DK176868B1 - Symmetrical refrigerant regulator for flooded multi-channel evaporator - Google Patents

Symmetrical refrigerant regulator for flooded multi-channel evaporator Download PDF

Info

Publication number
DK176868B1
DK176868B1 DKPA200801298A DKPA200801298A DK176868B1 DK 176868 B1 DK176868 B1 DK 176868B1 DK PA200801298 A DKPA200801298 A DK PA200801298A DK PA200801298 A DKPA200801298 A DK PA200801298A DK 176868 B1 DK176868 B1 DK 176868B1
Authority
DK
Denmark
Prior art keywords
evaporator
heat exchanger
suction gas
refrigerant
gas heat
Prior art date
Application number
DKPA200801298A
Other languages
Danish (da)
Inventor
Lars Christian Wulf Zimmermann
Original Assignee
Lars Christian Wulf Zimmermann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lars Christian Wulf Zimmermann filed Critical Lars Christian Wulf Zimmermann
Priority to DKPA200801298A priority Critical patent/DK176868B1/en
Priority to US13/061,631 priority patent/US20110154849A1/en
Priority to PCT/DK2009/050238 priority patent/WO2010031402A1/en
Priority to CN2009801293825A priority patent/CN102105758A/en
Application granted granted Critical
Publication of DK176868B1 publication Critical patent/DK176868B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

DK 176868 B1DK 176868 B1

Benævnelse:designation:

Symmetrisk kølemiddelregulator for oversvømmet multikanalfordamper.Symmetrical refrigerant regulator for flooded multi-channel evaporator.

Anvendel sesområde: 5 Ansøgningen omhandler et kølekredsløb med kompressor(A), kondensator(D), fordamper(C) og sugegasvarmeveksler(H), hvor kølemidlet kapillarrørsdrøvles i to trin, først fra kondensator til sugegasvarmeveksler (F) og fra sugegasvarmeveksler til fordamper(E).Field of application: 5 The application relates to a refrigeration circuit with compressor (A), capacitor (D), evaporator (C) and suction gas heat exchanger (H), wherein the refrigerant is capillary tube throttle in two stages, first from condenser to suction gas heat exchanger (F) and from suction gas heat exchanger (F). E).

10 Formålet med et sådan kredsløb er at fordele kølemidlet således at fordamperen er oversvømmet, og at sugegassen ved kompressor tilgangen er overhedet.The purpose of such a circuit is to distribute the refrigerant so that the evaporator is flooded and that the suction gas at the compressor approach is superheated.

Teknikkens standpunkt:Prior Art:

Et sådan kredsløb er kendt fra DK174179, hvor sugegasvarmeveksleren kondenserer 15 den damp, som når frem til væskebeholderen, således at kun ren væske føres videre.Such a circuit is known from DK174179, where the suction gas heat exchanger condenses the steam reaching the liquid container so that only pure liquid is passed on.

Samtidig regulerer varmeveksleren beholdertrykket - og derved størrelsen på kølemiddelstrømmen til fordamperen. Størrelsen på denne kølemiddelstrøm styrer hvor oversvømmet (eller overhedet) sugegassen er, hvilket styrer hvor kraftig sugegasvarmeveksleren køler på kondensatet mellem de to drøvlingstrin. Processen er 20 selvjusterende, og når der er opnået ligevægt er fordamperen oversvømmet.At the same time, the heat exchanger regulates the container pressure - and thereby the amount of refrigerant flow to the evaporator. The magnitude of this coolant flow controls where the flooded (or superheated) suction gas is, which controls how strongly the suction gas heat exchanger cools on the condensate between the two drip stages. The process is 20 self-adjusting, and when equilibrium is reached, the evaporator is flooded.

Det særlige ved opfindelsen:The specificity of the invention:

Opfindelsen adskiller sig fra DK174179 ved væskebeholderen mangler. I stedet tilpasses den cirkulerende mængde afkølemiddel til belastningsforholdene ved at 25 overskydende kølemiddel bindes i fordamperen. Det sker ved at overskuddet af kølemiddel, via sugegasvarmeveksleren, sænker Enthalpien ved fordamperens tilgangen, hvorved forholdet mellem damp og væske forskydes - således at kølemidlets massefylde øges.The invention differs from DK174179 in that the liquid container is missing. Instead, the circulating amount of coolant is adjusted to the load conditions by bonding excess coolant into the evaporator. This is done by the excess of refrigerant, via the suction gas heat exchanger, lowers the enthalpy at the evaporator's approach, thereby shifting the ratio of steam to liquid - thus increasing the density of the refrigerant.

