JP2016080179A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016080179A
JP2016080179A JP2014208118A JP2014208118A JP2016080179A JP 2016080179 A JP2016080179 A JP 2016080179A JP 2014208118 A JP2014208118 A JP 2014208118A JP 2014208118 A JP2014208118 A JP 2014208118A JP 2016080179 A JP2016080179 A JP 2016080179A
Authority
JP
Japan
Prior art keywords
heat exchanger
downstream
upstream
compressor
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014208118A
Other languages
Japanese (ja)
Inventor
伊藤 浩二
Koji Ito
浩二 伊藤
石木 良和
Yoshikazu Ishiki
良和 石木
耕士 樋口
Koji Higuchi
耕士 樋口
篤貴 青柳
Atsutaka Aoyanagi
篤貴 青柳
杉山 文彦
Fumihiko Sugiyama
文彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014208118A priority Critical patent/JP2016080179A/en
Publication of JP2016080179A publication Critical patent/JP2016080179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which is cheap and has a plurality of refrigeration cycles capable of performing efficient operation.SOLUTION: The air conditioner includes: an upstream side refrigeration device R1 in which a compressor 1a, a four-way valve 2a, an exhaust heat side heat exchanger 3a, an expansion device 4a and a utilization side heat exchanger 5a are connected by a refrigerant pipeline h4; and a downstream side refrigeration device R2 in which a compressor 1b, a four-way valve 2b, an exhaust heat side heat exchanger 3b, an expansion device 4b and a utilization side heat exchanger 5b are connected by a refrigerant pipeline h5. A flow passage h1 of a heat load medium of the utilization side heat exchangers 5a, 5b is connected to the upstream side refrigeration device R1 and the downstream side refrigeration device R2 in series in this order. The exhaust heat side heat exchanger 3a of the upstream side refrigeration device R1 and the exhaust heat side heat exchanger 3b of the downstream side refrigeration device R2 have the same or almost the same heat exchange capacity. The operation capacity of the compressor 1b on the downstream side is larger than the operation capacity of the compressor 1a on the upstream side.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

従来、冷暖房を行う空気調和機は特許文献1に記載のものがある。特許文献1に記載の空気調和機は2個の冷凍サイクルの熱負荷媒体を各々の利用側熱交換器を直列に接続する。そして、熱負荷媒体の上流側の圧縮機の運転容量を下流側の圧縮機の運転容量より大きくすることで効率の高い運転を達成できると記載されている。   Conventionally, an air conditioner that performs air conditioning is described in Patent Document 1. The air conditioner described in Patent Literature 1 connects the heat load media of two refrigeration cycles to each use side heat exchanger in series. And it is described that a high-efficiency operation can be achieved by making the operating capacity of the upstream compressor of the heat load medium larger than the operating capacity of the downstream compressor.

特許第4999529号公報Japanese Patent No. 4999529

ところで、従来の特許文献1の空気調和機は、熱負荷媒体の上流側冷凍サイクルの圧縮機の運転容量を大きくすることで上流側の効率の良い運転比率を大きくすることで熱源機全体(空気調和機全体)の効率を向上するとしている。   By the way, the conventional air conditioner disclosed in Patent Document 1 increases the operating capacity of the compressor in the upstream refrigeration cycle of the heat load medium to increase the efficient operating ratio on the upstream side, thereby increasing the overall heat source apparatus (air It is said that the efficiency of the entire harmony machine will be improved.

冷却運転の場合、上流側冷凍サイクルは蒸発温度が高い運転を行うため、上流側冷媒循環量が増加し、高圧圧力が上昇するため、排熱側の熱交換器の容量を大きくする必要がある。そのため、熱交換器の容量の増大によりを伝熱面積が増加して熱交換器が大型化し、熱源機の製品寸法が大きくなるという課題がある。排熱側の熱交換器の容量が大きくできない場合、高圧圧力が上昇して圧縮機が高速運転となり、消費電力の増大により効率(COP:Coefficient Of Performance)が低下するという課題がある。   In the case of cooling operation, since the upstream refrigeration cycle operates at a high evaporation temperature, the upstream refrigerant circulation rate increases and the high-pressure pressure rises, so the capacity of the heat exchanger on the exhaust heat side needs to be increased. . Therefore, there is a problem that the heat transfer area increases due to an increase in the capacity of the heat exchanger, the heat exchanger becomes larger, and the product size of the heat source device becomes larger. When the capacity of the heat exchanger on the exhaust heat side cannot be increased, there is a problem that the high pressure increases and the compressor operates at high speed, and the efficiency (COP: Coefficient Of Performance) decreases due to an increase in power consumption.

加熱運転の場合は、上流側冷凍サイクルの凝縮温度が低いため、蒸発側の熱交換器の熱交換量が増加する。そのため、排熱側の熱交換器の容量を大きくする必要があり、冷却運転と同様に、熱交換器の伝熱面積が増加して熱交換器が大型化し、熱源機の製品寸法が大きくなる課題がある。排熱側の熱交換器の容量が大きくできない場合、低圧圧力が低下し、圧縮機が高速運転となり消費電力の増大による効率低下という課題がある。   In the case of heating operation, since the condensation temperature of the upstream refrigeration cycle is low, the heat exchange amount of the evaporation side heat exchanger increases. Therefore, it is necessary to increase the capacity of the heat exchanger on the exhaust heat side, and like the cooling operation, the heat transfer area of the heat exchanger increases, the heat exchanger becomes larger, and the product size of the heat source machine increases. There are challenges. When the capacity of the heat exchanger on the exhaust heat side cannot be increased, there is a problem that the low pressure is lowered, the compressor is operated at high speed, and the efficiency is reduced due to the increase in power consumption.

本発明は上記実状に鑑み、効率が良い運転が行える複数の冷凍サイクルを有する安価な空気調和機の提供を目的とする。   In view of the above circumstances, an object of the present invention is to provide an inexpensive air conditioner having a plurality of refrigeration cycles that can be operated efficiently.

前記課題を解決するため、第1の本発明の空気調和機は、圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される上流側冷凍装置と、圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される下流側冷凍装置とを備え、前記利用側熱交換器の熱負荷媒体の流路が前記上流側冷凍装置と前記下流側冷凍装置の順に直列に接続され、前記上流側冷凍装置の排熱側熱交換器と前記下流側冷凍装置の排熱側熱交換器とは同等のまたは同等に近い熱交換容量を有し、 下流側の前記圧縮機の運転容量は、上流側の前記圧縮機の運転容量より大きい。   In order to solve the above problems, an air conditioner according to a first aspect of the present invention includes an upstream refrigeration system in which a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe. And a downstream refrigeration unit to which a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe, and the flow of the heat load medium of the use side heat exchanger The upstream refrigeration device and the downstream refrigeration device are connected in series, and the exhaust heat side heat exchanger of the upstream refrigeration device and the exhaust heat side heat exchanger of the downstream refrigeration device are equivalent or The operating capacity of the compressor on the downstream side is larger than the operating capacity of the compressor on the upstream side.

第2の本発明の空気調和機は、圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される上流側冷凍装置と、圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される下流側冷凍装置とを備え、前記利用側熱交換器の熱負荷媒体の流路が前記上流側冷凍装置と前記下流側冷凍装置の順に直列に接続され、前記上流側冷凍装置の排熱側熱交換器と前記下流側冷凍装置の排熱側熱交換器とは同等のまたは同等に近い熱交換容量を有し、前記下流側の利用側熱交換器の出口の熱負荷媒体の温度と、前記下流側の利用側熱交換器と前記上流側の利用側熱交換器の間の熱負荷媒体の温度である中間温度との差は、前記中間温度と前記上流側の利用側熱交換器の入口の熱負荷媒体の温度との差とほぼ同じである。   An air conditioner according to a second aspect of the present invention includes a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and an upstream side refrigeration device to which a use side heat exchanger is connected by a refrigerant pipe, a compressor, and a four way valve An exhaust heat side heat exchanger, an expansion device, and a downstream side refrigeration device to which a usage side heat exchanger is connected by a refrigerant pipe, and the flow path of the heat load medium of the usage side heat exchanger is the upstream side refrigeration device And the downstream refrigeration unit are connected in series, and the exhaust heat side heat exchanger of the upstream refrigeration unit and the exhaust heat side heat exchanger of the downstream refrigeration unit have heat exchange capacities that are equivalent or close to equivalent. And the temperature of the heat load medium at the outlet of the downstream use side heat exchanger and the temperature of the heat load medium between the downstream use side heat exchanger and the upstream use side heat exchanger. The difference from a certain intermediate temperature is the difference between the intermediate temperature and the temperature of the heat load medium at the inlet of the upstream use side heat exchanger. The difference to be approximately the same.

第3の本発明の空気調和機は、圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される冷凍装置を複数備え、前記各冷凍装置の前記利用側熱交換器の熱負荷媒体の流路が、順番に直列に接続され、前記各冷凍装置の前記排熱側熱交換器は、同等のまたは同等に近い熱交換容量を有し、前記各冷凍装置の前記圧縮機の運転容量が上流側から下流側になるに従って大きくなる。   An air conditioner according to a third aspect of the present invention includes a plurality of refrigeration apparatuses in which a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are connected by a refrigerant pipe. The flow path of the heat load medium of the use side heat exchanger is connected in series in order, the exhaust heat side heat exchanger of each refrigeration apparatus has an equivalent or nearly equivalent heat exchange capacity, The operating capacity of the compressor of each refrigeration apparatus increases as it goes from the upstream side to the downstream side.

本発明によれば、効率が良い運転が行える複数の冷凍サイクルを有する安価な空気調和機を実現できる。   According to the present invention, an inexpensive air conditioner having a plurality of refrigeration cycles that can be operated efficiently can be realized.

本発明に係る空気調和機のサイクル系統図。The cycle system diagram of the air conditioner concerning the present invention. (a)は冷却運転での利用側熱交換器の上流側、下流側の熱負荷媒体と冷媒温度の関係図、 (b)は加熱運転での利用側熱交換器の上流側、下流側の熱負荷媒体と冷媒温度の関係図。(a) is a diagram of the relationship between the heat load medium and refrigerant temperature on the upstream side and downstream side of the use side heat exchanger in the cooling operation, and (b) is the diagram on the upstream side and downstream side of the use side heat exchanger in the heating operation. The relationship diagram of a heat load medium and refrigerant | coolant temperature. 本発明の実施形態2に係る空気調和機の冷凍サイクル系統図。The refrigeration cycle system diagram of the air conditioner according to Embodiment 2 of the present invention. 本発明の実施形態3に係る空気調和機の冷凍サイクル系統図。The refrigeration cycle system diagram of the air conditioner according to Embodiment 3 of the present invention. 実施形態3に係る一例の空気調和機の冷凍サイクル系統図。The refrigeration cycle system diagram of an example of the air conditioner according to the third embodiment. 本発明の実施形態4に係る空気調和機の冷凍サイクル系統図。The refrigeration cycle system diagram of the air conditioner according to Embodiment 4 of the present invention.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
<<実施形態1>>
本発明の空気調和機の実施形態1を図1、図2により説明する。
図1に、本発明に係る空気調和機のサイクル系統図を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
<< Embodiment 1 >>
Embodiment 1 of an air conditioner of the present invention will be described with reference to FIGS.
FIG. 1 shows a cycle system diagram of an air conditioner according to the present invention.

実施形態1の空気調和機Cは、複数の冷凍サイクルで構成される冷暖房を行う空気調和機である。
空気調和機Cは、上流側冷凍サイクルR1と下流側冷凍サイクルR2との2つの冷凍サイクルで構成される。
上流側冷凍サイクルR1は、圧縮機1a、四方弁2a、排熱側熱交換器3a、膨張装置4a、利用側熱交換器5a、およびアキュムレータ6aが、配管h4を介して接続されている。
The air conditioner C of Embodiment 1 is an air conditioner that performs air conditioning that includes a plurality of refrigeration cycles.
The air conditioner C includes two refrigeration cycles, an upstream refrigeration cycle R1 and a downstream refrigeration cycle R2.
In the upstream refrigeration cycle R1, a compressor 1a, a four-way valve 2a, an exhaust heat side heat exchanger 3a, an expansion device 4a, a use side heat exchanger 5a, and an accumulator 6a are connected via a pipe h4.

