adopting a configuration in which the flow rate passing through the exchanger can be adjusted, when the load-side water heat exchanger 6 is used for condensation, the condensation temperature becomes a predetermined value or less, or the load-side water heat exchanger 6 is used for evaporation. When the evaporation temperature sometimes exceeds a predetermined value, reducing the flow rate that passes through the load-side water heat exchanger reduces the outflow temperature of each load-side water heat exchanger, thus reducing the evaporation temperature. Can do.

また、従来の一定速機では、電源周波数が50Hzと60Hzでは、50Hzは能力が小さいがCOPは高いという特徴がある。熱源機1のようなインバーターなどにより運転容量が可変である冷凍空調装置においては、供給される電源周波数によって圧縮機運転容量の最大値を変更することで、設備設計者による従来の一定速機からの置き換えが容易となる。   In addition, in the conventional constant speed machine, when the power source frequency is 50 Hz and 60 Hz, the capability is small at 50 Hz but the COP is high. In a refrigerating and air-conditioning apparatus whose operating capacity is variable by an inverter such as the heat source apparatus 1, the maximum value of the operating capacity of the compressor is changed according to the supplied power frequency, so that the equipment designer can change from the conventional constant speed machine. Can be easily replaced.

なお、本実施の形態は2つの冷凍サイクルからの構成に限定するものではなく、図11のようにそれ以上の数の冷凍サイクルを用いて、熱源側および負荷側熱媒体回路をそれぞれ直列に接続しても良い。   In addition, this Embodiment is not limited to the structure from two refrigeration cycles, A heat-source side and load side heat-medium circuit are each connected in series using the refrigeration cycle more than that as shown in FIG. You may do it.

図12に示すように接続する冷凍サイクル数を増やすことで平均凝縮温度は低下し、平均蒸発温度は上昇するため、COPはさらに向上し、効率の高い運転が可能となる。   As shown in FIG. 12, by increasing the number of connected refrigeration cycles, the average condensation temperature decreases and the average evaporation temperature increases, so that the COP is further improved and highly efficient operation is possible.

なお、冷媒としてR410Aを例に挙げて説明したが、他の冷媒、例えばR407C、R404A、NH3、CO2であっても同様の効果が得られる。   In addition, although R410A was mentioned as an example and demonstrated as a refrigerant | coolant, the same effect is acquired even if it is another refrigerant | coolant, for example, R407C, R404A, NH3, CO2.

実施の形態2.
図13は本発明の実施の形態2に係る冷凍空調装置の冷媒回路図であり、図中、前述の実施の形態1と同一部分には同一符号を付してある。本実施の形態の冷凍サイクル2には、凝縮器である熱源側水熱交換器4から流出する冷媒と、蒸発器である負荷側水熱交換器6から流出する冷媒とを熱交換させるための、内部熱交換器7を備えている。内部熱交換器7は、例えば二重管タイプのものを用いる。また、内部熱交換器7を流出し膨張弁5へ流入する冷媒の温度を検出する冷媒温度検出器22g,22hを備えている。その他の構成および圧縮機運転容量制御については、実施の形態1と同様なので省略する。
Embodiment 2. FIG.
FIG. 13 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. In the figure, the same parts as those in Embodiment 1 are denoted by the same reference numerals. In the refrigeration cycle 2 of the present embodiment, heat exchange is performed between the refrigerant flowing out of the heat source side water heat exchanger 4 that is a condenser and the refrigerant flowing out of the load side water heat exchanger 6 that is an evaporator. The internal heat exchanger 7 is provided. As the internal heat exchanger 7, for example, a double tube type is used. In addition, refrigerant temperature detectors 22g and 22h for detecting the temperature of the refrigerant flowing out of the internal heat exchanger 7 and flowing into the expansion valve 5 are provided. Other configurations and compressor operating capacity control are the same as those in the first embodiment, and are therefore omitted.

図14は内部熱交換器7を用いた本実施の形態の冷凍サイクル2の動作を示すモリエル線図である。冷凍サイクルの動作は冷凍サイクル2a、2bとも同様なので、代表として冷凍サイクル2aについて説明する。圧縮機3aから吐出された高温高圧のガス冷媒(A1)は、熱源側水熱交換器4aに流入し、熱源側熱媒体である冷却水へ放熱することで凝縮、液化する(B1)。液化した高圧液冷媒は内部熱交換器7aで低圧ガス冷媒と熱交換することでさらに温度が低下する(B1a)。内部熱交換器7aを流出した液冷媒は膨張弁5aで減圧され低圧二相冷媒となり、負荷側水熱交換器6aに流入する(C1)。負荷側水熱交換器6aでは、負荷側熱媒体である冷水から吸熱することで蒸発、ガス化し(D1a)、水を冷却し冷水を生成する。負荷側水熱交換器6aを流出した低圧ガス冷媒は内部熱交換器7aで加熱され圧縮機3aへ吸引される(D1)。   FIG. 14 is a Mollier diagram showing the operation of the refrigeration cycle 2 of the present embodiment using the internal heat exchanger 7. Since the operation of the refrigeration cycle is the same as that of the refrigeration cycles 2a and 2b, the refrigeration cycle 2a will be described as a representative. The high-temperature and high-pressure gas refrigerant (A1) discharged from the compressor 3a flows into the heat source side water heat exchanger 4a, and is condensed and liquefied by releasing heat to the cooling water that is the heat source side heat medium (B1). The temperature of the liquefied high-pressure liquid refrigerant is further lowered by exchanging heat with the low-pressure gas refrigerant in the internal heat exchanger 7a (B1a). The liquid refrigerant that has flowed out of the internal heat exchanger 7a is decompressed by the expansion valve 5a to become a low-pressure two-phase refrigerant, and flows into the load-side water heat exchanger 6a (C1). The load-side water heat exchanger 6a evaporates and gasifies by absorbing heat from the cold water that is the load-side heat medium (D1a), cools the water, and generates cold water. The low-pressure gas refrigerant that has flowed out of the load-side water heat exchanger 6a is heated by the internal heat exchanger 7a and sucked into the compressor 3a (D1).