Konstruktionen er symmetrisk og kølemiddelstrømmen kan vendes, således at 30 fordamper og kondensator bytter funktion. Det giver mulighed for gasafrimning af fordamperen - eller at fordamperen kan anvendes både til køling og opvarmning.The structure is symmetrical and the refrigerant flow can be reversed so that 30 evaporators and capacitors change function. It allows for gas defrosting of the evaporator - or that the evaporator can be used for both cooling and heating.

Metoden er uafhængig af tyngdefeltet og kan fungere i flyvemaskiner, hvor anlægget vendes på hovedet, og i rumfartøjer helt uden tyngdefelt.The method is independent of the gravitational field and can operate in airplanes where the aircraft is turned upside down and in spacecraft completely without the gravitational field.

Metoden er selvjusterende og uden bevægelige dele, og kan derfor placeres på 35 utilgængelige steder eller indkapsles fuldstændigt i isoleringsskum..The method is self-adjusting and without moving parts and can therefore be placed in 35 inaccessible places or completely enclosed in insulating foam.

Opfindelsen kan anvendes på alle anlægsstørrelser og med de fleste kølemidler - dog ikke zeotropiske blandinger med stor temperaturglid, da regulering af fordamperens Enthalpi, her vil medføre store udsving i fordampertemperaturen.The invention can be applied to all plant sizes and with most refrigerants - but not zeotropic mixtures with large temperature slides, as regulation of the evaporator's Enthalpi, here will cause large fluctuations in the evaporator temperature.

40 De nye tekniske midler(l. krav):40 The new technical means (1):

Drøvlingsorganet består af to drøvlingstrin, adskilt af en sugegasvarmeveksler, hvor strømningshastigheden gennem sugegasvarmeveksleren er så høj at væske og gas ikke adskilles.The throttle means consists of two throttle stages, separated by a suction gas heat exchanger, where the flow rate through the suction gas heat exchanger is so high that liquid and gas are not separated.

45 De to drøvlingstrin kan etableres ved to dyser, for eksempel to kapillarrør, og sugegasvarmeveksleren ved to koncentriske rør, som opfylde følgende to krav: Varmeoverføringsevnen skal være tilstrækkelig til at fjerne al flydende kølemiddel fra sugegassen, under alle driftsforhold.The two turbulence steps can be established by two nozzles, for example two capillary tubes, and the suction gas heat exchanger by two concentric tubes, which meet the following two requirements: The heat transfer ability must be sufficient to remove all liquid refrigerant from the suction gas, under all operating conditions.

DK 176868 B1DK 176868 B1

Strømningshastigheden, på kondensatorsiden, skal være så høj at væske og gas ikke adskilles. Det er opfyldt ved turbulent flow, som er defineret ved at Reynolds tal er større end 3000.The flow rate, on the capacitor side, must be so high that liquid and gas are not separated. It is met by turbulent flow, which is defined by the Reynolds number being greater than 3000.

5 Den tekni ske virkning( 1. krav):The technical effect (requirement 1):

Kondensatet passerer sugegasvarmeveksleren som en blanding af væske og damp, hvor der hersker termodynamisk ligevægt mellem tryk og temperatur. Når sugegassen fjerne Enthalpi fra kondensatet, kondensere noget af dampen - men der sker ingen væsentlig ændring i trykket og derfor heller ikke i temperaturen. Sugegassen passerer kondensatet 10 i modstrøm og opvarmes til tæt på kondensatets temperatur.The condensate passes the suction gas heat exchanger as a mixture of liquid and steam, where there is thermodynamic equilibrium between pressure and temperature. When the suction gas removes Enthalpi from the condensate, some of the steam condenses - but there is no significant change in the pressure and therefore not in the temperature. The suction gas passes the condensate 10 countercurrently and is heated to close to the condensate temperature.

