JP3891907B2 - Evaporator and refrigerator - Google Patents

Evaporator and refrigerator Download PDF

Info

Publication number
JP3891907B2
JP3891907B2 JP2002253970A JP2002253970A JP3891907B2 JP 3891907 B2 JP3891907 B2 JP 3891907B2 JP 2002253970 A JP2002253970 A JP 2002253970A JP 2002253970 A JP2002253970 A JP 2002253970A JP 3891907 B2 JP3891907 B2 JP 3891907B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
container
transfer tube
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002253970A
Other languages
Japanese (ja)
Other versions
JP2004092991A (en
Inventor
陽一郎 入谷
芳典 白方
尚浩 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002253970A priority Critical patent/JP3891907B2/en
Publication of JP2004092991A publication Critical patent/JP2004092991A/en
Application granted granted Critical
Publication of JP3891907B2 publication Critical patent/JP3891907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Description

【0001】
【発明の属する技術分野】
本発明は、加熱物(例えば水、ブライン等)と冷媒との間で熱交換を行わせて、前記加熱物を冷却するとともに冷媒を沸騰、気化する蒸発器、及び該蒸発器を備えた冷凍機に関する。
【0002】
【従来の技術】
例えば、ビルのような大規模構造物においては、冷凍機で冷却した加熱物を構造物内に布設した配管を通じて構内を循環させ、居室の空気と熱交換させて冷房を行うようにしている。
【0003】
この冷凍機に具備される従来の蒸発器の一例を図8に示す。
図8に示す蒸発器1は、冷媒が導入される円筒状の容器2と、該容器内に配設されて冷水(加熱物)が流通する多数の伝熱管3からなる複数の伝熱管群3a〜3dと、該伝熱管群3a〜3dの下方に延在し多数の孔4が形成されている多孔板(板体)5と、容器14下側にあって該容器接線方向に設置されている冷媒導入管6とを備え、伝熱管群3a〜3dが、ほぼ鉛直方向に位置する仮想平面に沿って延在する抜き列(空隙)7a〜7cによって、水平方向に互いに離間して配設されている。多孔板5に形成された多数の孔4は、該多孔板内にランダムかつ均等に形成されている(例えば特許文献1参照)。
伝熱管3は、表面に凹凸を有する例えばリエントラント管といった形状、又は表面形状が平滑な曲面である例えば平滑管といった形状等を形成している。
【0004】
上記の構成からなる蒸発器1において、冷媒導入管6から導入された冷媒は、冷媒気泡を含有しながら多孔板5に形成された多数の孔4から伝熱管群3a〜3d内及び抜き列7a〜7c内に向かって噴出し、伝熱管群3a〜3dを浸す位置まで充填される。伝熱管3周囲の冷媒は、伝熱管3を介して冷水と熱交換を行って蒸発・気化されて、気泡となって容器上方へ抜けていく。このとき、冷水との温度差が大きい領域では蒸発による気泡発生量は大きく、冷水との温度差が小さい領域では蒸発による気泡発生量は小さくなる。
【0005】
(特許文献1)
特願2000−357022
【0006】
【発明が解決しようとする課題】
ところで、上記従来の冷凍機を構成する蒸発器は、多孔体に形成された孔は容器内に配設される伝熱管形状に拘わらず形成されているため、冷媒に混入する気泡は各伝熱管群内に均等に導入される。
よって、表面に凹凸を有する伝熱管が配設されている場合、該管の表面形状が冷媒の蒸発を促進する形状であって外部からの気泡の付着が蒸発作用にとっては好ましくないのにも拘わらず、気泡が伝熱管周囲に供給されてしまい熱伝達率が低下する問題があった。
また、平滑な曲面を有する伝熱管が配設されている場合、該管周囲が気泡によって攪拌されることにより冷媒の蒸発が促進されるが、抜き列内を浮かび上がる気泡は熱交換に寄与することがないため、十分な気泡が伝熱管周囲に供給されず熱交換性能が低下してしまう問題があった。
【0007】
また、冷媒導入管が容器下側にあって該容器軸に直交する円筒外周面の接線方向に沿って設置されるため、曲面同士を接合することになり切削、溶接加工が困難となる問題があった。
【0008】
本発明は上記事情に鑑みて成されたものであり、熱交換性能の向上によって冷却効率を高めるとともに、加工を容易とする蒸発器及び冷凍機を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため以下の手段を採用する。
請求項1に記載の発明は、冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、該伝熱管群下方にあってほぼ水平方向に平面状に延在し多数の孔が形成されている板体と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器であって、前記多数の孔が少なくとも1つ以上の列をなして前記伝熱管群と同方向に延在し、前記各伝熱管がその表面に凹凸を有する構成とされ、前記多数の孔が、前記空隙のほぼ鉛直下方に位置するように形成されていることを特徴とする。
【0010】
この発明に係る蒸発器によれば、容器内に配設される伝熱管の熱交換性能にあわせて、気泡が混入する冷媒を容器内に導入することができ、これによって熱伝達性能を向上させることができる。
また、この発明に係わる蒸発器によれば、導入される冷媒に混在する気泡は抜き列を浮かび上がるため、伝熱管周囲に気泡が導入されることを抑えることができ、よって、凹凸形状を有する伝熱管の熱伝達に適する冷媒を導入することができる。
【0011】
請求項2に記載の発明は、冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、該伝熱管群下方にあってほぼ水平方向に平面状に延在し多数の孔が形成されている板体と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器であって、前記多数の孔が少なくとも1つ以上の列をなして前記伝熱管群と同方向に延在し、前記各伝熱管がその表面を平滑に形成された構成とされ、前記多数の孔が、該伝熱管群のほぼ鉛直下方に位置するように形成されていることを特徴とする。
【0012】
この発明に係る蒸発器によれば、容器内に配設される伝熱管の熱交換性能にあわせて、気泡が混入する冷媒を容器内に導入することができ、これによって熱伝達性能を向上させることができる。
また、この発明に係わる蒸発器によれば、導入される冷媒に混在する気泡が伝熱管周囲の冷媒を攪拌させることができ、よって、平滑な曲面からなる伝熱管の熱伝達に適する冷媒を導入することができる。
【0017】
請求項に記載の発明は、冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する該伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器において、各伝熱管群の下方にほぼ水平方向に位置するように配設され、前記各空隙下方位置にスリットを有する板体と、該板体の前記スリットに臨ませて前記空隙内にて上方に立ち上がる一対の立ち上がり板体と、これら一対の立ち上がり板体の上方に位置し、前記スリット及び前記一対の立ち上がり板体間の間隙を通って上方に移動する冷媒及び冷媒に混入する気泡を各伝熱管方向へ導くガイド板とを設けていることを特徴とする。
【0018】
この発明に係わる蒸発器によれば、伝熱管群上方に配設された伝熱管も十分冷媒液に浸すことができるため、熱交換性能の向上を図ることができる。
【0019】
請求項に記載の発明は、請求項1からの何れかの蒸発器において、前記容器内に冷媒を導入する冷媒導入管が、該容器下側にあって該容器に直交して設置されていることを特徴とする。
【0020】
この発明に係わる蒸発器によれば、冷媒導入管の容器への取付けに際して、切削及び溶接加工等が容易となって加工性の向上を図ることができる。
【0021】
請求項に記載の発明は、請求項1からの何れかに記載の蒸発器と、気体状の冷媒を圧縮する圧縮機と、圧縮された気体状の冷媒を冷却して凝縮、液化する凝縮器と、液化された冷媒を減圧する膨張弁とを備えていることを特徴とする。
【0022】
この発明に係わる冷凍機によれば、上記のように蒸発器における伝熱管の熱交換率が高められるので、エネルギー消費を抑えても従来と同等の性能を得ることができる。
【0023】
【発明の実施の形態】
次に、本発明の実施形態について、図面を参照して説明する。
図1及び図2は、本発明の第1の実施形態を示す。
図1は、冷凍機の概略構成を示している。この図に示す冷凍機は、冷却水と気体状の冷媒との間で熱交換を行わせて冷媒を凝縮、液化する凝縮器10と、凝縮された冷媒を減圧する膨張弁11と、凝縮された冷媒と加熱物(冷水)との間で熱交換を行わせて冷水を冷却する蒸発器12と、蒸発器12で蒸発、気化した冷媒を圧縮後に上記凝縮器10に導入する圧縮機13とから構成されている。
【0024】
図2は、蒸発器12の構成を示す。
図2に示す蒸発器12は、冷媒が導入される円筒状の容器14と、該容器内の中心位置から下方の領域に配設されて冷水が流通する多数の伝熱管15からなる複数の伝熱管群15a〜15dと、前記伝熱管群15a〜15dの下方にあってほぼ水平方向に延在し多数の孔16が形成されている多孔板(板体)17と、前記容器下側にあって該容器の軸方向に直交して円筒面の接線方向に沿って設置されている冷媒導入管18とを備えている。
【0025】
前記各伝熱管15はその表面に凹凸を有する構成とされ、前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する抜き列(空隙)19a〜19cによって、水平方向に互いに離間して配設されている。
多孔板17に形成された多数の孔16は、前記抜き列19a〜19cそれぞれのほぼ鉛直下方位置にあって、該容器長手方向に沿って形成されている。
【0026】
また、容器14の上方には、蒸発した冷媒を圧縮機(図示せず)に排出する冷媒排出口20と、蒸発の際に冷媒に混入する冷媒液滴を取り除くデミスタ21と、該デミスタを容器14の下方から該容器内に支持する底板22と、上記デミスタ21を容器上方から底板22とともに支持するデミスタ枠23とから構成されている。
【0027】
上記の構成からなる蒸発器12において、冷媒は、気泡を含んで冷媒導入管18から容器14内に導入され、孔16から抜き列19a〜19cに向かって噴出して容器内に拡がり、配設されている伝熱管群15a〜15dを冷媒が浸す位置まで充填される。冷媒は、伝熱管15内を流通する冷水と伝熱管15の表面を介して熱交換を行い、冷水から熱を奪って蒸発・気化される。冷媒に混入して導入された気泡の大部分は、各伝熱管群15a〜15d内に入り込まず抜き列19a〜19cに沿って上方に抜けていくため、伝熱管15の周囲に長く滞留することはない。
【0028】
この冷凍機における蒸発器によれば、伝熱管群内への気泡の導入量が抑えられることから、伝熱管表面形状が冷媒の蒸発を促進する形状であって外部からの気泡の付着が蒸発作用にとっては好ましくない前記表面に凹凸を有する伝熱管において、熱伝達に適する冷媒を導入することができることによって熱交換性能の向上を図ることができる。
【0029】
図3は、本発明の第2の実施形態を示す。なお、上記実施形態においてすでに説明した構成要素には同一符号を付して説明は省略する。
冷凍機の概略構成は図1に示すものと同じである。
図3に示す蒸発器12は、第1の実施形態と同様の構成をなしているが、前記各伝熱管15がその表面を平滑に形成された構成とされ、前記多孔板17に形成された多数の孔16は、前記伝熱管群15a〜15dそれぞれのほぼ鉛直下方位置にあって、前記容器長手方向に沿って形成されている。
【0030】
上記構成の蒸発器12において、冷媒は、気泡を含んで冷媒導入管18から容器14内に導入され、孔16から伝熱管群15a〜15dの内部に向かって噴出されて容器内に拡がり、配設されている伝熱管群15a〜15dを冷媒が浸す位置まで充填される。冷媒は、伝熱管15内を流通する冷水と伝熱管15の表面を介して熱交換を行い、冷水から熱を奪って蒸発・気化される。冷媒に混入して導入された気泡は、冷媒の蒸発に伴い発生する気泡とともに伝熱管15周囲に滞留する冷媒液を攪拌させながら伝熱管15間を上方に抜けていく。
【0031】
この冷凍機における蒸発器によれば、伝熱管群内への気泡の導入量が促進されることから、外部からの気泡によって伝熱管周囲の冷媒が攪拌されることが蒸発作用にとって好ましい前記表面が平滑な伝熱管において、熱伝達に適する冷媒を導入することができることによって、熱交換性能の向上を図ることができる。
【0032】
図4は、本発明の第3の実施形態を示す。なお、上記実施形態においてすでに説明した構成要素には同一符号を付して説明は省略する。
冷凍機の概略構成は図1に示すものと同じである。
図4に示す蒸発器12は、冷媒が導入される円筒形状を有する容器14と、該容器内に配設されて冷水が流通する多数の伝熱管15からなる複数の伝熱管群15a〜15dと、容器14斜め下側にあって前記冷媒が導入される冷媒導入管18と、容器14の下部内面に沿って曲面をなして伝熱管群15a〜15dの下方に広がって多数の孔16を有する多孔板17とを備えている。