図15は蒸発器出口過熱度およびCOPの関係を示す。横軸は蒸発器として利用される負荷側水熱交換器6の出口過熱度を示し、縦軸は出口過熱度が3℃の場合のCOPを基準とした場合のCOP比を示す。蒸発器出口過熱度の増加に伴い、COPが低下することがわかる。つまり、負荷側水熱交換器6としては、できるだけ過熱度が低い状態で使うほうが効率の良い運転となる。   FIG. 15 shows the relationship between evaporator superheat and COP. The abscissa indicates the outlet superheat degree of the load-side water heat exchanger 6 used as an evaporator, and the ordinate indicates the COP ratio based on the COP when the outlet superheat degree is 3 ° C. It can be seen that the COP decreases as the evaporator outlet superheat increases. That is, the load-side water heat exchanger 6 is operated more efficiently when it is used in a state where the degree of superheat is as low as possible.

冷凍サイクルにおいて、圧縮機3の吸入冷媒が二相となり液バック状態になると、圧縮機3で潤滑油濃度低下による軸焼き付きや、液圧縮により過電流が発生するなどの不具合が生じやすい。そこで、前述の実施の形態1のような内部熱交換器7を備えない冷凍サイクル2では、圧縮機3への液バックを抑制するため、蒸発器として採用する負荷側水熱交換器6を流出する冷媒を過熱ガス状態にすることで、圧縮機3への液バックを抑制している。   In the refrigeration cycle, if the refrigerant sucked into the compressor 3 becomes two-phase and enters a liquid back state, problems such as shaft seizure due to a decrease in the lubricating oil concentration in the compressor 3 and overcurrent due to liquid compression are likely to occur. Therefore, in the refrigeration cycle 2 that does not include the internal heat exchanger 7 as in the first embodiment, the load-side water heat exchanger 6 that is employed as an evaporator flows out in order to suppress liquid back to the compressor 3. By making the refrigerant to be heated into a superheated gas state, liquid back to the compressor 3 is suppressed.

また、負荷側水熱交換器6がプレート式熱交換器の場合、プレート式熱交換器内で過熱ガス領域が発生すると冷凍機油が溜まりやすいが、内部熱交換器7によって負荷側水熱交換器出口を飽和ガス化することで過熱ガス領域がなくなるので、冷凍機油の滞留が防止でき、圧縮機3の油枯渇を防ぐことができる。   When the load-side water heat exchanger 6 is a plate heat exchanger, refrigeration oil is likely to accumulate when an overheated gas region is generated in the plate heat exchanger. Since the superheated gas region is eliminated by making the outlet into saturated gas, the refrigerating machine oil can be prevented from staying, and the compressor 3 can be prevented from being exhausted.

本実施の形態では、内部熱交換器7を備え、凝縮器として作用する熱源側水熱交換器から流出する冷媒と、蒸発器として作用する負荷側水熱交換器から流出する冷媒とを熱交換させることで、負荷側水熱交換器を流出する冷媒を熱源側水熱交換器から流出する冷媒を熱源として過熱ガス化できる。つまり、負荷側水熱交換器を効率よく利用しながら、圧縮機3へ吸入する冷媒を過熱ガス状態とすることができるため、効率の高い運転を実施しながら、熱源機1の信頼性が向上する。   In the present embodiment, the internal heat exchanger 7 is provided and heat exchange is performed between the refrigerant flowing out of the heat source side water heat exchanger acting as a condenser and the refrigerant flowing out of the load side water heat exchanger acting as an evaporator. Thus, the refrigerant flowing out of the load-side water heat exchanger can be superheated and gasified using the refrigerant flowing out of the heat source-side water heat exchanger as a heat source. That is, since the refrigerant sucked into the compressor 3 can be brought into the superheated gas state while efficiently using the load-side water heat exchanger, the reliability of the heat source device 1 is improved while performing a highly efficient operation. To do.

内部熱交換器7は、二重管タイプに限らず、プレート式熱交換器を用いても良い。また、図16に示すような負荷側水熱交換器出口側の冷媒配管すなわち内部熱交換器低圧側配管61へ、熱源側水熱交換器出口側の冷媒配管すなわち内部熱交換器高圧側配管62を巻きつけたものを用いても良い。   The internal heat exchanger 7 is not limited to a double tube type, and a plate heat exchanger may be used. Further, as shown in FIG. 16, the refrigerant pipe on the outlet side of the load-side water heat exchanger, that is, the internal heat exchanger low-pressure side pipe 61, the refrigerant pipe on the heat-source-side water heat exchanger outlet side, that is, the internal heat exchanger high-pressure side pipe 62. You may use what wound up.

内部熱交換器7の熱交換量は熱源側水熱交換器出口温度と負荷側水熱交換器出口温度差によって決まり、温度差が大きければ熱交換量は増加し、温度差が小さければ熱交換量は減少する。圧縮機3の吸入過熱度が一定となるように制御した場合、運転状態によっては蒸発器出口が二相となり、熱交換器を有効に利用できない場合がある。そこで、本実施の形態2では、内部熱交換器7の高圧側出入口に冷媒温度検出器22e,22gを設け、負荷側水熱交換器出口が飽和ガスとなるように制御してもよい。   The heat exchange amount of the internal heat exchanger 7 is determined by the temperature difference between the heat source side water heat exchanger outlet and the load side water heat exchanger outlet temperature. If the temperature difference is large, the heat exchange amount increases. If the temperature difference is small, the heat exchange amount is The amount decreases. When the suction superheat degree of the compressor 3 is controlled to be constant, the evaporator outlet may be two-phase depending on the operation state, and the heat exchanger may not be used effectively. Therefore, in the second embodiment, the refrigerant temperature detectors 22e and 22g may be provided at the high-pressure side inlet / outlet of the internal heat exchanger 7, and the load-side water heat exchanger outlet may be controlled to be a saturated gas.