Denne processen er selvjusterende. Bevis: Når kølekredsløbet har overskud afkølemiddel resulterer det i et fald i Enthalpien ved fordamper afgangen 15 Enthalpi ændringen kan ikke passere veksleren, da sugegastemperaturen efter veksleren er ’’næsten” fast - og faldet i Enthalpi vil derfor overføres til kondensatsiden, hvor Enthalpien ved fordamper tilgangen falder tilsvarende.This process is self-adjusting. Proof: When the cooling circuit has excess refrigerant, it results in a decrease in the enthalpy at the evaporator exit 15 The Enthalpi change cannot pass the exchanger, as the suction gas temperature after the exchanger is' 'almost' fixed - and therefore the decrease in the Enthalpi will be transferred to the condensate side where the enthalpy is evaporated. the approach decreases accordingly.

Et Enthalpifald ved fordamper tilgangen betyder større massefylde i fordamperen - og dermed en binding afkølemiddel - hvilket mindsker årsagen - som var overskud af 20 cirkulerende kølemiddelAn enthalpy drop at the evaporator approach means greater density in the evaporator - and thus a bonding refrigerant - which reduces the cause - which was the excess of 20 circulating refrigerant

Tilsvarende når kredsløbet mangler kølemiddel: det giver en stigning i Enthalpien ved fordamper afgangen.Similarly, when the circuit lacks refrigerant: it gives rise to the Enthalpy at evaporator exit.

Enthalpi ændringen kan ikke passere veksleren, da sugegastemperaturen efter veksleren 25 er ’’næsten” fast - og stigningen i Enthalpi vil derfor overføres til kondensatsiden, hvor Enthalpien ved fordamper tilgangen stiger tilsvarende, varmeveksleren overfører stigningen til fordamper tilgangen.The Enthalpi change cannot pass the exchanger, as the suction gas temperature after exchanger 25 is '' almost '' fixed - and therefore the rise in Enthalpi will be transferred to the condensate side where the Enthalpy at the evaporator supply increases correspondingly, the heat exchanger transfers the increase to the evaporator access.

En stigning i Enthalpi ved fordamper tilgangen betyder mindre massefylde i fordamperen - og dermed frigives kølemiddel - hvilket mindsker årsagen - som var 30 underskud af cirkulerende kølemiddelAn increase in Enthalpi by the evaporator approach means lesser density in the evaporator - thus releasing refrigerant - which reduces the cause - which was 30 deficits of circulating refrigerant

Konstruktionen er symmetrisk og kølemiddelstrømmen kan vendes, således at fordamper og kondensator bytter funktion.The structure is symmetrical and the refrigerant flow can be reversed so that the evaporator and condenser change function.

35 De nye tekniske midler (2. krav):35 The new technical means (2nd requirement):

Opfindelsen kan let udvides til at regulerer anlæg, hvor fordamper og/eller kondensator er opdelt i mange sektioner.The invention can easily be extended to regulate systems where evaporators and / or capacitors are divided into many sections.

Dyserne, til og fra sugegasvarmeveksleren, kan erstattes at flere parallelle dyser, således at der er en separat dyse til hver sektion i fordamper/kondensator.The nozzles, to and from the suction gas heat exchanger, can be replaced by several parallel nozzles so that there is a separate nozzle for each section of the evaporator / condenser.

4040

Den tekniske virkning (2.krav):Technical effect (requirement 2):

Opsplitning i mange parallelle dyser giver ikke problemer ved opsamling afkølemiddel fra mange kondensatorsektioner, men fordeling af kølemiddel til mange fordampersektioner kan være et problem, ved at nogle dyser tilføres meget væske mens 45 andre tilføres meget damp. Problemet er her løst ved kravet om turbulent flow i varmeveksleren, som sikre en homogen blanding af væske og damp, der nu problemfrit kan fordeles til mange dyser.Splitting into many parallel nozzles does not cause problems in collecting refrigerant from many condenser sections, but the distribution of refrigerant to many evaporator sections can be a problem in that some nozzles are supplied with a lot of liquid while 45 others are supplied with a lot of steam. The problem is solved here by the demand for turbulent flow in the heat exchanger, which ensures a homogeneous mixture of liquid and vapor, which can now be seamlessly distributed to many nozzles.

2 DK 176868 B12 DK 176868 B1

Figurfortegnelse:List of Figures:

Fig. 1: Kompressor (A), 4-vejs ventil (B) hvor kølemiddelstrømmens retning kan vendes. Fordamper/kondensator (C,D) er symmetriske og forbundet via to dyser, for eksempel to ens kapillarrør (E,F), som mødes i sugegasvarmeveksleren (H), og 5 varmeveksler med sugeledningen (G).FIG. 1: Compressor (A), 4-way valve (B) where the direction of refrigerant flow can be reversed. Evaporator / condenser (C, D) is symmetrical and connected via two nozzles, for example two identical capillary tubes (E, F), which meet in the suction gas heat exchanger (H), and 5 heat exchanger with the suction line (G).

Fig.2 viser en regulator for multikanalfordamper/kondensator. På figuren er vist 3 kapillarrør (E) for tilslutning til fordamper og 2 kapillarrør (F) for tilslutning til kondensator.Fig. 2 shows a multi-channel evaporator / capacitor controller. The figure shows 3 capillary tubes (E) for connection to evaporator and 2 capillary tubes (F) for connection to capacitor.

10 Sugeledningen (G) føres gennem den ydre kappen (H), som har kanaler til kapillarrørene.The suction line (G) is passed through the outer sheath (H) which has channels for the capillary tubes.

Fig. 3 viser temperaturene i sugegasvarmeveksleren. Te er sugegassens temperatur ved varmevekslerens tilgang, og Tx er den ’’næsten” konstante temperatur på væskesiden.FIG. 3 shows the temperatures in the suction gas heat exchanger. Tea is the suction gas temperature at the heat exchanger's approach, and Tx is the "almost" constant temperature on the liquid side.

15 Tc viser hvor kondensatorens temperatur ligger i forhold til varmeveksleren.15 Tc shows where the temperature of the capacitor is relative to the heat exchanger.

Fig. 4 og 5 viser beregninger af kredsløbet i et Enthalpi-Log(Tryk)-diagram. Kølemidlet er R290, fordampningstemperaturen -25 °C og kondenseringstemperaturen 45°C .FIG. 4 and 5 show calculations of the circuit in an Enthalpi-Log (Pressure) diagram. The refrigerant is R290, the evaporation temperature -25 ° C and the condensation temperature 45 ° C.

Kredsløbet på fig. 4 har større kølemiddel fyldning end kredsløbet på fig. 5, hvilket 20 trækker fordamperen(EF) længere mod venstre.The circuit of FIG. 4 has greater refrigerant filling than the circuit of FIG. 5, which draws the evaporator (EC) farther to the left.

Liniestykket CD er Enthalpi overført af varmeveksleren, og liniestykket (FG) er den tilsvarende forskydning af fordamperen mod lavere Enthalpi. På fig. 4 indeholder fordamper næsten 3 gange så meget kølemiddel som fordamperen på fig. 5.The line piece CD is Enthalpi transmitted by the heat exchanger, and the line piece (FG) is the corresponding displacement of the evaporator towards the lower Enthalpi. In FIG. 4 contains evaporator almost 3 times as much refrigerant as the evaporator of FIG. 5th

25 Udførelseseksempel:Example 25:

Kompressor SC21CNX2 er for R290 og yder 750 Watt ved fordampningstemperaturen -25Celcius og kondenseringstemperaturen 45Celcius, svarende til en massestrøm på 3gram/sekund. Begge kapillarrør har diameter lmm og længde lOOOmm, svarende til en kapacitet på 27,4liter kvælstof per minut.Compressor SC21CNX2 is for R290 and delivers 750 Watts at the evaporation temperature -25Celcius and the condensation temperature 45Celcius, corresponding to a mass flow of 3 grams / second. Both capillary tubes have a diameter of 1mm and a length of 100mm, corresponding to a capacity of 27.4 liters of nitrogen per minute.

30 Figur 3 viser at varmeveksleren maksimalt skal overføre 50% af køleffekten, her 400W, ved en temperaturdifferens på 30 Kelvin, hvilket kræver et areal på 90cm2.30 Figure 3 shows that the heat exchanger must transmit a maximum of 50% of the cooling power, here 400W, at a temperature difference of 30 Kelvin, which requires an area of 90cm2.

Sugeledningens diameter er lOmm, så 90cm2 svarer overfladen på cirka 30cm af sugeledningen 35 Varmeveksleren består af to koncentriske kobberrør med længde 300mm. Det inderste rør er sugeledningen, som har en yder diameter på lOmm, og det yderste rør vælges med en indre diameter på 10,4mm, således at afstanden mellem rørene bliver 0,2mm.The diameter of the suction line is 10mm, so 90cm2 corresponds to the surface of about 30cm of the suction line 35 The heat exchanger consists of two concentric copper pipes of length 300mm. The inner tube is the suction line, which has an outer diameter of 10mm, and the outermost tube is selected with an inner diameter of 10.4mm, so that the distance between the tubes becomes 0.2mm.

Lysningen mellem rørene bliver 6mm2, og heraf kan beregnes at Reynolds tal ligger mellem 3200 og 6000, hvilket sikre turbulent flow.The illumination between the pipes becomes 6mm2, from which it can be calculated that Reynolds numbers are between 3200 and 6000, which ensures turbulent flow.

4040

Opsummering af fordele ved opfindelsen:Summary of advantages of the invention:

En enkel og robust kølemiddelregulator for anlæg med oversvømmet fordamper, inklusive multikanal-fordampere med mange parallelle sektorer.A simple and robust refrigerant controller for flooded evaporator systems, including multi-channel vaporizers with many parallel sectors.

Kølemiddelstrømmen kan vendes, således at fordamper og kondensator bytter funktion 45 Kræver ingen justering eller vedligehold og kan anbringes på utilgængelige steder.The refrigerant flow can be reversed so that the evaporator and condenser change function 45 Requires no adjustment or maintenance and can be placed in inaccessible places.

Fungerer uafhængig af tyngedefeltet og kan anvendes i flyvemaskiner og rumfartøjer.Works independently of the gravity field and can be used in airplanes and spacecraft.

33

Claims (3)

DK 176868 B1 1: Et kølekredsløb bestående af kompressor (A), fordamper(C), kondensator (D), sugegasvarmeveksler (H), og et drøvlingsorgan ( E,H,F) sammensat af trykreducerende 5 dyse (F), som forbinder bunden af nævnte kondensator med nævnte sugegasvarmeveksler, og trykreducerende dyse (E) som forbinder nævnte sugegasvarmeveksler med nævnte fordamper kendetegnet ved at kølemiddelstrømmen gennem nævnte sugegasvarmeveksler er turbulent på kondensatsiden. toDK 176868 B1 1: A cooling circuit consisting of compressor (A), evaporator (C), capacitor (D), suction gas heat exchanger (H), and a throttle member (E, H, F) composed of pressure reducing nozzle (F) connecting the bottom of said capacitor with said suction gas heat exchanger, and pressure reducing nozzle (E) connecting said suction gas heat exchanger with said evaporator characterized in that the coolant flow through said suction gas heat exchanger is turbulent on the condensate side. thaw 2: Et kølekredsløb som krav 1, hvor fordamper og/eller kondensator er delt i flere sektioner, og hver sektion er forbundet med varmeveksleren gennem en separat trykreducerende dyse.2: A cooling circuit as claimed in claim 1, wherein the evaporator and / or capacitor is divided into several sections and each section is connected to the heat exchanger through a separate pressure reducing nozzle. 3: Et kølekredsløb som krav 1 eller 2 med anordning (B), som kan vende 15 kølemiddelstrømmens retning gennem fordamper og kondensator. i3: A cooling circuit as claimed in claim 1 or 2 with device (B) capable of reversing the direction of the refrigerant flow through evaporator and condenser. in
DKPA200801298A 2008-09-16 2008-09-16 Symmetrical refrigerant regulator for flooded multi-channel evaporator DK176868B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DKPA200801298A DK176868B1 (en) 2008-09-16 2008-09-16 Symmetrical refrigerant regulator for flooded multi-channel evaporator
US13/061,631 US20110154849A1 (en) 2008-09-16 2009-09-13 Symmetric refrigerant regulator for flooded multichannel evaporator
PCT/DK2009/050238 WO2010031402A1 (en) 2008-09-16 2009-09-13 Symmetric refrigerant regulator for flooded multichannel evaporator
CN2009801293825A CN102105758A (en) 2008-09-16 2009-09-13 Symmetric refrigerant regulator for flooded multichannel evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200801298 2008-09-16
DKPA200801298A DK176868B1 (en) 2008-09-16 2008-09-16 Symmetrical refrigerant regulator for flooded multi-channel evaporator

Publications (1)

Publication Number Publication Date
DK176868B1 true DK176868B1 (en) 2010-02-01

Family

ID=41600761

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA200801298A DK176868B1 (en) 2008-09-16 2008-09-16 Symmetrical refrigerant regulator for flooded multi-channel evaporator

Country Status (4)

Country Link
US (1) US20110154849A1 (en)
CN (1) CN102105758A (en)
DK (1) DK176868B1 (en)
WO (1) WO2010031402A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107279448B (en) * 2017-06-28 2022-12-27 中绅科技(广东)有限公司 Cold control device and method for double-throttling precooling fresh-keeping ice cream machine and ice cream machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2785540A (en) * 1953-09-30 1957-03-19 Westinghouse Electric Corp Heat pumps
US4106308A (en) * 1977-05-19 1978-08-15 The Singer Company Heating and cooling system with capillary control means
US5167275A (en) * 1989-12-06 1992-12-01 Stokes Bennie J Heat exchanger tube with turbulator
EP1434018A3 (en) * 1995-03-14 2009-07-01 Hussmann Corporation Refrigerated merchandiser with modular evaporator coils and electronic evaporator pressure regulator control
JP3322292B2 (en) * 1995-10-23 2002-09-09 日立電線株式会社 Heat transfer tube
DK174179B1 (en) * 2000-03-13 2002-08-19 Lars Zimmermann Circuit with capillary tube droplet and refrigerant tank
CN1389677A (en) * 2002-07-10 2003-01-08 邹自才 Improved air conditioner
JP3811123B2 (en) * 2002-12-10 2006-08-16 松下電器産業株式会社 Double tube heat exchanger
CN1752610A (en) * 2004-09-24 2006-03-29 乐金电子(天津)电器有限公司 Overcooling structure for air conditioner
JP3982545B2 (en) * 2005-09-22 2007-09-26 ダイキン工業株式会社 Air conditioner
JP2008070053A (en) * 2006-09-14 2008-03-27 Samsung Electronics Co Ltd Air conditioner

Also Published As

Publication number Publication date
CN102105758A (en) 2011-06-22
US20110154849A1 (en) 2011-06-30
WO2010031402A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US10451316B2 (en) Systems and methods implementing robust air conditioning systems configured to utilize thermal energy storage to maintain a low temperature for a target space
US9534818B2 (en) Heat pump system with auxiliary heat exchanger
US6745830B2 (en) Heat pipe loop with pump assistance
US20050284153A1 (en) Method and system for cooling
US20170241687A1 (en) Refrigeration arrangement and methods for reducing charge migration losses
GB2487975A (en) Flash defrost system
BR102013004014A2 (en) variable capacity compressor cooler and cycle priming action through capacity control and associated methods
CN108700349B (en) Refrigeration device comprising a plurality of storage compartments
CN106440586A (en) Method for controlling evaporator outlet refrigerant to be low in superheat degree or smaller than 1 in dryness
US2139297A (en) Refrigeration
EP2860469A1 (en) Water heater
KR20200125930A (en) Cryogenic freezing of process media
DK176868B1 (en) Symmetrical refrigerant regulator for flooded multi-channel evaporator
US20240032250A1 (en) Regenerative preheater for phase change cooling applications
TWI826735B (en) Temperature control system, and integrated temperature control system
CA2977033C (en) Auxiliary heat exchangers
JP2008256280A (en) Steam generating system
JP2017089904A (en) Heat pump system
WO2015131184A1 (en) Freeze inhibiting regrigeration circuit and method of operation
FI108078B (en) Method and apparatus for cooling a product using condensed gas
Zhao et al. Effect of water maldistribution in multi-circuit evaporator on superheat control dynamics of thermostatic-expansion-valve refrigeration system
JP2016080179A (en) Air conditioner
JP7508933B2 (en) Hot water system
US9784488B2 (en) HVAC systems, devices, and methods with improved regulation of refrigerant flow
US20090211293A1 (en) Heat and mass exchanger liquid line subcooler

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20130930