JP2008070053A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008070053A
JP2008070053A JP2006249470A JP2006249470A JP2008070053A JP 2008070053 A JP2008070053 A JP 2008070053A JP 2006249470 A JP2006249470 A JP 2006249470A JP 2006249470 A JP2006249470 A JP 2006249470A JP 2008070053 A JP2008070053 A JP 2008070053A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air
subcooler
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006249470A
Other languages
Japanese (ja)
Inventor
Nobuhiro Nakagawa
信博 中川
Michiyoshi Kusaka
道美 日下
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2006249470A priority Critical patent/JP2008070053A/en
Priority to KR1020060113931A priority patent/KR20080024937A/en
Priority to CNA200710104123XA priority patent/CN101144656A/en
Publication of JP2008070053A publication Critical patent/JP2008070053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Abstract

<P>PROBLEM TO BE SOLVED: To mainly provide a sufficient degree of supercooling in an air conditioner. <P>SOLUTION: The air conditioner 1 has a first heat exchanger 26 and a second heat exchanger 27 as an indoor heat exchanger 25 of an indoor unit 2, and the heat exchangers 26, 27 are connected via a branch pipe 28. The branch pipe 28 is connected to a passage 35 in an inner side of a coolant type supercooler 32 after providing a flow control valve 31. The coolant type supercooler 32 has a double tube structure, and a coolant having passed through the second heat exchanger 27 is inputted into an outer side passage 41. The second heat exchanger 27 functions as an air-cooled supercooler during cooling operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空冷式過冷却器と過冷却器を備える空気調和装置に関する。   The present invention relates to an air-cooled supercooler and an air conditioner including the supercooler.

空気調和装置は、圧縮機から吐出させた冷媒を室外機熱交換器と室内熱交換器との間で循環させて冷房運転や暖房運転を行うように構成されている。冷房運転時には、冷媒を過冷却してから室内機に供給すると、室外機から室内機に向かう配管中で液冷媒の気化が防止され、冷凍サイクルの効率を向上できることが知られている。冷媒を過冷却する手段としては、空気との熱交換を利用した空冷式の過冷却器と、冷媒との熱交換を利用した冷媒式の過冷却器とがあげられる。   The air conditioner is configured to perform cooling operation and heating operation by circulating the refrigerant discharged from the compressor between the outdoor unit heat exchanger and the indoor heat exchanger. It is known that during cooling operation, if the refrigerant is supercooled and then supplied to the indoor unit, the liquid refrigerant is prevented from being vaporized in the piping from the outdoor unit to the indoor unit, and the efficiency of the refrigeration cycle can be improved. Examples of means for supercooling the refrigerant include an air-cooled supercooler that uses heat exchange with air and a refrigerant-type supercooler that uses heat exchange with the refrigerant.

ここで、従来の空気調和装置には、冷房運転時に室外熱交換器で凝縮させた冷媒を受液器を通してから空冷式の過冷却器に供給して過冷却を行い、その後に冷媒式の過冷却器で再び過冷却するものがある(例えば、特許文献1参照)。空冷式の過冷却器から流出する液冷媒は、その一部が分岐されてキャピラリで減圧されてから冷媒式の過冷却器に低温熱源として供給される。残りの液冷媒は、高温熱源としてそのまま過冷却器に供給される。冷媒式の過冷却器内では、低温熱源として減圧された冷媒が室内機に向かう液冷媒から蒸発潜熱に相当する熱量を奪って気化し、室内機に向かう冷媒が過冷却される。なお、低温熱源として分岐された冷媒は、室内機をバイパスして圧縮機に回収される。
特開2006−90563号公報
Here, in the conventional air conditioner, the refrigerant condensed in the outdoor heat exchanger during the cooling operation is supplied to the air-cooled supercooler through the liquid receiver and then supercooled. There is one that supercools again with a cooler (see, for example, Patent Document 1). A part of the liquid refrigerant flowing out from the air-cooled supercooler is branched and depressurized by a capillary, and then supplied to the refrigerant-type supercooler as a low-temperature heat source. The remaining liquid refrigerant is supplied to the supercooler as a high-temperature heat source. In the refrigerant-type supercooler, the decompressed refrigerant as a low-temperature heat source takes the amount of heat corresponding to the latent heat of vaporization from the liquid refrigerant going to the indoor unit and vaporizes, and the refrigerant going to the indoor unit is supercooled. Note that the refrigerant branched as a low-temperature heat source bypasses the indoor unit and is collected by the compressor.
JP 2006-90563 A

しかしながら、空冷式の過冷却器を通った後の液冷媒の一部を分岐させて低温熱源を生成すると、液冷媒(室内機に供給される冷媒)の圧力が下がることになるので、結果的に空冷式過冷却器で得た過冷却度が低下した状態で冷媒式過冷却器に流入することになる。このため、十分な過冷却度が得難くかった。
冷媒式過冷却器での過冷却度を高めるためには、低温熱源として分岐する冷媒の量を増やせば良いが、分岐させる冷媒の量が増えると液冷媒(室内機に供給される冷媒)の圧力がさらに下がるので、過冷却度が下がってしまう。このように、従来の空気調和装置では、過冷却度を高めるほど、冷房能力が低下してしまうという課題があった。
この発明は、このような事情に鑑みてなされたものであり、十分な過冷却度が得られるようにすることを主な目的とする。
However, if a part of the liquid refrigerant after passing through the air-cooled supercooler is branched to generate a low-temperature heat source, the pressure of the liquid refrigerant (refrigerant supplied to the indoor unit) will drop, resulting in a result. In the state where the supercooling degree obtained by the air-cooled subcooler is lowered, the refrigerant flows into the refrigerant subcooler. For this reason, it was difficult to obtain a sufficient degree of supercooling.
In order to increase the degree of supercooling in the refrigerant subcooler, the amount of refrigerant that branches as a low-temperature heat source may be increased. However, if the amount of refrigerant that is branched increases, the amount of liquid refrigerant (refrigerant supplied to indoor units) Since the pressure further decreases, the degree of supercooling decreases. Thus, in the conventional air conditioning apparatus, there existed a subject that cooling capacity fell, so that a supercooling degree was raised.
The present invention has been made in view of such circumstances, and a main object thereof is to obtain a sufficient degree of supercooling.