具体的には、冷凍サイクル2aについて、まず冷媒温度検出器22e,22gで検出した内部熱交換器高圧側出入口の冷媒温度と高圧側の圧力検出器23aで検出した圧力から、内部熱交換器7の高圧側入口エンタルピーH1と高圧側出口エンタルピーH2を推算する。ここで、内部熱交換器低圧側入口エンタルピーをH3、内部熱交換器低圧側出口エンタルピーをH4とすると、内部熱交換器7を通過する冷媒流量は各冷凍サイクル2において等しいことから、H1−H2=H4−H3が成立する。ここで、H3が飽和ガスとなるように制御したいので、H3は圧力検出器23bで検出した圧力によって決まる飽和ガスエンタルピーとなる。また、H1及びH2は推算されていることから、H4が決まるため、圧力検出器23bとH4から目標とする冷媒温度検出器22bの温度、つまり内部熱交換器7の低圧側出口過熱度が決まる。   Specifically, with respect to the refrigeration cycle 2a, first, the internal heat exchanger 7e is determined from the refrigerant temperature at the high-pressure side inlet / outlet of the internal heat exchanger detected by the refrigerant temperature detectors 22e and 22g and the pressure detected by the pressure detector 23a on the high-pressure side. The high pressure side inlet enthalpy H1 and the high pressure side outlet enthalpy H2 are estimated. Here, if the internal heat exchanger low-pressure side inlet enthalpy is H3 and the internal heat exchanger low-pressure side outlet enthalpy is H4, the flow rate of refrigerant passing through the internal heat exchanger 7 is equal in each refrigeration cycle 2, so H1-H2 = H4-H3 holds. Here, since it is desired to control H3 to be a saturated gas, H3 is a saturated gas enthalpy determined by the pressure detected by the pressure detector 23b. Further, since H1 and H2 are estimated, H4 is determined. Therefore, the target temperature of the refrigerant temperature detector 22b from the pressure detectors 23b and H4, that is, the low pressure side outlet superheat degree of the internal heat exchanger 7 is determined. .

このように、運転状態によって目標とする吸入過熱度を変化させることで、蒸発器出口を常に飽和ガスの状態として熱交換器を有効に利用できるため、熱源機1は効率のよい運転が可能となる。   In this way, by changing the target suction superheat degree according to the operating state, the evaporator outlet can always be in a saturated gas state, and the heat exchanger can be effectively used. Therefore, the heat source unit 1 can be operated efficiently. Become.

また、先に内部熱交換器出口に冷媒温度検出器を備えてエンタルピーを推算するとしたが、熱源側水熱交換器の出口に容器内が常に二相状態となるような容積の冷媒容器を備えることで、内部熱交換器高圧側入口は常に飽和液エンタルピーを用いるようにしても良い。   In addition, the refrigerant temperature detector was previously provided at the outlet of the internal heat exchanger and the enthalpy was estimated, but the outlet of the heat source side water heat exchanger was provided with a refrigerant container having a volume such that the inside of the container was always in a two-phase state. Thus, the saturated heat enthalpy may always be used for the internal heat exchanger high-pressure side inlet.

実施の形態3.
図17は本発明の実施の形態3に係る冷凍空調装置の冷媒回路図であり、図中、前述の実施の形態2と同一部分には同一符号を付してある。本実施の形態の冷凍空調装置は、負荷側水熱交換器6で冷水と温水ができるように、冷凍サイクル2に四方弁8a(8b)と逆止弁9a,9b,9c,9d(9e,9f,9g,9h)を設けるとともに、熱源側熱媒体回路および負荷側熱媒体回路にそれぞれ四方弁8c,8dを設け、運転モードによらず熱源側水熱交換器4および負荷側水熱交換器6において冷媒と熱媒体の流れが対向流となるように構成した点が前述の実施の形態2と異なっており、それ以外の構成は実施の形態2と同様である。
Embodiment 3 FIG.
FIG. 17 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention. In the drawing, the same parts as those of Embodiment 2 are given the same reference numerals. In the refrigeration air conditioner of the present embodiment, the refrigeration cycle 2 includes a four-way valve 8a (8b) and check valves 9a, 9b, 9c, 9d (9e, 9) so that cold water and hot water can be generated by the load-side water heat exchanger 6. 9f, 9g, 9h) and four-way valves 8c, 8d in the heat source side heat medium circuit and the load side heat medium circuit, respectively, and the heat source side water heat exchanger 4 and the load side water heat exchanger regardless of the operation mode. 6 is different from the above-described second embodiment in that the refrigerant and the heat medium flow are opposed to each other in the sixth embodiment, and other configurations are the same as those in the second embodiment.