下流側冷凍サイクルR2は、上流側冷凍サイクルR1と同様、圧縮機1b、四方弁2b、排熱側熱交換器3b、膨張装置4b、利用側熱交換器5b、およびアキュムレータ6bが、配管h5を介して接続されている。
図1中、四方弁2a、2bの実線は、冷却運転時の冷媒の流れを示し、点線は、加熱運転時の冷媒の流れを示す。
また、図1中の配管h4、h5に付加される実線矢印は冷却運転時の冷媒の流れを示し、点線矢印は加熱運転時の冷媒流れを示す。
In the downstream side refrigeration cycle R2, as in the upstream side refrigeration cycle R1, the compressor 1b, the four-way valve 2b, the exhaust heat side heat exchanger 3b, the expansion device 4b, the use side heat exchanger 5b, and the accumulator 6b are connected to the pipe h5. Connected through.
In FIG. 1, the solid lines of the four-way valves 2a and 2b indicate the refrigerant flow during the cooling operation, and the dotted lines indicate the refrigerant flow during the heating operation.
Moreover, the solid line arrow added to the pipes h4 and h5 in FIG. 1 indicates the flow of the refrigerant during the cooling operation, and the dotted line arrow indicates the refrigerant flow during the heating operation.

上流側冷凍サイクルR1の利用側熱交換器5aの熱負荷媒体流路と、下流側冷凍サイクルR2の利用側熱交換器5bの熱負荷媒体流路とは、直列に配管h3を介して、接続されている。熱負荷媒体は、配管h1を通過して、上流側の利用側熱交換器5aから下流側の利用側熱交換器5bへ流れる構成である。なお、熱負荷媒体とは、空気調和機Cの冷房や暖房を担う熱媒体である。   The heat load medium flow path of the utilization side heat exchanger 5a of the upstream refrigeration cycle R1 and the heat load medium flow path of the utilization side heat exchanger 5b of the downstream refrigeration cycle R2 are connected in series via the pipe h3. Has been. The heat load medium is configured to pass through the pipe h1 and flow from the upstream use side heat exchanger 5a to the downstream use side heat exchanger 5b. The heat load medium is a heat medium that bears cooling and heating of the air conditioner C.

圧縮機1a,1bは、それぞれスクロール圧縮機、ロータリー圧縮機、スクリュー圧縮機等で運転容量が可変である圧縮機、運転容量が固定の圧縮機等で構成されている。
利用側熱交換器5a,5bは、積層プレート式熱交換器、シェルアンドチューブ式熱交換器、二重管熱交換器等で構成されている。
上流側冷凍サイクルR1の利用側熱交換器5aの入口の配管h2には熱負荷媒体の温度を測定するサーミスタなどの温度センサs1が設置されている。
Each of the compressors 1a and 1b includes a scroll compressor, a rotary compressor, a screw compressor, or the like, a compressor having a variable operating capacity, a compressor having a fixed operating capacity, or the like.
The use side heat exchangers 5a and 5b are configured by a laminated plate heat exchanger, a shell and tube heat exchanger, a double tube heat exchanger, and the like.
A temperature sensor s1 such as a thermistor for measuring the temperature of the heat load medium is installed in the pipe h2 at the inlet of the use side heat exchanger 5a of the upstream refrigeration cycle R1.

上流側冷凍サイクルR1と下流側冷凍サイクルR2との間の配管h1には、サーミスタなどの温度センサs2が設置されている。
下流側冷凍サイクルR2の利用側熱交換器5bの出口の配管h3には熱負荷媒体の温度を測定するサーミスタなどの温度センサs3が設置されている。
A temperature sensor s2 such as a thermistor is installed in the pipe h1 between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2.
A temperature sensor s3 such as a thermistor for measuring the temperature of the heat load medium is installed in the pipe h3 at the outlet of the use side heat exchanger 5b of the downstream side refrigeration cycle R2.

そして、上流側の圧縮機1aの出口側には圧力センサs4が設けられ、下流側の圧縮機1bの出口側には圧力センサs5が設けられている。   A pressure sensor s4 is provided on the outlet side of the upstream compressor 1a, and a pressure sensor s5 is provided on the outlet side of the downstream compressor 1b.

上流側の排熱側熱交換器3aと下流側の排熱側熱交換器3bとは、同等または同等に近い熱交換容量をもつ熱交換器が用いられる。従って、排熱側熱交換器3a、3bは同じ熱交換器を使用できるというメリットがある。   As the upstream exhaust heat side heat exchanger 3a and the downstream exhaust heat side heat exchanger 3b, heat exchangers having heat exchange capacities equivalent or close to equivalent are used. Therefore, the exhaust heat side heat exchangers 3a and 3b have an advantage that the same heat exchanger can be used.

なお、空気調和機Cは、不図示のコントローラなどの制御装置によって制御される。
具体的には、制御装置には、温度センサs1、s2、s3、圧力センサs4、s5などの検出信号が入力される。また、制御装置から、圧縮機1a、1b、四方弁2a、2b、膨張装置4a、4bなどを制御する制御信号が各機器にそれぞれ出力される。
The air conditioner C is controlled by a control device such as a controller (not shown).
Specifically, detection signals from temperature sensors s1, s2, s3, pressure sensors s4, s5, and the like are input to the control device. Control signals for controlling the compressors 1a and 1b, the four-way valves 2a and 2b, the expansion devices 4a and 4b, and the like are output from the control device to each device.

<冷却運転>
図1の実線矢印などで示す冷却運転の場合、上流側冷凍サイクルR1においては、圧縮機1aで圧縮された高温高圧のガス冷媒は四方弁2aの流路(実線で示す)を通り排熱側熱交換器3aにより放熱して凝縮され常温高圧の液冷媒となる。そして、常温高圧の液冷媒は、膨張装置4aにより減圧されて低温低圧の液冷媒となり、利用側熱交換器5aにおいて、配管h2から送られる熱負荷媒体と熱交換して蒸発され低温低圧のガス冷媒となり圧縮機1aに戻る。利用側熱交換器5aでは、低温低圧の液冷媒は、蒸発潜熱により熱負荷媒体から吸熱して熱負荷媒体を冷却する。
<Cooling operation>
In the cooling operation indicated by the solid arrow in FIG. 1, in the upstream refrigeration cycle R1, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1a passes through the flow path (shown by the solid line) of the four-way valve 2a and is on the exhaust heat side. Heat is dissipated by the heat exchanger 3a and condensed to form a liquid refrigerant having a normal temperature and a high pressure. The room-temperature and high-pressure liquid refrigerant is decompressed by the expansion device 4a to become a low-temperature and low-pressure liquid refrigerant, and is vaporized by heat exchange with the heat load medium sent from the pipe h2 in the use-side heat exchanger 5a. It becomes a refrigerant and returns to the compressor 1a. In the use-side heat exchanger 5a, the low-temperature and low-pressure liquid refrigerant absorbs heat from the heat load medium by latent heat of vaporization and cools the heat load medium.

熱負荷媒体は、仮に水とすると、上流側冷凍サイクルR1の利用側熱交換器5aでの熱交換により冷却され冷水が生成される。そして、配管h1を通って下流側冷凍サイクルR2の利用側熱交換器5bに流入する。   If the heat load medium is water, it is cooled by heat exchange in the use side heat exchanger 5a of the upstream side refrigeration cycle R1, and cold water is generated. And it flows in into the utilization side heat exchanger 5b of downstream refrigeration cycle R2 through the piping h1.

下流側冷凍サイクルR2においては、冷却運転の場合、図1の実線矢印で示すように、圧縮機1bで圧縮された高温高圧のガス冷媒は四方弁2bの実線で示す流路を通り、排熱側熱交換器3bにより放熱して凝縮され常温高圧の液冷媒となる。
そして、常温高圧の液冷媒は膨張装置4bにより減圧されて低温低圧の液冷媒となり、利用側熱交換器5bにおいて、配管h1から送られる熱負荷媒体と熱交換して蒸発され低温低圧のガス冷媒となり圧縮機1bに戻る。
In the downstream refrigeration cycle R2, in the cooling operation, as shown by the solid line arrow in FIG. 1, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1b passes through the flow path shown by the solid line of the four-way valve 2b and is exhausted. The side heat exchanger 3b dissipates heat and condenses into a liquid refrigerant having a normal temperature and a high pressure.
The room-temperature and high-pressure liquid refrigerant is decompressed by the expansion device 4b to become a low-temperature and low-pressure liquid refrigerant. In the use-side heat exchanger 5b, the refrigerant is evaporated by exchanging heat with the heat load medium sent from the pipe h1. And return to the compressor 1b.

低温低圧の液冷媒は、利用側熱交換器5bで蒸発潜熱により、上流側の利用側熱交換器5aで冷却された熱負荷媒体からさらに吸熱して熱負荷媒体を冷却する。
このように、熱負荷媒体の水は、上流側冷凍サイクルR1で生成された冷水が、下流側冷凍サイクルR2に流入してさらに冷却され、所望の設定温度の冷水が生成される。
The low-temperature and low-pressure liquid refrigerant further absorbs heat from the heat load medium cooled in the upstream use side heat exchanger 5a by the latent heat of vaporization in the use side heat exchanger 5b, thereby cooling the heat load medium.
As described above, the cold load water generated in the upstream refrigeration cycle R1 flows into the downstream refrigeration cycle R2 and is further cooled, thereby generating cold water having a desired set temperature.

<加熱運転>
図1の破線矢印等で示す加熱運転の場合、上流側冷凍サイクルR1においては、圧縮機1aで圧縮された高温高圧のガス冷媒は四方弁2aの点線で示す流路を通り、利用側熱交換器5aにより熱負荷媒体と熱交換して放熱して凝縮され、常温高圧の液冷媒となる。常温高圧の液冷媒は、膨張装置4aにより減圧されて低温低圧の液冷媒となる。低温低圧の液冷媒は、排熱側熱交換器3aにより蒸発され低温低圧のガス冷媒となり、圧縮機1aに戻る。
<Heating operation>
In the heating operation indicated by the broken line arrows in FIG. 1, in the upstream refrigeration cycle R1, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1a passes through the flow path indicated by the dotted line of the four-way valve 2a and uses side heat exchange. The vessel 5a exchanges heat with the heat load medium to dissipate heat and condense, and becomes a liquid refrigerant at room temperature and high pressure. The room-temperature and high-pressure liquid refrigerant is decompressed by the expansion device 4a to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant is evaporated by the exhaust heat side heat exchanger 3a to become a low-temperature and low-pressure gas refrigerant and returns to the compressor 1a.

熱負荷媒体は、仮に水とした場合、上流側冷凍サイクルR1の利用側熱交換器5aでの熱交換で加熱され温水が生成される。該温水は配管h1を通って下流側冷凍サイクルR2の利用側熱交換器5bに流入する。
下流側冷凍サイクルR2においては、加熱運転の場合、破線矢印で示すように、圧縮機1bで圧縮された高温高圧のガス冷媒は四方弁2bの点線で示す流路を通り、利用側熱交換器5bにより熱負荷媒体と熱交換して放熱して凝縮され、常温高圧の液冷媒となる。常温高圧の液冷媒は、膨張装置4bにより減圧されて低温低圧の液冷媒となる。低温低圧の液冷媒は、排熱側熱交換器3bにより蒸発され低温低圧のガス冷媒となり、圧縮機1bに戻る。
下流側冷凍サイクルR2において、下流側の利用側熱交換器5bに配管h1を通って流入する温水は、利用側熱交換器5bでの熱交換で加熱され、さらに温度が上昇し、所望の設定温度の温水が生成される。
If the heat load medium is water, it is heated by heat exchange in the use side heat exchanger 5a of the upstream refrigeration cycle R1 to generate hot water. The hot water flows into the use side heat exchanger 5b of the downstream side refrigeration cycle R2 through the pipe h1.
In the downstream refrigeration cycle R2, in the case of heating operation, as indicated by the broken line arrow, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1b passes through the flow path indicated by the dotted line of the four-way valve 2b, and the use side heat exchanger 5b exchanges heat with the heat load medium, dissipates heat, condenses, and becomes a liquid refrigerant at room temperature and high pressure. The room-temperature and high-pressure liquid refrigerant is decompressed by the expansion device 4b to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant is evaporated by the exhaust heat side heat exchanger 3b to become a low-temperature and low-pressure gas refrigerant and returns to the compressor 1b.
In the downstream refrigeration cycle R2, the hot water flowing into the downstream use side heat exchanger 5b through the pipe h1 is heated by heat exchange in the use side heat exchanger 5b, and the temperature further rises to a desired setting. Hot water of temperature is produced.

<冷却運転の利用側熱交換器5a、5bの上流・下流側の熱負荷媒体と冷媒温度の関係>
図2(a)に、冷却運転での利用側熱交換器の上流側、下流側の熱負荷媒体と冷媒温度の関係図を示し、図2(b)に、加熱運転での利用側熱交換器の上流側、下流側の熱負荷媒体と冷媒温度の関係図を示す。なお、図2において、実線矢印は利用側熱交換器5a、5bでの冷媒の温度を示し、破線矢印は利用側熱交換器5a、5bでの熱負荷媒体の温度を示す。
<Relationship between heat load medium and refrigerant temperature on upstream / downstream side of use side heat exchangers 5a and 5b in cooling operation>
FIG. 2 (a) shows a relationship diagram between the heat load medium on the upstream side and the downstream side of the use side heat exchanger in the cooling operation and the refrigerant temperature, and FIG. 2 (b) shows the use side heat exchange in the heating operation. The relationship diagram of the heat load medium and the refrigerant temperature on the upstream side and downstream side of the container is shown. In FIG. 2, the solid line arrows indicate the temperature of the refrigerant in the use side heat exchangers 5a and 5b, and the broken line arrows indicate the temperature of the heat load medium in the use side heat exchangers 5a and 5b.

図2(a)に示す冷却運転の場合、上流側冷凍サイクルR1の利用側熱交換器5aは冷水温度が高いため、冷媒の蒸発温度は高い。一方、下流側冷凍サイクルR2の利用側熱交換器5bは上流側の利用側熱交換器5aより冷水温度が低いため、冷媒の蒸発温度が低くなる。   In the cooling operation shown in FIG. 2 (a), the use side heat exchanger 5a of the upstream side refrigeration cycle R1 has a high cold water temperature, and therefore the evaporation temperature of the refrigerant is high. On the other hand, the use side heat exchanger 5b of the downstream side refrigeration cycle R2 has a cold water temperature lower than that of the upstream use side heat exchanger 5a, and thus the evaporation temperature of the refrigerant is lowered.

従って、上流側、下流側の圧縮機6a、6bの運転容量が同一の場合、上流側冷凍サイクルR1の方が下流側冷凍サイクルR2より蒸発温度が高いため、圧縮機1aの吸入部の比容積(単位質量が占める容積)が小さくなり、冷媒循環量が増加して冷却能力は大きくなる。また、蒸発温度が高いと圧縮機1aの吸入圧力が上昇し、冷媒の高圧と低圧との圧力差が小さくなる。そのため、圧縮機1aの運転が比較的低速運転で済み、消費電力は低減できる。この際、上流側の排熱側熱交換器3aは下流側冷凍サイクルR2の排熱側熱交換器3bに対して、冷媒循環量の増加により熱交換量が増加する。   Therefore, when the upstream and downstream compressors 6a and 6b have the same operating capacity, the upstream refrigeration cycle R1 has a higher evaporation temperature than the downstream refrigeration cycle R2, and therefore the specific volume of the suction portion of the compressor 1a. (Volume occupied by unit mass) is reduced, the amount of refrigerant circulation is increased, and the cooling capacity is increased. Further, when the evaporation temperature is high, the suction pressure of the compressor 1a increases, and the pressure difference between the high pressure and the low pressure of the refrigerant becomes small. Therefore, the compressor 1a can be operated at a relatively low speed, and the power consumption can be reduced. At this time, the amount of heat exchange in the upstream exhaust heat side heat exchanger 3a is increased due to an increase in the amount of refrigerant circulation compared to the exhaust heat side heat exchanger 3b in the downstream refrigeration cycle R2.

例えば、熱交換器での 熱交換量Qは次式で表わされる。
熱交換量Q=K・A・ΔT (1)
ここで、Kは熱交換器での熱貫流率、Aは熱交換器での伝熱面積、ΔTは冷凍サイクルR1、R2を流れる水(熱媒体)と冷媒との温度差を表わす。
上流側冷凍サイクルR1の利用側熱交換器5aにおいての水と冷媒との温度差ΔT1と、下流側冷凍サイクルR2の利用側熱交換器5bにおいての水と冷媒との温度差ΔT2とは以下の関係になる。
For example, the heat exchange amount Q in the heat exchanger is expressed by the following equation.
Heat exchange amount Q = K ・ A ・ ΔT (1)
Here, K is the heat transmissivity in the heat exchanger, A is the heat transfer area in the heat exchanger, and ΔT is the temperature difference between the water (heat medium) flowing through the refrigeration cycles R1 and R2 and the refrigerant.
The temperature difference ΔT1 between water and refrigerant in the use side heat exchanger 5a of the upstream refrigeration cycle R1 and the temperature difference ΔT2 between water and refrigerant in the use side heat exchanger 5b of the downstream refrigeration cycle R2 are as follows: Become a relationship.

上流側冷凍サイクルR1の冷媒の温度と下流側冷凍サイクルR2の冷媒の温度とは等しいとすると、上流側冷凍サイクルR1の利用側熱交換器5a入口での水の温度は、下流側冷凍サイクルR2の利用側熱交換器5bへの入口での水の温度より高いので、 ΔT1>ΔT2 の関係となる。
従って、式(1)より、熱交換量Qは、上流側冷凍サイクルR1の熱交換量Q1が下流側冷凍サイクルR2の熱交換量Q2より大きくなる。
Assuming that the temperature of the refrigerant in the upstream refrigeration cycle R1 is equal to the temperature of the refrigerant in the downstream refrigeration cycle R2, the temperature of water at the inlet of the use side heat exchanger 5a of the upstream refrigeration cycle R1 is the downstream refrigeration cycle R2. Since it is higher than the temperature of the water at the entrance to the use side heat exchanger 5b, the relationship ΔT1> ΔT2 is established.
Therefore, from equation (1), the heat exchange amount Q is such that the heat exchange amount Q1 of the upstream refrigeration cycle R1 is greater than the heat exchange amount Q2 of the downstream refrigeration cycle R2.

そのため、上流側冷凍サイクルR1の排熱側熱交換器3aが排熱する熱量が大きく充分に排熱できないことが起こり、圧縮機1aの高圧側が高圧となる。そのため、圧縮機1aが高速回転となり、消費電力が増加する。この際、上流側の排熱側熱交換器3aの熱交換性能と下流側の排熱側熱交換器3bの熱交換性能とが等しいため、下流側の排熱側熱交換器3bの熱交換量は余力がある状態にあると考えられる。そのため、上流側の排熱側熱交換器3aでの排熱を充分行うためには、容量を大きくする必要がある。   For this reason, the amount of heat exhausted by the exhaust heat side heat exchanger 3a of the upstream refrigeration cycle R1 is large and cannot be exhausted sufficiently, and the high pressure side of the compressor 1a becomes high pressure. Therefore, the compressor 1a rotates at a high speed and power consumption increases. At this time, since the heat exchange performance of the upstream exhaust heat side heat exchanger 3a is equal to the heat exchange performance of the downstream exhaust heat side heat exchanger 3b, heat exchange of the downstream exhaust heat side heat exchanger 3b is performed. The amount is considered to be in a state of reserve. Therefore, in order to sufficiently exhaust heat in the upstream exhaust heat side heat exchanger 3a, it is necessary to increase the capacity.

そこで、本実施形態では、下流側冷凍サイクルR2の圧縮機6bの運転容量を上流側冷凍サイクルR1の圧縮機6aの運転容量より大きくし、上流側と下流側との熱交換容量をバランスさせる(同等または同等に近くする)。
上流側と下流側とで同一の冷却能力を出す場合、上流側、下流側の圧縮機6a、6bの運転容量を同一とした場合と比較すると、上流側の圧縮機6aの運転容量を減少させ、下流側の圧縮機6bの運転容量を増加させることとなる。
Therefore, in this embodiment, the operating capacity of the compressor 6b of the downstream refrigeration cycle R2 is made larger than the operating capacity of the compressor 6a of the upstream refrigeration cycle R1, and the heat exchange capacity between the upstream side and the downstream side is balanced ( Equal or close to equal).
When the same cooling capacity is provided on the upstream side and the downstream side, the operating capacity of the upstream compressor 6a is reduced compared to the case where the operating capacity of the upstream and downstream compressors 6a and 6b is the same. The operating capacity of the downstream compressor 6b is increased.

上流側冷凍サイクルR1は圧縮機1aの運転容量(冷媒の吐出容量)を減少させたため冷媒の高圧圧力は低下し、下流側冷凍サイクルR2は圧縮機1bの運転容量を増加させたため、高圧圧力は上昇する。そのため、上流側の排熱側熱交換器3aの熱交換量は減少し、下流側の排熱側熱交換器3bの熱交換量は増加するため、上・下流側の排熱側熱交換器3a、3bの容量を効率よく使うことができる。   Since the upstream refrigeration cycle R1 has decreased the operating capacity (refrigerant discharge capacity) of the compressor 1a, the high pressure of the refrigerant has decreased, and the downstream refrigeration cycle R2 has increased the operating capacity of the compressor 1b, so that the high pressure has To rise. Therefore, the heat exchange amount of the upstream exhaust heat side heat exchanger 3a decreases and the heat exchange amount of the downstream exhaust heat side heat exchanger 3b increases. Therefore, the upstream and downstream exhaust heat side heat exchangers The capacity of 3a and 3b can be used efficiently.

詳述すると、下流側冷凍サイクルR2の圧縮機1bの運転容量を増加させることで、上流側冷凍サイクルR1と下流側冷凍サイクルR2との間の配管h1における熱負荷媒体の中間温度は上昇する。そのため、下流側冷凍サイクルR2の蒸発温度は上昇し、下流側の圧縮機1bの吸入部の比容積が小さくなり、冷媒循環量が増加して冷却能力は大きくなり、効率が向上する。   More specifically, the intermediate temperature of the heat load medium in the pipe h1 between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 increases by increasing the operating capacity of the compressor 1b of the downstream refrigeration cycle R2. Therefore, the evaporation temperature of the downstream refrigeration cycle R2 rises, the specific volume of the suction portion of the downstream compressor 1b decreases, the refrigerant circulation rate increases, the cooling capacity increases, and the efficiency improves.

一方、上流側冷凍サイクルR1では、利用側熱交換器5aの出側の熱負荷媒体の中間温度が上昇することから、上流側の排熱熱交換器3aの熱交換量が減少し、上流側の排熱熱交換器3aの熱交換容量内に納めることが可能になる。そのため、上流側冷凍サイクルR1の冷媒の高圧圧力が高くなることが抑えられ、上流側の圧縮機6aが高速運転になることを回避できる。   On the other hand, in the upstream side refrigeration cycle R1, since the intermediate temperature of the heat load medium on the outlet side of the use side heat exchanger 5a is increased, the heat exchange amount of the exhaust heat exchanger 3a on the upstream side is reduced, and the upstream side It becomes possible to fit in the heat exchange capacity of the exhaust heat exchanger 3a. Therefore, the high pressure of the refrigerant in the upstream refrigeration cycle R1 is suppressed from increasing, and the upstream compressor 6a can be prevented from operating at high speed.

結果として、熱源機(空気調和機C)全体の効率は、効率が低い下流側の利用側熱交換器5bの運転容量を増加させても、上流側冷凍サイクルR1、下流側冷凍サイクルR2が効率よく働くため、熱源機全体の効率は上昇することとなる。
ここで、図2(a)において、冷媒が上流側、下流側の利用側熱交換器5a、5bでの出口付近で立ち上がっているのは、液状の冷媒が圧縮機6a、6bに入った場合、損壊のおそれがある。そこで、膨張装置4a、4bで調整して冷媒を加熱し、低圧のガス冷媒にして圧縮機6aに入れるためである。
As a result, the efficiency of the entire heat source unit (air conditioner C) is such that the upstream side refrigeration cycle R1 and the downstream side refrigeration cycle R2 are efficient even if the operating capacity of the downstream use side heat exchanger 5b is low. Since it works well, the overall efficiency of the heat source machine will increase.
Here, in FIG. 2 (a), the refrigerant rises in the vicinity of the outlets of the upstream and downstream use side heat exchangers 5a and 5b when the liquid refrigerant enters the compressors 6a and 6b. There is a risk of damage. This is because the refrigerant is heated by adjusting with the expansion devices 4a and 4b to be a low-pressure gas refrigerant and put into the compressor 6a.