上記の課題を解決する本発明の請求項1に係る発明は、圧縮機で圧縮した冷媒を熱交換器に流入させて空気と熱交換させることで暖房又は冷房を行なう空気調和装置において、室外機の前記熱交換器は、冷房運転時に凝縮器になって暖房運転時には蒸発器となる第一の熱交換器と、冷房運転時に空冷式過冷却器になって暖房運転時に蒸発器となる第二の熱交換器を有し、冷房運転時に前記第一の熱交換器から流出する冷媒の一部を前記第二の熱交換器に流入する前に分岐させて室内機をバイパスさせるバイパス回路を設け、前記バイパス回路に流量調整弁と、前記バイパス回路を流れる冷媒を用いて前記第二の熱交換器で過冷却した冷媒をさらに過冷却する冷媒式過冷却器を設けたことを特徴とする空気調和装置とした。   The invention according to claim 1 of the present invention for solving the above problems is an air conditioner that performs heating or cooling by flowing a refrigerant compressed by a compressor into a heat exchanger and exchanging heat with air. The heat exchanger is a first heat exchanger that becomes a condenser during cooling operation and serves as an evaporator during heating operation, and a second heat exchanger that serves as an air-cooled subcooler during cooling operation and serves as an evaporator during heating operation. A bypass circuit that bypasses the indoor unit by branching a part of the refrigerant flowing out of the first heat exchanger during cooling operation before flowing into the second heat exchanger. The air characterized in that the bypass circuit is provided with a flow rate adjusting valve and a refrigerant-type subcooler that further subcools the refrigerant that has been subcooled by the second heat exchanger using the refrigerant flowing through the bypass circuit. A harmony device was used.

この空気調和装置は、冷房運転時に第一の熱交換器で凝縮した冷媒の一部が空冷式過冷却器を通らずに冷媒式過冷却器に流入する。この冷媒を低温熱源として第二の熱交換器で空冷された冷媒を高温熱源とすると、冷媒式過冷却器を通って室外機に向かう冷媒がさらに過冷却される。   In this air conditioner, part of the refrigerant condensed in the first heat exchanger during the cooling operation flows into the refrigerant subcooler without passing through the air cooling subcooler. When this refrigerant is used as a low-temperature heat source and the refrigerant air-cooled by the second heat exchanger is used as a high-temperature heat source, the refrigerant going to the outdoor unit through the refrigerant-type subcooler is further subcooled.

本発明によれば、空冷によって過冷却する前の冷媒を低温熱源として使用し、空冷で過冷却した後の冷媒をさらに過冷却するようにしたので、空冷による過冷却後の冷媒の圧力低下を防いで冷媒式過冷却器の能力を向上させることができる。このため、室外機に向かう冷媒の過冷却度を十分に確保することができ、配管中での液冷媒の気化が防止される。また、複数の室内機を有する場合には、室内機間の能力差の発生が防止される。   According to the present invention, the refrigerant before being supercooled by air cooling is used as a low-temperature heat source, and the refrigerant after being supercooled by air cooling is further subcooled. It is possible to improve the capacity of the refrigerant subcooler. For this reason, the degree of supercooling of the refrigerant toward the outdoor unit can be sufficiently ensured, and the vaporization of the liquid refrigerant in the pipe is prevented. Moreover, when it has a some indoor unit, generation | occurrence | production of the capability difference between indoor units is prevented.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。なお、以下の各実施の形態のおいて同じ構成要素には同一の符号を付してある。また、各実施の形態で重複する説明は省略する。   The best mode for carrying out the invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same component in each following embodiment. Moreover, the description which overlaps with each embodiment is abbreviate | omitted.

(第1の実施の形態)
図1に示すように、空気調和装置1は、室外機2と室内機3が液配管4及びガス配管5を介して接続されている。室内機3は、2つの室内機ユニット10が並列に接続されている。各室内機ユニット10は、室内熱交換器11と膨張弁12とが直列に接続されており、ファン13で室内熱交換器11の外周に空気を送り込めるようになっている。図1において室内機3は、2つの室内機ユニット10からなるが、室内機ユニットの数は1つでも良いし、3つ以上でも良い。
(First embodiment)
As shown in FIG. 1, in an air conditioner 1, an outdoor unit 2 and an indoor unit 3 are connected via a liquid pipe 4 and a gas pipe 5. In the indoor unit 3, two indoor unit units 10 are connected in parallel. In each indoor unit 10, an indoor heat exchanger 11 and an expansion valve 12 are connected in series, and air can be sent to the outer periphery of the indoor heat exchanger 11 by a fan 13. In FIG. 1, the indoor unit 3 includes two indoor unit units 10, but the number of indoor unit units may be one or three or more.

室外機2は、ガス冷媒を圧縮する圧縮機21を有し、圧縮機21の吐出口に接続された吐出配管22が四方弁23の第一のポート23aに接続されている。四方弁23は、4つのポートを有し、第一のポート23aと第二のポート23bを接続したときに第三のポート23cと第四のポート23dが接続される。また、第一のポート23aと第三のポート23cを接続したときに第二のポート23bと第四のポート23dが接続される。四方弁23の第二のポート23bは、配管24を通して室外熱交換器25の流入出口に接続されている。   The outdoor unit 2 includes a compressor 21 that compresses a gas refrigerant, and a discharge pipe 22 connected to a discharge port of the compressor 21 is connected to a first port 23 a of a four-way valve 23. The four-way valve 23 has four ports, and when the first port 23a and the second port 23b are connected, the third port 23c and the fourth port 23d are connected. Further, when the first port 23a and the third port 23c are connected, the second port 23b and the fourth port 23d are connected. The second port 23 b of the four-way valve 23 is connected to the inlet / outlet of the outdoor heat exchanger 25 through the pipe 24.

室外熱交換器25は、配管24が接続される第一の熱交換器26と、第一の熱交換器26に分岐管28を介して接続される第二の熱交換器27とを有し、送風ファン29で各熱交換器26,27の外周に空気を送り込めるようになっている。第一、第二の熱交換器26,27は、暖房運転時には共に蒸発器として機能する。冷房運転時には、第一の熱交換器26は凝縮器として機能し、第二の熱交換器27は、空冷式過冷却器として機能する。このため、第一の熱交換器26は、冷房運転時にガス冷媒を略飽和液状態にするのに十分な容量を有する。
分岐管28は、冷房運転時に第一の熱交換器26の流入出口から第二の熱交換器27の流入出口に向かう液冷媒の一部を分岐するバイパス配管30(バイパス回路)を有し、バイパス配管30は流量調整弁31が設けられた後に冷媒式過冷却器32に接続されている。流量調整弁31は、バイパスされる冷媒量を調整すると共に、冷媒式過冷却器32で使用する低温熱源を生成する手段であって、制御装置33によって開度制御が行われる。
The outdoor heat exchanger 25 has a first heat exchanger 26 to which the pipe 24 is connected, and a second heat exchanger 27 connected to the first heat exchanger 26 via a branch pipe 28. The air blower 29 can send air to the outer peripheries of the heat exchangers 26 and 27. Both the first and second heat exchangers 26 and 27 function as an evaporator during heating operation. During the cooling operation, the first heat exchanger 26 functions as a condenser, and the second heat exchanger 27 functions as an air-cooled supercooler. For this reason, the first heat exchanger 26 has a capacity sufficient to bring the gas refrigerant into a substantially saturated liquid state during the cooling operation.
The branch pipe 28 has a bypass pipe 30 (bypass circuit) that branches a part of the liquid refrigerant from the inlet / outlet of the first heat exchanger 26 to the inlet / outlet of the second heat exchanger 27 during the cooling operation, The bypass pipe 30 is connected to the refrigerant subcooler 32 after the flow rate adjustment valve 31 is provided. The flow rate adjusting valve 31 is a means for adjusting the amount of refrigerant to be bypassed and generating a low-temperature heat source for use in the refrigerant subcooler 32, and its opening degree is controlled by the control device 33.

冷媒式過冷却器32は、2重管構造を有し、内側の流路35の入口35aに分岐管28のバイパス配管30が接続されている。内側の流路35の出口35bは、バイパス配管36(バイパス回路)を介してアキュムレータ40に接続される。また、外側の流路41の一方の流入出口41aに接続された配管42は、暖房時に使用する膨張弁43が設けられた後に、第二の熱交換器27の流入出口に接続されている。外側の流路41の他方の流入出口41bには、液配管44が接続されている。液配管44は、流入出口41bの付近に冷媒の温度を測定する温度計45が設けられると共に、バルブ46を介して液配管4に接続されている。   The refrigerant subcooler 32 has a double pipe structure, and the bypass pipe 30 of the branch pipe 28 is connected to the inlet 35 a of the inner flow path 35. The outlet 35b of the inner flow path 35 is connected to the accumulator 40 via a bypass pipe 36 (bypass circuit). The pipe 42 connected to one inflow / outflow port 41a of the outer flow path 41 is connected to the inflow / outflow port of the second heat exchanger 27 after the expansion valve 43 used for heating is provided. A liquid pipe 44 is connected to the other inlet / outlet 41 b of the outer channel 41. The liquid pipe 44 is provided with a thermometer 45 for measuring the temperature of the refrigerant in the vicinity of the inlet / outlet 41 b and is connected to the liquid pipe 4 via a valve 46.

なお、ガス配管5は、バルブ47を介してガス配管48に接続されている。ガス配管48は、四方弁23の第三のポート23cに接続されている。四方弁23の第四のポート23dには、配管49が接続されている。配管49は、途中で冷媒式過冷却器32から延びるバイパス配管36と合流した後、アキュムレータ40に接続されている。アキュムレータ40からは吸入配管50が延び、圧縮機21の吸入口に接続されている。   The gas pipe 5 is connected to the gas pipe 48 through a valve 47. The gas pipe 48 is connected to the third port 23 c of the four-way valve 23. A pipe 49 is connected to the fourth port 23 d of the four-way valve 23. The pipe 49 is connected to the accumulator 40 after joining the bypass pipe 36 extending from the refrigerant subcooler 32 on the way. A suction pipe 50 extends from the accumulator 40 and is connected to the suction port of the compressor 21.