本実施の形態によれば、冷媒および水の流れは、負荷側水熱交換器6で冷水を作る場合は四方弁8がそれぞれ実線側に切り替えられて流れ、温水を作る場合は四方弁8がそれぞれ点線側に切り替えられて流れる。冷凍サイクル2a,2bとも同様なので、代表として冷凍サイクル2aについて説明する。まず、負荷側水熱交換器6で冷水を作る場合、圧縮機3aから吐出された高温高圧のガス冷媒は、四方弁8aを実線方向に通過後、熱源側水熱交換器4aに流入し、熱源側熱媒体である冷却水へ放熱することで凝縮、液化する。液化した高圧液冷媒は、逆止弁9aを通過して内部熱交換器7aへ流入し、低圧ガス冷媒と熱交換することでさらに温度が低下する。内部熱交換器7aを流出した液冷媒は膨張弁5aで減圧され低圧二相冷媒となり、逆止弁9dを通過後に負荷側水熱交換器6aに流入する。負荷側水熱交換器6aでは、負荷側熱媒体である冷水から吸熱することで蒸発、ガス化し、水を冷却し冷水を生成する。負荷側水熱交換器6aを流出した低圧ガス冷媒は四方弁8aを実線方向に通過後、内部熱交換器7aで加熱され圧縮機3aへ吸引される。   According to the present embodiment, the flow of the refrigerant and water flows when the four-way valve 8 is switched to the solid line side when making cold water in the load-side water heat exchanger 6 and when the four-way valve 8 makes hot water. Each flow is switched to the dotted line side. Since the refrigeration cycles 2a and 2b are the same, the refrigeration cycle 2a will be described as a representative. First, when making cold water with the load side water heat exchanger 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3a flows into the heat source side water heat exchanger 4a after passing through the four-way valve 8a in the direction of the solid line, It is condensed and liquefied by dissipating heat to the cooling water that is the heat source side heat medium. The liquefied high-pressure liquid refrigerant passes through the check valve 9a and flows into the internal heat exchanger 7a, and the temperature is further lowered by exchanging heat with the low-pressure gas refrigerant. The liquid refrigerant that has flowed out of the internal heat exchanger 7a is decompressed by the expansion valve 5a to become a low-pressure two-phase refrigerant, and flows into the load-side water heat exchanger 6a after passing through the check valve 9d. The load-side water heat exchanger 6a evaporates and gasifies by absorbing heat from the cold water that is the load-side heat medium, cools the water, and generates cold water. The low-pressure gas refrigerant that has flowed out of the load-side water heat exchanger 6a passes through the four-way valve 8a in the direction of the solid line, is heated by the internal heat exchanger 7a, and is sucked into the compressor 3a.

次に、負荷側水熱交換器6で温水を作る場合の冷凍サイクルの動作について説明する。圧縮機3aから吐出された高温高圧のガス冷媒は、四方弁8aを点線方向に通過後、負荷側水熱交換器6aに流入し、負荷側熱媒体である水へ放熱することで凝縮、液化し、水を加熱して温水を生成する。液化した高圧液冷媒は、逆止弁9bを通過して内部熱交換器7aへ流入し、低圧ガス冷媒と熱交換することでさらに温度が低下する。内部熱交換器7aを流出した液冷媒は膨張弁5aで減圧され低圧二相冷媒となり、逆止弁9cを通過後に熱源側水熱交換器4aに流入する。熱源側水熱交換器4aでは、熱源側熱媒体から吸熱することで蒸発、ガス化する。熱源側水熱交換器4aを流出した低圧ガス冷媒は四方弁8aを点線方向に通過後、内部熱交換器7aで加熱され圧縮機3aへ吸引される。   Next, operation | movement of the refrigerating cycle in the case of making warm water with the load side water heat exchanger 6 is demonstrated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 3a passes through the four-way valve 8a in the dotted line direction, then flows into the load-side water heat exchanger 6a, and is condensed and liquefied by releasing heat to the load-side heat medium water. Then, the water is heated to produce warm water. The liquefied high-pressure liquid refrigerant passes through the check valve 9b and flows into the internal heat exchanger 7a, and the temperature is further lowered by exchanging heat with the low-pressure gas refrigerant. The liquid refrigerant that has flowed out of the internal heat exchanger 7a is decompressed by the expansion valve 5a to become a low-pressure two-phase refrigerant, and flows into the heat source side water heat exchanger 4a after passing through the check valve 9c. The heat source side water heat exchanger 4a evaporates and gasifies by absorbing heat from the heat source side heat medium. The low-pressure gas refrigerant that has flowed out of the heat source side water heat exchanger 4a passes through the four-way valve 8a in the direction of the dotted line, and is then heated by the internal heat exchanger 7a and sucked into the compressor 3a.

次に、冷水生成時の熱源側熱媒体回路および負荷側熱媒体回路の動作について説明する。負荷側水熱交換器6で冷水を生成する場合は、それぞれの熱媒体が四方弁8c,8dの実線部分をそれぞれ通過する。また、負荷側水熱交換器6で温水を生成する場合は、それぞれの熱媒体が四方弁8c,8dの点線部分をそれぞれ通過する。まず、冷水生成時の動作について説明する。冷水生成時は、水ポンプ31aで搬送された水は四方弁8cを実線方向に通過後、冷凍サイクル2a、つまり負荷側水熱交換器6aに流入する。負荷側水熱交換器6aで冷却された冷水は、続いて冷凍サイクル2b、つまり負荷側水熱交換器6bでさらに冷却される。負荷側水熱交換器6bを流出した水は、再び四方弁8cを実線方向に通過し、負荷側装置へ流れていく。熱源側熱媒体回路では、水ポンプ31bで搬送された水は、四方弁8dを実線方向に通過後、冷凍サイクル2b、つまり熱源側水熱交換器4bに流入する。熱源側水熱交換器4bで昇温された水は、続いて冷凍サイクル2a、つまり熱源側水熱交換器4aでさらに昇温する。熱源側水熱交換器4aを流出した水は、再び四方弁8dを実線方向に通過し、熱源側装置へ流れていく。   Next, the operation of the heat source side heat medium circuit and the load side heat medium circuit during cold water generation will be described. When cold water is generated by the load-side water heat exchanger 6, the respective heat media pass through the solid line portions of the four-way valves 8c and 8d, respectively. Moreover, when producing | generating warm water with the load side water heat exchanger 6, each heat medium each passes the dotted-line part of the four-way valves 8c and 8d, respectively. First, the operation at the time of cold water generation will be described. At the time of cold water generation, the water conveyed by the water pump 31a passes through the four-way valve 8c in the direction of the solid line and then flows into the refrigeration cycle 2a, that is, the load-side water heat exchanger 6a. The cold water cooled by the load side water heat exchanger 6a is then further cooled by the refrigeration cycle 2b, that is, the load side water heat exchanger 6b. The water that has flowed out of the load-side water heat exchanger 6b again passes through the four-way valve 8c in the direction of the solid line and flows to the load-side device. In the heat source side heat medium circuit, the water conveyed by the water pump 31b passes through the four-way valve 8d in the direction of the solid line and then flows into the refrigeration cycle 2b, that is, the heat source side water heat exchanger 4b. The water whose temperature has been raised in the heat source side water heat exchanger 4b is further raised in temperature in the refrigeration cycle 2a, that is, the heat source side water heat exchanger 4a. The water that has flowed out of the heat source side water heat exchanger 4a again passes through the four-way valve 8d in the direction of the solid line and flows to the heat source side device.