<冷却運転の実例>
図2(a)に示す冷却運転の一例を説明する。
熱負荷媒体の水は、上流側冷凍サイクルR1の利用側熱交換器5aへの入口での温度が14℃であり、下流側冷凍サイクルR2の利用側熱交換器5bへの出口での温度が7℃になるように制御する場合を考える。つまり、冷凍サイクルR1、R2で生成する冷却水の温度を7℃とする。
<Example of cooling operation>
An example of the cooling operation shown in FIG.
The temperature of the heat load medium water at the inlet to the utilization side heat exchanger 5a of the upstream refrigeration cycle R1 is 14 ° C., and the temperature at the outlet to the utilization side heat exchanger 5b of the downstream refrigeration cycle R2 is as follows. Consider the case of controlling to 7 ° C. That is, the temperature of the cooling water generated in the refrigeration cycles R1 and R2 is 7 ° C.

そこで、上流側冷凍サイクルR1の利用側熱交換器5aと下流側冷凍サイクルR2の利用側熱交換器5bとで同じ冷却性能を得るという前提では、上流側冷凍サイクルR1の利用側熱交換器5aの出口での生成水の温度は、10.5℃(=(14−7)/2)である。   Therefore, on the premise that the same cooling performance is obtained in the utilization side heat exchanger 5a of the upstream refrigeration cycle R1 and the utilization side heat exchanger 5b of the downstream refrigeration cycle R2, the utilization side heat exchanger 5a of the upstream refrigeration cycle R1 is obtained. The temperature of the produced water at the outlet of 10.5 ° C. (= (14−7) / 2).

上流側冷凍サイクルR1の圧縮機1aの冷媒の吐出量と下流側冷凍サイクルR2の圧縮機1bの冷媒の吐出量とを等しく制御すると、上流側冷凍サイクルR1と下流側冷凍サイクルR2との中間温度は、前記したように、上流側冷媒の蒸発温度が下流側冷媒の蒸発温度より高いことから、上流側の効率が下流側より高い。
そのため、熱負荷媒体である水の上流側の利用側熱交換器5aで冷却された出口での生成された冷水の温度は、中間の温度が10.5℃のところ10.2〜10.3℃に下がることとなる。
When the refrigerant discharge amount of the compressor 1a of the upstream refrigeration cycle R1 and the refrigerant discharge amount of the compressor 1b of the downstream refrigeration cycle R2 are controlled equally, the intermediate temperature between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 is controlled. As described above, since the evaporating temperature of the upstream refrigerant is higher than the evaporating temperature of the downstream refrigerant, the upstream efficiency is higher than that of the downstream side.
Therefore, the temperature of the generated cold water at the outlet cooled by the use side heat exchanger 5a on the upstream side of the water as the heat load medium is 10.2 to 10.3 when the intermediate temperature is 10.5 ° C. It will drop to ℃.

そこで、下流側冷凍サイクルR2の出口の冷水の温度が7℃になるように、温度センサs1で測定される上流側冷凍サイクルR1と下流側冷凍サイクルR2との中間温度が、ほぼ中間温度である約10.5℃になるように、上流側冷凍サイクルR1の圧縮機1aと下流側冷凍サイクルR2の圧縮機1bとの各周波数(回転速度)を決定する。なお、圧縮機1a、1bは固定容量の圧縮機でもよいし、可変容量の圧縮機でもよい。   Therefore, the intermediate temperature between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 measured by the temperature sensor s1 is substantially the intermediate temperature so that the temperature of the cold water at the outlet of the downstream refrigeration cycle R2 is 7 ° C. Each frequency (rotational speed) of the compressor 1a of the upstream refrigeration cycle R1 and the compressor 1b of the downstream refrigeration cycle R2 is determined so as to be about 10.5 ° C. The compressors 1a and 1b may be fixed capacity compressors or variable capacity compressors.

つまり、下流側冷凍サイクルR2の出口の冷水の温度が所望の設定温度になるように、上流側冷凍サイクルR1と下流側冷凍サイクルR2と間の熱媒体の温度が、上流側冷凍サイクルR1の入口の熱負荷媒体の温度と下流側冷凍サイクルR2の出口の熱負荷媒体の設定温度とのほぼ中間の温度になるように、上流側冷凍サイクルR1の圧縮機1aと下流側冷凍サイクルR2の圧縮機1bとの各周波数(回転速度)を決定する。   That is, the temperature of the heat medium between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 is such that the temperature of the cold water at the outlet of the downstream refrigeration cycle R2 becomes a desired set temperature. The compressor 1a of the upstream refrigeration cycle R1 and the compressor of the downstream refrigeration cycle R2 so that the temperature of the heat load medium of the upstream refrigeration cycle R2 and the set temperature of the heat load medium at the outlet of the downstream refrigeration cycle R2 are substantially intermediate. Each frequency (rotational speed) with 1b is determined.

<加熱運転の利用側熱交換器5a、5bの上流・下流側の熱負荷媒体と冷媒温度の関係>
次に、図2(b)に示す加熱運転の場合の上流側、下流側の熱負荷媒体と冷媒温度の関係を説明する。前記したように、図2(b)において、実線矢印は利用側熱交換器5a、5bでの冷媒の温度を示し、破線矢印は利用側熱交換器5a、5bでの熱負荷媒体の温度を示す。
<Relationship Between Heat Load Medium and Refrigerant Temperature Upstream / Downstream of Use-side Heat Exchangers 5a and 5b in Heating Operation>
Next, the relationship between the upstream and downstream thermal load media and the refrigerant temperature in the heating operation shown in FIG. As described above, in FIG. 2B, the solid line arrows indicate the temperature of the refrigerant in the use side heat exchangers 5a and 5b, and the broken line arrows indicate the temperature of the heat load medium in the use side heat exchangers 5a and 5b. Show.

加熱運転の場合、上流側冷凍サイクルR1の利用側熱交換器5aは温水温度が低いため、冷媒の凝縮温度は低い。一方、下流側冷凍サイクルR2の利用側熱交換器5bは上流側の利用側熱交換器5aより温水温度が高いため、冷媒の凝縮温度が高くなる。   In the case of the heating operation, the use side heat exchanger 5a of the upstream side refrigeration cycle R1 has a low temperature of hot water, so that the condensation temperature of the refrigerant is low. On the other hand, the use-side heat exchanger 5b of the downstream-side refrigeration cycle R2 has a higher hot water temperature than the upstream-use use-side heat exchanger 5a, so that the refrigerant condensing temperature becomes higher.

従って、上流側、下流側の圧縮機6a、6bの運転容量が同一の場合、上流側冷凍サイクルR1の方が下流側冷凍サイクルR2より凝縮温度が低いため、高圧圧力は低下して圧縮機1aの消費電力が小さくなる。一方、下流側冷凍サイクルR2は凝縮温度が高いため、高圧圧力が上昇し、圧縮機1bの消費電力が大きくなる。この際、排熱側熱交換器3a、3bは蒸発側のエンタルピ差が蒸発能力と比例するため、下流側冷凍サイクルR2の排熱側熱交換器3bに対し上流側冷凍サイクルR1の排熱熱交換器3aは容量が必要となる。   Therefore, when the upstream and downstream compressors 6a and 6b have the same operation capacity, the upstream refrigeration cycle R1 has a lower condensation temperature than the downstream refrigeration cycle R2, and thus the high pressure decreases and the compressor 1a The power consumption becomes smaller. On the other hand, since the downstream refrigeration cycle R2 has a high condensation temperature, the high-pressure pressure rises and the power consumption of the compressor 1b increases. At this time, since the enthalpy difference on the evaporation side of the exhaust heat side heat exchangers 3a and 3b is proportional to the evaporation capacity, the exhaust heat heat of the upstream refrigeration cycle R1 is compared to the exhaust heat side heat exchanger 3b of the downstream refrigeration cycle R2. The exchanger 3a needs a capacity.

本実施形態では、下流側冷凍サイクルR2の圧縮機1bの運転容量を、上流側冷凍サイクルR1の圧縮機1bの運転容量よりも大きくする。
つまり、上流側冷凍サイクルR1と下流側冷凍サイクルR2とで同一加熱能力を出す場合で、上流側、下流側の圧縮機1a、1bの各運転容量を同一とした場合と比較すると、上流側の圧縮機1aの運転容量を減少させ、下流側の圧縮機1bの運転容量を増加させることとなる。
In the present embodiment, the operating capacity of the compressor 1b in the downstream refrigeration cycle R2 is made larger than the operating capacity of the compressor 1b in the upstream refrigeration cycle R1.
That is, in the case where the same heating capacity is provided in the upstream side refrigeration cycle R1 and the downstream side refrigeration cycle R2, the upstream side and downstream side compressors 1a and 1b have the same operating capacity as compared with the case where the upstream side refrigeration cycle R1 and the downstream side refrigeration cycle R2 have the same operating capacity The operating capacity of the compressor 1a is decreased, and the operating capacity of the downstream compressor 1b is increased.

上流側冷凍サイクルR1は圧縮機1aの運転容量を減少させるため、排熱側熱交換器3aの容量に余裕ができ、低圧圧力は上昇する。一方、下流側冷凍サイクルR2は圧縮機1bの運転容量を増加させるため、低圧圧力は低下して下流側の排熱側熱交換器3bは、熱交換容量が大きくなる。   Since the upstream side refrigeration cycle R1 reduces the operating capacity of the compressor 1a, the capacity of the exhaust heat side heat exchanger 3a can be afforded, and the low pressure increases. On the other hand, since the downstream refrigeration cycle R2 increases the operating capacity of the compressor 1b, the low-pressure pressure is lowered, and the downstream heat exhaust side heat exchanger 3b has a large heat exchange capacity.

また、下流側冷凍サイクルR2の圧縮機1bの運転容量を増加させることで、上流側冷凍サイクルR1と下流側冷凍サイクルR2との間の熱負荷媒体の中間温度は低下する。そのため、上流側冷凍サイクルR1の凝縮温度は低下し、効率が向上することとなる。
結果として、上流側、下流側の排熱側熱交換器3a、3bの熱交換容量を効率よく使うことができる。
Moreover, the intermediate temperature of the heat load medium between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 is decreased by increasing the operating capacity of the compressor 1b of the downstream refrigeration cycle R2. Therefore, the condensation temperature of the upstream refrigeration cycle R1 is lowered, and the efficiency is improved.
As a result, the heat exchange capacities of the upstream and downstream exhaust heat side heat exchangers 3a and 3b can be used efficiently.

そのため、熱源機(空気調和機C)全体の効率は、効率が低い下流側の圧縮機1bの運転容量を増加させても、上流側冷凍サイクルR1の効率が上昇し、熱源機全体の効率は上昇することとなる。   Therefore, the efficiency of the entire heat source unit (air conditioner C) increases the efficiency of the upstream refrigeration cycle R1 even if the operating capacity of the downstream compressor 1b, which is low in efficiency, is increased. Will rise.

ここで、制御装置は、下流側冷凍サイクルR2の出口の冷水の温度が所望の設定温度になるように、上流側冷凍サイクルR1と下流側冷凍サイクルR2と間の熱媒体の温度が、上流側冷凍サイクルR1の入口の熱負荷媒体の温度と下流側冷凍サイクルR2の出口の熱負荷媒体の設定温度とのほぼ中間の温度になるように、上流側冷凍サイクルR1の圧縮機1aと下流側冷凍サイクルR2の圧縮機1bとの各周波数(回転速度)を制御する。   Here, the control device sets the temperature of the heat medium between the upstream refrigeration cycle R1 and the downstream refrigeration cycle R2 so that the temperature of the cold water at the outlet of the downstream refrigeration cycle R2 becomes a desired set temperature. The compressor 1a of the upstream refrigeration cycle R1 and the downstream refrigeration are set so that the temperature of the heat load medium at the inlet of the refrigeration cycle R1 is substantially intermediate between the temperature of the heat load medium at the outlet of the downstream refrigeration cycle R2. Each frequency (rotational speed) with the compressor 1b of cycle R2 is controlled.

図2(b)の加熱運転においては、上流側の利用側熱交換5aと下流側の利用側熱交換5bとは、それぞれ冷凍サイクルR1、R2を相変化して循環する冷媒の凝縮器として働く。そのため、熱負荷媒体は、上流側の利用側熱交換5aを通過することで冷媒の凝縮熱で加熱され、温度が上昇する。さらに、配管h1を通過した熱負荷媒体は、下流側の利用側熱交換5bを通過することで冷媒の凝縮熱で加熱され、温度が上昇し、設定された温度の熱負荷媒体になるように制御される。   In the heating operation of FIG. 2 (b), the upstream side use side heat exchange 5a and the downstream side use side heat exchange 5b function as a refrigerant condenser that circulates in phase changes in the refrigeration cycles R1 and R2, respectively. . Therefore, the heat load medium is heated by the condensation heat of the refrigerant by passing through the upstream use side heat exchange 5a, and the temperature rises. Furthermore, the heat load medium that has passed through the pipe h1 is heated by the condensation heat of the refrigerant by passing through the downstream use side heat exchange 5b, so that the temperature rises and becomes a heat load medium at the set temperature. Be controlled.

図2(b)において、上流側の冷媒は、上流側の利用側熱交換5aを出る付近では、膨張装置4aを調整して温度を低下させて、液化を促進する。同様に、下流側冷媒は、下流側の利用側熱交換5bを出る付近では、膨張装置4bを調整して温度を低下させて、液化を促進している。   In FIG. 2B, the refrigerant on the upstream side promotes liquefaction by adjusting the expansion device 4a to lower the temperature in the vicinity of exiting the upstream use side heat exchange 5a. Similarly, the downstream refrigerant adjusts the expansion device 4b to decrease the temperature in the vicinity of exiting the downstream use side heat exchange 5b, and promotes liquefaction.

前記した冷却運転または加熱運転は、上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われるように制御している。
なお、上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われることは、上流側の圧縮機1aの出口側に設けた圧力センサs4で検出される高圧側の圧力値と、下流側の圧縮機1bの出口側に設けた圧力センサs5で検出される高圧側の圧力値とが同等または同等に近いことから明らかになる(検出される)。
The cooling operation or heating operation described above is performed so that the upstream exhaust heat side heat exchanger 3a and the downstream exhaust heat side heat exchanger 3b perform heat exchange with the same or nearly equivalent heat exchange capacity. I have control.
The fact that the upstream exhaust heat side heat exchanger 3a and the downstream exhaust heat side heat exchanger 3b perform heat exchange with the same or similar heat exchange capacity means that the upstream compressor 1a The pressure value on the high pressure side detected by the pressure sensor s4 provided on the outlet side of the compressor is equal to or equivalent to the pressure value on the high pressure side detected by the pressure sensor s5 provided on the outlet side of the downstream compressor 1b. It becomes clear (detected) from near.

上記構成によれば、下流側冷凍サイクルR2の圧縮機1bの運転容量を上流側冷凍サイクルR1の圧縮機1aの運転容量より大きくすることで、冷却運転時、加熱運転時とも熱源機(空気調和機C)全体の効率が向上できる。
また、下流側の利用側熱交換器3bの出口の熱負荷媒体の温度と、下流側の利用側熱交換器3bと上流側の利用側熱交換器3aの間の熱負荷媒体の温度である中間温度との差は、当該中間温度と上流側の利用側熱交換器3aの入口の熱負荷媒体の温度との差とほぼ同じとなるようにするので、熱源機全体の効率が向上できる。
According to the above configuration, the operating capacity of the compressor 1b of the downstream refrigeration cycle R2 is made larger than the operating capacity of the compressor 1a of the upstream refrigeration cycle R1, so that the heat source machine (air conditioning) can be used during both the cooling operation and the heating operation. Machine C) The overall efficiency can be improved.
Also, the temperature of the heat load medium at the outlet of the downstream use side heat exchanger 3b and the temperature of the heat load medium between the downstream use side heat exchanger 3b and the upstream use side heat exchanger 3a. Since the difference from the intermediate temperature is made substantially the same as the difference between the intermediate temperature and the temperature of the heat load medium at the inlet of the upstream use side heat exchanger 3a, the efficiency of the entire heat source apparatus can be improved.

また、上流側・下流側冷凍サイクルR1、R2の排熱側熱交換器3a、3bは同等のまたは同等に近い熱交換を行うので、熱源機全体の効率が向上できる。   Further, since the exhaust heat side heat exchangers 3a and 3b of the upstream and downstream refrigeration cycles R1 and R2 perform equivalent or nearly equivalent heat exchange, the efficiency of the entire heat source apparatus can be improved.

また、上流側・下流側冷凍サイクルR1、R2の排熱側熱交換器3a、3bは同等のまたは同等に近い熱交換を行うので、上流側・下流側冷凍サイクルR1、R2の排熱側熱交換器3a、3bの容量をそれぞれバランスよく使い切ることができる。そのため、排熱側熱交換器3a、3bを必要な熱交換容量をもつ最も小型の熱交換器を選択することができる。また、上流側、下流側冷凍サイクルR1、R2の排熱側熱交換器3a、3bを同容量のものとでき、同じ熱交換器を使用できる。   Further, the exhaust heat side heat exchangers 3a and 3b of the upstream and downstream refrigeration cycles R1 and R2 perform equivalent or nearly equivalent heat exchange, so that the exhaust heat side heat of the upstream and downstream refrigeration cycles R1 and R2 The capacity of the exchangers 3a and 3b can be used up in a balanced manner. Therefore, the smallest heat exchanger having the necessary heat exchange capacity can be selected as the exhaust heat side heat exchangers 3a and 3b. Further, the exhaust heat side heat exchangers 3a and 3b of the upstream and downstream refrigeration cycles R1 and R2 can have the same capacity, and the same heat exchanger can be used.

そのため、排熱側熱交換器3a、3bを同容量の熱交換器を用いる量産効果による生産コスト削減が行える。加えて、排熱側熱交換器3a、3bを同じ熱交換器を使用できるので、レイアウト性がよい。   Therefore, the production cost can be reduced due to the mass production effect of using the heat exchangers of the same capacity as the exhaust heat side heat exchangers 3a and 3b. In addition, since the same heat exchanger can be used for the exhaust heat side heat exchangers 3a and 3b, the layout is good.

また、空気調和機Cの製品寸法のコンパクト化が図れる。
また、排熱側熱交換器3a、3bの最適容量化による原価低減が可能である。排熱側熱交換器3a、3bを同一部品を採用することにより、管理費を低減できる。
Further, the product dimensions of the air conditioner C can be reduced.
Moreover, the cost reduction by the optimal capacity | capacitance of the waste heat side heat exchanger 3a, 3b is possible. By using the same components for the exhaust heat side heat exchangers 3a and 3b, the management cost can be reduced.

<<実施形態2>>
図3は、本発明の実施形態2に係る空気調和機の冷凍サイクル系統図である。
実施形態2の空気調和機2Cは、図1の実施形態1の下流側冷凍サイクルR2の圧縮機1bを、2つの圧縮機1d、1eを並列に接続したマルチサイクルの構成に変えたものである。
その他の構成要素ついては実施形態1と同様であるので、同一の構成要素には、同一符号を付してその説明を省略する。
<< Embodiment 2 >>
FIG. 3 is a refrigeration cycle diagram of an air conditioner according to Embodiment 2 of the present invention.
The air conditioner 2C of the second embodiment is obtained by changing the compressor 1b of the downstream refrigeration cycle R2 of the first embodiment of FIG. 1 to a multi-cycle configuration in which two compressors 1d and 1e are connected in parallel. .
Since other components are the same as those in the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.

実施形態2の空気調和機2Cにおいては、上流側冷凍サイクルR21の圧縮機1aの運転容量を、下流側冷凍サイクルR22の圧縮機1d、1eの合計の運転容量より大きくする。
空気調和機2Cの冷却運転および加熱運転時の上流側・下流側冷凍サイクルR21、R22の状態は実施形態1の記載と同様である。
In the air conditioner 2C of the second embodiment, the operating capacity of the compressor 1a in the upstream refrigeration cycle R21 is made larger than the total operating capacity of the compressors 1d and 1e in the downstream refrigeration cycle R22.
The states of the upstream and downstream refrigeration cycles R21 and R22 during the cooling operation and heating operation of the air conditioner 2C are the same as those described in the first embodiment.

具体的には、空気調和機2Cでは、冷却運転時、制御装置により、下流側冷凍サイクルR22の利用側熱交換5bの出口の熱負荷媒体の温度が所望の設定温度になるように、上流側冷凍サイクルR21と下流側冷凍サイクルR22との間の熱負荷媒体の温度が、上流側冷凍サイクルR21の利用側熱交換5aの入口の熱負荷媒体の温度と下流側冷凍サイクルR22の利用側熱交換5bの出口の熱負荷媒体の設定温度とのほぼ中間の温度になるように、上流側の圧縮機1aと下流側の圧縮機1bとの各周波数(回転速度)を制御する。換言すれば、冷却運転時、下流側冷凍サイクルR22の圧縮機1bの運転容量は、上流側冷凍サイクルR21の圧縮機1aの運転容量より大きくなる。   Specifically, in the air conditioner 2C, during the cooling operation, the control device controls the upstream side so that the temperature of the heat load medium at the outlet of the use side heat exchange 5b of the downstream side refrigeration cycle R22 becomes a desired set temperature. The temperature of the heat load medium between the refrigeration cycle R21 and the downstream refrigeration cycle R22 is such that the temperature of the heat load medium at the inlet of the use side heat exchange 5a of the upstream refrigeration cycle R21 and the use side heat exchange of the downstream refrigeration cycle R22. Each frequency (rotational speed) of the upstream side compressor 1a and the downstream side compressor 1b is controlled so as to be a temperature substantially in the middle of the set temperature of the heat load medium at the outlet 5b. In other words, during the cooling operation, the operating capacity of the compressor 1b in the downstream refrigeration cycle R22 is larger than the operating capacity of the compressor 1a in the upstream refrigeration cycle R21.

一方、暖房運転時には、制御装置により、下流側冷凍サイクルR22の利用側熱交換5bの出口の熱負荷媒体の温度が所望の設定温度になるように、上流側冷凍サイクルR21と下流側冷凍サイクルR22との間の熱負荷媒体の温度が、上流側冷凍サイクルR21の利用側熱交換5aの入口の熱負荷媒体の温度と下流側冷凍サイクルR22の利用側熱交換5bの出口の熱負荷媒体の設定温度とのほぼ中間の温度になるように、上流側の圧縮機1aと下流側の圧縮機1bとの各周波数(回転速度)を制御する。換言すれば、暖房運転時、下流側冷凍サイクルR22の圧縮機1bの運転容量は、上流側冷凍サイクルR21の圧縮機1aの運転容量より大きくなる。   On the other hand, during the heating operation, the upstream refrigeration cycle R21 and the downstream refrigeration cycle R22 are controlled by the control device so that the temperature of the heat load medium at the outlet of the use side heat exchange 5b of the downstream refrigeration cycle R22 becomes a desired set temperature. The temperature of the heat load medium between the refrigeration cycle and the heat load medium at the inlet of the utilization side heat exchange 5a of the upstream refrigeration cycle R21 and the heat load medium at the outlet of the utilization side heat exchange 5b of the downstream refrigeration cycle R22 are set. Each frequency (rotational speed) of the upstream side compressor 1a and the downstream side compressor 1b is controlled so that the temperature is substantially in the middle of the temperature. In other words, during the heating operation, the operating capacity of the compressor 1b in the downstream refrigeration cycle R22 is larger than the operating capacity of the compressor 1a in the upstream refrigeration cycle R21.

または、冷却運転または加熱運転において、上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われるように制御される。上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われることは、上流側の圧縮機1aの出口側の圧力センサs4で測定される高圧圧力値と、下流側の圧縮機1d、1eの出口側の圧力センサs5で測定される高圧圧力値とが同等または同等に近い値になることで明らかになる(検出される)。   Alternatively, in the cooling operation or the heating operation, heat exchange is performed between the upstream exhaust heat side heat exchanger 3a and the downstream exhaust heat side heat exchanger 3b with heat exchange capacities that are equivalent or close to equivalent. Be controlled. The fact that the upstream exhaust heat side heat exchanger 3a and the downstream exhaust heat side heat exchanger 3b perform heat exchange with the same or similar heat exchange capacity means that the outlet of the upstream compressor 1a Obviously, the high pressure value measured by the pressure sensor s4 on the side and the high pressure value measured by the pressure sensor s5 on the outlet side of the downstream compressors 1d and 1e are equal or close to equivalent values. Become (detected).

上記構成によれば、下流側冷凍サイクルR22の圧縮機1d、1eの合計の運転容量を、上流側冷凍サイクルR21の圧縮機1aの運転容量をより大きくするので、熱源機の空気調和機3C全体の効率が向上する。   According to the above configuration, since the total operating capacity of the compressors 1d and 1e of the downstream refrigeration cycle R22 is made larger than the operating capacity of the compressor 1a of the upstream refrigeration cycle R21, the entire air conditioner 3C of the heat source machine Increases efficiency.

また、冷却運転時、暖房運転時に、上流側冷凍サイクルR21と下流側冷凍サイクルR22との間の熱負荷媒体の温度が、上流側冷凍サイクルR21の入口の熱負荷媒体の温度と下流側冷凍サイクルR22の出口の熱負荷媒体の設定温度とのほぼ中間の温度になるように制御するので、熱源機の空気調和機3C全体の効率が向上する。   Further, during the cooling operation and the heating operation, the temperature of the heat load medium between the upstream refrigeration cycle R21 and the downstream refrigeration cycle R22 is the same as the temperature of the heat load medium at the inlet of the upstream refrigeration cycle R21 and the downstream refrigeration cycle. Since the temperature is controlled so as to be approximately intermediate to the set temperature of the heat load medium at the outlet of R22, the efficiency of the entire air conditioner 3C of the heat source device is improved.

また、上流側、下流側の排熱側熱交換器3a、3bの熱交換容量を同等または同等に近くにすることで、上流側、下流側の排熱側熱交換器3a、3bの熱交換容量をバランスよく使い切ることができる。そのため、上流側、下流側の排熱側熱交換器3a、3bを同等のまたは同等に近い熱交換容量とでき、同じ熱交換器を使用できる。   Further, by making the heat exchange capacities of the upstream and downstream exhaust heat side heat exchangers 3a and 3b equivalent or close to each other, heat exchange between the upstream and downstream exhaust heat side heat exchangers 3a and 3b is achieved. The capacity can be used up in a well-balanced manner. Therefore, the upstream and downstream exhaust heat side heat exchangers 3a and 3b can have the same or similar heat exchange capacity, and the same heat exchanger can be used.

そのため、排熱側熱交換器3a、3bの最適容量化による小型化、および空気調和機2Cの製品寸法のコンパクト化が図れる。また、排熱側熱交換器3a、3bの最適容量化による原価低減が可能である。   Therefore, it is possible to reduce the size of the exhaust heat side heat exchangers 3a and 3b by optimizing the capacity, and to reduce the product size of the air conditioner 2C. Moreover, the cost reduction by the optimal capacity | capacitance of the waste heat side heat exchanger 3a, 3b is possible.

さらに、排熱側熱交換器3a、3bを、同一部品を採用することにより、管理費を低減できる。加えて、排熱側熱交換器3a、3bを同じ熱交換器を使用できるので、レイアウト性がよい。   Furthermore, the management cost can be reduced by adopting the same components for the exhaust heat side heat exchangers 3a and 3b. In addition, since the same heat exchanger can be used for the exhaust heat side heat exchangers 3a and 3b, the layout is good.

なお、上流側の圧縮機1を運転容量を可変できる圧縮機とし、下流側の圧縮機1d、1eの一方を運転容量を可変できる圧縮機とし、他方を運転容量が固定の圧縮機とするとよい。これにより、種々の条件化で下流側の圧縮機1d、1eの運転容量を上流側の圧縮機1の運転容量より大きくすることが容易に行える。また、下流側の圧縮機1d、1eの一つが固定の圧縮機であるので、コスト削減が可能である。   The upstream compressor 1 may be a compressor capable of changing the operating capacity, one of the downstream compressors 1d and 1e may be a compressor capable of changing the operating capacity, and the other may be a compressor having a fixed operating capacity. . Thereby, the operating capacity of the downstream compressors 1d and 1e can be easily made larger than the operating capacity of the upstream compressor 1 under various conditions. Further, since one of the downstream side compressors 1d and 1e is a fixed compressor, the cost can be reduced.

<<実施形態3>>
図4は、本発明の実施形態3に係る空気調和機の冷凍サイクル系統図である。
実施形態3の空気調和機3Cは、図1の実施形態1における空気調和機Cの利用側熱交換器5a、5bについて、熱負荷媒体に対して冷媒の熱交換流路を2冷凍サイクル有する利用側熱交換器5d、5eに変更したものである。
<< Embodiment 3 >>
FIG. 4 is a refrigeration cycle diagram of an air conditioner according to Embodiment 3 of the present invention.
The air conditioner 3C according to the third embodiment is a utilization side heat exchanger 5a, 5b of the air conditioner C according to the first embodiment shown in FIG. The side heat exchangers 5d and 5e are changed.

つまり、空気調和機3Cは、上流側冷凍サイクルR31を2つの冷凍サイクルR31A、R31Bとして上流側の利用側熱交換器5dの冷媒の熱交換流路を2流路とする。同時に、下流側冷凍サイクルR32を2つの冷凍サイクルR32A、R32Bとして下流側の利用側熱交換器5eの冷媒の熱交換流路を2流路としている。
各冷凍サイクルR31A、R31B、R32A、R32Bの構成ついては実施形態1と同様であり、同様な構成要素には同一符号を付してその説明を省略する。
That is, the air conditioner 3C uses the upstream refrigeration cycle R31 as two refrigeration cycles R31A and R31B, and uses two heat exchange channels for the refrigerant in the upstream use side heat exchanger 5d. At the same time, the downstream side refrigeration cycle R32 is set to two refrigeration cycles R32A and R32B, and the refrigerant heat exchange channel of the downstream side use side heat exchanger 5e is set to two channels.
The configuration of each refrigeration cycle R31A, R31B, R32A, R32B is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted.

実施形態3の空気調和機3Cにおいて、上流側の利用側熱交換器5dに接続した上流側の2個の冷凍サイクルR31A、R31Bは、各圧縮機1aを同一容量で運転する。また、下流側の利用側熱交換器5eに接続した下流側の2個の冷凍サイクルR32A、R32Bも、各圧縮機1bを同一容量で運転する。   In the air conditioner 3C of the third embodiment, the two upstream refrigeration cycles R31A and R31B connected to the upstream use side heat exchanger 5d operate each compressor 1a with the same capacity. The two downstream refrigeration cycles R32A and R32B connected to the downstream use side heat exchanger 5e also operate the compressors 1b with the same capacity.

そして、下流側の2個の冷凍サイクルR32A、R32Bの圧縮機1bの運転容量を、上流側の2個の冷凍サイクルR31A、R31Bの圧縮機1aの運転容量より大きくする。
冷却運転時および加熱運転時の上流側・下流側の冷凍サイクルR31、R32の状態は、実施形態1に記載の冷凍サイクルR1、R2と同様である。
Then, the operating capacities of the compressors 1b of the two downstream refrigeration cycles R32A and R32B are made larger than the operating capacities of the compressors 1a of the two upstream refrigeration cycles R31A and R31B.
The states of the upstream and downstream refrigeration cycles R31 and R32 during the cooling operation and the heating operation are the same as those of the refrigeration cycles R1 and R2 described in the first embodiment.

具体的には、空気調和機3Cでは、冷却運転時、制御装置により、下流側冷凍サイクルR32の利用側熱交換器5eの出口の熱負荷媒体の温度が所望の設定温度になるように、上流側冷凍サイクルR31と下流側冷凍サイクルR32との間の熱負荷媒体の温度が、上流側冷凍サイクルR31の入口の熱負荷媒体の温度と下流側冷凍サイクルR32の出口の熱負荷媒体の設定温度とのほぼ中間の温度になるべく、上流側冷凍サイクルR31の圧縮機1aと下流側冷凍サイクルR2の圧縮機1bとの各周波数(回転速度)を制御する。   Specifically, in the air conditioner 3C, during the cooling operation, the control device controls the upstream side so that the temperature of the heat load medium at the outlet of the use side heat exchanger 5e of the downstream side refrigeration cycle R32 becomes a desired set temperature. The temperature of the heat load medium between the side refrigeration cycle R31 and the downstream refrigeration cycle R32 is the temperature of the heat load medium at the inlet of the upstream refrigeration cycle R31 and the set temperature of the heat load medium at the outlet of the downstream refrigeration cycle R32. Each frequency (rotational speed) of the compressor 1a of the upstream refrigeration cycle R31 and the compressor 1b of the downstream refrigeration cycle R2 is controlled so that the temperature becomes substantially intermediate.

一方、暖房運転時には、制御装置により、下流側冷凍サイクルR32の利用側熱交換器5eの出口の熱負荷媒体の温度が所望の設定温度になるように、上流側冷凍サイクルR31と下流側冷凍サイクルR32との間の熱負荷媒体の温度が、上流側冷凍サイクルR31の入口の熱負荷媒体の温度と下流側冷凍サイクルR32の出口の熱負荷媒体の設定温度とのほぼ中間の温度になるべく、上流側の圧縮機1aと下流側の圧縮機1bとの各周波数(回転速度)を制御する。   On the other hand, during the heating operation, the upstream refrigeration cycle R31 and the downstream refrigeration cycle are controlled by the control device so that the temperature of the heat load medium at the outlet of the use side heat exchanger 5e of the downstream refrigeration cycle R32 becomes a desired set temperature. The temperature of the heat load medium between R32 and R32 should be approximately intermediate between the temperature of the heat load medium at the inlet of the upstream refrigeration cycle R31 and the set temperature of the heat load medium at the outlet of the downstream refrigeration cycle R32. Each frequency (rotational speed) of the compressor 1a on the side and the compressor 1b on the downstream side is controlled.

或いは、冷却運転または加熱運転において、上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われるように制御される。これは、上流側の圧縮機1aの出側の圧力値の合計値(上流側の高圧圧力)と、下流側の圧縮機1bの出側の圧力値の合計値(下流側の高圧圧力)とが、同等または同等に近くなることで明らかになる(検出される)。   Alternatively, in the cooling operation or the heating operation, the heat exhaust side heat exchanger 3a on the upstream side and the heat exhaust side heat exchanger 3b on the downstream side perform heat exchange with the same or nearly equivalent heat exchange capacity. Be controlled. This is the sum of the pressure values on the outlet side of the upstream compressor 1a (upstream high pressure) and the sum of the pressure values on the outlet side of the downstream compressor 1b (downstream high pressure). Becomes apparent (detected) by becoming equivalent or close to the equivalent.

上記構成によれば、下流側の圧縮機1bの合計の運転容量は、上流側の圧縮機1aの合計の運転容量より大きいので、熱源機である空気調和機3C全体の効率が向上できる。
また、排熱側熱交換器容量3a、3bが同等または同等に近い熱交換容量で熱交換が行われるので、排熱側熱交換器容量3a、3bをバランスよく使い切れる。これにより、上流側、下流側冷凍サイクルR31、R32の排熱側熱交換器3a、3bを同容量または同容量に近いものとでき、排熱側熱交換器3a、3bを同じ熱交換器を使用できる。
そのため、空気調和機3Cの製品寸法のコンパクト化が図れる。
According to the above configuration, since the total operation capacity of the downstream compressor 1b is larger than the total operation capacity of the upstream compressor 1a, the efficiency of the entire air conditioner 3C as a heat source apparatus can be improved.
Further, since the heat exchange is performed with the heat exchange capacities of the exhaust heat side heat exchanger capacities 3a and 3b that are equal to or close to the same, the exhaust heat side heat exchanger capacities 3a and 3b can be used up in a well-balanced manner. As a result, the exhaust heat side heat exchangers 3a and 3b of the upstream and downstream refrigeration cycles R31 and R32 can have the same capacity or close to the same capacity, and the exhaust heat side heat exchangers 3a and 3b can be replaced with the same heat exchanger. Can be used.
Therefore, the product dimensions of the air conditioner 3C can be reduced.

そして、排熱側熱交換器3a、3bの最適容量化による原価低減が図れる。また、排熱側熱交換器3a、3bを、同一部品を採用することによる管理費を低減できる。加えて、排熱側熱交換器3a、3bを同じ熱交換器を使用できるので、レイアウト性がよい。   And cost reduction by the optimal capacity | capacitance of the waste heat side heat exchanger 3a, 3b can be aimed at. Moreover, the management expense by employ | adopting the same component for the waste heat side heat exchangers 3a and 3b can be reduced. In addition, since the same heat exchanger can be used for the exhaust heat side heat exchangers 3a and 3b, the layout is good.

なお、本実施形態3では、各冷凍サイクルR31A、R31B、R32A、R32Bの圧縮機1a、1bの数量を1個としたが、実施形態2のように各冷凍サイクルR31A、R31B、R32A、R32Bの何れかの圧縮機1a、1bの数量を複数個としてもよい。   In the third embodiment, the number of compressors 1a and 1b in each refrigeration cycle R31A, R31B, R32A, and R32B is one, but as in the second embodiment, each refrigeration cycle R31A, R31B, R32A, and R32B The number of any one of the compressors 1a and 1b may be plural.