【0033】
伝熱管群15a〜15dは、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙19a〜19cによって、水平方向に互いに離間して配設されており、伝熱管15は、伝熱管群15a〜15dの下部が多孔板17に沿って円弧状となるように配設されている。
前記冷媒導入管18は、該管外径にあわせて容器14円筒表面に開けられた円孔部に直交して接合されている。
【0034】
上記構成の蒸発器12において、冷媒導入管18から導入された冷媒は、多孔板17に直交して衝突されて容器下面を円弧状に拡散された後、孔16から伝熱管群15a〜15d内へと噴出される。
【0035】
この冷凍機における蒸発器によれば、容器への冷媒導入管の接合において、従来よりも曲面の機械加工数が減少し、容易に接合できるとともに、伝熱管を多孔板及び容器内壁に沿って配設できることから、小さな径の容器であっても従来と同数程度伝熱管を配設することができ、これによって熱交換性能を維持することができる。
【0036】
図5は、本発明の第4の実施形態を示す。なお、上記実施形態においてすでに説明した構成要素には同一符号を付して説明は省略する。
冷凍機の概略構成は図1に示すものと同じである。
図5に示す蒸発器12は、第3の実施形態と同様の構成をなしているが、多孔板17の板幅長さが冷媒導入管18近傍であって、伝熱管群15c及び15d下方位置に限定されて設置されている。
【0037】
上記構成の蒸発器12において、冷媒は、前記孔16から主に伝熱管群15c及び15dに向かって噴出され、前記伝熱管群15c及び15d内に配設された伝熱管15の周囲の冷媒が混入する気泡によって攪拌される。
【0038】
この冷凍機における蒸発器によれば、第3の実施形態と同様の効果が得られるとともに、冷媒と冷水との温度差が小さく熱交換するために伝熱管周囲の冷媒の攪拌が特に必要な伝熱管群近傍に多孔板を配設することによって、熱伝達率の向上を図ることができる。
【0039】
なお、上記の第1〜第4の実施形態において、多孔体に形成されている多数の孔の形状は、丸孔、長孔、スリット等であっても同様の効果を得ることができる。
【0040】
図6は、本発明の第5の実施形態を示す。なお、上記実施形態においてすでに説明した構成要素には同一符号を付して説明は省略する。
冷凍機の概略構成は図1に示すものと同じである。
図6に示す蒸発器12は、冷媒が導入される容器14と、容器14内に配設されて冷水が流通する多数の伝熱管15からなる複数の伝熱管群15a〜15dと、容器14のほぼ鉛直下側に前記冷媒が導入される冷媒導入管18とを備えている。
伝熱管群15a〜15dは、ほぼ鉛直方向に位置する仮想平面に沿って延在する抜き列19a〜19cによって、水平方向に互いに離間して配設されている。
【0041】
前記容器14下方には、前記抜き列19a〜19cの各下方位置にスリット20を有して伝熱管群15a〜15dの下方領域に延在する板体21と、板体21の前記各スリット20に臨ませて前記各抜き列19a〜19c内を上方に立ち上がる一対の立ち上がり板体22と、これら一対の立ち上がり板体22の上方に位置し、前記抜き列19a〜19d内にあって前記スリット20及び前記一対の立ち上がり板体22間に形成された間隙23を通って上方に移動する冷媒及び冷媒に混入する気泡を各伝熱管15方向へ導くガイド板24とが設けられている。
スリット20は、容器14内の抜き列19a〜19c配設位置によって、伝熱管の延在する方向に少なくとも1つ以上形成されている。
【0042】
上記構成の蒸発器12において、容器14のほぼ直下方に設置されている冷媒導入管18から導入された気泡を含む冷媒は、板体21表面上を該板体に沿って均等に拡がりスリット20に至って、立ち上がり板体22間の間隙23を通り抜けガイド板24にあたって折り返されて、伝熱管群15a〜15dの上方から各伝熱管15に向かって降り注ぐ。
【0043】
この冷凍機における蒸発器によれば、冷媒の蒸発によって表面が乾きやすい状態にある伝熱管群上方に配設された伝熱管も、冷媒に十分に浸されることとなって熱伝達率の低下が抑えられる。
【0044】
なお、スリットが同一の抜き列配設位置において複数個形成されている場合は、そのスリット長さとスリット間隔が、抜き列配設位置によって異なっても同様の作用、効果を有する。
また、スリットの代用として、スリット板体22は円筒管でもよい。
【0045】
図7は、本発明の第6の実施形態を示す。なお、上記実施形態においてすでに説明した構成要素には同一符号を付して説明は省略する。
冷凍機の概略構成は図1に示すものと同じである。
図7に示す蒸発器12は、上述の蒸発器と同様の構成からなるが、冷媒導入管18が、伝熱管群15aに冷水を供給する冷水入口24側から前記伝熱管15の長さ方向の1/2を越えた奥部の領域であって、かつ、伝熱管群15aから15cに向かうこれら伝熱管15の長さ方向に直交する幅方向の1/2を越えた奥部の領域に配設されている。
【0046】
上記構成からなる蒸発器12において、冷媒導入管18から導入された冷媒に混入する気泡は、伝熱管15内を流通する冷水と冷媒との温度差が小さい領域に配設されている伝熱管15周囲の冷媒をより多く攪拌することとなって、伝熱管15の周囲に常時新しい冷媒が供給される。
【0047】
この冷凍機における蒸発器によれば、冷媒導入管の設置位置によって、冷水と冷媒との温度差が小さいために熱伝達率が小さい領域においても、熱伝達率を向上させることができる。
【0048】
【発明の効果】
以上説明した本発明においては以下の効果を奏する。
請求項1記載の発明は、容器内に配設される伝熱管の熱交換性能に適合するように気泡が混入する冷媒を容器内に導入することができ、これによって熱伝達性能を向上させることができる。
また、導入される冷媒に混在する気泡は抜き列を浮かび上がるため、伝熱管周囲に気泡が導入されることを抑えることができ、凹凸形状を有する伝熱管表面での熱伝達性能を向上することができる。
【0049】
請求項2記載の発明は、容器内に配設される伝熱管の熱交換性能に適合するように気泡が混入する冷媒を容器内に導入することができ、これによって熱伝達性能を向上させることができる
また、導入される冷媒に混在する気泡によって伝熱管周囲の冷媒を攪拌させることができ、平滑な曲面からなる伝熱管表面での熱伝達性能を向上することができる。
【0052】
請求項記載の発明は、容器上方に配設された伝熱管も十分冷媒液に浸すことができるため、熱交換性能の向上を図ることができる。
【0053】
請求項記載の発明は、冷媒導入管の容器取付けに際し、切削及び溶接加工等が容易となって加工性の向上を図ることができる。
【0054】
請求項記載の発明は、蒸発器における伝熱管の熱交換率が高められるので、エネルギー消費を抑えても従来と同等の性能を得ることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態に係わる蒸発器が適用される冷凍機の概略構成を示す図である。
【図2】 本発明の第1の実施形態に係わる蒸発器の全体概要をあらわす断面構成図である。
【図3】 本発明の第2の実施形態に係わる蒸発器の断面構成図である。
【図4】 本発明の第3の実施形態に係わる蒸発器の断面構成図である。
【図5】 本発明の第4の実施形態に係わる蒸発器の断面構成図である。
【図6】 本発明の第5の実施形態に係わる蒸発器の断面構成図である。
【図7】 本発明の第6の実施形態に係わる蒸発器の平面構成図である。
【図8】 従来の蒸発器の断面構成図である。
【符号の説明】
10 凝縮器
11 膨張弁
12 蒸発器
13 圧縮機
14 容器
15 伝熱管
16 孔
17 多孔板(板体)
18 冷媒導入管
19 抜き列(空隙)
20 スリット
21 板体
22 立ち上がり板体
23 間隙
24 ガイド板
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an evaporator that performs heat exchange between a heated object (for example, water, brine, etc.) and a refrigerant to cool the heated object and boil and vaporize the refrigerant, and a refrigeration equipped with the evaporator. Related to the machine.
[0002]
[Prior art]
For example, in a large-scale structure such as a building, a heated object cooled by a refrigerator is circulated in a premises through a pipe laid in the structure, and is cooled by exchanging heat with air in a room.
[0003]
An example of a conventional evaporator provided in this refrigerator is shown in FIG.
The evaporator 1 shown in FIG. 8 includes a plurality of heat transfer tube groups 3a including a cylindrical container 2 into which a refrigerant is introduced, and a large number of heat transfer tubes 3 disposed in the container and through which cold water (heated material) flows. -3d, a perforated plate (plate body) 5 extending below the heat transfer tube groups 3a-3d and having a large number of holes 4 formed therein, and disposed below the container 14 in the container tangential direction. The heat transfer tube groups 3a to 3d are arranged spaced apart from each other in the horizontal direction by extraction rows (gap) 7a to 7c extending along a virtual plane located substantially in the vertical direction. Has been. A large number of holes 4 formed in the perforated plate 5 are randomly and uniformly formed in the perforated plate (see, for example, Patent Document 1).
The heat transfer tube 3 has a shape such as a reentrant tube having irregularities on its surface, or a shape such as a smooth tube whose surface shape is a curved surface.
[0004]
In the evaporator 1 having the above-described configuration, the refrigerant introduced from the refrigerant introduction pipe 6 is contained in the heat transfer pipe groups 3a to 3d and the extraction line 7a from the numerous holes 4 formed in the porous plate 5 while containing refrigerant bubbles. ˜7c is ejected toward the inside and filled up to the position where the heat transfer tube groups 3a to 3d are immersed. The refrigerant around the heat transfer tube 3 exchanges heat with cold water through the heat transfer tube 3 to evaporate and vaporize, and become bubbles and escape upward from the container. At this time, the amount of bubble generation due to evaporation is large in a region where the temperature difference from cold water is large, and the amount of bubble generation due to evaporation is small in a region where the temperature difference from cold water is small.
[0005]
(Patent Document 1)
Japanese Patent Application No. 2000-357022
[0006]
[Problems to be solved by the invention]
By the way, in the evaporator constituting the conventional refrigerator, since the holes formed in the porous body are formed regardless of the shape of the heat transfer tube disposed in the container, the bubbles mixed in the refrigerant are transferred to each heat transfer tube. It is introduced evenly within the group.
Therefore, when a heat transfer tube having irregularities on the surface is provided, the surface shape of the tube is a shape that promotes evaporation of the refrigerant, and the attachment of bubbles from the outside is not preferable for the evaporation effect. In other words, there is a problem that the heat transfer coefficient is lowered because bubbles are supplied around the heat transfer tube.
In addition, when a heat transfer tube having a smooth curved surface is provided, the surroundings of the tube are agitated by bubbles to promote the evaporation of the refrigerant. However, the bubbles floating in the draw line contribute to heat exchange. Therefore, there is a problem that sufficient air bubbles are not supplied around the heat transfer tube and heat exchange performance is deteriorated.
[0007]
In addition, since the refrigerant introduction pipe is located on the lower side of the container and is installed along the tangential direction of the outer peripheral surface of the cylinder orthogonal to the container axis, there is a problem that the curved surfaces are joined to each other and cutting and welding are difficult. there were.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an evaporator and a refrigerator that can be easily processed while improving cooling efficiency by improving heat exchange performance.
[0009]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The invention according to claim 1 is a plurality of heat transfer tubes comprising a container into which a refrigerant is introduced, and a plurality of heat transfer tubes disposed in the container and through which a heated material that heats the refrigerant to boil and vaporize flows. A heat pipe group, a plate body below the heat transfer pipe group, extending in a substantially horizontal plane and having a large number of holes, and a refrigerant introduction pipe for introducing the refrigerant to the lower side of the container. The adjacent heat transfer tube groups are evaporators arranged in a horizontal direction so as to be separated from each other by a gap extending along a virtual plane positioned substantially in the vertical direction, wherein the plurality of holes are at least 1 It extends in the same direction as the heat transfer tube group in two or more rows , each heat transfer tube is configured to have irregularities on the surface thereof, and the plurality of holes are positioned substantially vertically below the gap. It is characterized by being formed .
[0010]
According to the evaporator of the present invention, the refrigerant mixed with bubbles can be introduced into the container in accordance with the heat exchange performance of the heat transfer tube disposed in the container, thereby improving the heat transfer performance. be able to.
Further, according to the evaporator according to the present invention, the bubbles mixed in the introduced refrigerant float up in the extraction line, so that the introduction of bubbles around the heat transfer tube can be suppressed, and thus has an uneven shape. A refrigerant suitable for heat transfer of the heat transfer tube can be introduced.
[0011]
The invention according to claim 2 is a plurality of heat transfer tubes comprising a container into which a refrigerant is introduced, and a plurality of heat transfer tubes that are disposed in the container and through which a heated material that heats and boiles the refrigerant flows. A heat pipe group, a plate body below the heat transfer pipe group, extending in a substantially horizontal plane and having a large number of holes, and a refrigerant introduction pipe for introducing the refrigerant to the lower side of the container. The adjacent heat transfer tube groups are evaporators arranged in a horizontal direction so as to be separated from each other by a gap extending along a virtual plane positioned substantially in the vertical direction, wherein the plurality of holes are at least 1 The heat transfer tube group extends in the same direction as two or more rows, each of the heat transfer tubes is configured to have a smooth surface, and the plurality of holes are substantially vertically below the heat transfer tube group. It is formed so that it may be located in .
[0012]
According to the evaporator of the present invention, the refrigerant mixed with bubbles can be introduced into the container in accordance with the heat exchange performance of the heat transfer tube disposed in the container, thereby improving the heat transfer performance. be able to.
Further, according to the evaporator according to the present invention, the bubbles mixed in the introduced refrigerant can stir the refrigerant around the heat transfer tube, so that the refrigerant suitable for heat transfer of the heat transfer tube having a smooth curved surface is introduced. can do.
[0017]
According to a third aspect of the present invention, there is provided a plurality of heat transfer pipes comprising a container into which a refrigerant is introduced, and a plurality of heat transfer tubes that are disposed in the container and through which a heated material that heats the refrigerant to boil and vaporize flows. A heat pipe group and a refrigerant introduction pipe for introducing the refrigerant to the lower side of the container, and the adjacent heat transfer pipe groups are mutually connected in a horizontal direction by a gap extending along a virtual plane positioned substantially in the vertical direction. In a separately disposed evaporator, the plate body is disposed so as to be positioned substantially horizontally below each heat transfer tube group, and has a slit at a position below each gap, and the slit of the plate body A pair of rising plate bodies that rise upward in the gap, and a refrigerant that is located above the pair of rising plate bodies and moves upward through a gap between the slit and the pair of rising plate bodies And bubbles mixed in the refrigerant Characterized in that it provided a guide plate for guiding the heat transfer tube direction.
[0018]
According to the evaporator according to the present invention, since the heat transfer tubes disposed above the heat transfer tube group can be sufficiently immersed in the refrigerant liquid, the heat exchange performance can be improved.
[0019]
According to a fourth aspect of the present invention, in the evaporator according to any one of the first to third aspects, a refrigerant introduction pipe for introducing a refrigerant into the container is disposed below the container and orthogonal to the container. It is characterized by.
[0020]
According to the evaporator according to the present invention, when the refrigerant introduction pipe is attached to the container, cutting, welding, and the like are facilitated, and workability can be improved.
[0021]
The invention according to claim 5 is the evaporator according to any one of claims 1 to 4, a compressor that compresses the gaseous refrigerant, and the condensed gaseous refrigerant is cooled, condensed, and liquefied. A condenser and an expansion valve for decompressing the liquefied refrigerant are provided.
[0022]
According to the refrigerator according to the present invention, since the heat exchange rate of the heat transfer tube in the evaporator is increased as described above, the same performance as the conventional one can be obtained even if energy consumption is suppressed.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show a first embodiment of the present invention.
FIG. 1 shows a schematic configuration of the refrigerator. The refrigerator shown in this figure has a condenser 10 that condenses and liquefies the refrigerant by exchanging heat between the cooling water and the gaseous refrigerant, and an expansion valve 11 that decompresses the condensed refrigerant. An evaporator 12 that performs heat exchange between the refrigerant and the heated material (cold water) to cool the cold water, and a compressor 13 that introduces the refrigerant evaporated and vaporized in the evaporator 12 into the condenser 10 after compression. It is composed of
[0024]
FIG. 2 shows the configuration of the evaporator 12.
The evaporator 12 shown in FIG. 2 includes a plurality of heat transfer pipes 15 including a cylindrical container 14 into which a refrigerant is introduced and a large number of heat transfer tubes 15 that are arranged in a region below the center position in the container and through which cold water flows. Heat tube groups 15a to 15d, a perforated plate (plate body) 17 below the heat transfer tube groups 15a to 15d and extending in a substantially horizontal direction to form a large number of holes 16, and below the container. And a refrigerant introduction pipe 18 installed along the tangential direction of the cylindrical surface perpendicular to the axial direction of the container.
[0025]
Each of the heat transfer tubes 15 is configured to have irregularities on the surface thereof, and the heat transfer tube group is mutually aligned in the horizontal direction by extraction rows (voids) 19a to 19c extending along a virtual plane located substantially in the vertical direction. They are spaced apart.
A large number of holes 16 formed in the perforated plate 17 are substantially vertically below each of the extraction rows 19a to 19c, and are formed along the longitudinal direction of the container.
[0026]
Also, above the container 14, a refrigerant discharge port 20 for discharging the evaporated refrigerant to a compressor (not shown), a demister 21 for removing refrigerant droplets mixed in the refrigerant during evaporation, and the demister in the container 14, a bottom plate 22 that supports the demister 21 in the container from below, and a demister frame 23 that supports the demister 21 together with the bottom plate 22 from above the container.
[0027]
In the evaporator 12 having the above-described configuration, the refrigerant is introduced into the container 14 from the refrigerant introduction pipe 18 including bubbles, and is blown out from the holes 16 toward the extraction lines 19a to 19c and spreads in the container. The heat transfer tube groups 15a to 15d are filled up to a position where the refrigerant is immersed. The refrigerant exchanges heat with the cold water flowing through the heat transfer tube 15 through the surface of the heat transfer tube 15, takes heat from the cold water, and is evaporated and vaporized. Most of the bubbles introduced by mixing in the refrigerant do not enter the heat transfer tube groups 15a to 15d and escape upward along the extraction rows 19a to 19c, so that they stay around the heat transfer tube 15 for a long time. There is no.
[0028]
According to the evaporator in this refrigerator, since the amount of introduction of bubbles into the heat transfer tube group is suppressed, the heat transfer tube surface shape is a shape that promotes the evaporation of the refrigerant, and the adhesion of bubbles from outside evaporates. Therefore, it is possible to improve the heat exchange performance by introducing a refrigerant suitable for heat transfer in the heat transfer tube having irregularities on the surface.
[0029]
FIG. 3 shows a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said embodiment, and description is abbreviate | omitted.
The schematic configuration of the refrigerator is the same as that shown in FIG.
The evaporator 12 shown in FIG. 3 has the same configuration as that of the first embodiment, but each of the heat transfer tubes 15 is configured to have a smooth surface, and is formed on the porous plate 17. A large number of holes 16 are located substantially vertically below the heat transfer tube groups 15a to 15d and are formed along the longitudinal direction of the container.
[0030]
In the evaporator 12 having the above-described configuration, the refrigerant is introduced into the container 14 from the refrigerant introduction pipe 18 including bubbles, and is ejected from the holes 16 toward the inside of the heat transfer pipe groups 15a to 15d. The installed heat transfer tube groups 15a to 15d are filled up to the position where the refrigerant is immersed. The refrigerant exchanges heat with the cold water flowing through the heat transfer tube 15 through the surface of the heat transfer tube 15, takes heat from the cold water, and is evaporated and vaporized. The air bubbles mixed and introduced into the refrigerant flow upward between the heat transfer tubes 15 while stirring the refrigerant liquid staying around the heat transfer tubes 15 together with the bubbles generated as the refrigerant evaporates.
[0031]
According to the evaporator in this refrigerator, since the introduction amount of bubbles into the heat transfer tube group is promoted, it is preferable that the surface around the heat transfer tube be stirred by the bubbles from the outside is preferable for the evaporation action. In a smooth heat transfer tube, it is possible to improve the heat exchange performance by introducing a refrigerant suitable for heat transfer.
[0032]
FIG. 4 shows a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said embodiment, and description is abbreviate | omitted.
The schematic configuration of the refrigerator is the same as that shown in FIG.
The evaporator 12 shown in FIG. 4 includes a plurality of heat transfer tube groups 15a to 15d including a container 14 having a cylindrical shape into which a refrigerant is introduced, and a large number of heat transfer tubes 15 disposed in the container and through which cold water flows. The refrigerant introduction pipe 18 that is obliquely below the container 14 and into which the refrigerant is introduced has a curved surface along the lower inner surface of the container 14 and has a large number of holes 16 extending below the heat transfer tube groups 15a to 15d. And a perforated plate 17.
[0033]
The heat transfer tube groups 15a to 15d are spaced apart from each other in the horizontal direction by gaps 19a to 19c extending along a virtual plane positioned substantially in the vertical direction, and the heat transfer tubes 15 are arranged in the heat transfer tube group 15a. The lower part of ˜15d is arranged along the perforated plate 17 in an arc shape.
The refrigerant introduction pipe 18 is joined at right angles to a circular hole formed in the cylindrical surface of the container 14 in accordance with the outer diameter of the pipe.
[0034]
In the evaporator 12 having the above-described configuration, the refrigerant introduced from the refrigerant introduction pipe 18 collides perpendicularly to the perforated plate 17 and diffuses in a circular arc shape on the lower surface of the container, and then enters the heat transfer pipe groups 15 a to 15 d from the holes 16. Erupted into.
[0035]
According to the evaporator in this refrigerator, the number of machining of the curved surface is reduced compared to the conventional method for joining the refrigerant introduction pipe to the container, and the joining can be easily performed. Since it can be provided, the same number of heat transfer tubes as in the conventional case can be provided even with a small-diameter container, whereby the heat exchange performance can be maintained.
[0036]
FIG. 5 shows a fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said embodiment, and description is abbreviate | omitted.
The schematic configuration of the refrigerator is the same as that shown in FIG.
The evaporator 12 shown in FIG. 5 has the same configuration as that of the third embodiment, but the plate width of the perforated plate 17 is in the vicinity of the refrigerant introduction pipe 18 and is positioned below the heat transfer tube groups 15c and 15d. It is limited and installed.
[0037]
In the evaporator 12 having the above-described configuration, the refrigerant is mainly ejected from the hole 16 toward the heat transfer tube groups 15c and 15d, and the refrigerant around the heat transfer tube 15 disposed in the heat transfer tube groups 15c and 15d Stirred by air bubbles that enter.
[0038]
According to the evaporator in this refrigerator, the same effect as that of the third embodiment can be obtained, and the temperature difference between the refrigerant and the cold water is small, so that heat exchange is particularly required for the refrigerant around the heat transfer tube. By arranging the perforated plate in the vicinity of the heat tube group, the heat transfer coefficient can be improved.
[0039]
In addition, in said 1st-4th embodiment, even if the shape of many holes currently formed in the porous body is a round hole, a long hole, a slit, etc., the same effect can be acquired.
[0040]
FIG. 6 shows a fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said embodiment, and description is abbreviate | omitted.
The schematic configuration of the refrigerator is the same as that shown in FIG.
The evaporator 12 shown in FIG. 6 includes a container 14 into which a refrigerant is introduced, a plurality of heat transfer tube groups 15a to 15d including a plurality of heat transfer tubes 15 disposed in the container 14 and through which cold water flows, A refrigerant introduction pipe 18 into which the refrigerant is introduced is provided substantially vertically below.
The heat transfer tube groups 15a to 15d are spaced apart from each other in the horizontal direction by extraction rows 19a to 19c extending along a virtual plane positioned substantially in the vertical direction.
[0041]
Below the container 14, a plate body 21 having a slit 20 at each lower position of the extraction rows 19 a to 19 c and extending to a lower region of the heat transfer tube groups 15 a to 15 d, and each slit 20 of the plate body 21. And a pair of rising plates 22 rising upward in the respective extraction rows 19a to 19c, and positioned above the pair of rising plates 22 and in the extraction rows 19a to 19d, the slit 20 A guide plate 24 that guides the refrigerant moving upward through the gap 23 formed between the pair of rising plate bodies 22 and the bubbles mixed in the refrigerant in the direction of each heat transfer tube 15 is provided.
At least one slit 20 is formed in the extending direction of the heat transfer tubes depending on the arrangement positions of the extraction rows 19 a to 19 c in the container 14.
[0042]
In the evaporator 12 having the above-described configuration, the refrigerant containing bubbles introduced from the refrigerant introduction pipe 18 installed almost immediately below the container 14 spreads evenly on the surface of the plate body 21 along the plate body, and the slit 20. Then, it passes through the gap 23 between the rising plate bodies 22, is folded back on the guide plate 24, and pours down from the upper side of the heat transfer tube groups 15 a to 15 d toward the heat transfer tubes 15.
[0043]
According to the evaporator in this refrigerator, the heat transfer tube disposed above the heat transfer tube group whose surface is easily dried by evaporation of the refrigerant is also sufficiently immersed in the refrigerant, resulting in a decrease in heat transfer coefficient. Is suppressed.
[0044]
When a plurality of slits are formed at the same extraction arrangement position, the same operation and effect are obtained even if the slit length and the slit interval differ depending on the extraction arrangement position.
As a substitute for the slit, the slit plate 22 may be a cylindrical tube.
[0045]
FIG. 7 shows a sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said embodiment, and description is abbreviate | omitted.
The schematic configuration of the refrigerator is the same as that shown in FIG.
The evaporator 12 shown in FIG. 7 has the same configuration as the above-described evaporator, but the refrigerant introduction pipe 18 extends in the length direction of the heat transfer pipe 15 from the cold water inlet 24 side for supplying cold water to the heat transfer pipe group 15a. It is arranged in the back area exceeding 1/2 and in the back area exceeding 1/2 in the width direction perpendicular to the length direction of the heat transfer tubes 15 from the heat transfer tube group 15a to 15c. It is installed.
[0046]
In the evaporator 12 having the above-described configuration, the bubbles mixed in the refrigerant introduced from the refrigerant introduction pipe 18 are arranged in a region where the temperature difference between the cold water flowing through the heat transfer pipe 15 and the refrigerant is small. The surrounding refrigerant is agitated more and new refrigerant is constantly supplied around the heat transfer tube 15.
[0047]
According to the evaporator in this refrigerator, since the temperature difference between the cold water and the refrigerant is small depending on the installation position of the refrigerant introduction pipe, the heat transfer coefficient can be improved even in a region where the heat transfer coefficient is small.
[0048]
【The invention's effect】
The present invention described above has the following effects.
According to the first aspect of the present invention, it is possible to introduce a refrigerant mixed with bubbles into the container so as to match the heat exchange performance of the heat transfer tube disposed in the container, thereby improving the heat transfer performance. Can do.
In addition, since air bubbles mixed in the introduced refrigerant float up in the line, it is possible to suppress the introduction of air bubbles around the heat transfer tube, and to improve the heat transfer performance on the surface of the heat transfer tube having an uneven shape. Can do.
[0049]
The invention according to claim 2 can introduce the refrigerant into which the bubbles are mixed so as to match the heat exchange performance of the heat transfer tube disposed in the container, thereby improving the heat transfer performance. Can do .
Moreover, the refrigerant | coolant around a heat exchanger tube can be stirred by the bubble mixed with the refrigerant | coolant introduce | transduced, and the heat transfer performance in the heat exchanger tube surface which consists of a smooth curved surface can be improved.
[0052]
In the invention according to claim 3, since the heat transfer tube disposed above the container can be sufficiently immersed in the refrigerant liquid, the heat exchange performance can be improved.
[0053]
In the invention according to claim 4, when attaching the refrigerant introduction pipe to the container, cutting, welding, and the like are facilitated, and workability can be improved.
[0054]
In the invention according to claim 5, since the heat exchange rate of the heat transfer tube in the evaporator is increased, the same performance as the conventional one can be obtained even if energy consumption is suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a refrigerator to which an evaporator according to a first embodiment of the present invention is applied.
FIG. 2 is a cross-sectional configuration diagram showing an overall outline of an evaporator according to a first embodiment of the present invention.
FIG. 3 is a cross-sectional configuration diagram of an evaporator according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional configuration diagram of an evaporator according to a third embodiment of the present invention.
FIG. 5 is a cross-sectional configuration diagram of an evaporator according to a fourth embodiment of the present invention.
FIG. 6 is a cross-sectional configuration diagram of an evaporator according to a fifth embodiment of the present invention.
FIG. 7 is a plan configuration diagram of an evaporator according to a sixth embodiment of the present invention.
FIG. 8 is a cross-sectional configuration diagram of a conventional evaporator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Condenser 11 Expansion valve 12 Evaporator 13 Compressor 14 Container 15 Heat transfer tube 16 Hole 17 Perforated plate (plate body)
18 Refrigerant introduction pipe 19 Extraction line (gap)
20 Slit 21 Plate 22 Standing Plate 23 Gap 24 Guide Plate

Claims (5)

冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、該伝熱管群下方にあってほぼ水平方向に平面状に延在し多数の孔が形成されている板体と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器であって、
前記多数の孔が少なくとも1つ以上の列をなして前記伝熱管群と同方向に延在し
前記各伝熱管がその表面に凹凸を有する構成とされ、前記多数の孔が、前記空隙のほぼ鉛直下方に位置するように形成されていることを特徴とする蒸発器。
A container into which a refrigerant is introduced; a plurality of heat transfer pipe groups each including a plurality of heat transfer pipes that are disposed in the container and through which a heated product that boils and vaporizes the refrigerant is circulated; and below the heat transfer pipe group A plate body extending in a substantially horizontal plane and having a plurality of holes formed therein, and a refrigerant introduction pipe for introducing the refrigerant to the lower side of the container, and the adjacent heat transfer tube group includes: An evaporator disposed horizontally apart from each other by a gap extending along a virtual plane located in a substantially vertical direction,
The plurality of holes extending in the same direction as the heat transfer tube group in at least one row ;
Each of the heat transfer tubes is configured to have irregularities on the surface thereof, and the numerous holes are formed so as to be positioned substantially vertically below the gap .
冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、該伝熱管群下方にあってほぼ水平方向に平面状に延在し多数の孔が形成されている板体と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器であって、
前記多数の孔が少なくとも1つ以上の列をなして前記伝熱管群と同方向に延在し
前記各伝熱管がその表面を平滑に形成された構成とされ、前記多数の孔が、該伝熱管群のほぼ鉛直下方に位置するように形成されていることを特徴とする蒸発器。
A container into which a refrigerant is introduced; a plurality of heat transfer pipe groups each including a plurality of heat transfer pipes that are disposed in the container and through which a heated product that boils and vaporizes the refrigerant is circulated; and below the heat transfer pipe group A plate body extending in a substantially horizontal plane and having a plurality of holes formed therein, and a refrigerant introduction pipe for introducing the refrigerant to the lower side of the container, and the adjacent heat transfer tube group includes: An evaporator disposed horizontally apart from each other by a gap extending along a virtual plane located in a substantially vertical direction,
The plurality of holes extending in the same direction as the heat transfer tube group in at least one row ;
The evaporator is characterized in that each heat transfer tube has a smooth surface, and the plurality of holes are formed so as to be positioned substantially vertically below the heat transfer tube group .
冷媒が導入される容器と、該容器内に配設されて、前記冷媒を加熱して沸騰、気化させる加熱物が流通する多数の伝熱管からなる複数の伝熱管群と、前記容器下側に前記冷媒を導入する冷媒導入管とを備え、隣接する前記伝熱管群が、ほぼ鉛直方向に位置する仮想平面に沿って延在する空隙によって、水平方向に互いに離間して配設された蒸発器であって、
各伝熱管群の下方にほぼ水平方向に位置するように配設され、前記各空隙下方位置にスリットを有する板体と、該板体の前記スリットに臨ませて前記空隙内にて上方に立ち上がる一対の立ち上がり板体と、これら一対の立ち上がり板体の上方に位置し、前記スリット及び前記一対の立ち上がり板体間の間隙を通って上方に移動する冷媒及び冷媒に混入する気泡を各伝熱管方向へ導くガイド板とを設けていることを特徴とする蒸発器。
A container into which a refrigerant is introduced, a plurality of heat transfer tube groups each including a plurality of heat transfer tubes disposed in the container, the heating object being heated to boil and vaporize the refrigerant, and below the container An evaporator having a refrigerant introduction pipe for introducing the refrigerant, wherein the adjacent heat transfer pipe groups are spaced apart from each other in a horizontal direction by a gap extending along a virtual plane positioned substantially in a vertical direction. Because
A plate body which is disposed so as to be positioned substantially horizontally below each heat transfer tube group, and has a slit at a position below each gap, and rises upward in the gap so as to face the slit of the plate body. A pair of rising plate bodies, a refrigerant positioned above the pair of rising plate bodies, moving upward through the gap between the slit and the pair of rising plate bodies, and bubbles mixed in the refrigerant are arranged in each heat transfer tube direction. An evaporator characterized by having a guide plate that leads to
前記容器内に冷媒を導入する冷媒導入管が、該容器下側にあって該容器に直交して設置されていることを特徴とする請求項1からの何れかに記載の蒸発器。The evaporator according to any one of claims 1 to 3 , wherein a refrigerant introduction pipe for introducing a refrigerant into the container is disposed at a lower side of the container and orthogonal to the container. 請求項1からの何れかに記載の蒸発器と、気体状の冷媒を圧縮する圧縮機と、圧縮された気体状の冷媒を冷却して凝縮、液化する凝縮器と、液化された冷媒を減圧する膨張弁とを備えていることを特徴とする冷凍機。An evaporator according to any one of claims 1 to 4, a compressor that compresses a gaseous refrigerant, a condenser that cools and compresses the compressed gaseous refrigerant, and a liquefied refrigerant. A refrigerator having a decompression expansion valve.
JP2002253970A 2002-08-30 2002-08-30 Evaporator and refrigerator Expired - Lifetime JP3891907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253970A JP3891907B2 (en) 2002-08-30 2002-08-30 Evaporator and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253970A JP3891907B2 (en) 2002-08-30 2002-08-30 Evaporator and refrigerator

Publications (2)

Publication Number Publication Date
JP2004092991A JP2004092991A (en) 2004-03-25
JP3891907B2 true JP3891907B2 (en) 2007-03-14

Family

ID=32059831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253970A Expired - Lifetime JP3891907B2 (en) 2002-08-30 2002-08-30 Evaporator and refrigerator

Country Status (1)

Country Link
JP (1) JP3891907B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777370B2 (en) 2011-03-30 2015-09-09 三菱重工業株式会社 Reboiler
JP6313090B2 (en) * 2014-03-28 2018-04-18 荏原冷熱システム株式会社 Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
JP6423221B2 (en) * 2014-09-25 2018-11-14 三菱重工サーマルシステムズ株式会社 Evaporator and refrigerator
FR3042858B1 (en) * 2015-10-21 2018-01-12 Technip France THERMAL EXCHANGE DEVICE BETWEEN A FIRST FLUID FOR SPRAYING AND A SECOND FLUID FOR COOLING AND / OR CONDENSING, INSTALLATION AND METHOD THEREOF

Also Published As

Publication number Publication date
JP2004092991A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US20110056664A1 (en) Vapor compression system
EP2841864A1 (en) Heat exchanger
JP6716227B2 (en) Evaporator, turbo refrigerator equipped with the same
EP0961092A1 (en) Complex condenser
JP2008286488A (en) Refrigerant distributor
JP2002130867A (en) Condenser for refrigerating machine
JP3891907B2 (en) Evaporator and refrigerator
JP4056325B2 (en) Condenser and refrigerator
JP4618529B2 (en) Ice thermal storage air conditioner
JP4451998B2 (en) Evaporator and refrigerator having the same
CN210921674U (en) Shell and tube condenser and water chilling unit
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JP4222063B2 (en) Absorption refrigerator
JP4508466B2 (en) Evaporator and refrigerator having the same
JP3266886B2 (en) Heat transfer tube
JP2001215070A (en) Evaporator and refrigerator
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP2001263836A (en) Secondary refrigerant refrigerating cycle system
JP2004092927A (en) Evaporator and refrigerating machine
KR100305865B1 (en) Plate type absorber of absorption heat pump
KR100467248B1 (en) Evaporator and refrigerator
JP3617724B2 (en) Absorption refrigeration system
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JPH0979693A (en) Absorbing type heat exchanger
JPH0626733A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R151 Written notification of patent or utility model registration

Ref document number: 3891907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

EXPY Cancellation because of completion of term