次に、温水生成時の熱源側熱媒体回路および負荷側熱媒体回路の動作について説明する。水ポンプ31aで搬送された水は四方弁8cを点線方向に通過後、冷凍サイクル2b、つまり負荷側水熱交換器6bに流入する。負荷側水熱交換器6bで加熱された温水は、続いて冷凍サイクル2a、つまり負荷側水熱交換器6aでさらに昇温される。負荷側水熱交換器6aを流出した水は、再び四方弁8cを点線方向に通過し、負荷側装置へ流れていく。熱源側熱媒体回路では、水ポンプ31bで搬送された水は四方弁8dを点線方向に通過後、冷凍サイクル2a、つまり熱源側水熱交換器4aに流入する。熱源側水熱交換器4aで冷却された水は、続いて冷凍サイクル2b、つまり熱源側水熱交換器4bでさらに冷却される。熱源側水熱交換器4bを流出した水は、再び四方弁8dを点線方向に通過し、熱源側装置へ流れていく。   Next, the operation of the heat source side heat medium circuit and the load side heat medium circuit during hot water generation will be described. The water conveyed by the water pump 31a passes through the four-way valve 8c in the direction of the dotted line, and then flows into the refrigeration cycle 2b, that is, the load-side water heat exchanger 6b. The hot water heated by the load side water heat exchanger 6b is then further heated by the refrigeration cycle 2a, that is, the load side water heat exchanger 6a. The water that has flowed out of the load-side water heat exchanger 6a again passes through the four-way valve 8c in the dotted line direction and flows to the load-side device. In the heat source side heat medium circuit, the water conveyed by the water pump 31b passes through the four-way valve 8d in the dotted line direction, and then flows into the refrigeration cycle 2a, that is, the heat source side water heat exchanger 4a. The water cooled by the heat source side water heat exchanger 4a is then further cooled by the refrigeration cycle 2b, that is, the heat source side water heat exchanger 4b. The water that has flowed out of the heat source side water heat exchanger 4b again passes through the four-way valve 8d in the dotted line direction and flows to the heat source side device.

本実施の形態では、冷凍サイクル2、熱源側熱媒体回路および負荷側熱媒体回路に四方弁8をそれぞれ備えることで、負荷側水熱交換器6で冷温水を生成できるため、負荷側装置へ搬送する水の温度範囲を広げることができ、利便性の高い運転が実現できる。   In this embodiment, since the refrigeration cycle 2, the heat source side heat medium circuit, and the load side heat medium circuit are each provided with the four-way valve 8, cold / warm water can be generated by the load side water heat exchanger 6, and therefore, to the load side device. The temperature range of the water to be conveyed can be expanded, and a highly convenient operation can be realized.

本発明の活用例として、特に水・ブラインなどの液媒体を熱源側および負荷側で利用し、熱媒体を加熱・冷却することにより冷温熱を負荷側に供給する冷凍空調装置について有用である。   As an example of use of the present invention, the present invention is particularly useful for a refrigerating and air-conditioning apparatus that uses liquid media such as water and brine on the heat source side and load side, and supplies cold and hot heat to the load side by heating and cooling the heat medium.

1 熱源機、2a,2b,2x,2y 冷凍サイクル、3a,3b,3x,3y 圧縮機、4a,4b,4x,4y 熱源側水熱交換器、5a,5b,5x,5y 膨張弁、6a,6b,6x,6y 負荷側水熱交換器、7a,7b 内部熱交換器、8a〜8d 四方弁、9a〜9h 逆止弁、21a〜21p 熱媒体温度検出器、22a〜22h 冷媒温度検出器、23a〜23d,23w〜23z 圧力検出器、31a,31b 水ポンプ、41 制御装置、51a 負荷側熱媒体回路、51b 熱源側熱媒体回路、61 内部熱交換器低圧側配管、62 内部熱交換器高圧側配管。   1 heat source machine, 2a, 2b, 2x, 2y refrigeration cycle, 3a, 3b, 3x, 3y compressor, 4a, 4b, 4x, 4y heat source side water heat exchanger, 5a, 5b, 5x, 5y expansion valve, 6a, 6b, 6x, 6y Load side water heat exchanger, 7a, 7b Internal heat exchanger, 8a-8d Four-way valve, 9a-9h Check valve, 21a-21p Heat medium temperature detector, 22a-22h Refrigerant temperature detector, 23a-23d, 23w-23z Pressure detector, 31a, 31b Water pump, 41 Control device, 51a Load side heat medium circuit, 51b Heat source side heat medium circuit, 61 Internal heat exchanger low pressure side piping, 62 Internal heat exchanger high pressure Side piping.