次に、この空気調和装置1の動作について説明する。
冷房運転時には、四方弁23の第一のポート23aと第二のポート23bを接続し、第三のポート23cと第四のポート23dを接続する。また、流量調整弁31を僅かに開く。圧縮機21から吐出された高温高圧のガス冷媒は、四方弁23を通して室外熱交換器25の第一の熱交換器26に供給される。第一の熱交換器26は、凝縮器として機能し、ガス冷媒が送風ファン29で送られる空気と熱交換して、略飽和した液冷媒が形成される。この液冷媒は、分岐管28に流出してその一部が冷媒式過冷却器32に供給される。この際に、僅かに開いた流量調整弁31を通ることで、断熱膨張して低温の液冷媒となる。この低温の液冷媒は、冷媒式過冷却器32の内側の流路35に低温熱源として流入する。一方、分岐管28から第二の熱交換器27に流入した液冷媒は、送風ファン29による送風で過冷却される。この液冷媒は、配管42を通って、冷媒式過冷却器32の外側の流路41の一方の流入出口41aに流入する。この液冷媒は、前記した低温熱源に対して相対的に熱量が大きい高温熱源となる。
Next, the operation of the air conditioner 1 will be described.
During the cooling operation, the first port 23a and the second port 23b of the four-way valve 23 are connected, and the third port 23c and the fourth port 23d are connected. Further, the flow rate adjustment valve 31 is slightly opened. The high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is supplied to the first heat exchanger 26 of the outdoor heat exchanger 25 through the four-way valve 23. The first heat exchanger 26 functions as a condenser, and the gas refrigerant exchanges heat with the air sent by the blower fan 29 to form a substantially saturated liquid refrigerant. The liquid refrigerant flows out to the branch pipe 28 and a part thereof is supplied to the refrigerant subcooler 32. At this time, by passing through the flow control valve 31 that is slightly opened, it adiabatically expands and becomes a low-temperature liquid refrigerant. This low-temperature liquid refrigerant flows into the flow path 35 inside the refrigerant subcooler 32 as a low-temperature heat source. On the other hand, the liquid refrigerant that has flowed into the second heat exchanger 27 from the branch pipe 28 is supercooled by blowing air from the blowing fan 29. This liquid refrigerant flows into the one inlet / outlet 41 a of the flow path 41 outside the refrigerant subcooler 32 through the pipe 42. This liquid refrigerant becomes a high-temperature heat source having a relatively large amount of heat relative to the low-temperature heat source.

冷媒式過冷却器32内では、外側を流れる液冷媒と内側を流れる低温の冷媒との間で熱交換が行われる。具体的には、低温熱源となる内側の流路35の冷媒が、高温熱源となる外側の流路41の液冷媒から熱を奪って気化する。これによって、内側の流路35の冷媒が蒸発するのに要する蒸発潜熱の分だけ外側の流路41の液冷媒が過冷却される。過冷却された液冷媒は、液配管44を通って室内機3に供給される。
室内機3では、室内熱交換器11で熱交換が行われ、空気から蒸発潜熱に相当する熱量を奪って気化する。これによって冷却された空気を使用して室内が冷房される。室内熱交換器11から流出するガス冷媒は、ガス配管5を通して、室外機2に回収される。室外機2では、ガス配管48から四方弁23の第三のポート23c、第四のポート23dを通って配管49に流れ、冷媒式過冷却器32から流入するガス冷媒と合流した後、アキュムレータ40に流入する。さらに、アキュムレータ40からガス冷媒が圧縮機21に吸入される。
In the refrigerant subcooler 32, heat exchange is performed between the liquid refrigerant flowing outside and the low-temperature refrigerant flowing inside. Specifically, the refrigerant in the inner flow path 35 serving as the low-temperature heat source takes the heat from the liquid refrigerant in the outer flow path 41 serving as the high-temperature heat source and vaporizes. As a result, the liquid refrigerant in the outer channel 41 is supercooled by the amount of latent heat of evaporation required for the refrigerant in the inner channel 35 to evaporate. The supercooled liquid refrigerant is supplied to the indoor unit 3 through the liquid pipe 44.
In the indoor unit 3, heat is exchanged by the indoor heat exchanger 11, and the amount of heat corresponding to the latent heat of vaporization is taken from the air and vaporized. This cools the room using the cooled air. The gas refrigerant flowing out from the indoor heat exchanger 11 is collected by the outdoor unit 2 through the gas pipe 5. In the outdoor unit 2, the gas flows from the gas pipe 48 through the third port 23 c and the fourth port 23 d of the four-way valve 23 to the pipe 49, joins the gas refrigerant flowing in from the refrigerant subcooler 32, and then accumulator 40. Flow into. Further, the gas refrigerant is sucked into the compressor 21 from the accumulator 40.

ここで、制御装置33は、流量調整弁31の開度を温度計45の温度をモニタしながら調整する。図2に示すように、冷媒式過冷却器32における過冷却度は、バイパス量、つまり流量調整弁31の開度を大きくして冷媒式過冷却器32の内側に通す冷媒の量を増やすにつれて、冷媒式過冷却器32の能力が増加することから上昇する。空冷式過冷却器の過冷却度は、バイパス量の変化に依らず略一定なので、空冷式過冷却器及び冷媒式過冷却器32のトータルとしての過冷却度は増加する。バイパス量を増やすことで室内機3に供給される冷媒量は減るが、トータルとしての過冷却度が大きくなることから、室内熱交換器11の入口と出口の間のエンタルピの差を大きくでき、冷房能力の低下を抑制することができる。例えば、冷媒式過冷却器32から流出する液冷媒の過冷却度が20Kになるようにすると、液配管4が長い場合や、室内機ユニット10が多数ある場合でも途中で液冷媒が気化することなく、かつ十分な冷房能力が得られる。   Here, the control device 33 adjusts the opening degree of the flow rate adjustment valve 31 while monitoring the temperature of the thermometer 45. As shown in FIG. 2, the degree of supercooling in the refrigerant subcooler 32 increases as the amount of refrigerant passing inside the refrigerant subcooler 32 by increasing the bypass amount, that is, the opening of the flow rate adjustment valve 31. As the capacity of the refrigerant subcooler 32 increases, the temperature rises. Since the supercooling degree of the air-cooled subcooler is substantially constant regardless of the change in the bypass amount, the total supercooling degree of the air-cooled subcooler and the refrigerant subcooler 32 increases. By increasing the amount of bypass, the amount of refrigerant supplied to the indoor unit 3 decreases, but the total degree of supercooling increases, so the difference in enthalpy between the inlet and outlet of the indoor heat exchanger 11 can be increased, A decrease in cooling capacity can be suppressed. For example, when the supercooling degree of the liquid refrigerant flowing out from the refrigerant supercooler 32 is set to 20K, the liquid refrigerant is vaporized in the middle even when the liquid pipe 4 is long or there are many indoor unit units 10. And sufficient cooling capacity can be obtained.

なお、暖房運転時には、流量調整弁31を閉じて冷媒式過冷却器32は使用しない。また、第一、第二の熱交換器26,27の両方が蒸発器として使用される。第二の熱交換器27も蒸発器として使用することで、暖房能力を向上できる。   During heating operation, the flow rate adjustment valve 31 is closed and the refrigerant subcooler 32 is not used. Further, both the first and second heat exchangers 26 and 27 are used as an evaporator. Heating capacity can be improved by using the second heat exchanger 27 as an evaporator.

この実施の形態は、空冷式過冷却器と冷媒式過冷却器32とを略並列に設け、空冷式過冷却器で過冷却される前の冷媒を低温熱源として冷媒式過冷却器32に導くようにしたので、空気温度が変動した場合でも過冷却度を安定させることができる。従来のように2種類の過冷却器を直列に設けた場合は、空冷された液冷媒の一部を低温熱源として使用するので液冷媒の圧力が低下して冷媒式過冷却器32入口の過冷却度が低下してしまい、冷媒式過冷却器32を通っても過冷却度を増加させることができなかったが、この実施の形態では空冷前の冷媒を低温熱源に使用するので冷媒式過冷却器32の能力を増大させることができる。バイパスによって室内機3に循環する冷媒の量は減少するが、冷媒式過冷却器32の能力が増加するので冷房能力が大きく低下することを防止できる。これによって、液配管4及びガス配管5が長配管となる場合や、複数台の室内機ユニット10を接続した場合に、室内機ユニット10の能力低下や、能力のばらつきを防止できる。   In this embodiment, the air-cooled subcooler and the refrigerant subcooler 32 are provided in substantially parallel, and the refrigerant before being supercooled by the air-cooled subcooler is guided to the refrigerant subcooler 32 as a low-temperature heat source. As a result, the degree of supercooling can be stabilized even when the air temperature fluctuates. When two types of supercoolers are provided in series as in the prior art, a part of the air-cooled liquid refrigerant is used as a low-temperature heat source, so that the pressure of the liquid refrigerant is reduced and the refrigerant-type supercooler 32 inlet is overheated. Although the degree of cooling decreased and the degree of supercooling could not be increased even when passing through the refrigerant type subcooler 32, in this embodiment, the refrigerant before air cooling is used as a low-temperature heat source. The capacity of the cooler 32 can be increased. Although the amount of the refrigerant circulating to the indoor unit 3 is reduced by the bypass, the capacity of the refrigerant subcooler 32 is increased, so that the cooling capacity can be prevented from greatly decreasing. As a result, when the liquid pipe 4 and the gas pipe 5 are long pipes or when a plurality of indoor unit units 10 are connected, it is possible to prevent a decrease in the capacity of the indoor unit 10 and a variation in capacity.

(第2の実施の形態)
図3に示すように、空気調和装置61は、室外熱交換器25が第一の熱交換器26と第二の熱交換器27とを有し、これら熱交換器26,27が、受液器63を介して接続されている。さらに、受液器63からは、液冷媒が冷媒式過冷却器32に供給されるようになっている。より詳細には、第一の熱交換器26の流入出口(冷房運転時の流出口)に接続された配管64が受液器63内に挿入される。第二の熱交換器27の流入出口(冷房運転時の流入口)に接続された配管65も受液器63内に挿入される。受液器63の略底部からはバイパス回路を形成するバイパス配管66が延び、流量調整弁31が設けられた後に、冷媒式過冷却器32の内側の流路35の入口35aに接続されている。その他の構成は、第1の実施の形態と同じである。
(Second Embodiment)
As shown in FIG. 3, in the air conditioner 61, the outdoor heat exchanger 25 has a first heat exchanger 26 and a second heat exchanger 27, and these heat exchangers 26, 27 are liquid receivers. It is connected via a device 63. Further, liquid refrigerant is supplied to the refrigerant subcooler 32 from the liquid receiver 63. More specifically, the pipe 64 connected to the inlet / outlet (outlet during cooling operation) of the first heat exchanger 26 is inserted into the liquid receiver 63. A pipe 65 connected to the inlet / outlet of the second heat exchanger 27 (inlet during cooling operation) is also inserted into the liquid receiver 63. A bypass pipe 66 that forms a bypass circuit extends from a substantially bottom portion of the liquid receiver 63 and is connected to an inlet 35a of a flow path 35 inside the refrigerant subcooler 32 after the flow rate adjustment valve 31 is provided. . Other configurations are the same as those of the first embodiment.

次に、この空気調和装置61の動作について説明する。
冷房運転時には、圧縮機21から吐出されたガス冷媒が第一の熱交換器26に流入する。第一の熱交換器26は凝縮器として機能し、熱交換によって高圧の液冷媒が形成される。この液冷媒は、配管64から受液器63に流入する。液冷媒は、受液器63に滞溜することで圧力が低下する。バイパス配管66は、受液器63の略底部に接続されており、流量調整弁31が僅かに開いているので、飽和液に極めて近い冷媒のみが取り出され、流量調整弁31で減圧された後、低温熱源として冷媒式過冷却器32の内側の流路35に供給される。
また、受液器63からは、第二の熱交換器27にも液冷媒が供給される。第二熱交換器27(空冷式過冷却器)に供給された液冷媒は、空冷によって過冷却された後に冷媒式過冷却器32でさらに過冷却され、室内機3に供給される。
なお、低温熱源用に取り出された液冷媒は、室内機3をバイパスして圧縮機21に吸入される。流量調整弁31の開度は、前記と同様に過冷却度を測定して、例えば、過冷却度が20Kになるように調整される。
Next, the operation of the air conditioner 61 will be described.
During the cooling operation, the gas refrigerant discharged from the compressor 21 flows into the first heat exchanger 26. The first heat exchanger 26 functions as a condenser, and a high-pressure liquid refrigerant is formed by heat exchange. This liquid refrigerant flows into the liquid receiver 63 from the pipe 64. The liquid refrigerant is accumulated in the liquid receiver 63 and the pressure is reduced. The bypass pipe 66 is connected to the substantially bottom portion of the liquid receiver 63, and the flow rate adjustment valve 31 is slightly open. Therefore, only the refrigerant extremely close to the saturated liquid is taken out and decompressed by the flow rate adjustment valve 31. The low-temperature heat source is supplied to the flow path 35 inside the refrigerant subcooler 32.
Further, the liquid refrigerant is also supplied from the liquid receiver 63 to the second heat exchanger 27. The liquid refrigerant supplied to the second heat exchanger 27 (air-cooled supercooler) is further supercooled by the refrigerant-type supercooler 32 after being supercooled by air cooling and supplied to the indoor unit 3.
The liquid refrigerant taken out for the low-temperature heat source bypasses the indoor unit 3 and is sucked into the compressor 21. The degree of opening of the flow rate adjustment valve 31 is adjusted so that the degree of supercooling is 20K, for example, by measuring the degree of supercooling as described above.

暖房運転時は、流量調整弁31を閉じる。第一の熱交換器26に加えて第二の熱交換器27が蒸発器として機能することで高い暖房能力が発揮される。   During the heating operation, the flow rate adjustment valve 31 is closed. In addition to the first heat exchanger 26, the second heat exchanger 27 functions as an evaporator, so that a high heating capacity is exhibited.

この実施の形態によれば、液冷媒の一部を空冷式過冷却器を通る前に受液器63から分岐させ、冷媒式過冷却器32の低温熱源として使用するようにしたので、第1の実施の形態と同様の効果が得られる。特に、低温熱源用の冷媒を分岐するときに受液器63を使用するので、バイパスされる冷媒の乾き度を極めて小さくすることができる。これによって、冷媒式過冷却器32の低温熱源側の入口35aと出口35bのエンタルピの差を大きくできる。したがって、同じ冷媒量をバイパスした場合でも過冷却度を大きくすることができ、冷房能力の低下を抑えつつ過冷却度を高くすることができる。
さらに、受液器63で凝縮器(第一の熱交換器26)と空冷式過冷却器(第二熱交換器27)の機能を分離しているので、運転条件が変動しても空冷式過冷却器の能力を安定して得ることができる。
According to this embodiment, a part of the liquid refrigerant is branched from the liquid receiver 63 before passing through the air-cooled subcooler and used as a low-temperature heat source for the refrigerant subcooler 32. The same effects as those of the embodiment can be obtained. In particular, since the receiver 63 is used when the refrigerant for the low-temperature heat source is branched, the dryness of the bypassed refrigerant can be extremely reduced. As a result, the difference in enthalpy between the inlet 35a and the outlet 35b on the low-temperature heat source side of the refrigerant subcooler 32 can be increased. Therefore, even when the same refrigerant amount is bypassed, the degree of supercooling can be increased, and the degree of supercooling can be increased while suppressing a decrease in cooling capacity.
Furthermore, since the functions of the condenser (first heat exchanger 26) and the air-cooled supercooler (second heat exchanger 27) are separated by the liquid receiver 63, the air-cooled type even if the operating conditions fluctuate. The capacity of the subcooler can be obtained stably.

(第3の実施の形態)
図4に、空気調和装置1の室外機2の外観図を示す。室外機2は、略直方体のケース71内に各構成要素が収容されている。ケース71の天井面72には、吹き出し口73が設けられており、ここに吹き出しファン74(送風ファン)が配置されている。ケース71の側部、すなわち前面75と、2つの側面76,77及び背面78のそれぞれには、空気を取り込む開口として吸い込み口81,82(側面77及び背面78の吸い込み口は不図示)が形成されている。前面75の内側には、空冷式過冷却器として機能する第二の熱交換器27が吸い込み口に面して配置されている。第一の熱交換器26は、2つの側面76,77と背面78のそれぞれの吸い込み口82に面して配置されており、例えば破線で示すように平面視で略U字状になっている。なお、各面75〜78は、全てが吸い込み口になっていても良い。また、各面を形成するパネルの一部に吸い込み口が形成されても良い。
(Third embodiment)
In FIG. 4, the external view of the outdoor unit 2 of the air conditioning apparatus 1 is shown. In the outdoor unit 2, each component is accommodated in a substantially rectangular parallelepiped case 71. A blowout port 73 is provided on the ceiling surface 72 of the case 71, and a blowout fan 74 (blower fan) is disposed here. Suction ports 81 and 82 (the suction ports of the side surface 77 and the back surface 78 are not shown) are formed as openings for taking in air on the side of the case 71, that is, the front surface 75 and the two side surfaces 76 and 77 and the back surface 78, respectively. Has been. Inside the front surface 75, the 2nd heat exchanger 27 which functions as an air-cooling type subcooler is arrange | positioned facing the suction inlet. The first heat exchanger 26 is disposed so as to face the respective suction ports 82 of the two side surfaces 76 and 77 and the back surface 78, and is substantially U-shaped in a plan view as indicated by a broken line, for example. . In addition, as for each surface 75-78, all may be a suction inlet. Further, a suction port may be formed in a part of the panel forming each surface.

空気調和装置1を運転すると、上部の吹き出しファン74が回転する。空気は、側方の4面75〜78の4つの吸い込み口81,82から吸い込まれ、第一、第二の熱交換器26,27を通って上部の吹き出し口73から排出される。このときに、第一、第二の熱交換器26,27内を流れる冷媒との間で熱交換が行われる。   When the air conditioner 1 is operated, the upper blowing fan 74 rotates. Air is sucked from the four suction ports 81 and 82 on the four sides 75 to 78 on the side, and is discharged from the upper blowing port 73 through the first and second heat exchangers 26 and 27. At this time, heat exchange is performed with the refrigerant flowing in the first and second heat exchangers 26 and 27.

この室外機2では、吹き出しファン74の回転軸に沿った方向の平面視で吹き出しファン74を囲むように第一、第二の熱交換器26,27が配置されるので、ファン効率が向上する。このため、第一の熱交換器26を流れる風量を減少させることなく、全風量を第二の熱交換器27に流す風量分増加させることができる。第一の熱交換器26と第二の熱交換器27のそれぞれを流れる空気が別々に確保されるので、それぞれの空気が互いの熱交換器の特性に影響を及ぼすことがなく、安定した性能が得られる。これらのことから、冷房運転時には、凝縮能力を確保しながら大きな過冷却度が得られ、長配管でも冷房能力の低下を抑制することができる。また、暖房運転時にも風量増加に伴って暖房能力の向上が図れる。
ここで、第2の実施の形態における空気調和装置61の室外機62を同様の形状にしても良い。前記と同様の作用及び効果が得られる。
In the outdoor unit 2, since the first and second heat exchangers 26 and 27 are disposed so as to surround the blower fan 74 in a plan view along the rotation axis of the blower fan 74, fan efficiency is improved. . For this reason, the total air volume can be increased by the amount of air flowing through the second heat exchanger 27 without decreasing the air volume flowing through the first heat exchanger 26. Since the air flowing through each of the first heat exchanger 26 and the second heat exchanger 27 is ensured separately, each air does not affect the characteristics of the heat exchangers and stable performance. Is obtained. From these things, at the time of air_conditionaing | cooling operation, a big supercooling degree can be obtained, ensuring a condensing capability, and the fall of air_conditioning | cooling capability can be suppressed also with long piping. Moreover, the heating capacity can be improved with the increase in the air volume even during the heating operation.
Here, you may make the outdoor unit 62 of the air conditioning apparatus 61 in 2nd Embodiment into the same shape. The same operations and effects as described above can be obtained.

なお、本発明は、前記の各実施の形態に限定されずに広く応用することができる。
例えば、温度計45を冷媒式過冷却器32の内側の流路35の出口35b側に設け、流出する冷媒の温度から室内機3に供給される液冷媒の過冷却度を推定して流量調整弁31の開度を制御しても良い。
図4で第二の熱交換器27を2面以上に渡って配置しても良い。第一の熱交換器26は、1面のみに配置しても良いし、2面又は4面に渡って配置しても良い。
The present invention can be widely applied without being limited to the above-described embodiments.
For example, a thermometer 45 is provided on the outlet 35b side of the flow path 35 inside the refrigerant subcooler 32, and the flow rate is adjusted by estimating the degree of supercooling of the liquid refrigerant supplied to the indoor unit 3 from the temperature of the refrigerant flowing out. The opening degree of the valve 31 may be controlled.
In FIG. 4, the second heat exchanger 27 may be arranged over two or more surfaces. The first heat exchanger 26 may be disposed on only one surface, or may be disposed on two or four surfaces.

本発明の実施の形態に係る空気調和装置の概略構成を示す図である。It is a figure which shows schematic structure of the air conditioning apparatus which concerns on embodiment of this invention. バイパス量と冷房能力、過冷却度の関係を示すグラフである。It is a graph which shows the relationship between a bypass amount, cooling capacity, and a supercooling degree. 受液器を設けた空気調和装置の概略構成を示す図である。It is a figure which shows schematic structure of the air conditioning apparatus provided with the liquid receiver. 室外機の外観図である。It is an external view of an outdoor unit.

符号の説明Explanation of symbols

1,61 空気調和装置
2,62 室外機
3 室外機
25 室外熱交換器
26 第一の熱交換器
27 第二の熱交換器
30,36,64 バイパス配管(バイパス回路)
31 流量調整弁
32 冷媒式過冷却器
63 受液器
71 ケース
74 吹き出しファン
81,82 吸い込み口(開口)
DESCRIPTION OF SYMBOLS 1,61 Air conditioning apparatus 2,62 Outdoor unit 3 Outdoor unit 25 Outdoor heat exchanger 26 First heat exchanger 27 Second heat exchanger 30, 36, 64 Bypass piping (bypass circuit)
31 Flow Control Valve 32 Refrigerant Subcooler 63 Receiving Unit 71 Case 74 Blowing Fan 81, 82 Suction Port (Opening)

Claims (3)

圧縮機で圧縮した冷媒を熱交換器に流入させて空気と熱交換させることで暖房又は冷房を行なう空気調和装置において、
室外機の前記熱交換器は、冷房運転時に凝縮器になって暖房運転時には蒸発器となる第一の熱交換器と、冷房運転時に空冷式過冷却器になって暖房運転時に蒸発器となる第二の熱交換器を有し、冷房運転時に前記第一の熱交換器から流出する冷媒の一部を前記第二の熱交換器に流入する前に分岐させて室内機をバイパスさせるバイパス回路を設け、前記バイパス回路に流量調整弁と、前記バイパス回路を流れる冷媒を用いて前記第二の熱交換器で過冷却した冷媒をさらに過冷却する冷媒式過冷却器を設けたことを特徴とする空気調和装置。
In an air conditioner that performs heating or cooling by allowing refrigerant compressed by a compressor to flow into a heat exchanger and exchanging heat with air,
The heat exchanger of the outdoor unit becomes a condenser during cooling operation and becomes an evaporator during heating operation, and an air-cooled subcooler during cooling operation and becomes an evaporator during heating operation. A bypass circuit having a second heat exchanger and branching a part of the refrigerant flowing out of the first heat exchanger during cooling operation before flowing into the second heat exchanger to bypass the indoor unit Characterized in that a flow rate adjusting valve is provided in the bypass circuit, and a refrigerant-type subcooler that further subcools the refrigerant subcooled in the second heat exchanger using the refrigerant flowing through the bypass circuit. Air conditioner to do.
前記第一の熱交換器と前記第二の熱交換器の間に受液器を設け、前記受液器の略底部に前記バイパス回路が接続されていることを特徴とする請求項1に記載の空気調和装置。   The liquid receiver is provided between the first heat exchanger and the second heat exchanger, and the bypass circuit is connected to a substantially bottom portion of the liquid receiver. Air conditioner. 前記室外機は、送風用のファンが取り付けられた略直方体のケースを有し、前記ケース内には前記ファンの回転軸方向からみて前記ファンを囲むように前記第一の熱交換器と、前記第二の熱交換器とが配置され、前記ケースの前記第一の熱交換器及び前記第二の熱交換器に面する側部に空気を通す開口が形成されていることを特徴とする請求項1又は請求項2に記載の空気調和装置。   The outdoor unit has a substantially rectangular parallelepiped case to which a fan for blowing air is attached, the first heat exchanger in the case so as to surround the fan when viewed from the rotation axis direction of the fan, A second heat exchanger is disposed, and an opening for passing air is formed in a side portion of the case facing the first heat exchanger and the second heat exchanger. The air conditioning apparatus according to claim 1 or 2.
JP2006249470A 2006-09-14 2006-09-14 Air conditioner Pending JP2008070053A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006249470A JP2008070053A (en) 2006-09-14 2006-09-14 Air conditioner
KR1020060113931A KR20080024937A (en) 2006-09-14 2006-11-17 Air conditioner
CNA200710104123XA CN101144656A (en) 2006-09-14 2007-05-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249470A JP2008070053A (en) 2006-09-14 2006-09-14 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008070053A true JP2008070053A (en) 2008-03-27

Family

ID=39207306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249470A Pending JP2008070053A (en) 2006-09-14 2006-09-14 Air conditioner

Country Status (3)

Country Link
JP (1) JP2008070053A (en)
KR (1) KR20080024937A (en)
CN (1) CN101144656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007482A (en) * 2009-05-29 2011-01-13 Daikin Industries Ltd Air conditioner
WO2013027907A1 (en) * 2011-08-25 2013-02-28 주식회사 티알엑서지 Air-cooled heat pump system
WO2013161011A1 (en) * 2012-04-25 2013-10-31 株式会社日立製作所 Air-conditioning/hot-water supply system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK176868B1 (en) * 2008-09-16 2010-02-01 Lars Christian Wulf Zimmermann Symmetrical refrigerant regulator for flooded multi-channel evaporator
JP2013122354A (en) * 2011-12-12 2013-06-20 Samsung Electronics Co Ltd Air conditioner
CN102679609A (en) * 2012-06-07 2012-09-19 四川同达博尔置业有限公司 Air-cooled heat pump air conditioner
CN104729162B (en) * 2013-12-24 2018-02-27 珠海格力电器股份有限公司 Cooling system and the air conditioner with the cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007482A (en) * 2009-05-29 2011-01-13 Daikin Industries Ltd Air conditioner
WO2013027907A1 (en) * 2011-08-25 2013-02-28 주식회사 티알엑서지 Air-cooled heat pump system
WO2013161011A1 (en) * 2012-04-25 2013-10-31 株式会社日立製作所 Air-conditioning/hot-water supply system
JPWO2013161011A1 (en) * 2012-04-25 2015-12-21 株式会社日立製作所 Air conditioning and hot water supply system

Also Published As

Publication number Publication date
KR20080024937A (en) 2008-03-19
CN101144656A (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP5611353B2 (en) heat pump
KR100905995B1 (en) Air conditioner
JP5239824B2 (en) Refrigeration equipment
WO2016051606A1 (en) Air conditioning device
WO2018002983A1 (en) Refrigeration cycle device
JP6073413B2 (en) Thermal storage air conditioner and control method thereof
JP6179414B2 (en) Heat exchanger for heat source unit of refrigeration apparatus, and heat source unit including the same
WO2009131083A1 (en) Refrigeration device
JP2008070053A (en) Air conditioner
JP2006170608A (en) Heat exchanger in air conditioner
JP6880204B2 (en) Air conditioner
JP6067178B2 (en) Heat source side unit and air conditioner
JP2011133177A (en) Air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP5734205B2 (en) Air conditioner
JP2011179783A (en) Refrigerating device
KR20100096857A (en) Air conditioner
JP2010096360A (en) Air conditioner
JP6508394B2 (en) Refrigeration system
JP6448780B2 (en) Air conditioner
JP2008267653A (en) Refrigerating device
JP2015010816A (en) Refrigerant circuit and air conditioning equipment
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP6964241B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP2013053849A (en) Heat pump device, and outdoor unit thereof