なお、実施形態3では、上流側の利用側熱交換器5dと下流側の利用側熱交換器5eとが、それぞれ2つの冷凍サイクルR31A、R31Bと、2つの冷凍サイクルR32A、R32Bとで熱交換される場合を示したが、3つ以上の冷凍サイクルで熱交換する構成としてもよい。   In the third embodiment, the upstream use side heat exchanger 5d and the downstream use side heat exchanger 5e exchange heat with two refrigeration cycles R31A and R31B and two refrigeration cycles R32A and R32B, respectively. However, the heat exchange may be performed by three or more refrigeration cycles.

或いは、図5に示す空気調和機3C1のように、下流側冷凍サイクルR32A、R32Bは、それぞれ2台の圧縮機1d、1eを有する構成としてもよい。これにより、下流側の圧縮機の容量を、上流側の圧縮機の容量よりも容易に大きく制御できる。なお、図5は実施形態3に係る一例の空気調和機の冷凍サイクル系統図である。   Alternatively, as in the air conditioner 3C1 illustrated in FIG. 5, the downstream refrigeration cycles R32A and R32B may have two compressors 1d and 1e, respectively. Thereby, the capacity | capacitance of a downstream compressor can be easily controlled larger than the capacity | capacitance of an upstream compressor. FIG. 5 is a refrigeration cycle diagram of an example of an air conditioner according to the third embodiment.

<<実施形態4>>
図6は、本発明の実施形態4に係る空気調和機の冷凍サイクル系統図である。
実施形態4の空気調和機4Cは、図1に示す実施形態1に対し、上流側冷凍サイクルR41、中流側冷凍サイクルR42、下流側冷凍サイクルR43と3つの冷凍サイクルの熱負荷媒体の流路を、配管h41a、h41bにより直列に接続したものである。
上流側冷凍サイクルR41、下流側冷凍サイクルR43の構成ついては、実施形態1と同様であり、同様な構成要素には同一符号を付してその説明を省略する。
<< Embodiment 4 >>
FIG. 6 is a refrigeration cycle diagram of an air conditioner according to Embodiment 4 of the present invention.
The air conditioner 4C according to the fourth embodiment is different from the first embodiment shown in FIG. 1 in that the upstream side refrigeration cycle R41, the middle flow side refrigeration cycle R42, the downstream side refrigeration cycle R43 and the flow path of the heat load medium of the three refrigeration cycles. The pipes h41a and h41b are connected in series.
The configurations of the upstream refrigeration cycle R41 and the downstream refrigeration cycle R43 are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.

中流側冷凍サイクルR42は、圧縮機1c、四方弁2c、排熱側熱交換器3c、膨張装置4c、利用側熱交換器5c、およびアキュムレータ6cを配管h46で接続している。中流側冷凍サイクルR42の動作は上流側および下流側冷凍サイクルR41、R43と同一である。中流側の圧縮機1cの出口側に圧力センサs6が設けられ、中流側冷凍サイクルR42の高圧圧力が測定される。   In the middle flow side refrigeration cycle R42, a compressor 1c, a four-way valve 2c, an exhaust heat side heat exchanger 3c, an expansion device 4c, a use side heat exchanger 5c, and an accumulator 6c are connected by a pipe h46. The operation of the midstream refrigeration cycle R42 is the same as that of the upstream and downstream refrigeration cycles R41 and R43. A pressure sensor s6 is provided on the outlet side of the midstream compressor 1c, and the high pressure of the midstream refrigeration cycle R42 is measured.

中流側の排熱側熱交換器3cと、上流側の排熱側熱交換器3aと、下流側の排熱側熱交換器3bとは、同等または同等に近い熱交換容量をもつ熱交換器が用いられる。
上流・中流・下流の冷凍サイクルR41、R42、R43の各排熱側熱交換器3a、3c、3bは、同等のまたは同等に近い熱交換容量を有している。
そして、下流側冷凍サイクルR43の圧縮機1bの運転容量を、中流側冷凍サイクルR42の圧縮機1cの運転容量より大きくする。また、中流側冷凍サイクルR42の圧縮機1cの運転容量を、上流側冷凍サイクルR41の圧縮機1aの運転容量より大きくする。
冷却運転および加熱運転時の冷凍サイクルR41、R42、R43の状態は実施形態1に記載の冷凍サイクルR1、R2と同様である。
The intermediate-stream-side exhaust heat-side heat exchanger 3c, the upstream-side exhaust heat-side heat exchanger 3a, and the downstream-side exhaust heat-side heat exchanger 3b have heat exchange capacities that are equivalent or close to equivalent. Is used.
The exhaust heat side heat exchangers 3a, 3c, and 3b of the upstream, middle, and downstream refrigeration cycles R41, R42, and R43 have equivalent or nearly equivalent heat exchange capacities.
And the operating capacity of the compressor 1b of the downstream refrigeration cycle R43 is made larger than the operating capacity of the compressor 1c of the midstream refrigeration cycle R42. In addition, the operating capacity of the compressor 1c of the midstream refrigeration cycle R42 is made larger than the operating capacity of the compressor 1a of the upstream refrigeration cycle R41.
The states of the refrigeration cycles R41, R42, and R43 during the cooling operation and the heating operation are the same as those of the refrigeration cycles R1 and R2 described in the first embodiment.

具体的には、空気調和機4Cでは、冷却運転時、加熱運転時に、制御装置により、下流側冷凍サイクルR43の利用側熱交換器5bの出口の熱負荷媒体の温度が所望の設定温度になるように制御が行われる。
熱負荷媒体の温度を測定する温度センサs41、s42、s43、s44が、配管h42、h41a、h41b、h43にそれぞれ設けられている。
Specifically, in the air conditioner 4C, during the cooling operation and the heating operation, the temperature of the heat load medium at the outlet of the use side heat exchanger 5b of the downstream refrigeration cycle R43 becomes a desired set temperature by the control device. Control is performed as follows.
Temperature sensors s41, s42, s43, and s44 for measuring the temperature of the thermal load medium are provided in the pipes h42, h41a, h41b, and h43, respectively.

冷却運転時、加熱運転時に、下流側冷凍サイクルR43の圧縮機1bの運転容量が、中流側冷凍サイクルR42の圧縮機1cの運転容量より大きくなり、中流側冷凍サイクルR42の圧縮機1cの運転容量が、上流側冷凍サイクルR41の圧縮機1aの運転容量より大きくなる。   During the cooling operation and the heating operation, the operating capacity of the compressor 1b in the downstream refrigeration cycle R43 is larger than the operating capacity of the compressor 1c in the midstream refrigeration cycle R42, and the operating capacity of the compressor 1c in the midstream refrigeration cycle R42. However, it becomes larger than the operating capacity of the compressor 1a of the upstream refrigeration cycle R41.

或いは、冷却運転時、加熱運転時に、上流側冷凍サイクルR41の利用側熱交換器5bの入口と出口の熱負荷媒体の温度の差分と、中流側冷凍サイクルR42の利用側熱交換器5bの入口と出口の熱負荷媒体の温度の差分と、下流側冷凍サイクルR43の利用側熱交換器5bの入口と出口の熱負荷媒体の温度の差分とがほぼ同じになるように、圧縮機1a、1b、1cが制御される。   Alternatively, during the cooling operation and the heating operation, the temperature difference between the inlet and outlet heat load media of the upstream side refrigeration cycle R41 and the inlet side of the usage side heat exchanger 5b of the midstream side refrigeration cycle R42. Compressors 1a and 1b so that the difference between the temperature of the heat load medium at the outlet and the temperature of the heat load medium at the outlet and the difference between the temperatures of the heat load medium at the outlet and the heat exchanger 5b in the downstream side refrigeration cycle R43 are substantially the same. 1c is controlled.

或いは、冷却運転または加熱運転において、上流側の排熱側熱交換器3aと、中流側の排熱側熱交換器3cと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われるように制御される。これは、上流側の圧力センサs4の検出圧力値(上流側の高圧圧力)と、下流側の圧力センサs5の検出圧力値(下流側の高圧圧力)と、中流側の圧力センサs6の検出圧力値(中流側の高圧圧力)とが、同等または同等に近い値であることで明らかにされる(検出される)。   Alternatively, in the cooling operation or the heating operation, the upstream side exhaust heat side heat exchanger 3a, the midstream side exhaust heat side heat exchanger 3c, and the downstream side exhaust heat side heat exchanger 3b are equivalent or equivalent. It is controlled so that heat exchange is performed with a near heat exchange capacity. This is because the detected pressure value of the upstream pressure sensor s4 (upstream high pressure), the detected pressure value of the downstream pressure sensor s5 (downstream high pressure), and the detected pressure of the midstream pressure sensor s6. It is clarified (detected) that the value (high pressure on the middle stream side) is equivalent or nearly equivalent.

上記構成によれば、圧縮機1a、1c、1bの運転容量が上流側冷凍サイクルR41から下流側冷凍サイクルR43になるに従って大きくなるので、熱源機の空気調和機4C全体の効率が向上できる。   According to the above configuration, since the operating capacities of the compressors 1a, 1c, and 1b increase from the upstream refrigeration cycle R41 to the downstream refrigeration cycle R43, the efficiency of the entire air conditioner 4C of the heat source unit can be improved.

また、上流側の排熱側熱交換器3aと、中流側の排熱側熱交換器3cと、下流側の排熱側熱交換器3bとが、同等または同等に近い熱交換容量で熱交換が行われるので、上流側、中流側、下流側の排熱側熱交換器の3a、3c、3bの熱交換容量をバランスよく使い切れる。そのため、上流側、中流側、下流側冷凍サイクルR41、R42,R43の排熱側熱交換器3a、3b、3cを同じ熱交換容量または同等に近い熱交換容量とできる。そのため、排熱側熱交換器の3a、3c、3bを、同じ熱交換器を使用できる。
そのため、空気調和機4Cの製品寸法のコンパクト化が図れる。
Further, the heat exhaust side heat exchanger 3a on the upstream side, the heat exhaust side heat exchanger 3c on the middle stream side, and the heat exhaust side heat exchanger 3b on the downstream side exchange heat with an equivalent or nearly equivalent heat exchange capacity. Therefore, the heat exchange capacities of the upstream, middle stream, and downstream exhaust heat side heat exchangers 3a, 3c, and 3b can be used in a well-balanced manner. Therefore, the exhaust heat side heat exchangers 3a, 3b, and 3c of the upstream, middle stream, and downstream refrigeration cycles R41, R42, and R43 can have the same heat exchange capacity or a heat exchange capacity close to equivalent. Therefore, the same heat exchanger can be used for the exhaust heat side heat exchangers 3a, 3c, and 3b.
Therefore, the product size of the air conditioner 4C can be reduced.

また、排熱側熱交換器3a、3b、3cの最適容量化による原価低減が図れる。また、排熱側熱交換器3a、3b、3cが、同一部品を採用できるので管理費を低減できる。加えて、排熱側熱交換器3a、3b、3cを同じ熱交換器を使用できるので、レイアウト性がよい。   Further, cost reduction can be achieved by optimizing the capacity of the exhaust heat side heat exchangers 3a, 3b, and 3c. Further, since the exhaust heat side heat exchangers 3a, 3b, 3c can employ the same parts, the management cost can be reduced. In addition, since the same heat exchanger can be used for the exhaust heat side heat exchangers 3a, 3b, and 3c, the layout is good.

なお、本実施形態4では各冷凍サイクルR41、R42、R43の圧縮機1a、1c、1bの数量を1個としたが、実施形態2のように各冷凍サイクルR41、R42、R43の圧縮機1a、1c、1bの少なくとも何れかを複数個としてもよい。また、熱負荷媒体の流路を、3つの冷凍サイクルR41、R42、R43で直列に接続したが、4つ以上の冷凍サイクルを直列に接続してもよい。   In the fourth embodiment, the number of the compressors 1a, 1c, and 1b in each refrigeration cycle R41, R42, and R43 is one, but the compressor 1a in each refrigeration cycle R41, R42, and R43 as in the second embodiment. A plurality of at least one of 1c and 1b may be used. Moreover, although the flow path of the heat load medium is connected in series by the three refrigeration cycles R41, R42, and R43, four or more refrigeration cycles may be connected in series.

<<その他の実施形態>>
1.なお、特許請求の範囲に記載した同等または同等に近い熱交換容量をもつ排熱側熱交換器とは、同じ排熱側熱交換器のパスを1〜数本無くした熱交換器が含まれるものとする。
<< Other Embodiments >>
1. The exhaust heat side heat exchanger having the same or nearly equivalent heat exchange capacity described in the claims includes a heat exchanger in which one to several passes of the same exhaust heat side heat exchanger are eliminated. Shall.

2.様々な構成を説明したが、これらの構成を適宜選択して組み合わせて構成してもよい。 2. Although various configurations have been described, these configurations may be appropriately selected and combined.

3.本発明は前記した実施形態に限定されるものでなく、様々な実施形態が含まれる。例えば、上記した実施形態は本発明を分り易く説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、説明した構成の一部を含むものであってもよい。 3. The present invention is not limited to the embodiments described above, and includes various embodiments. For example, the above-described embodiment is a description of the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. For example, a part of the configuration described may be included.

4.また、本発明は、特許請求の範囲に記載した範囲内で、前記した実施形態以外の様々な具体的形態が含まれることは勿論である。 4). In addition, the present invention naturally includes various specific forms other than the above-described embodiments within the scope of the claims.

1a、1b,1c,1d,1e 圧縮機
2a,2b,2c 四方弁
3a,3b,3c 排熱側熱交換器
4a,4b,4c 膨張装置
5a,5b,5c,5d,5e 利用側熱交換器
C、2C、3C、3C1、4C 空気調和機
h4、h5 配管(冷媒配管)
R1、R21、R31、R31A、R31B、R41 上流側冷凍サイクル(上流側冷凍装置)
R2、R22、R32、R32A、R32B、R43 下流側冷凍サイクル(下流側冷凍装置)
R42 冷凍サイクル(中流側冷凍装置)
1a, 1b, 1c, 1d, 1e Compressor 2a, 2b, 2c Four-way valve 3a, 3b, 3c Waste heat side heat exchanger 4a, 4b, 4c Expansion device 5a, 5b, 5c, 5d, 5e Use side heat exchanger C, 2C, 3C, 3C1, 4C Air conditioner h4, h5 Piping (refrigerant piping)
R1, R21, R31, R31A, R31B, R41 Upstream refrigeration cycle (upstream refrigeration equipment)
R2, R22, R32, R32A, R32B, R43 Downstream refrigeration cycle (downstream refrigeration equipment)
R42 Refrigeration cycle (midstream refrigeration equipment)

Claims (11)

圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される上流側冷凍装置と、
圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される下流側冷凍装置とを備え、
前記利用側熱交換器の熱負荷媒体の流路が前記上流側冷凍装置と前記下流側冷凍装置の順に直列に接続され、
前記上流側冷凍装置の排熱側熱交換器と前記下流側冷凍装置の排熱側熱交換器とは同等のまたは同等に近い熱交換容量を有し、
下流側の前記圧縮機の運転容量は、上流側の前記圧縮機の運転容量より大きい
ことを特徴とする空気調和機。
An upstream refrigeration system in which a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are connected by refrigerant piping;
A compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a downstream side refrigeration device to which a use side heat exchanger is connected by a refrigerant pipe;
The flow path of the heat load medium of the use side heat exchanger is connected in series in the order of the upstream refrigeration apparatus and the downstream refrigeration apparatus,
The exhaust heat side heat exchanger of the upstream refrigeration apparatus and the exhaust heat side heat exchanger of the downstream refrigeration apparatus have an equivalent or nearly equivalent heat exchange capacity,
The air conditioner characterized in that the operating capacity of the compressor on the downstream side is larger than the operating capacity of the compressor on the upstream side.
圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される上流側冷凍装置と、
圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される下流側冷凍装置とを備え、
前記利用側熱交換器の熱負荷媒体の流路が前記上流側冷凍装置と前記下流側冷凍装置の順に直列に接続され、
前記上流側冷凍装置の排熱側熱交換器と前記下流側冷凍装置の排熱側熱交換器とは同等のまたは同等に近い熱交換容量を有し、
前記下流側の利用側熱交換器の出口の熱負荷媒体の温度と、前記下流側の利用側熱交換器と前記上流側の利用側熱交換器の間の熱負荷媒体の温度である中間温度との差は、前記中間温度と前記上流側の利用側熱交換器の入口の熱負荷媒体の温度との差とほぼ同じである
ことを特徴とする空気調和機。
An upstream refrigeration system in which a compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are connected by refrigerant piping;
A compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a downstream side refrigeration device to which a use side heat exchanger is connected by a refrigerant pipe;
The flow path of the heat load medium of the use side heat exchanger is connected in series in the order of the upstream refrigeration apparatus and the downstream refrigeration apparatus,
The exhaust heat side heat exchanger of the upstream refrigeration apparatus and the exhaust heat side heat exchanger of the downstream refrigeration apparatus have an equivalent or nearly equivalent heat exchange capacity,
The temperature of the heat load medium at the outlet of the downstream use side heat exchanger and the intermediate temperature that is the temperature of the heat load medium between the downstream use side heat exchanger and the upstream use side heat exchanger The air conditioner is characterized by being substantially the same as the difference between the intermediate temperature and the temperature of the heat load medium at the inlet of the upstream use side heat exchanger.
請求項1または請求項2に記載の空気調和機において、
前記上流側冷凍装置の排熱側熱交換器と前記下流側冷凍装置の排熱側熱交換器とは同等のまたは同等に近い熱交換が行われる
ことを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
The air conditioner is characterized in that heat exchange equivalent to or close to equivalent is performed between the exhaust heat side heat exchanger of the upstream refrigeration apparatus and the exhaust heat side heat exchanger of the downstream refrigeration apparatus.
請求項1または請求項2に記載の空気調和機において、
前記下流側冷凍装置の圧縮機は、複数の圧縮機である
ことを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
The compressor of the said downstream refrigeration apparatus is a some compressor. The air conditioner characterized by the above-mentioned.
請求項1または請求項2に記載の空気調和機において、
前記下流側冷凍装置の圧縮機は、複数の圧縮機であり、
前記上流側冷凍装置の前記圧縮機は、運転容量を可変できる圧縮機であり、
前記下流側冷凍装置の前記複数の圧縮機は、運転容量を可変できる圧縮機と運転容量が固定の圧縮機である
ことを特徴とする空気調和機。
In the air conditioner according to claim 1 or 2,
The compressor of the downstream refrigeration apparatus is a plurality of compressors,
The compressor of the upstream refrigeration apparatus is a compressor capable of varying an operating capacity,
The plurality of compressors of the downstream-side refrigeration apparatus are a compressor capable of changing an operating capacity and a compressor having a fixed operating capacity.
請求項1に記載の空気調和機において、
上流側の前記利用側熱交換器と、下流側の前記利用側熱交換器とは、それぞれ前記熱負荷媒体と複数の冷凍サイクルと熱交換できる熱交換器であり、
下流側の前記圧縮機の合計の運転容量は、上流側の前記圧縮機の合計の運転容量より大きい
ことを特徴とする空気調和機。
In the air conditioner according to claim 1,
The upstream use side heat exchanger and the downstream use side heat exchanger are heat exchangers capable of exchanging heat with the thermal load medium and a plurality of refrigeration cycles, respectively.
The total operating capacity of the compressor on the downstream side is greater than the total operating capacity of the compressor on the upstream side.
圧縮機、四方弁、排熱側熱交換器、膨張装置および利用側熱交換器が冷媒配管で接続される冷凍装置を複数備え、
前記各冷凍装置の前記利用側熱交換器の熱負荷媒体の流路が、順番に直列に接続され、
前記各冷凍装置の前記排熱側熱交換器は、同等のまたは同等に近い熱交換容量を有し、
前記各冷凍装置の前記圧縮機の運転容量が上流側から下流側になるに従って大きくなる
ことを特徴とする空気調和機。
A compressor, a four-way valve, an exhaust heat side heat exchanger, an expansion device, and a use side heat exchanger are provided with a plurality of refrigeration devices connected by refrigerant piping,
The flow path of the heat load medium of the use side heat exchanger of each refrigeration apparatus is connected in series in order,
The exhaust heat side heat exchanger of each refrigeration apparatus has an equivalent or nearly equivalent heat exchange capacity,
The air conditioner characterized in that the operating capacity of the compressor of each refrigeration apparatus increases from the upstream side to the downstream side.
請求項7に記載の空気調和機において、
前記各利用側熱交換器の入口と出口での前記熱負荷媒体の温度の差分はほぼ同じである
ことを特徴とする空気調和機。
The air conditioner according to claim 7,
The air conditioner characterized in that the difference in temperature of the heat load medium at the inlet and outlet of each use side heat exchanger is substantially the same.
請求項7に記載の空気調和機において、
前記複数の冷凍装置の前記各排熱側熱交換器は同等のまたは同等に近い熱交換が行われる
ことを特徴とする空気調和機。
The air conditioner according to claim 7,
Each of the exhaust heat side heat exchangers of the plurality of refrigeration apparatuses performs equivalent or nearly equivalent heat exchange.
請求項1または請求項2または請求項7に記載の空気調和機において、
前記利用側熱交換器は、同じ熱交換器が用いられる
ことを特徴とする空気調和機。
The air conditioner according to claim 1 or claim 2 or claim 7,
The air conditioner is characterized in that the same heat exchanger is used as the use side heat exchanger.
請求項1または請求項2または請求項7に記載の空気調和機において、
前記各冷凍装置の高圧圧力はほぼ同じ圧力値である
ことを特徴とする空気調和機。
The air conditioner according to claim 1 or claim 2 or claim 7,
The air conditioner characterized in that the high-pressure pressure of each of the refrigeration apparatuses has substantially the same pressure value.
JP2014208118A 2014-10-09 2014-10-09 Air conditioner Pending JP2016080179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208118A JP2016080179A (en) 2014-10-09 2014-10-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208118A JP2016080179A (en) 2014-10-09 2014-10-09 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016080179A true JP2016080179A (en) 2016-05-16

Family

ID=55958201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208118A Pending JP2016080179A (en) 2014-10-09 2014-10-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2016080179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185142A (en) * 2009-07-28 2018-11-22 東芝キヤリア株式会社 Heat source unit
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (en) * 1981-08-07 1983-02-14 株式会社日立製作所 Heat pump device
JP2003314907A (en) * 2002-04-23 2003-11-06 Daikin Ind Ltd Control apparatus of expansion valve
JP2007178029A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP2008309477A (en) * 2008-09-29 2008-12-25 Sanyo Electric Co Ltd Supercooling device
JP4999529B2 (en) * 2007-04-23 2012-08-15 三菱電機株式会社 Heat source machine and refrigeration air conditioner
JP2013061115A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigeration cycle system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (en) * 1981-08-07 1983-02-14 株式会社日立製作所 Heat pump device
JP2003314907A (en) * 2002-04-23 2003-11-06 Daikin Ind Ltd Control apparatus of expansion valve
JP2007178029A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
JP4999529B2 (en) * 2007-04-23 2012-08-15 三菱電機株式会社 Heat source machine and refrigeration air conditioner
JP2008309477A (en) * 2008-09-29 2008-12-25 Sanyo Electric Co Ltd Supercooling device
JP2013061115A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigeration cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185142A (en) * 2009-07-28 2018-11-22 東芝キヤリア株式会社 Heat source unit
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system
JPWO2019171486A1 (en) * 2018-03-07 2020-12-10 三菱電機株式会社 Heat source equipment and refrigeration cycle equipment
JP7034251B2 (en) 2018-03-07 2022-03-11 三菱電機株式会社 Heat source equipment and refrigeration cycle equipment
US11408656B2 (en) 2018-03-07 2022-08-09 Mitsubishi Electric Corporation Heat source device and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
Jensen et al. Optimal operation of simple refrigeration cycles: Part I: Degrees of freedom and optimality of sub-cooling
JP4968373B2 (en) Air conditioner
JP2011141097A (en) Heat pump and method of calculating heating medium flow rate for the same
JP6647406B2 (en) Refrigeration cycle device
JP2011208928A (en) Air conditioner
JP5283589B2 (en) Refrigeration air conditioner
JP5921777B1 (en) Refrigeration cycle equipment
JP5734031B2 (en) Refrigeration air conditioner
JP5534752B2 (en) Refrigeration air conditioner
JP2015068614A (en) Refrigeration unit
JP2012137271A (en) Precise air conditioning device
JP5681787B2 (en) Two-way refrigeration cycle equipment
WO2012090579A1 (en) Heat source system and control method therefor
JP5717903B2 (en) Refrigeration air conditioner
JP5927670B2 (en) Air conditioner
JP2008070053A (en) Air conditioner
JP5579235B2 (en) Refrigeration air conditioner
JP2016080179A (en) Air conditioner
JP6846915B2 (en) Multi-chamber air conditioner
JP2011127785A (en) Refrigerating device
JP6048168B2 (en) Secondary refrigerant air conditioning system
JP2013124843A (en) Refrigeration cycle system
JP2014074583A (en) Refrigeration air conditioner
JP2013167368A (en) Air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181009