Claims (14)

運転容量が可変である圧縮機と、熱源側熱交換器と、減圧装置と、負荷側熱交換器とを環状に接続して構成される冷凍サイクルを複数備え、
各冷凍サイクルの熱源側熱交換器において熱源側熱媒体へ放熱または吸熱するとともに、熱源側熱媒体の流路が各冷凍サイクルの熱源側熱交換器を直列に流れるように構成され、
各冷凍サイクルの負荷側熱交換器において負荷側熱媒体を冷却または加熱し、冷温熱を供給するとともに、負荷側熱媒体の流路が各冷凍サイクルの負荷側熱交換器を直列に流れるように構成され、
負荷側熱媒体の流路に対して最上流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流入温度と負荷側熱媒体の流路に対して最下流に位置する冷凍サイクルの負荷側熱交換器の負荷側熱媒体流出温度を検出する熱媒体温度検出手段と、
熱媒体温度検出手段にて検出される前記負荷側熱媒体流入温度と前記負荷側熱媒体流出温度の温度差が所定値となるように、各冷凍サイクルの圧縮機運転容量の合計値を制御する制御装置と、
を備えることを特徴とする冷凍空調装置。
Provided with a plurality of refrigeration cycles configured by annularly connecting a compressor having a variable operating capacity, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger,
In the heat source side heat exchanger of each refrigeration cycle, the heat source side heat medium radiates or absorbs heat, and the flow path of the heat source side heat medium is configured to flow in series through the heat source side heat exchanger of each refrigeration cycle,
In the load-side heat exchanger of each refrigeration cycle, the load-side heat medium is cooled or heated to supply cold / hot heat, and the flow path of the load-side heat medium flows through the load-side heat exchanger of each refrigeration cycle in series. Configured,
The load-side heat medium inflow temperature of the load-side heat exchanger of the refrigeration cycle positioned upstream with respect to the flow path of the load-side heat medium and the load of the refrigeration cycle positioned downstream with respect to the flow path of the load-side heat medium A heat medium temperature detecting means for detecting the load side heat medium outflow temperature of the side heat exchanger;
The total value of the compressor operating capacity of each refrigeration cycle is controlled so that the temperature difference between the load-side heat medium inflow temperature and the load-side heat medium outflow temperature detected by the heat medium temperature detection means becomes a predetermined value. A control device;
A refrigerating and air-conditioning apparatus comprising:
制御装置は、各冷凍サイクルの圧縮機定格容量または負荷側熱交換器の定格容量に比例するように各冷凍サイクルの圧縮機運転容量比を決定して圧縮機運転容量を制御することを特徴とする請求項1に記載の冷凍空調装置。   The control device controls the compressor operating capacity by determining the compressor operating capacity ratio of each refrigeration cycle so as to be proportional to the compressor rated capacity of each refrigeration cycle or the rated capacity of the load-side heat exchanger. The refrigerating and air-conditioning apparatus according to claim 1. 各冷凍サイクルの負荷側熱交換器に負荷側熱媒体の流入温度と流出温度を検出する熱媒体温度検出手段を備え、
制御装置は、各冷凍サイクルの温度検出手段が検出した負荷側熱交換器の流入温度と流出温度との温度差が、各冷凍サイクルの圧縮機定格容量または負荷側熱交換器の定格容量に比例するように圧縮機運転容量を制御することを特徴とする請求項1に記載の冷凍空調装置。
The load side heat exchanger of each refrigeration cycle is provided with a heat medium temperature detecting means for detecting the inflow temperature and the outflow temperature of the load side heat medium
The controller determines that the temperature difference between the inflow temperature and the outflow temperature of the load-side heat exchanger detected by the temperature detection means of each refrigeration cycle is proportional to the compressor rated capacity of each refrigeration cycle or the rated capacity of the load-side heat exchanger. The refrigerating and air-conditioning apparatus according to claim 1, wherein the compressor operating capacity is controlled to do so.
各冷凍サイクルの凝縮温度および蒸発温度を検出する冷媒温度検出手段を備え、
制御装置は、各冷凍サイクルの冷媒温度検出手段が検出した凝縮温度および蒸発温度と圧縮機運転容量とから圧縮機効率を推算し、各冷凍サイクルの圧縮機効率の平均値が最大となるように圧縮機運転容量を制御することを特徴とする請求項1乃至請求項3のいずれかに記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the condensation temperature and evaporation temperature of each refrigeration cycle,
The control device estimates the compressor efficiency from the condensation temperature and evaporation temperature detected by the refrigerant temperature detecting means of each refrigeration cycle and the compressor operating capacity so that the average value of the compressor efficiency of each refrigeration cycle is maximized. The refrigeration air conditioner according to any one of claims 1 to 3, wherein the compressor operating capacity is controlled.
各冷凍サイクルにおいて、熱源側熱交換器から流出した冷媒と負荷側熱交換器から流出した冷媒とを熱交換する内部熱交換器を備えたことを特徴とする請求項1乃至請求項4のいずれかに記載の冷凍空調装置。   5. The internal heat exchanger for exchanging heat between the refrigerant flowing out of the heat source side heat exchanger and the refrigerant flowing out of the load side heat exchanger is provided in each refrigeration cycle. A refrigeration air conditioner according to claim 1. 各冷凍サイクルの内部熱交換器の高圧側冷媒の流入温度と流出温度、該内部熱交換器の低圧側冷媒の流出温度をそれぞれ検出する冷媒温度検出手段を備え、
制御手段は、内部熱交換器の低圧側入口が飽和ガスとなるように減圧装置を制御することを特徴とする請求項5に記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the inflow temperature and the outflow temperature of the high-pressure side refrigerant of the internal heat exchanger of each refrigeration cycle, and the outflow temperature of the low-pressure side refrigerant of the internal heat exchanger,
The refrigerating and air-conditioning apparatus according to claim 5, wherein the control means controls the decompression device so that the low-pressure side inlet of the internal heat exchanger becomes saturated gas.
負荷側熱媒体の流路に対して最上流に位置する冷凍サイクルの熱源側熱交換器が、熱源側熱媒体の流路に対して最下流となるように構成されていることを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍空調装置。   The heat source side heat exchanger of the refrigeration cycle located on the most upstream side with respect to the flow path of the load side heat medium is configured to be the most downstream with respect to the flow path of the heat source side heat medium. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 6. 運転容量が可変である圧縮機と、冷媒流路を切り替える冷媒流路切替弁と、熱源側熱交換器と、減圧装置と、負荷側熱交換器とを環状に接続して構成される冷凍サイクルを複数備えるとともに、各冷凍サイクルの熱源側熱交換器に接続される熱源側熱媒体回路の熱媒体流路を切り替える熱源側熱媒体流路切替弁と、各冷凍サイクルの負荷側熱交換器に接続される負荷側熱媒体回路の熱媒体流路を切り替える負荷側熱媒体流路切替弁とを有し、
各冷凍サイクルの熱源側熱交換器において熱源側熱媒体へ放熱または吸熱するとともに、熱源側熱媒体の流路が各冷凍サイクルの熱源側熱交換器を直列に流れるように構成され、
更に、各冷凍サイクルの負荷側熱交換器において負荷側熱媒体を冷却または加熱し、冷温熱を供給するとともに、負荷側熱媒体の流路が各冷凍サイクルの負荷側熱交換器を直列に流れるように構成され、
熱源側熱交換器および負荷側熱交換器を通過する冷媒と各熱媒体が運転モードによらず常に対向流的に流れるような流路構成となるように各冷凍サイクルの冷媒流路切替弁と熱源側熱媒体流路切替弁と負荷側熱媒体流路切替弁を制御する制御装置を備えることを特徴とする冷凍空調装置。
A refrigeration cycle configured by annularly connecting a compressor having a variable operating capacity, a refrigerant flow path switching valve for switching a refrigerant flow path, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger. A heat source side heat medium flow switching valve for switching the heat medium flow path of the heat source side heat medium circuit connected to the heat source side heat exchanger of each refrigeration cycle, and a load side heat exchanger of each refrigeration cycle A load-side heat medium flow switching valve for switching the heat medium flow path of the connected load-side heat medium circuit;
In the heat source side heat exchanger of each refrigeration cycle, the heat source side heat medium radiates or absorbs heat, and the flow path of the heat source side heat medium is configured to flow in series through the heat source side heat exchanger of each refrigeration cycle,
Further, the load-side heat medium is cooled or heated in the load-side heat exchanger of each refrigeration cycle to supply cold / hot heat, and the flow path of the load-side heat medium flows in series through the load-side heat exchanger of each refrigeration cycle. Configured as
A refrigerant flow path switching valve for each refrigeration cycle so that the refrigerant passing through the heat source side heat exchanger and the load side heat exchanger and each heat medium always flow countercurrently regardless of the operation mode. A refrigeration air conditioner comprising a control device for controlling a heat source side heat medium flow switching valve and a load side heat medium flow switching valve.
3つ以上の冷凍サイクルで構成されることを特徴とする請求項1乃至請求項8のいずれかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to any one of claims 1 to 8, wherein the refrigerating and air-conditioning apparatus includes three or more refrigerating cycles. 各冷凍サイクルの凝縮温度を検出する冷媒温度検出手段を備え、
制御装置は、各冷凍サイクルの凝縮温度が所定値以上となった場合、凝縮温度が所定値以上となった冷凍サイクルの圧縮機運転容量を減少させ、凝縮温度が所定値以下の冷凍サイクルの圧縮機運転容量を増加させるように各冷凍サイクルの圧縮機運転容量を制御することを特徴とする請求項1又は請求項8記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the condensation temperature of each refrigeration cycle,
When the condensing temperature of each refrigeration cycle exceeds a predetermined value, the control device reduces the compressor operating capacity of the refrigeration cycle where the condensing temperature exceeds the predetermined value, and compresses the refrigeration cycle whose condensing temperature is lower than the predetermined value. 9. The refrigerating and air-conditioning apparatus according to claim 1, wherein the compressor operating capacity of each refrigeration cycle is controlled so as to increase the machine operating capacity.
各冷凍サイクルの蒸発温度を検出する冷媒温度検出手段を備え、
制御装置は、各冷凍サイクルの蒸発温度が所定値以上となった場合、蒸発温度が所定値以上となった冷凍サイクルの圧縮機容量を増加させ、蒸発温度が所定値以下の冷凍サイクルの圧縮機容量を減少させるように各冷凍サイクルの圧縮機容量を制御することを特徴とする請求項1又は請求項8記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the evaporation temperature of each refrigeration cycle,
When the evaporation temperature of each refrigeration cycle is equal to or higher than a predetermined value, the control device increases the compressor capacity of the refrigeration cycle where the evaporation temperature is equal to or higher than the predetermined value, and the compressor of the refrigeration cycle whose evaporation temperature is equal to or lower than the predetermined value. 9. The refrigeration air conditioner according to claim 1, wherein the compressor capacity of each refrigeration cycle is controlled so as to reduce the capacity.
各冷凍サイクルの凝縮温度および蒸発温度を検出する冷媒温度検出手段と、熱源側熱媒体の流路に熱源側熱媒体の流量を調整する熱源側熱媒体流量調整装置を備え、
制御装置は、熱源側熱交換器が凝縮利用時に凝縮温度が所定値以下となった場合、もしくは熱源側熱交換器が蒸発利用時に蒸発温度が所定値以上になった場合、熱源側熱媒体の流量が減少するように前記流量調整装置を制御することを特徴する請求項1又は請求項8記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the condensation temperature and evaporation temperature of each refrigeration cycle, and a heat source side heat medium flow adjustment device for adjusting the flow rate of the heat source side heat medium in the flow path of the heat source side heat medium,
When the condensation temperature becomes a predetermined value or less when the heat source side heat exchanger is used for condensation, or when the evaporation temperature becomes a predetermined value or more when the heat source side heat exchanger is used for evaporation, the control device The refrigerating and air-conditioning apparatus according to claim 1 or 8, wherein the flow rate adjusting device is controlled so that the flow rate decreases.
各冷凍サイクルの凝縮温度および蒸発温度を検出する冷媒温度検出手段と、負荷側熱媒体の流路に負荷側熱媒体の流量を調整する負荷側熱媒体流量調整装置を備え、
制御装置は、負荷側熱交換器が凝縮利用時に凝縮温度が所定値以下となった場合、もしくは負荷側熱交換器が蒸発利用時に蒸発温度が所定値以上になった場合、負荷側熱媒体の流量を減少するように前記流量調整装置を制御することを特徴とする請求項1又は請求項8記載の冷凍空調装置。
Refrigerant temperature detection means for detecting the condensation temperature and evaporation temperature of each refrigeration cycle, and a load-side heat medium flow adjustment device for adjusting the flow rate of the load-side heat medium in the flow path of the load-side heat medium,
When the condensation temperature becomes a predetermined value or less when the load side heat exchanger is used for condensation, or when the evaporation temperature becomes a predetermined value or more when the load side heat exchanger is used for evaporation, the control device The refrigerating and air-conditioning apparatus according to claim 1 or 8, wherein the flow rate adjusting device is controlled so as to reduce a flow rate.
制御装置に供給される電源周波数によって各冷凍サイクルの圧縮機運転容量の最大値を変更することを特徴とする請求項1乃至請求項13のいずれかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to any one of claims 1 to 13, wherein a maximum value of a compressor operating capacity of each refrigeration cycle is changed according to a power supply frequency supplied to the control device.
JP2009199308A 2009-08-31 2009-08-31 Refrigeration air conditioner Active JP5283589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199308A JP5283589B2 (en) 2009-08-31 2009-08-31 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199308A JP5283589B2 (en) 2009-08-31 2009-08-31 Refrigeration air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012189852A Division JP5579235B2 (en) 2012-08-30 2012-08-30 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2011052838A true JP2011052838A (en) 2011-03-17
JP5283589B2 JP5283589B2 (en) 2013-09-04

Family

ID=43942030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199308A Active JP5283589B2 (en) 2009-08-31 2009-08-31 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5283589B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
JP2012180970A (en) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2013064515A (en) * 2011-09-15 2013-04-11 Hitachi Appliances Inc Turbo refrigerator
CN103388931A (en) * 2012-05-10 2013-11-13 黄谢泰 High-efficiency full-quantity type triple-effect heat pump system
WO2014050213A1 (en) * 2012-09-27 2014-04-03 三菱重工業株式会社 Heat source system and control method therefor
WO2016167106A1 (en) * 2015-04-14 2016-10-20 三菱重工業株式会社 Control device, control method, and program
CN115264654A (en) * 2022-07-28 2022-11-01 海信家电集团股份有限公司 Air conditioner and overload control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (en) * 1981-08-07 1983-02-14 株式会社日立製作所 Heat pump device
JPS6030943U (en) * 1983-08-05 1985-03-02 四変テック株式会社 water heater
JPH053852U (en) * 1991-04-26 1993-01-22 三菱電機株式会社 Refrigeration equipment
JP2001082817A (en) * 1999-09-09 2001-03-30 Orion Mach Co Ltd Refrigeration system
JP2003106615A (en) * 2001-09-28 2003-04-09 Daikin Ind Ltd Air conditioner
JP2008051427A (en) * 2006-08-25 2008-03-06 Mitsubishi Electric Corp Air conditioner
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (en) * 1981-08-07 1983-02-14 株式会社日立製作所 Heat pump device
JPS6030943U (en) * 1983-08-05 1985-03-02 四変テック株式会社 water heater
JPH053852U (en) * 1991-04-26 1993-01-22 三菱電機株式会社 Refrigeration equipment
JP2001082817A (en) * 1999-09-09 2001-03-30 Orion Mach Co Ltd Refrigeration system
JP2003106615A (en) * 2001-09-28 2003-04-09 Daikin Ind Ltd Air conditioner
JP2008051427A (en) * 2006-08-25 2008-03-06 Mitsubishi Electric Corp Air conditioner
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
JP2012180970A (en) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2013064515A (en) * 2011-09-15 2013-04-11 Hitachi Appliances Inc Turbo refrigerator
CN103388931A (en) * 2012-05-10 2013-11-13 黄谢泰 High-efficiency full-quantity type triple-effect heat pump system
CN104620062A (en) * 2012-09-27 2015-05-13 三菱重工业株式会社 Heat source system and control method therefor
JP2014070741A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Heat source system and control method for the same
WO2014050213A1 (en) * 2012-09-27 2014-04-03 三菱重工業株式会社 Heat source system and control method therefor
US10697680B2 (en) 2012-09-27 2020-06-30 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system and control method thereof
WO2016167106A1 (en) * 2015-04-14 2016-10-20 三菱重工業株式会社 Control device, control method, and program
JP2016200370A (en) * 2015-04-14 2016-12-01 三菱重工業株式会社 Control device, control method and program
KR20170125914A (en) * 2015-04-14 2017-11-15 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Control device, control method and program
CN107429951A (en) * 2015-04-14 2017-12-01 三菱重工制冷空调系统株式会社 Control device, control method and program
KR101987571B1 (en) * 2015-04-14 2019-06-10 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Control device, control method and program
CN115264654A (en) * 2022-07-28 2022-11-01 海信家电集团股份有限公司 Air conditioner and overload control method thereof

Also Published As

Publication number Publication date
JP5283589B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4651627B2 (en) Refrigeration air conditioner
JP5452138B2 (en) Refrigeration air conditioner
JP5991989B2 (en) Refrigeration air conditioner
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP5283589B2 (en) Refrigeration air conditioner
JP5241872B2 (en) Refrigeration cycle equipment
JP5132708B2 (en) Refrigeration air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP5717903B2 (en) Refrigeration air conditioner
WO2007110908A9 (en) Refrigeration air conditioning device
JP2008267722A (en) Heat source machine and refrigerating air conditioner
JP5430602B2 (en) Air conditioner
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2017161182A (en) Heat pump device
JP5579235B2 (en) Refrigeration air conditioner
JP6239092B2 (en) Air conditioner
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
WO2012090579A1 (en) Heat source system and control method therefor
JP2009186033A (en) Two-stage compression type refrigerating device
JP2005214550A (en) Air conditioner
JP2012127606A (en) Refrigeration air conditioner
JP6758506B2 (en) Air conditioner
JP2006284034A (en) Air conditioner and its expansion valve control method
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120906

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250