JP3322292B2 - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JP3322292B2
JP3322292B2 JP27424495A JP27424495A JP3322292B2 JP 3322292 B2 JP3322292 B2 JP 3322292B2 JP 27424495 A JP27424495 A JP 27424495A JP 27424495 A JP27424495 A JP 27424495A JP 3322292 B2 JP3322292 B2 JP 3322292B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
flow
condensation
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27424495A
Other languages
Japanese (ja)
Other versions
JPH09113167A (en
Inventor
謙一 乾
忠男 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27424495A priority Critical patent/JP3322292B2/en
Publication of JPH09113167A publication Critical patent/JPH09113167A/en
Application granted granted Critical
Publication of JP3322292B2 publication Critical patent/JP3322292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換等に用いら
れる伝熱管、特に、ヒートポンプエアコンディショナー
の熱交換器に最適な伝熱管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for heat exchange and the like, and more particularly to a heat transfer tube most suitable for a heat exchanger of a heat pump air conditioner.

【0002】[0002]

【従来の技術】冷凍機、空気調和機、ヒートポンプ等に
用いられる熱交換器には、冷媒を管内に流通させ、この
冷媒を管内で凝縮させることによって必要な熱交換を行
わせる管内凝縮用の伝熱管が使用されている。このよう
な伝熱管の内面は、初期の頃は平滑で加工は施されてい
なかった。しかし、熱力学的な研究が進むにつれ、管内
面は平滑のままではなく、凹凸を形成した方が熱伝達率
が向上するという研究結果が得られている。
2. Description of the Related Art In a heat exchanger used for a refrigerator, an air conditioner, a heat pump, or the like, a refrigerant is circulated in a pipe, and the refrigerant is condensed in the pipe to perform necessary heat exchange. Heat transfer tubes are used. The inner surface of such a heat transfer tube was smooth and unprocessed in the early days. However, with the progress of thermodynamic research, it has been obtained that the inner surface of the pipe is not kept smooth, and that the formation of irregularities improves the heat transfer coefficient.

【0003】最近では、図4に示すように、伝熱管11
の内面に螺旋状の連続溝12(管軸方向に直交する溝を
含む)を形成させたものが主流を占める傾向にある。こ
のような螺旋状の連続溝12を設けることの1つの効果
として、管内面の表面積を大きくして伝熱面積を増大で
きることである。また、管内に螺旋状の凹凸が存在する
ことによって、流通する冷媒が攪拌ならびに乱流化さ
れ、これによって熱伝達率が向上できる効果も備えてい
る。つまり、管内で冷媒を沸騰させて熱交換する場合、
管内に流れる冷媒液が螺旋状の連続溝12に沿ってかき
上げられ、管内面全体が冷媒液で濡らされ、熱伝達率を
向上させることができる。
[0003] Recently, as shown in FIG.
There is a tendency for the mainstream to have a spiral continuous groove 12 (including a groove perpendicular to the tube axis direction) formed on the inner surface. One effect of providing such a spiral continuous groove 12 is that the heat transfer area can be increased by increasing the surface area of the inner surface of the tube. In addition, the presence of the helical irregularities in the pipe has the effect that the flowing refrigerant is agitated and turbulent, thereby improving the heat transfer coefficient. In other words, when exchanging heat by boiling the refrigerant in the pipe,
The refrigerant liquid flowing in the pipe is swept up along the spiral continuous groove 12, and the entire pipe inner surface is wetted with the refrigerant liquid, so that the heat transfer coefficient can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記したよう
に螺旋連続溝を備えた伝熱管は、優れた熱伝達特性を有
している。しかし、どのような場合にも好結果が得られ
るというわけではなく、特に、管内で冷媒を凝縮させて
使用する場合には、以下のような問題がある。すなわ
ち、管内で凝縮した冷媒液は重力によって管の下方に溜
まり、管の下側を流れることになるが、螺旋溝が有るた
めに液化した冷媒の流れが円滑に行かず、螺旋溝による
かき上げ現象が起こり、管内面全体を濡らす結果にな
る。管内面が濡れると、管内壁面と気体である冷媒蒸気
とが直接的に接触しなくなり、熱伝達率を大幅に低下さ
せる恐れがある。
However, as described above, a heat transfer tube provided with a spiral continuous groove has excellent heat transfer characteristics. However, good results are not always obtained in all cases. In particular, when a refrigerant is condensed and used in a pipe, there are the following problems. In other words, the refrigerant liquid condensed in the pipe accumulates below the pipe due to gravity and flows under the pipe, but the flow of the liquefied refrigerant does not go smoothly due to the presence of the spiral groove, and is lifted up by the spiral groove. A phenomenon occurs, resulting in wetting of the entire tube inner surface. When the inner surface of the pipe is wet, the inner wall surface of the pipe does not come into direct contact with the refrigerant vapor as a gas, and the heat transfer coefficient may be significantly reduced.

【0005】このため、凝縮用の伝熱管の場合には、管
内壁面と冷媒蒸気とがより多くの表面積において直接的
に接触できるようにすることが望まれる。本発明の目的
は、上記した従来技術の欠点を解消し、熱交換量を大幅
に増加させることのできる伝熱管を提供することにあ
る。
[0005] Therefore, in the case of a heat transfer tube for condensation, it is desired that the inner wall surface of the tube and the refrigerant vapor can directly contact each other in a larger surface area. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to provide a heat transfer tube capable of greatly increasing the amount of heat exchange.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、蒸発または凝縮に用いられる冷媒が
流通し、かつ前記冷媒を攪拌するための突起が管内面に
設けられた伝熱管において、前記突起は、蒸発時の冷媒
の流通に対向する様に形成される凸部、及び前記凸部の
反対側に設けられて凝縮時の冷媒の流通に対向する様に
形成される凹部を備えた構成にしている。
In order to achieve the above-mentioned object, the present invention provides a transmission system in which a refrigerant used for evaporation or condensation flows and a projection for stirring the refrigerant is provided on the inner surface of the tube. In the heat tube, the protrusion is formed to face the flow of the refrigerant during evaporation, and the recess is provided on the opposite side of the protrusion and is formed to face the flow of the refrigerant during condensation. Is provided.

【0007】上記した手段によれば、蒸発または凝縮の
両用に用いられる伝熱管にあって、冷媒を蒸発時に対し
て凝縮時には逆方向から流通させる。そして、突起に
は、蒸発時の冷媒流に対する側には凸部を設け、凝縮時
の冷媒流に対する側には凹部を設ける。これによって、
蒸発時には冷媒流に対する圧力損失を低減させると共に
乱流を生じさせ、これによる乱流が攪拌効果を高め、蒸
発熱伝達率を向上させる。また、凝縮時には冷媒流に大
きな乱れが生じて凝縮熱伝達率を向上させる。
According to the above-described means, in the heat transfer tube used for both evaporation and condensation, the refrigerant flows from the opposite direction during the condensation to the evaporation. The projection is provided with a convex portion on the side facing the refrigerant flow during evaporation, and a concave portion is provided on the side facing the refrigerant flow during condensation. by this,
During evaporation, the pressure loss to the refrigerant flow is reduced and turbulence is generated, and the turbulence thereby increases the stirring effect and improves the heat transfer coefficient of evaporation. Further, at the time of condensation, a large turbulence occurs in the refrigerant flow to improve the heat transfer coefficient of condensation.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明による伝熱管の一実
施の形態を示す断面図である。本発明による伝熱管1は
金属製の管体2の内壁面には突起3が千鳥足状に形成さ
れている。管体2内には、冷媒が流れるが、その流れ方
向は蒸発時と凝縮時では流れ方向が逆になる。4は蒸発
時の冷媒流を示し、5は凝縮時の冷媒流を示している。
突起3は円弧状を成し、蒸発時の冷媒流4に対して凸部
3aが向けられており、凝縮時の冷媒流5に対しては凹
部3bが向けられた配置になる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the heat transfer tube according to the present invention. In the heat transfer tube 1 according to the present invention, protrusions 3 are formed in a zigzag pattern on the inner wall surface of a metal tube 2. The refrigerant flows through the pipe 2, and the flow direction of the refrigerant is opposite during evaporation and condensation. Reference numeral 4 denotes a refrigerant flow at the time of evaporation, and reference numeral 5 denotes a refrigerant flow at the time of condensation.
The projection 3 has an arc shape, and the protrusion 3a is directed to the refrigerant flow 4 during evaporation, and the recess 3b is directed to the refrigerant flow 5 during condensation.

【0009】このような構成において、蒸発時において
は、冷媒流4が図1の左から右方向へ流れ、図2に示す
ように、突起3の周縁形状に沿って凸部3a→凹部3b
の向きに流れ6が形成される。この流れにおいては、周
縁形状に沿って冷媒が流れるため、圧力損失を生じるこ
とがない。また、流れ6が突起3を乗り越えるとき、流
れが剥離して乱れが生じ、それによって蒸発熱伝達率を
大幅に向上させることができる。
In such a configuration, during evaporation, the refrigerant flow 4 flows from left to right in FIG. 1 and, as shown in FIG.
Is formed in the direction of. In this flow, since the refrigerant flows along the peripheral shape, no pressure loss occurs. Also, when the flow 6 gets over the protrusions 3, the flow separates, causing turbulence, thereby greatly improving the heat transfer coefficient of evaporation.

【0010】また、凝縮時においては、図3に示すよう
に、突起3の凹部3b→凸部3aの向きに流れ7が形成
される。この時、凹部3bは流れ7に対する対向面がU
字形を成しているため、突起3の上面に集束する流れ8
が生じる。この流れ8が、突起3を乗り越える時に生じ
る強い乱れによって、凝縮熱伝達率を大幅に向上させる
ことができる。
At the time of condensation, as shown in FIG. 3, a flow 7 is formed in the direction from the concave portion 3b to the convex portion 3a of the projection 3. At this time, the recess 3b has a surface facing the flow 7 of U
The flow 8 converges on the upper surface of the projection 3 because of the
Occurs. Due to the strong turbulence generated when the stream 8 gets over the projection 3, the condensing heat transfer coefficient can be greatly improved.

【0011】以上のように、突起3の形状に工夫を凝ら
したことにより、蒸発時及び凝縮時のいずれにおいて
も、熱伝達率を大幅に向上させることができる。
As described above, by elaborating the shape of the projection 3, the heat transfer coefficient can be greatly improved both during evaporation and during condensation.

【0012】なお、上記実施の形態においては、伝熱管
1に金属管を用いるものとしたが、金属管に限定される
ものではなく、樹脂管、磁器管、ガラス管等であっても
よい。
In the above-described embodiment, a metal tube is used as the heat transfer tube 1. However, the present invention is not limited to the metal tube, but may be a resin tube, a porcelain tube, a glass tube, or the like.

【0013】[0013]

【発明の効果】以上より明らかな如く、本発明によれ
ば、管内に設けた突起が、蒸発時の冷媒の流通に対向す
る様に形成される凸部、及び前記凸部の反対側に設けら
れて凝縮時の冷媒の流通に対向する様に形成される凹部
を備えるようにしたので、蒸発時には冷媒流に対する圧
力損失を低減させると共に乱流を生じさせ、これによる
乱流が攪拌効果を高め、蒸発熱伝達率を向上させる。ま
た、凝縮時には冷媒流に大きな乱れが生じて凝縮熱伝達
率を向上させる。この結果、装置の小型化、設備費及び
ランニングコストの低減等を図ることができる。
As is clear from the above, according to the present invention, the projection provided in the pipe is provided with a projection formed so as to oppose the flow of the refrigerant during evaporation, and provided on the opposite side of the projection. And a concave portion formed so as to oppose the flow of the refrigerant at the time of condensation, so that during evaporation, the pressure loss to the refrigerant flow is reduced and turbulence is generated, and the turbulence thereby increases the stirring effect. Improve the heat transfer coefficient of evaporation. Further, at the time of condensation, a large turbulence occurs in the refrigerant flow to improve the heat transfer coefficient of condensation. As a result, it is possible to reduce the size of the apparatus, reduce equipment costs and running costs, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による伝熱管の一実施の形態を示す断面
図である。
FIG. 1 is a sectional view showing an embodiment of a heat transfer tube according to the present invention.

【図2】図1に示す突起に対し蒸発用の冷媒が流れた時
の経路を示す説明図である。
FIG. 2 is an explanatory diagram showing a path when a refrigerant for evaporation flows to a projection shown in FIG. 1;

【図3】図1に示す突起に対し凝縮用の冷媒が流れた時
の経路を示す説明図である。
FIG. 3 is an explanatory diagram showing a path when a condensing refrigerant flows to a projection shown in FIG. 1;

【図4】従来の伝熱管の構成を示す断面図である。 FIG. 4 is a cross-sectional view illustrating a configuration of a conventional heat transfer tube.

【符号の説明】[Explanation of symbols]

1 伝熱管 2 管体 3 突起 3a 凸部 3b 凹部 4 蒸発時の冷媒流 5 凝縮時の冷媒流 6,7,8 流れ DESCRIPTION OF SYMBOLS 1 Heat transfer tube 2 Tube body 3 Projection 3a Convex part 3b Concave part 4 Refrigerant flow at the time of evaporation 5 Refrigerant flow at the time of condensation 6, 7, 8 flow

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−213495(JP,A) 特開 昭61−175486(JP,A) 特開 昭62−102093(JP,A) 実開 昭62−39183(JP,U) 実開 平5−25174(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28F 1/40 F28F 1/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-213495 (JP, A) JP-A-61-175486 (JP, A) JP-A-62-102093 (JP, A) 39183 (JP, U) JP 5-25174 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F28F 1/40 F28F 1/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発または凝縮に用いられる冷媒が流通
し、かつ前記冷媒を攪拌するための突起が管内面に設け
られた伝熱管において、 前記突起は、蒸発時の冷媒の流通に対向する様に形成さ
れる凸部、及び前記凸部の反対側に設けられて凝縮時の
冷媒の流通に対向する様に形成される凹部を具備するこ
とを特徴とする伝熱管。
1. A heat transfer tube in which a refrigerant used for evaporation or condensation flows and a projection for stirring the refrigerant is provided on an inner surface of the pipe, wherein the projection faces the flow of the refrigerant during evaporation. And a concave portion provided on the opposite side of the convex portion so as to face the flow of the refrigerant during condensation.
JP27424495A 1995-10-23 1995-10-23 Heat transfer tube Expired - Fee Related JP3322292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27424495A JP3322292B2 (en) 1995-10-23 1995-10-23 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27424495A JP3322292B2 (en) 1995-10-23 1995-10-23 Heat transfer tube

Publications (2)

Publication Number Publication Date
JPH09113167A JPH09113167A (en) 1997-05-02
JP3322292B2 true JP3322292B2 (en) 2002-09-09

Family

ID=17539015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27424495A Expired - Fee Related JP3322292B2 (en) 1995-10-23 1995-10-23 Heat transfer tube

Country Status (1)

Country Link
JP (1) JP3322292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140054004A1 (en) * 2012-08-24 2014-02-27 Venmar Ces, Inc. Membrane support assembly for an energy exchanger

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250572A (en) * 2001-02-22 2002-09-06 Komatsu Electronics Inc Heat exchanger
DE102008036222B3 (en) * 2008-08-02 2009-08-06 Pierburg Gmbh Heat transfer unit for an internal combustion engine
DK176868B1 (en) * 2008-09-16 2010-02-01 Lars Christian Wulf Zimmermann Symmetrical refrigerant regulator for flooded multi-channel evaporator
WO2011013144A2 (en) * 2009-07-29 2011-02-03 Thermax Limited A heat exchanger tube
US9234665B2 (en) 2010-06-24 2016-01-12 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
DK3183051T3 (en) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc LIQUID-TO-LUFTMEMBRANENERGIVEKSLERE
AU2017410557A1 (en) 2017-04-18 2019-12-05 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
CN114076301B (en) * 2020-11-03 2023-03-24 中北大学 Linear temperature-uniforming plate steam boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140054004A1 (en) * 2012-08-24 2014-02-27 Venmar Ces, Inc. Membrane support assembly for an energy exchanger

Also Published As

Publication number Publication date
JPH09113167A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP3322292B2 (en) Heat transfer tube
JP3315785B2 (en) Heat transfer tube for absorber
JP3323682B2 (en) Heat transfer tube with internal cross groove for mixed refrigerant
US5680772A (en) Absorption type refrigerating machine
JP2002062077A (en) Refrigerant tube for heat exchanger
JP2686145B2 (en) Heat transfer tube for evaporator
JP2002130973A (en) Heat exchanger
JPH10267578A (en) Heating tube, and heat-exchanger using the same
JPS624638B2 (en)
JPH0579783A (en) Heat transfer tube with inner surface groove
JPS6027917B2 (en) Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning
JP3231565B2 (en) Heat transfer tube for absorber
JP2960828B2 (en) Heat transfer tube for absorber
JPS62102093A (en) Heat transfer tube equipped with internal grooves
JPH11264630A (en) Air-conditioning equipment
JPH11101459A (en) Air conditioner
JPH07109354B2 (en) Heat exchanger
JPH0961013A (en) Absorption refrigerating machine
JPS5928213Y2 (en) Heat exchanger
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JPH0854158A (en) Heat exchanger for absorption type refrigerating machine
JPS5938596A (en) Heat exchanger
JPS6155595A (en) Heat exchanger with fin
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof
JPH0241501Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees