JPH0854158A - Heat exchanger for absorption type refrigerating machine - Google Patents

Heat exchanger for absorption type refrigerating machine

Info

Publication number
JPH0854158A
JPH0854158A JP6189370A JP18937094A JPH0854158A JP H0854158 A JPH0854158 A JP H0854158A JP 6189370 A JP6189370 A JP 6189370A JP 18937094 A JP18937094 A JP 18937094A JP H0854158 A JPH0854158 A JP H0854158A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
liquid
transfer tubes
stage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6189370A
Other languages
Japanese (ja)
Other versions
JP3575071B2 (en
Inventor
Kenji Yasuda
賢二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP18937094A priority Critical patent/JP3575071B2/en
Publication of JPH0854158A publication Critical patent/JPH0854158A/en
Application granted granted Critical
Publication of JP3575071B2 publication Critical patent/JP3575071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the wetting property of a lower stage side heat transfer tube, in which the transfer liquid is effected in later half after receiving the liquid from an upper stage side by a plurality of times and wetting is readily becomming uneven generally while bad effect due to the vertical deviation of the axis of tube is readily generated. CONSTITUTION:A pair tube, having a flat surface 3, is employed for heat transfer tubes 1A-1J positioned at an upper stage side among 20 pieces of heat transfer tubes 1A-1J provided in an evaporator 5 or an absorber 6 while a shot- blasted tube, on the surface of which a non-directional rough surface 4, produced by shot-blasting treatment for spreading dropped liquid into four directions, is formed, is employed for heat transfer tubes 1K-1T positioned at a lower stage side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収冷凍機の蒸発器や
吸収器として用いる吸収冷凍機用熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for an absorption refrigerator used as an evaporator or an absorber of an absorption refrigerator.

【0002】[0002]

【従来の技術】従来、この種の吸収冷凍機用熱交換器
は、特開平3−255862号公報に開示され且つ図6
に示すように、液体を散布する散布器Vの下方に、上下
に複数段にわたって水平に延びる伝熱管A,B・・・・Mを
設け、上段側から散布する液体を順次下段側へと受け渡
し、各伝熱管A,B・・・・Mの表面を液体で濡らして、該
液体と伝熱管内に流す流体とを熱交換させるようにして
いる。具体的には、蒸発器では、伝熱管の表面に冷媒と
なる水を散布して、伝熱管内に流す冷房用水から蒸発熱
を奪い取リ、又、吸収器では、伝熱管の表面に吸収溶液
となる臭化リチウム水溶液を散布して、伝熱管内に流す
冷却水に吸収熱を与えるようにしている。
2. Description of the Related Art Conventionally, a heat exchanger for an absorption refrigerating machine of this type has been disclosed in Japanese Patent Laid-Open No. 3-255862 and FIG.
As shown in, heat transfer tubes A, B, ... M extending horizontally vertically over a plurality of stages are provided below the sprayer V for spraying the liquid, and the liquid sprayed from the upper side is sequentially transferred to the lower side. The surface of each heat transfer tube A, B, ... M is wetted with a liquid so that the liquid exchanges heat with the fluid flowing in the heat transfer tube. Specifically, in the evaporator, water that serves as a refrigerant is sprayed on the surface of the heat transfer tube to remove the heat of evaporation from the cooling water flowing in the heat transfer tube, and in the absorber, it is absorbed on the surface of the heat transfer tube. A solution of lithium bromide, which is a solution, is sprayed to give absorption heat to the cooling water flowing in the heat transfer tube.

【0003】そして、上段側及び下段側に位置する各伝
熱管A〜F,H〜Mの表面に、管軸方向に沿う凸条Xを
設けて、管表面に付着する液体にマランゴニー対流と称
する活発な対流を起こさせると共に、中段に位置する伝
熱管Gに、管軸方向に対してねじれ角を有する螺旋凸条
Yを設けて、管軸の長手方向に液体を分散させ、液流れ
量が管軸に対して部分的に不均一となり易い下段側の伝
熱管H〜Mでの濡れ特性を改善し、これら下段側の伝熱
管H〜Mで濡れない領域ができてしまうのを防止し、全
体として、伝熱特性を向上させんとしている。
[0003] Then, a ridge X extending along the tube axis is provided on the surface of each of the heat transfer tubes A to F and HM located on the upper side and the lower side, and the liquid adhering to the tube surface is called Marangoni convection. In addition to causing vigorous convection, a spiral ridge Y having a helix angle with respect to the tube axis direction is provided in the heat transfer tube G located in the middle stage to disperse the liquid in the longitudinal direction of the tube axis and Improving the wetting characteristics of the lower heat transfer tubes H to M that are likely to be partially non-uniform with respect to the tube axis, and preventing the lower heat transfer tubes H to M from forming non-wetting regions, As a whole, it aims to improve the heat transfer characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかし、マランゴニー
対流は、何もわざわざ、管軸方向に沿わせて凸条Xを設
けなくとも、吸収溶液中にアルコール分を添加すること
により得られる効果である。又、中段の伝熱管Gに設け
る螺旋凸条Yに沿って液体を管軸方向に分散させようと
するものであるが、その中段の伝熱管Gとその上段の伝
熱管Fとの管軸が鉛直方向に完全に一致し、中段の伝熱
管Gの頂部に液体が必ず落ちてくるというのならばとも
かく、図7に示すように、各段の管軸・・・・f,g,h・・
j,k・・・・は、製造工程での組付け誤差やヒートサイク
ル等によりずれるのが通例であり、中段の伝熱管Gの頂
部から外れた位置に液体Wが落下してくると、この液体
は、螺旋凸条Yに沿って管軸方向の右側か左側かの一方
側のみに寄せられ、下段側の伝熱管H・・・・の濡れ領域
が、管軸方向左右一側に片寄る問題が起こる。又、下段
側の伝熱管H〜Mでは、その管軸方向に対する液流れ量
が部分的に不均一となり易く、液流れ量が少ない部分で
は、上下の管軸のずれにより、伝熱管Kの頂部から外れ
た位置に液体が落下してくると、管の外周全体に液がま
わらずに半面しか濡れない問題も起こる。
However, the Marangoni convection is an effect obtained by adding an alcohol component to the absorbing solution without any special provision of the ridge X along the tube axis direction. . Further, the liquid is to be dispersed in the tube axial direction along the spiral ridge Y provided in the middle heat transfer tube G, but the tube axis between the middle heat transfer tube G and the upper heat transfer tube F is Assuming that the liquid perfectly falls in the vertical direction and always falls on the top of the heat transfer tube G in the middle stage, as shown in FIG. 7, the tube axes of the respective stages ... F, g, h.・
Usually, j, k, ... Deviate due to an assembly error in the manufacturing process, a heat cycle, etc., and when the liquid W drops to a position outside the top of the heat transfer tube G in the middle stage, The liquid is gathered only on one side, the right side or the left side in the tube axis direction along the spiral ridge Y, and the wetting area of the lower heat transfer tubes H ... Happens. Further, in the lower heat transfer tubes H to M, the liquid flow amount in the tube axial direction tends to be partially non-uniform, and in the portion where the liquid flow amount is small, the top and bottom of the heat transfer tube K are displaced by the vertical pipe axis deviation. If the liquid falls to a position outside the area, there is a problem that the liquid does not fill the entire outer circumference of the pipe and only half of the liquid gets wet.

【0005】従って、以上のものは、伝熱管の構造が複
雑でコスト高となる割には、伝熱特性を改善するのは不
十分である問題がある。
Therefore, the above problems have a problem that the heat transfer characteristics are not sufficiently improved although the structure of the heat transfer tube is complicated and the cost is high.

【0006】本発明では、液の受渡しが上段側からの液
受継ぎを複数回経た後の後半になされ、一般に濡れが不
均一となり易く、その上に、管軸の鉛直方向のずれによ
る悪影響が出やすい下段側の伝熱管に着目し、この下段
側の伝熱管の濡れ性を改善することにより、低コストな
がら、上段から下段に至る伝熱管の表面が全体的に濡れ
ている状態にできるようにし、その伝熱特性を向上でき
る吸収冷凍機用熱交換器を提供することを目的とする。
In the present invention, the liquid is delivered in the latter half after the liquid has been handed over from the upper stage a plurality of times, and generally, the wetting is likely to be non-uniform, and in addition, the adverse effect due to the vertical displacement of the pipe axis is caused. Focusing on the lower heat transfer tube that is easy to come out and improving the wettability of this lower heat transfer tube, it is possible to make the surface of the upper heat transfer tube from the upper step to the lower step overall wet at low cost. In addition, it is an object of the present invention to provide a heat exchanger for an absorption refrigerator, which can improve the heat transfer characteristics.

【0007】[0007]

【課題を解決するための手段】そこで、上記目的を達成
するため、液体を散布する散布器2の下方に、上下に複
数段にわたって水平に延びる伝熱管1A,1B・・・・を設
けた吸収冷凍機用熱交換器において、上段側に位置する
伝熱管1A〜1Jに、平坦表面3をもつベア管を用いて
いると共に、下段側に位置する伝熱管1K〜1Tの表面
に、滴下液体を四方に拡げる無方向性粗面4を形成して
いる構成とした。
Therefore, in order to achieve the above object, an absorption provided with heat transfer tubes 1A, 1B, ... In the heat exchanger for a refrigerator, bare tubes having a flat surface 3 are used for the heat transfer tubes 1A to 1J located on the upper stage side, and the dripping liquid is applied to the surfaces of the heat transfer tubes 1K to 1T located on the lower stage side. The non-directional rough surface 4 that spreads in all directions was formed.

【0008】[0008]

【作用】液の受渡し回数が少なく、管軸方向に対する液
流れ量が比較的均一な上段側の伝熱管1A〜1Jには、
平坦表面3をもつベア管を用いているから、それだけ低
コスト化が図れる。液の受渡しが、上段側の伝熱管1A
〜1Jからの液受継ぎを複数回経た後の後半になされ、
管軸方向に対する液流れ量が不均一となり易い下段側の
伝熱管1K〜1Tの表面には、滴下液体を四方に拡げる
無方向性粗面4を形成しているから、管の円周方向及び
長手方向に液膜を広範囲に広げることができ、管軸方向
に対する液流れ量を均等にでき、これにより、鉛直方向
に管軸のずれがあっても、そのずれにかかわらず、下段
側の伝熱管1K〜1Tの表面に全体的に濡れ領域を形成
することができる。こうして、最小のコストで、伝熱特
性を向上することができる。
The upper heat transfer tubes 1A to 1J in which the number of times of delivering liquid is small and the amount of liquid flowing in the tube axial direction is relatively uniform are
Since the bare tube having the flat surface 3 is used, the cost can be reduced accordingly. Liquid transfer is via the upper heat transfer tube 1A
It was done in the latter half after passing the liquid inheritance from ~ 1J multiple times,
Since the non-directional rough surface 4 that spreads the dripping liquid in all directions is formed on the surface of the heat transfer tubes 1K to 1T on the lower stage side where the liquid flow amount tends to be non-uniform in the tube axis direction, The liquid film can be spread over a wide area in the longitudinal direction, and the liquid flow rate in the pipe axis direction can be made uniform, which allows the transfer of the lower stage side regardless of the deviation of the pipe axis in the vertical direction. A wet region can be formed on the entire surface of each of the heat tubes 1K to 1T. Thus, the heat transfer characteristics can be improved at the minimum cost.

【0009】[0009]

【実施例】図3に示すものは、本発明に係る吸収冷凍機
用熱交換器を構成する蒸発器5及び吸収器6をもつ吸収
冷凍機である。これら蒸発器5及び吸収器6は、同一の
容器50の内部に、エリミネータ51を挟んで隣接状に
設けられ、液体を散布する散布器2の下方に、上下に複
数段、例えば20段にわたって水平に延びる伝熱管1
A,1B・・・・をそれぞれ設けている。蒸発器5では、散
布器2から冷媒となる水を散布し、伝熱管1A,1B・・
・・に流す冷房用水から蒸発熱を奪い取り、又、吸収器6
では、散布器2から吸収溶液となる臭化リチウム水溶液
を散布し、伝熱管1A,1B・・・・に流す冷却水に吸収熱
を与えるようにしている。
FIG. 3 shows an absorption refrigerator having an evaporator 5 and an absorber 6 which constitute a heat exchanger for an absorption refrigerator according to the present invention. The evaporator 5 and the absorber 6 are provided adjacent to each other inside the same container 50 with the eliminator 51 interposed therebetween, and below the sprayer 2 for spraying the liquid, a plurality of vertically, for example, 20 horizontal stages. Heat transfer tube 1
A, 1B ... In the evaporator 5, water serving as a refrigerant is sprayed from the sprayer 2 and the heat transfer tubes 1A, 1B ...
..Take off heat of evaporation from cooling water flowing to
Then, the lithium bromide aqueous solution as an absorbing solution is sprayed from the sprayer 2 to give absorption heat to the cooling water flowing through the heat transfer tubes 1A, 1B ....

【0010】図3中、71は冷媒ポンプ、72は溶液ポ
ンプ、73は低温熱交換器、74は高温熱交換器、81
はバーナー82を加熱源として吸収器6で多量に冷媒を
含んだ稀溶液から冷媒を発生させる高温発生器、83は
高温発生器81で発生する冷媒蒸気を流す伝熱管群84
をもち、高温発生器81で生成されて高温熱交換器74
を通過した後の中間濃度溶液から冷媒を発生させる低温
発生器、85は吸収器6の伝熱管1Aの後段に連続して
設ける冷却水管86により低温発生器83で発生した冷
媒蒸気を凝縮させる凝縮器である。
In FIG. 3, 71 is a refrigerant pump, 72 is a solution pump, 73 is a low temperature heat exchanger, 74 is a high temperature heat exchanger, and 81.
Is a high temperature generator that uses the burner 82 as a heat source to generate a refrigerant from a dilute solution containing a large amount of refrigerant in the absorber 6, 83 is a heat transfer tube group 84 through which the refrigerant vapor generated in the high temperature generator 81 flows.
And the high temperature heat exchanger 74 generated by the high temperature generator 81.
The low-temperature generator that generates a refrigerant from the intermediate-concentration solution after passing through the condenser 85 is a condenser that condenses the refrigerant vapor generated in the low-temperature generator 83 by the cooling water pipe 86 that is continuously provided after the heat transfer pipe 1A of the absorber 6. It is a vessel.

【0011】以上の構成において、図1及び図2に示す
ように、蒸発器5又は吸収器6にそれぞれ具備する20
本の伝熱管1A〜1Tのうち、上段側に位置する10本
の伝熱管1A〜1Jに、平坦表面3をもつ銅管や鉄管等
から成るベア管を用いると共に、下段側に位置する10
本の伝熱管1K〜1Tに、銅管や鉄管等から成る管素材
10の表面に、次記するショットブラスト処理により、
深さを0.5ミクロン〜1000ミクロン程度としたラ
ンダムな多数の細かな傷から成り、滴下液体を四方に拡
げる無方向性粗面4を形成したショットブラスト管を用
いる。
In the above-mentioned structure, as shown in FIGS. 1 and 2, the evaporator 5 and the absorber 6 are respectively provided with 20.
Among the heat transfer tubes 1A to 1T, 10 heat transfer tubes 1A to 1J located on the upper stage side are bare tubes made of a copper tube or an iron tube having a flat surface 3 and are located on the lower stage side.
In the heat transfer tubes 1K to 1T of the book, on the surface of the tube material 10 made of a copper tube, an iron tube or the like, by the shot blasting treatment described below,
A shot blast tube is used which has a large number of random scratches with a depth of about 0.5 to 1000 microns and which has a non-directional rough surface 4 that spreads the dropped liquid in all directions.

【0012】尚、図1及び図2において、21は散布器
2の散布トレー、22は冷媒又は溶液の流出口、23は
分散板である。
In FIGS. 1 and 2, reference numeral 21 is a spray tray of the sprayer 2, 22 is a refrigerant or solution outlet, and 23 is a dispersion plate.

【0013】ショットブラスト処理は、ブラスト材とし
て、粒子径が0.005mm〜3.0mmのけい砂やア
ルミナ等の非金属砂を用い、処理方式として、図4に示
すように、回転させながら移動させる管素材10に向け
て、ノズル9から空気圧縮機等で0.5kgf/cm2
〜20kgf/cm2に加圧した圧縮空気と共にブラス
ト材を噴射する直圧式を採用している。もっとも、ブラ
スト材として、鋳鉄グリッドや銅スラブ或はニッケルス
ラブ等の金属材料を用いることも可能であり、処理方式
として、ロータ羽根にブラスト材を投射して遠心力で飛
散させるロータ式を採用することも可能である。
In the shot blasting treatment, as a blasting material, silica sand having a particle diameter of 0.005 mm to 3.0 mm or non-metallic sand such as alumina is used, and as a treatment method, it is moved while rotating as shown in FIG. 0.5 kgf / cm 2 from the nozzle 9 toward the tube material 10 to be made to move with an air compressor or the like.
A direct pressure type in which a blast material is injected together with compressed air pressurized to ˜20 kgf / cm 2 is adopted. However, it is also possible to use a metal material such as a cast iron grid, a copper slab, or a nickel slab as the blast material. As a processing method, a rotor type in which the blast material is projected onto the rotor blades and scattered by centrifugal force is adopted. It is also possible.

【0014】因に、管素材10として、直径15mm、
長さ300mmの銅管を用い、平均粒径0.5mmの非
金属のブラスト材を用いた直圧式の処理結果を表1に、
平均粒径0.7mmの鋳鉄グリッドを用いたロータ式の
処理結果を表2に示す。
Incidentally, the pipe material 10 has a diameter of 15 mm,
Table 1 shows the results of the direct pressure treatment using a non-metallic blast material having an average particle diameter of 0.5 mm, using a copper tube having a length of 300 mm.
Table 2 shows the results of rotor-type processing using a cast iron grid with an average particle size of 0.7 mm.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表1及び表2から明らかなように、直圧式
では、ロータ式に比べて傷を深くでき、濡れ性を効果的
に向上させることができる。しかも、非金属のブラスト
材を用いるから、伝熱管の表面に異種金属がささって残
らず、伝熱管の表面における電位が不均一になるのを防
止でき、腐食の原因も無くし得る。
As is clear from Tables 1 and 2, the direct pressure type can deepen the scratch and can effectively improve the wettability as compared with the rotor type. In addition, since the non-metallic blast material is used, dissimilar metals do not remain on the surface of the heat transfer tube, the potential on the surface of the heat transfer tube can be prevented from becoming non-uniform, and the cause of corrosion can be eliminated.

【0018】以上の構成により、図1に示すように、液
の受渡しが、上段側の伝熱管1A〜1Jからの液受継ぎ
を複数回経た後の後半になされ、管軸方向に対する液流
れ量が不均一となり易い下段側の伝熱管1K〜1Tの表
面には、滴下液体を四方に拡げるショットブラストによ
る無方向性粗面4を形成しているから、管の円周方向及
び長手方向に液膜W(斜線を施した部分)を広範囲に広
げることができるのであり、上段側の最も下側に位置す
る伝熱管1Jの管軸方向両端部や中間部にやや濡れの生
じない巣の領域Zが生じる傾向にあっても、このような
巣Zの成長を阻止することができ、管軸方向に対する液
流れ量を均等にできるのである。これにより、図2に示
すように、鉛直方向に管軸のずれがあっても、そのずれ
にかかわらず、下段側の伝熱管1K〜1Tの表面にも全
体的に濡れ領域を形成することができるのである。
With the above structure, as shown in FIG. 1, the liquid is delivered in the latter half after the liquid is passed from the upper heat transfer tubes 1A to 1J a plurality of times, and the liquid flow amount in the axial direction of the pipe is increased. On the surface of the heat transfer tubes 1K to 1T on the lower side where the liquid tends to be non-uniform, a non-directional rough surface 4 formed by shot blast that spreads the dropped liquid in all directions is formed. Since the film W (hatched portion) can be widened in a wide range, a region Z of a nest where a little wetting does not occur at both ends in the axial direction of the heat transfer tube 1J located at the lowermost side of the upper stage and in the middle thereof. Even if there is a tendency to occur, such growth of the nest Z can be prevented, and the liquid flow amount in the pipe axis direction can be made uniform. As a result, as shown in FIG. 2, even if the pipe axis is deviated in the vertical direction, a wetted region can be entirely formed on the surfaces of the lower heat transfer tubes 1K to 1T regardless of the deviation. You can do it.

【0019】以上のものでは、ショットブラスト処理に
より無方向性粗面4を形成したが、その他、図5に示す
ように、管素材10の表面に、1mm〜3mm程度の大
きさとした微小突起41を、その管軸方向及び円周方向
に多数設けることにより、無方向粗面4を形成するよう
にしてもよい。このような微子突起41をもつ管には、
株式会社神戸製鋼所からトップクロスCTという商品名
で市販されている管をそのまま用いることができる。こ
のような微小突起41によるものでも、上記したショッ
トブラスト処理によるものと同様、滴下液体を管軸方向
及び円周方向の四方に無方向に拡げることができ、下段
側の伝熱管1K〜1Tの濡れ性を改善することができ、
上記同様の作用効果が得られる。
In the above, the non-directional rough surface 4 was formed by shot blasting. However, as shown in FIG. 5, the minute projections 41 having a size of about 1 mm to 3 mm are formed on the surface of the tube material 10. The non-direction rough surface 4 may be formed by providing a large number in the tube axis direction and the circumferential direction. For a tube having such microscopic projections 41,
The tube commercially available from Kobe Steel, Ltd. under the product name Top Cross CT can be used as it is. Even with such minute projections 41, as in the case of the above-mentioned shot blasting treatment, the dripping liquid can be spread in four directions in the tube axial direction and the circumferential direction without any direction, and the heat transfer tubes 1K to 1T on the lower stage side can be spread. Can improve wettability,
The same effect as above can be obtained.

【0020】以上説明した実施例では、伝熱管1A〜1
Tを20段とし、上段側の10段をベア管に、下段側の
10段に無方向性粗面4を形成したが、丁度半分づつに
分ける必要はなく、例えば、上段側の8段をベア管に、
下段側の12段に無方向性粗面4を形成したり、或い
は、上段側の12段をベア管に、下段側の8段に無方向
性粗面4を形成したりしてもよい。又、総段数は20段
である必要はなく、10段程度のものであってもよい
し、20段以上あってもよく、おおむね、その総段数の
半分程度の上段側伝熱管をベア管に、残り半分程度の下
段側伝熱管に無方向性粗面4を形成すればよいのであ
る。
In the embodiment described above, the heat transfer tubes 1A-1
T was set to 20 stages, 10 stages on the upper stage side were used as bare pipes, and non-directional rough surfaces 4 were formed on the 10 stages on the lower stage side, but it is not necessary to divide them into halves, for example, 8 stages on the upper stage side. In the bare tube,
The non-directional rough surface 4 may be formed in the lower 12 steps, or the upper 12 steps may be formed as a bare tube and the lower non-directional surface 4 may be formed in the lower 8 steps. Further, the total number of stages does not have to be 20, and may be about 10 stages, or may be 20 stages or more. Generally, about 50% of the total number of upper stage heat transfer tubes are used as bare tubes. The non-directional rough surface 4 may be formed on the lower heat transfer tube of the other half.

【0021】[0021]

【発明の効果】本発明によれば、液の受渡し回数が少な
く、管軸方向に対する液流れ量が比較的均一な上段側の
伝熱管1A〜1Jには、平坦表面3をもつベア管を用い
ているから、それだけ低コスト化が図れるし、液の受渡
しが後半になされ、管軸方向に対する液流れ量が不均一
となり易い下段側の伝熱管1K〜1Tの表面には、滴下
液体を四方に拡げる無方向性粗面4を形成しているか
ら、管の円周方向及び長手方向に液膜を広範囲に広げる
ことができ、管軸方向に対する液流れ量を均等にでき、
これにより、鉛直方向に管軸のずれがあっても、そのず
れにかかわらず、下段側の伝熱管1K〜1Tの表面に全
体的に濡れ領域を形成することができ、この結果、最小
のコストで、伝熱特性を向上することができる。
According to the present invention, bare tubes having a flat surface 3 are used for the upper heat transfer tubes 1A to 1J in which the number of times of delivery of liquid is small and the liquid flow amount in the pipe axial direction is relatively uniform. Therefore, the cost can be reduced accordingly, the liquid is delivered in the latter half, and the amount of liquid flowing in the tube axial direction tends to be non-uniform. Since the non-directional rough surface 4 that expands is formed, the liquid film can be widely spread in the circumferential direction and the longitudinal direction of the pipe, and the liquid flow amount in the pipe axial direction can be made uniform,
As a result, even if the pipe axis is deviated in the vertical direction, it is possible to form a wetted region on the entire surface of the lower heat transfer tubes 1K to 1T regardless of the deviation, resulting in the minimum cost. Thus, the heat transfer characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る吸収冷凍機用熱交換器の側面図。FIG. 1 is a side view of a heat exchanger for an absorption refrigerator according to the present invention.

【図2】同熱交換器の断面図。FIG. 2 is a sectional view of the heat exchanger.

【図3】同熱交換器を備える吸収冷凍機の配管図。FIG. 3 is a piping diagram of an absorption refrigerator having the same heat exchanger.

【図4】同ショットブラストによる無方向性粗面の製造
過程を説明する図。
FIG. 4 is a diagram illustrating a process of manufacturing a non-directional rough surface by the same shot blasting.

【図5】同無方向性粗面の他の実施例を示す要部拡大
図。
FIG. 5 is an enlarged view of a main part showing another embodiment of the same non-directional rough surface.

【図6】従来の吸収冷凍機用熱交換器の側面図。FIG. 6 is a side view of a conventional heat exchanger for an absorption refrigerator.

【図7】従来の問題点を説明する断面図。FIG. 7 is a cross-sectional view illustrating a conventional problem.

【符号の説明】[Explanation of symbols]

1A〜1T;伝熱管、2;散布器、3;平坦表面、4;
無方向性粗面
1A to 1T; heat transfer tube, 2; spreader, 3; flat surface, 4;
Non-directional rough surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液体を散布する散布器(2)の下方に、
上下に複数段にわたって水平に延びる伝熱管(1A,1
B・・・・)を設けた吸収冷凍機用熱交換器において、上段
側に位置する伝熱管(1A〜1J)に、平坦表面(3)
をもつベア管を用いていると共に、下段側に位置する伝
熱管(1K〜1T)の表面に、滴下液体を四方に拡げる
無方向性粗面(4)を形成していることを特徴とする吸
収冷凍機用熱交換器。
1. Below a sprayer (2) for spraying liquid,
Heat transfer tubes (1A, 1
In the heat exchanger for the absorption refrigerating machine provided with B ...), a flat surface (3) is provided on the heat transfer tubes (1A to 1J) located on the upper side.
Is used, and a non-directional rough surface (4) that spreads the dripping liquid in all directions is formed on the surface of the heat transfer tube (1K to 1T) located on the lower side. Heat exchanger for absorption refrigerator.
JP18937094A 1994-08-11 1994-08-11 Heat exchanger for absorption refrigerator Expired - Fee Related JP3575071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18937094A JP3575071B2 (en) 1994-08-11 1994-08-11 Heat exchanger for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18937094A JP3575071B2 (en) 1994-08-11 1994-08-11 Heat exchanger for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH0854158A true JPH0854158A (en) 1996-02-27
JP3575071B2 JP3575071B2 (en) 2004-10-06

Family

ID=16240190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18937094A Expired - Fee Related JP3575071B2 (en) 1994-08-11 1994-08-11 Heat exchanger for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3575071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190470A (en) * 2009-02-17 2010-09-02 Sanyo Electric Co Ltd Absorber
JP2015114093A (en) * 2013-12-16 2015-06-22 アイシン精機株式会社 Absorption type heat pump device
JP2020056564A (en) * 2018-09-28 2020-04-09 株式会社デンソー Water spraying cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047273B2 (en) 2017-07-25 2022-04-05 株式会社Ihi Hydrophilized material, hydrophilized member and gas-liquid contact device using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190470A (en) * 2009-02-17 2010-09-02 Sanyo Electric Co Ltd Absorber
JP2015114093A (en) * 2013-12-16 2015-06-22 アイシン精機株式会社 Absorption type heat pump device
US9841215B2 (en) 2013-12-16 2017-12-12 Aisin Seiki Kabushiki Kaisha Absorption heat pump apparatus
JP2020056564A (en) * 2018-09-28 2020-04-09 株式会社デンソー Water spraying cooling device

Also Published As

Publication number Publication date
JP3575071B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3986529B2 (en) High density heat transfer tube bundle
JP2011080756A (en) Heat exchanger
WO2013162759A1 (en) Heat exchanger
US6606882B1 (en) Falling film evaporator with a two-phase flow distributor
JP3322292B2 (en) Heat transfer tube
JPH0854158A (en) Heat exchanger for absorption type refrigerating machine
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JP3451160B2 (en) Plate heat exchanger
JPH03229667A (en) Method for manufacture of highly efficient heat transfer surface and said surface manufactured by said method
JP3480514B2 (en) Heat transfer tube for falling film evaporator
JPH09152289A (en) Absorption refrigerating machine
CN209042813U (en) Falling-film heat exchanger and air-conditioner set
JPH0712427A (en) Heat transfer tube for absorption refrigerating machine and manufacture thereof as well as heat exchanger for absorption refrigerating machine
JP3891907B2 (en) Evaporator and refrigerator
JPH0961080A (en) Turbo freezer
JPH10318691A (en) Heat transfer tube for falling liquid film evaporator
CN110822698A (en) Heat exchange assembly, condenser and air conditioner
JPH0518633A (en) Absorption refrigerating apparatus
JP3123476B2 (en) Heat exchanger
JP3231565B2 (en) Heat transfer tube for absorber
WO2023080181A1 (en) Shell-and-tube heat exchanger, operation method therefor, and refrigeration device provided therewith
JP2022146987A (en) Ring brazing material, pipe connecting structure and method for manufacturing pipe connecting structure
JP2779565B2 (en) Absorption refrigerator
CN210951818U (en) Heat exchange assembly, condenser and air conditioner
US11703259B2 (en) Water-cooled heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees