JP2001263836A - Secondary refrigerant refrigerating cycle system - Google Patents

Secondary refrigerant refrigerating cycle system

Info

Publication number
JP2001263836A
JP2001263836A JP2000080621A JP2000080621A JP2001263836A JP 2001263836 A JP2001263836 A JP 2001263836A JP 2000080621 A JP2000080621 A JP 2000080621A JP 2000080621 A JP2000080621 A JP 2000080621A JP 2001263836 A JP2001263836 A JP 2001263836A
Authority
JP
Japan
Prior art keywords
refrigerant
secondary refrigerant
primary
heat exchange
exchange tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000080621A
Other languages
Japanese (ja)
Inventor
Mitsuharu Matsuo
光晴 松尾
Shozo Funakura
正三 船倉
Norio Okakura
典穂 岡座
Fumitoshi Nishiwaki
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000080621A priority Critical patent/JP2001263836A/en
Publication of JP2001263836A publication Critical patent/JP2001263836A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem of low heat exchanging efficiency of a secondary refrigerant refrigerating cycle system for contacting a primary refrigerant directly with a secondary refrigerant to heat exchange the primary refrigerant with the secondary refrigerant. SOLUTION: The secondary refrigerant refrigerating cycle system comprises at least a heat exchanging tank 4 for contacting the primary refrigerant directly with the secondary refrigerant to heat exchange the primary refrigerant with the secondary refrigerant. In this case, a metal porous material 20 having a plurality of pores and a specific surface area of 500 m2/m3 or more is disposed in the tank 4 to increase a contact area of the primary refrigerant with the secondary refrigerant to efficiently heat exchange the primary refrigerant with the secondary refrigerant. A boundary wall is provided at a flow-out part of the primary and secondary refrigerants from the tank 4 to accelerate a separation of the primary and secondary refrigerants and to decelerate a flowing velocity, thereby improving a separating performance of the primary and secondary refrigerants.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一次冷媒と二次冷
媒を直接混合・接触させることで高効率な熱交換を行う
二次冷媒冷凍サイクル装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary refrigerant refrigeration cycle apparatus for performing efficient heat exchange by directly mixing and contacting a primary refrigerant and a secondary refrigerant.

【0002】[0002]

【従来の技術】近年、地球温暖化問題が急速に注目され
るようになり、地球温暖化に大きな影響を与えるHFC
系冷媒に代わる自然冷媒を用いた冷凍サイクル装置の開
発が急がれている。特に、オゾン層破壊もなく、地球温
暖化にも影響を与えないHC系自然冷媒を用いた冷凍冷
蔵庫や空調システムの開発が有望視されている。
2. Description of the Related Art In recent years, the global warming problem has been rapidly attracting attention, and HFCs have a great influence on global warming.
Development of a refrigeration cycle device using a natural refrigerant instead of a system refrigerant is urgently required. In particular, the development of a refrigerator-freezer or an air conditioning system using an HC-based natural refrigerant that does not cause ozone layer destruction and does not affect global warming is promising.

【0003】一般に、HC系自然冷媒を冷凍サイクル装
置の冷媒として使用する場合には、万一の時に冷媒が漏
洩し引火する等の危険性を回避するために、直接膨張型
(以下、直膨型)の冷凍サイクル装置において冷媒の充
填量を少なくする等の対策が必要とされている。
In general, when an HC natural refrigerant is used as a refrigerant in a refrigeration cycle apparatus, a direct expansion type (hereinafter referred to as a direct expansion type) is used in order to avoid the danger of the refrigerant leaking and igniting in case of emergency. In the refrigeration cycle apparatus of the (type), there is a need for measures such as reducing the filling amount of the refrigerant.

【0004】しかし、冷凍サイクル装置が大型化するに
つれてそのシステムに搭載された冷凍サイクル装置に必
要とされる冷媒充填量は増加するため、小型の冷凍サイ
クル装置以外にはHC系自然冷媒を用いたシステム展開
が困難とされる。
However, as the size of the refrigeration cycle apparatus increases, the amount of refrigerant required for the refrigeration cycle apparatus mounted on the system increases. Therefore, an HC-based natural refrigerant is used in addition to a small refrigeration cycle apparatus. System deployment is considered difficult.

【0005】そこで、一定量以上のHC系自然冷媒が必
要とされる冷凍サイクル装置には、二次冷媒方式を用い
ることが提案されている。なお、これまでにも、CFC
系、HCFC系、アンモニア系の冷媒を一次冷媒とした
二次冷媒方式の冷凍サイクル装置は、オフィスビルなど
のファンコイルユニットやチリングユニット等の大型の
冷凍空調システムで採用されている。
Therefore, it has been proposed to use a secondary refrigerant system for a refrigeration cycle device requiring a certain amount or more of HC natural refrigerant. In addition, so far, CFC
A refrigeration cycle device of a secondary refrigerant system using a system, HCFC, or ammonia-based refrigerant as a primary refrigerant is employed in large-scale refrigeration and air-conditioning systems such as fan coil units and chilling units in office buildings and the like.

【0006】一般に二次冷媒方式の冷凍サイクル装置で
は、一次側冷凍サイクルの冷熱または温熱を二重管式や
プレート式の中間熱交換器を介して二次側熱搬送サイク
ルへ伝達し、二次冷媒を循環させ、二次冷媒と室内負荷
で熱交換を行うことで室内空調を行っている。特にプレ
ート方式の中間熱交換器では、一次冷媒と二次冷媒がプ
レートを介して互いに熱交換を行うが、熱交換器におけ
る一次冷媒と二次冷媒が間接的に熱交換を行うプレート
の比表面積が500m2/m3と高いために、容積あたり
の熱交換量が多く、中間熱交換器の容積を小型化できる
というメリットがある。
In general, in a refrigeration cycle apparatus of a secondary refrigerant system, cold or warm heat of a primary refrigeration cycle is transmitted to a secondary heat transfer cycle via a double-pipe or plate type intermediate heat exchanger. Indoor air conditioning is performed by circulating a refrigerant and exchanging heat with a secondary refrigerant at an indoor load. In particular, in the plate-type intermediate heat exchanger, the primary refrigerant and the secondary refrigerant exchange heat with each other via the plate, but the specific surface area of the plate where the primary refrigerant and the secondary refrigerant in the heat exchanger indirectly exchange heat. Is as high as 500 m 2 / m 3 , there is an advantage that the amount of heat exchange per volume is large and the volume of the intermediate heat exchanger can be reduced.

【0007】しかし、直膨型の冷凍サイクル装置では一
次冷媒と内部負荷との熱交換のみが必要であるのに対し
て、二次冷媒方式では二次冷媒と内部負荷の熱交換およ
び、一次冷媒と二次冷媒での熱交換が必要であり、プレ
ート式の中間熱交換器によって一次冷媒と二次冷媒でプ
レートを介して効率良く熱交換を行うには、互いの冷媒
で比較的大きな温度差を要する。その結果、直膨型の冷
凍サイクル装置と比べて、冷房運転時の一次冷媒蒸発温
度を下げること、あるいは暖房運転時の一次冷媒凝縮温
度を上げることが必要となり、一次側冷凍サイクルの入
力が増加することから、二次冷媒冷凍サイクル装置全体
としての効率が低下してしまう欠点があった。
However, in the direct expansion type refrigeration cycle apparatus, only heat exchange between the primary refrigerant and the internal load is required, whereas in the secondary refrigerant system, heat exchange between the secondary refrigerant and the internal load and the primary refrigerant are not performed. In order to efficiently exchange heat between the primary refrigerant and the secondary refrigerant through the plate by the plate-type intermediate heat exchanger, the temperature difference between the refrigerants is relatively large. Cost. As a result, compared to a direct expansion type refrigeration cycle device, it is necessary to lower the primary refrigerant evaporation temperature during cooling operation or increase the primary refrigerant condensation temperature during heating operation, and the input of the primary refrigeration cycle increases. Therefore, there is a disadvantage that the efficiency of the entire secondary refrigerant refrigeration cycle apparatus is reduced.

【0008】この欠点を補う方法として、従来の一次冷
媒と二次冷媒をプレート式熱交換器などにより間接的に
熱交換を行う方式に対し、一次冷媒と二次冷媒で高効率
な熱交換が可能と考えられる直接熱交換方式の二次冷媒
冷凍サイクル装置を提案した(特願平10−16663
5号)。
As a method for compensating for this drawback, a highly efficient heat exchange between the primary refrigerant and the secondary refrigerant is performed in comparison with the conventional system in which the primary refrigerant and the secondary refrigerant are indirectly exchanged heat with a plate heat exchanger or the like. A secondary refrigerant refrigeration cycle device of a direct heat exchange type which is considered to be possible was proposed (Japanese Patent Application No. 10-16663).
No. 5).

【0009】従来の直接熱交換方式二次冷媒冷凍サイク
ル装置のシステム構成例および熱交換槽の構成例を図7
および図8に示す。
FIG. 7 shows a system configuration example of a conventional direct heat exchange type secondary refrigerant refrigeration cycle apparatus and a configuration example of a heat exchange tank.
And FIG.

【0010】図7は、二次冷媒冷凍サイクル装置の一例
として、一次冷媒にHC系自然冷媒のプロパン(R29
0)を、二次冷媒に清水を使用した直接熱交換方式の二
次冷媒空調システムの冷房運転時のシステム構成を示し
ている。
FIG. 7 shows an example of a secondary refrigerant refrigeration cycle apparatus in which propane (R29) of HC natural refrigerant is used as the primary refrigerant.
0) shows a system configuration of a direct heat exchange type secondary refrigerant air conditioning system using fresh water as a secondary refrigerant during a cooling operation.

【0011】図7において、直接熱交換方式二次冷媒冷
凍サイクル装置は一次側冷凍サイクルと二次側熱搬送サ
イクルから構成されており、一次側冷凍サイクルは圧縮
機27、四方弁28、第一の熱交換器(以下、室外熱交
換器という)29、絞り装置(以下、膨張弁という)3
0、熱交換槽31から成り、それぞれが一次側接続配管
32で接続されている。
In FIG. 7, the secondary refrigerant refrigeration cycle apparatus of the direct heat exchange type comprises a primary refrigeration cycle and a secondary heat transfer cycle, and the primary refrigeration cycle comprises a compressor 27, a four-way valve 28, Heat exchanger (hereinafter, referred to as an outdoor heat exchanger) 29, a throttle device (hereinafter, referred to as an expansion valve) 3
0, a heat exchange tank 31, each of which is connected by a primary side connection pipe 32.

【0012】一方、二次側熱搬送サイクルは、熱交換槽
31、第二の熱交換器(以下、室内熱交換器という)3
3、循環ポンプ34から成り、二次側接続配管35で接
続されている。
On the other hand, the secondary heat transfer cycle includes a heat exchange tank 31, a second heat exchanger (hereinafter, referred to as an indoor heat exchanger) 3.
3. A circulation pump 34, which is connected by a secondary connection pipe 35.

【0013】太線は一次冷媒の冷房運転時の流れを、細
線は二次冷媒の流れを示しており、一次側冷凍サイクル
と二次側熱搬送サイクルの一部は室外機の中にパッケー
ジングされ、室内熱交換器33は室内機の中にパッケー
ジングされ、室外機と室内機は二次側接続配管35およ
び信号線(図示せず)等で接続されている。
The bold line shows the flow of the primary refrigerant during the cooling operation, and the thin line shows the flow of the secondary refrigerant. Part of the primary refrigeration cycle and the secondary heat transfer cycle are packaged in an outdoor unit. The indoor heat exchanger 33 is packaged inside the indoor unit, and the outdoor unit and the indoor unit are connected by a secondary connection pipe 35 and a signal line (not shown).

【0014】冷房時の一次側冷凍サイクルの運転に対し
ては、圧縮機27、四方弁28、室外熱交換器29(凝
縮器として作用する)、膨張弁30、熱交換槽31(蒸
発器として作用する)、四方弁28、圧縮機27の順で
それぞれ一次側接続配管32を介して一次冷媒が流れ
る。
For operation of the primary refrigeration cycle during cooling, the compressor 27, the four-way valve 28, the outdoor heat exchanger 29 (acting as a condenser), the expansion valve 30, and the heat exchange tank 31 (as an evaporator) The primary refrigerant flows through the primary connection pipe 32 in the order of the four-way valve 28 and the compressor 27.

【0015】暖房時の一次側冷凍サイクルの運転に対し
ては、圧縮機27、四方弁28、熱交換槽31(凝縮器
として作用する)、膨張弁30、室外熱交換器29(蒸
発器として作用する)、四方弁28、圧縮機27の順で
それぞれ一次側接続配管32を介して一次冷媒が流れ
る。
For operation of the primary refrigeration cycle during heating, the compressor 27, the four-way valve 28, the heat exchange tank 31 (acting as a condenser), the expansion valve 30, and the outdoor heat exchanger 29 (as an evaporator) The primary refrigerant flows through the primary connection pipe 32 in the order of the four-way valve 28 and the compressor 27.

【0016】二次側熱搬送システムの運転に対しては、
冷房運転・暖房運転に関わらず、熱交換槽31、室内熱
交換器33、循環ポンプ34、熱交換槽31の順で二次
側接続配管35を介して二次冷媒が流れる。この時、熱
交換槽31内では、一次冷媒と二次冷媒が直接接触して
互いに熱交換を行う。
For operation of the secondary heat transfer system,
Regardless of the cooling operation and the heating operation, the secondary refrigerant flows through the secondary connection pipe 35 in the order of the heat exchange tank 31, the indoor heat exchanger 33, the circulation pump 34, and the heat exchange tank 31. At this time, in the heat exchange tank 31, the primary refrigerant and the secondary refrigerant directly contact each other and exchange heat with each other.

【0017】図8は、従来の直接熱交換方式二次冷媒冷
凍サイクル装置の熱交換槽31を示している。
FIG. 8 shows a heat exchange tank 31 of a conventional direct heat exchange type secondary refrigerant refrigeration cycle apparatus.

【0018】図8において、熱交換槽31は中央で仕切
板36によって左室と右室の二つに分離され、熱交換槽
31の下部中央は仕切板36が無く、左室と右室がつな
がっている。熱交換槽31の左室上部に一次冷媒流入管
37および二次冷媒流入管38が接続され、熱交換槽3
1底面中央に二次冷媒流出管39が接続され、熱交換槽
31右室の上部に冷房時一次冷媒流出管40が接続さ
れ、熱交換槽31右室の上部から伸縮式の暖房時一次冷
媒流出管41がそれぞれ設置される。熱交換槽31内に
は、一次冷媒および二次冷媒が封入されており、図8で
は、熱交換槽31中の網掛けで示している。
In FIG. 8, the heat exchange tank 31 is divided into a left chamber and a right chamber by a partition plate 36 at the center, and there is no partition plate 36 at the lower center of the heat exchange tank 31; linked. A primary refrigerant inflow pipe 37 and a secondary refrigerant inflow pipe 38 are connected to the upper part of the left chamber of the heat exchange tank 31.
A secondary refrigerant outflow pipe 39 is connected to the center of the bottom surface, and a primary refrigerant outflow pipe 40 for cooling is connected to the upper part of the right chamber of the heat exchange tank 31. Outflow pipes 41 are provided respectively. A primary refrigerant and a secondary refrigerant are sealed in the heat exchange tank 31, and are shaded in the heat exchange tank 31 in FIG. 8.

【0019】暖房運転時には暖房時一次冷媒流出管41
の先端は常に熱交換槽31右室の一次冷媒の液冷媒部分
(図8における熱交換槽31右室の網掛部分)に来るよ
うに設定されている。熱交換槽31右室では、一次冷媒
は二次冷媒との熱交換によりガス状態から液状態へと相
変化する。一次冷媒と二次冷媒は互いに溶解しないこと
と、液状態の一次冷媒は二次冷媒の水よりも比重が軽い
ことから、熱交換槽31右室では、上方に液状態の一次
冷媒が、下方に二次冷媒が貯留することになる。そのた
め、暖房時一次冷媒流出管41の先端が常に熱交換槽3
1右室の一次冷媒の液冷媒部分となるように設定するこ
とで、熱交換槽31から、液状態の一次冷媒を選択的に
流出させることが可能となる。
During the heating operation, the primary refrigerant outflow pipe 41 at the time of heating is used.
Is set so as to always come to the liquid refrigerant portion of the primary refrigerant of the right chamber of the heat exchange tank 31 (the shaded portion of the right chamber of the heat exchange tank 31 in FIG. 8). In the right chamber of the heat exchange tank 31, the primary refrigerant changes its phase from a gas state to a liquid state by heat exchange with the secondary refrigerant. Since the primary refrigerant and the secondary refrigerant do not dissolve in each other, and the specific gravity of the liquid primary refrigerant is lower than the water of the secondary refrigerant, in the right chamber of the heat exchange tank 31, the primary refrigerant in the liquid state is upward, The secondary refrigerant is stored in the secondary storage. Therefore, the tip of the primary refrigerant outflow pipe 41 at the time of heating is always in the heat exchange tank 3.
By setting the primary refrigerant to be the liquid refrigerant portion of the primary refrigerant in the right chamber, the primary refrigerant in the liquid state can be selectively discharged from the heat exchange tank 31.

【0020】熱交換槽31内における一次冷媒および二
次冷媒の流れは、冷房運転時には、気液二相状態の一次
冷媒および液状態の二次冷媒は熱交換槽31の左室上方
より流入(図8における細線が一次冷媒、太線が二次冷
媒の流れ)し、一次冷媒と二次冷媒は互いに直接接触を
行うことで熱交換しながら、左室下方へ流れ、仕切板3
6の無い左室下方から右室下方へ移動する。この時、密
度の高い二次冷媒は熱交換槽31底面中央の二次冷媒流
出管39から流出し、密度の低い一次冷媒は二次冷媒と
の熱交換で完全に気化して熱交換槽31右室下方から右
室上方へ移動し、冷房時一次冷媒流出管40から流出す
る。
The flow of the primary refrigerant and the secondary refrigerant in the heat exchange tank 31 is such that the primary refrigerant and the liquid secondary refrigerant in the gas-liquid two-phase state flow from above the left chamber of the heat exchange tank 31 during the cooling operation. The thin line in FIG. 8 indicates the flow of the primary refrigerant, and the thick line indicates the flow of the secondary refrigerant). The primary refrigerant and the secondary refrigerant flow downwardly while performing heat exchange by directly contacting each other.
6 moves from the lower part of the left ventricle to the lower part of the right ventricle. At this time, the high-density secondary refrigerant flows out of the secondary refrigerant outflow pipe 39 at the center of the bottom surface of the heat exchange tank 31, and the low-density primary refrigerant completely evaporates by heat exchange with the secondary refrigerant, and the heat exchange tank 31 It moves from the lower part of the right chamber to the upper part of the right chamber, and flows out of the primary refrigerant outflow pipe 40 during cooling.

【0021】暖房運転時にも、一次冷媒および二次冷媒
は冷房運転時と同様の流れで熱交換を行い、二次冷媒は
二次冷媒流出管39から流出し、二次冷媒との熱交換で
ガス状態から液化した一次冷媒は、二次冷媒よりも密度
が小さいために熱交換槽31右室へ移動して液状態の二
次冷媒の上に液状態の一次冷媒が滞留し、暖房時一次冷
媒流出管41より流出する。
In the heating operation, the primary refrigerant and the secondary refrigerant exchange heat in the same flow as in the cooling operation, and the secondary refrigerant flows out of the secondary refrigerant outflow pipe 39 and exchanges heat with the secondary refrigerant. Since the primary refrigerant liquefied from the gas state has a lower density than the secondary refrigerant, it moves to the right chamber of the heat exchange tank 31 and the primary refrigerant in the liquid state stays on the secondary refrigerant in the liquid state. It flows out from the refrigerant outflow pipe 41.

【0022】[0022]

【発明が解決しようとする課題】しかし、上記に示す直
接熱交換方式の二次冷媒空調システムにおける熱交換槽
31では内部を仕切板36で左右に分割しているため
に、一次冷媒と二次冷媒の熱交換が可能な容積は、熱交
換槽31の全容積の約半分となるために、熱交換槽31
の容積の大きさに対して一次冷媒と二次冷媒の熱交換効
率が悪くなる課題があった。
However, since the interior of the heat exchange tank 31 in the above-described direct heat exchange type secondary refrigerant air conditioning system is divided into left and right parts by the partition plate 36, the primary refrigerant and the secondary refrigerant are not separated. Since the volume of the refrigerant that can exchange heat is about half of the total volume of the heat exchange tank 31, the heat exchange tank 31
However, there is a problem that the heat exchange efficiency between the primary refrigerant and the secondary refrigerant deteriorates with respect to the size of the volume.

【0023】また、熱交換槽31内では、一次冷媒と二
次冷媒の接触面積を増大させる構造を備えていないため
に熱交換が十分には行えず、高効率の直接接触方式にも
関わらず、熱交換量を向上させるためには熱交換槽31
の容積を大きくしなくてはならないなどの課題があっ
た。
Further, in the heat exchange tank 31, heat exchange cannot be performed sufficiently because there is no structure for increasing the contact area between the primary refrigerant and the secondary refrigerant. In order to improve the heat exchange amount, the heat exchange tank 31 is used.
There was a problem such that the volume of the steel had to be increased.

【0024】本発明は、上記課題を考慮し、一次冷媒と
二次冷媒とが直接接触する面積を増大させて、効率良く
熱交換を行い、また、一次冷媒と二次冷媒を確実に分離
させる二次冷媒冷凍サイクル装置を提供することを目的
とするものである。
In consideration of the above problems, the present invention increases the area where the primary refrigerant and the secondary refrigerant are in direct contact with each other to efficiently perform heat exchange, and reliably separates the primary refrigerant and the secondary refrigerant. It is an object to provide a secondary refrigerant refrigeration cycle device.

【0025】[0025]

【課題を解決するための手段】第1の本発明(請求項1
に対応)は、一次冷媒を圧縮する圧縮機と、前記一次冷
媒と外部負荷との間で熱交換を行わせるための第一の熱
交換器と、前記一次冷媒を減圧膨張させる絞り装置と、
前記一次冷媒と二次冷媒とが流入し、それら一次冷媒と
二次冷媒とを直接接触させて熱交換を行わせるための熱
交換槽と、前記圧縮機、前記第一の熱交換器、前記絞り
装置および前記熱交換槽を接続する一次側接続配管とを
少なくとも有する一次側冷凍サイクルと、前記熱交換槽
と、循環ポンプと、前記二次冷媒と内部負荷との間で熱
交換を行わせるための第二の熱交換器と、前記熱交換
槽、前記循環ポンプおよび前記第二の熱交換器を接続す
る二次側接続配管とを有する二次側熱搬送サイクルとを
備え、前記熱交換槽には、表面に凹凸形状を有する、お
よび/または複数の孔を有する接触面積増大手段が配置
されていることを特徴とする二次冷媒冷凍サイクル装置
である。
Means for Solving the Problems The first invention (claim 1)
Corresponding to), a compressor that compresses the primary refrigerant, a first heat exchanger for performing heat exchange between the primary refrigerant and an external load, and a throttle device that decompresses and expands the primary refrigerant,
The primary refrigerant and the secondary refrigerant flow in, a heat exchange tank for causing the primary refrigerant and the secondary refrigerant to directly contact and perform heat exchange, the compressor, the first heat exchanger, A primary-side refrigeration cycle having at least a throttle device and a primary-side connection pipe connecting the heat-exchange tank, the heat-exchange tank, a circulation pump, and heat exchange between the secondary refrigerant and an internal load. A second heat exchanger, and a secondary heat transfer cycle having a secondary connection pipe connecting the heat exchange tank, the circulation pump and the second heat exchanger, the heat exchange The secondary refrigerant refrigeration cycle apparatus is characterized in that a contact area increasing means having an uneven shape on the surface and / or having a plurality of holes is arranged in the tank.

【0026】第2の本発明(請求項2に対応)は、前記
接触面積増大手段が、金属多孔質体、パッキング(金属
充填物)、またはワイヤーメッシュであることを特徴と
する第1の本発明に記載の二次冷媒冷凍サイクル装置で
ある。
According to a second aspect of the present invention (corresponding to claim 2), the contact area increasing means is a metal porous body, a packing (metal filling), or a wire mesh. It is a secondary refrigerant refrigeration cycle device according to the invention.

【0027】第3の本発明(請求項3に対応)は、前記
熱交換槽の容積に対する、前記接触面積増大手段の表面
積の割合を示す比表面積が、500m2/m3以上である
ことを特徴とする第1または第2の本発明に記載の二次
冷媒冷凍サイクル装置である。
According to a third aspect of the present invention (corresponding to claim 3), the specific surface area indicating the ratio of the surface area of the contact area increasing means to the volume of the heat exchange tank is 500 m 2 / m 3 or more. A secondary refrigerant refrigeration cycle apparatus according to the first or second aspect of the present invention.

【0028】第4の本発明(請求項4に対応)は、前記
一次冷媒および/または前記二次冷媒を、複数の流束に
細分化させて前記熱交換槽の内部に流入させる冷媒細分
化手段を備えたことを特徴とする第1から第3のいずれ
かの本発明に記載の二次冷媒冷凍サイクル装置である。
A fourth aspect of the present invention (corresponding to claim 4) is that the primary refrigerant and / or the secondary refrigerant is subdivided into a plurality of fluxes and the refrigerant is subdivided into the heat exchange tank. The secondary refrigerant refrigeration cycle apparatus according to any one of the first to third aspects of the present invention, characterized by comprising means.

【0029】第5の本発明(請求項5に対応)は、前記
冷媒細分化手段が、前記一次側接続配管と接続している
複数の一次冷媒流入管、および/または前記二次側接続
配管と接続している複数の二次冷媒流入管であることを
特徴とする第4の本発明に記載の二次冷媒冷凍サイクル
装置である。
A fifth aspect of the present invention (corresponding to claim 5) is that the refrigerant subdivision means includes a plurality of primary refrigerant inflow pipes connected to the primary connection pipe and / or the secondary connection pipe. The secondary refrigerant refrigeration cycle apparatus according to the fourth aspect of the present invention, wherein the secondary refrigerant inflow pipe is connected to a plurality of secondary refrigerant inflow pipes.

【0030】第6の本発明(請求項6に対応)は、前記
冷媒細分化手段が、前記熱交換槽に配置され、多数の細
孔が設けられた板状体であることを特徴とする第4の本
発明に記載の二次冷媒冷凍サイクル装置である。
A sixth aspect of the present invention (corresponding to claim 6) is characterized in that the refrigerant subdivision means is a plate-like body provided in the heat exchange tank and provided with a large number of pores. It is a secondary refrigerant refrigeration cycle device according to a fourth aspect of the present invention.

【0031】第7の本発明(請求項7に対応)は、前記
熱交換槽が、前記二次冷媒を外部に流出させるための二
次冷媒流出管と、前記二次冷媒流出管に流入する直前の
前記二次冷媒の断面積を拡大する二次冷媒断面積拡大手
段とを有することを特徴とする第1から第6のいずれか
の本発明に記載の二次冷媒冷凍サイクル装置である。
According to a seventh aspect of the present invention (corresponding to claim 7), the heat exchange tank allows the secondary refrigerant to flow out to the outside and a secondary refrigerant outflow pipe to flow into the secondary refrigerant outflow pipe. The secondary refrigerant refrigeration cycle apparatus according to any one of the first to sixth aspects of the present invention, further comprising a secondary refrigerant cross-sectional area enlarging means for enlarging the cross-sectional area of the secondary refrigerant immediately before.

【0032】第8の本発明(請求項8に対応)は、前記
熱交換槽が、前記一次冷媒を外部に流出させるための一
次冷媒流出管を少なくとも複数本有し、前記複数本の一
次冷媒流出管のうちの少なくとも一本の先端が、前記熱
交換槽内の前記二次冷媒液面以上かつ前記一次冷媒液面
以下となる位置に設けられていることを特徴とする第1
から第7のいずれかの本発明に記載の二次冷媒冷凍サイ
クル装置である。
According to an eighth aspect of the present invention (corresponding to claim 8), the heat exchange tank has at least a plurality of primary refrigerant outflow pipes for allowing the primary refrigerant to flow to the outside. At least one end of the outflow pipe is provided at a position that is equal to or higher than the secondary refrigerant liquid level and equal to or lower than the primary refrigerant liquid level in the heat exchange tank.
To the seventh aspect of the present invention.

【0033】第9の本発明(請求項9に対応)は、前記
熱交換槽が、前記二次冷媒が前記一次冷媒流出管に吸入
されるのを防止する二次冷媒吸込防止手段を有すること
を特徴とする第8の本発明に記載の二次冷媒冷凍サイク
ル装置である。
According to a ninth aspect of the present invention (corresponding to claim 9), the heat exchange tank has a secondary refrigerant suction preventing means for preventing the secondary refrigerant from being sucked into the primary refrigerant outlet pipe. An eighth aspect of the present invention is the secondary refrigerant refrigeration cycle apparatus according to the present invention.

【0034】第10の本発明(請求項10に対応)は、
前記二次冷媒吸込防止手段として、少なくとも、前記一
次冷媒流出管部の下方に開口部の異なる少なくとも二枚
の平板を備えたことを特徴とする第9の本発明に記載の
二次冷媒冷凍サイクル装置である。
According to a tenth aspect of the present invention (corresponding to claim 10),
The secondary refrigerant refrigeration cycle according to a ninth aspect of the present invention, wherein at least two flat plates having different openings are provided below the primary refrigerant outflow pipe portion as the secondary refrigerant suction prevention means. Device.

【0035】第11の本発明(請求項11に対応)は、
前記二次冷媒吸入防止手段が、前記一次冷媒流出管の先
端部に設けられたワイヤーメッシュであることを特徴と
する第9の本発明に記載の二次冷媒冷凍サイクル装置で
ある。
The eleventh invention (corresponding to claim 11) provides:
The secondary refrigerant refrigeration cycle apparatus according to the ninth aspect of the present invention, wherein the secondary refrigerant suction prevention means is a wire mesh provided at a distal end of the primary refrigerant outflow pipe.

【0036】第12の本発明(請求項12に対応)は、
前記二次冷媒流入管が、前記熱交換槽内の前記一次冷媒
および/または前記二次冷媒の液面の近傍まで前記熱交
換槽内に挿入されていることを特徴とする第5から第1
1のいずれかの本発明に記載の二次冷媒冷凍サイクル装
置である。
The twelfth invention (corresponding to claim 12) provides:
The fifth to the first, wherein the secondary refrigerant inflow pipe is inserted into the heat exchange tank up to near the liquid level of the primary refrigerant and / or the secondary refrigerant in the heat exchange tank.
A secondary refrigerant refrigeration cycle apparatus according to any one of the first to fifth aspects of the present invention.

【0037】第13の本発明(請求項13に対応)は、
前記熱交換槽内において、前記二次冷媒流入管の先端部
と、前記一次冷媒流出管の先端部との間に、前記二次冷
媒が前記一次冷媒流出管に吸入されるのを防止する第二
の二次冷媒吸入防止手段が配置されていることを特徴と
する第7から第12のいずれかの本発明に記載の二次冷
媒冷凍サイクル装置である。
According to a thirteenth aspect of the present invention (corresponding to claim 13),
In the heat exchange tank, between the distal end of the secondary refrigerant inflow pipe and the distal end of the primary refrigerant outflow pipe, a second for preventing the secondary refrigerant from being sucked into the primary refrigerant outflow pipe. The secondary refrigerant refrigeration cycle apparatus according to any one of the seventh to twelfth aspects of the present invention, wherein a second secondary refrigerant suction preventing means is disposed.

【0038】第14の本発明(請求項14に対応)は、
前記第二の二次冷媒吸入防止手段が平板であることを特
徴とする第13の本発明に記載の二次冷媒冷凍サイクル
装置である。
The fourteenth invention (corresponding to claim 14) is:
The secondary refrigerant refrigeration cycle apparatus according to the thirteenth aspect of the present invention, wherein the second secondary refrigerant suction prevention means is a flat plate.

【0039】[0039]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0040】(第一の実施の形態)本発明における二次
冷媒冷凍サイクル装置の一例として、一次冷媒にHC系
自然冷媒のプロパンを、二次冷媒に清水を使用した、冷
房専用の二次冷媒空調システムのシステム構成を図1に
示す。
(First Embodiment) As an example of the secondary refrigerant refrigeration cycle apparatus of the present invention, a secondary refrigerant exclusively used for cooling, using propane of HC natural refrigerant as the primary refrigerant and fresh water as the secondary refrigerant. FIG. 1 shows a system configuration of the air conditioning system.

【0041】本システムは一次側冷凍サイクルと二次側
熱搬送サイクルから構成されており、一次側冷凍サイク
ルは圧縮機1、第一の熱交換器(以下、室外熱交換器と
いう)2、絞り装置(以下、膨張弁という)3、熱交換
槽4、オイルセパレータ5、アキュムレータ6等から成
り、それぞれが一次側接続配管7で接続され、一次冷媒
および冷凍機油が封入されている。
This system comprises a primary refrigeration cycle and a secondary heat transfer cycle. The primary refrigeration cycle includes a compressor 1, a first heat exchanger (hereinafter referred to as an outdoor heat exchanger) 2, a throttle. It comprises an apparatus (hereinafter referred to as an expansion valve) 3, a heat exchange tank 4, an oil separator 5, an accumulator 6, etc., each of which is connected by a primary connection pipe 7, and in which a primary refrigerant and refrigerating machine oil are sealed.

【0042】二次側熱搬送サイクルは、第二の熱交換器
(以下、室内熱交換器という)8、循環ポンプ9、熱交
換槽4のそれぞれが二次側接続配管10で接続され、二
次冷媒が封入されている。
In the secondary heat transfer cycle, a second heat exchanger (hereinafter referred to as an indoor heat exchanger) 8, a circulation pump 9, and a heat exchange tank 4 are connected by a secondary connection pipe 10, The next refrigerant is enclosed.

【0043】図1において、太線は一次冷媒の流れを、
細線は二次冷媒の流れを示しており、一次側冷凍サイク
ルと二次側熱搬送サイクルの一部は室外機の中にパッケ
ージングされ、室内熱交換器8は室内機の中にパッケー
ジングされ、室外機と室内機は二次側接続配管10およ
び信号線(図示せず)等で接続されている。
In FIG. 1, the thick line indicates the flow of the primary refrigerant,
The thin line shows the flow of the secondary refrigerant, and a part of the primary refrigeration cycle and the secondary heat transfer cycle is packaged in the outdoor unit, and the indoor heat exchanger 8 is packaged in the indoor unit. The outdoor unit and the indoor unit are connected by a secondary connection pipe 10 and a signal line (not shown).

【0044】オイルセパレータ5は圧縮機1から吐出さ
れた冷凍機油を再び圧縮機1の吸入管へ戻す返油管を備
えている。
The oil separator 5 has an oil return pipe for returning the refrigerating machine oil discharged from the compressor 1 to the suction pipe of the compressor 1 again.

【0045】一次冷媒と二次冷媒は互いに溶解しにく
く、一次冷媒の密度はガス状態・液状態共に、二次冷媒
の液状態の密度より低いために、熱交換槽4の中で混合
しても短時間で一次冷媒が上部に、二次冷媒が下部に、
互いに分離する性質を持っている。
Since the primary refrigerant and the secondary refrigerant are hardly dissolved in each other, and the density of the primary refrigerant is lower than the density of the liquid state of the secondary refrigerant in both the gas state and the liquid state, they are mixed in the heat exchange tank 4. In a short time, the primary refrigerant is at the top, the secondary refrigerant is at the bottom,
It has the property of being separated from each other.

【0046】一次側冷凍サイクルの運転は、圧縮機1、
オイルセパレータ5、室外熱交換器2(凝縮器として作
用する)、膨張弁3、熱交換槽4(蒸発器として作用す
る)、アキュムレータ6、圧縮機1の順でそれぞれ一次
側接続配管7を介して一次冷媒が流れる。
The operation of the primary refrigeration cycle is performed by the compressor 1,
The oil separator 5, the outdoor heat exchanger 2 (acting as a condenser), the expansion valve 3, the heat exchange tank 4 (acting as an evaporator), the accumulator 6, and the compressor 1 are arranged in this order via the primary connection pipe 7. And the primary refrigerant flows.

【0047】二次側熱搬送サイクルの運転は、熱交換槽
4、室内熱交換器8、循環ポンプ9、熱交換槽4の順で
それぞれ二次側接続配管10を介して二次冷媒が流れ
る。
In the operation of the secondary heat transfer cycle, the secondary refrigerant flows through the secondary connection pipe 10 in the order of the heat exchange tank 4, the indoor heat exchanger 8, the circulation pump 9, and the heat exchange tank 4. .

【0048】一次冷媒は圧縮機1で圧縮され、室外熱交
換器2で室外負荷である室外空気と熱交換を行って熱を
放出して凝縮し、膨張弁3で減圧されて、熱交換槽4で
一次冷媒と熱交換を行って二次冷媒から熱を奪って蒸発
し、圧縮機1へ戻る。
The primary refrigerant is compressed by the compressor 1, exchanges heat with outdoor air, which is an outdoor load, in the outdoor heat exchanger 2, releases heat and condenses, and is decompressed by the expansion valve 3. At 4, heat exchange is performed with the primary refrigerant to remove heat from the secondary refrigerant, evaporate, and return to the compressor 1.

【0049】二次冷媒は循環ポンプ9によって循環され
ながら、熱交換槽4で一次冷媒へ熱を奪われて冷却さ
れ、室内熱交換器8で室内負荷である室内空気から熱を
奪って加熱され、再び熱交換槽4へ戻る。
The secondary refrigerant is cooled by being deprived of heat by the primary refrigerant in the heat exchange tank 4 while being circulated by the circulation pump 9, and is heated by the indoor heat exchanger 8 by depriving the indoor load which is an indoor load of heat. Then, the process returns to the heat exchange tank 4 again.

【0050】図2に本発明の実施の形態1における熱交
換槽4の構成を示す。
FIG. 2 shows a configuration of the heat exchange tank 4 according to Embodiment 1 of the present invention.

【0051】熱交換槽4は円筒型容器であって、一次冷
媒の流れを太い矢印で、二次冷媒の流れを細い矢印で示
している。熱交換槽4は一次冷媒流入分岐部11、二次
冷媒流入分岐部12を備え、熱交換槽4内へ流入するそ
れぞれの冷媒配管は例えば6本に分岐される。
The heat exchange tank 4 is a cylindrical container, and the flow of the primary refrigerant is indicated by a thick arrow, and the flow of the secondary refrigerant is indicated by a thin arrow. The heat exchange tank 4 includes a primary refrigerant inflow branch portion 11 and a secondary refrigerant inflow branch portion 12, and each refrigerant pipe flowing into the heat exchange tank 4 is branched into, for example, six pipes.

【0052】6分岐された一次冷媒、二次冷媒はそれぞ
れ、6本の一次冷媒流入管13、6本の二次冷媒流入管
14から熱交換槽4に流入し、それぞれ一次冷媒流出管
15、二次冷媒流出管16から流出する。
The six-branched primary refrigerant and the secondary refrigerant flow into the heat exchange tank 4 from the six primary refrigerant inflow pipes 13 and the six secondary refrigerant inflow pipes 14, respectively. It flows out from the secondary refrigerant outflow pipe 16.

【0053】熱交換槽4内には一次冷媒を複数の流束に
細分化させる手段としての一次冷媒分散板17、二次冷
媒流出部近傍の断面積を広げる手段として、一次冷媒吸
込防止板18、第一の二次冷媒吸込防止手段として二次
冷媒吸込防止板19aおよび19b、熱交換槽4内の充
填物として金属多孔質体20が設置されている。その金
属多孔質体20の孔径は、例えば3mm程度である。
In the heat exchange tank 4, a primary refrigerant dispersing plate 17 as a means for subdividing the primary refrigerant into a plurality of fluxes, and a primary refrigerant suction preventing plate 18 as a means for expanding the sectional area near the secondary refrigerant outlet. Further, secondary refrigerant suction prevention plates 19a and 19b are provided as first secondary refrigerant suction prevention means, and a metal porous body 20 is provided as a filler in the heat exchange tank 4. The pore diameter of the porous metal body 20 is, for example, about 3 mm.

【0054】このように、一次冷媒および二次冷媒を複
数の流束に細分化して熱交換槽4の金属多孔質体20の
部位に流入させることで一次冷媒と二次冷媒の互いの混
合を促し、接触面積を増大させることで熱交換を促す効
果がある。
As described above, the primary refrigerant and the secondary refrigerant are subdivided into a plurality of fluxes and flow into the portion of the metal porous body 20 of the heat exchange tank 4 to mix the primary refrigerant and the secondary refrigerant with each other. This has the effect of promoting heat exchange by increasing the contact area.

【0055】また、金属多孔質体20は金属に多くの細
孔が開けられたもので、容積に対する比表面積は500
2/m3以上であり、一般的な間接熱交換方式で用いら
れるプレート式熱交換器と同等以上の比表面積を確保し
ている。
The metal porous body 20 has many pores formed in the metal, and has a specific surface area of 500 per volume.
m 2 / m 3 or more, and secures a specific surface area equal to or more than that of a plate heat exchanger used in a general indirect heat exchange method.

【0056】このことにより、プレート式熱交換器と外
形体積および/または容積を同等以下としながら、熱交
換性能をさらに向上させることが出来る。
As a result, the heat exchange performance can be further improved while keeping the outer volume and / or volume equal to or less than that of the plate heat exchanger.

【0057】図3aに、熱交換槽4内の一次冷媒を複数
の流束に細分化させる手段としての一次冷媒分散板17
と、二次冷媒流出部近傍の断面積を広げる手段としての
一次冷媒吸込防止板18の平面図を示す。
FIG. 3A shows a primary refrigerant dispersion plate 17 as a means for subdividing the primary refrigerant in the heat exchange tank 4 into a plurality of fluxes.
FIG. 4 shows a plan view of a primary refrigerant suction prevention plate 18 as a means for expanding a cross-sectional area near a secondary refrigerant outflow portion.

【0058】一次冷媒分散板17は、中心に円筒型の一
次冷媒吸込防止板18が設置されるための孔の開いたド
ーナッツ状の円盤で、表面に直径約1mmの細孔が多数
開いたものである。
The primary refrigerant dispersing plate 17 is a donut-shaped disk having a hole for installing a cylindrical primary refrigerant suction preventing plate 18 at the center thereof and having a large number of pores having a diameter of about 1 mm on its surface. It is.

【0059】一次冷媒吸込防止板18は円筒型の仕切板
であり、一次冷媒分散板17の中央部の孔に差し込まれ
るものである。
The primary refrigerant suction prevention plate 18 is a cylindrical partition plate, which is inserted into a hole at the center of the primary refrigerant distribution plate 17.

【0060】これら一次冷媒分散板17および一次冷媒
吸込防止板18は、図2における熱交換槽4の底面部に
設置されるものである。
The primary refrigerant dispersion plate 17 and the primary refrigerant suction prevention plate 18 are installed on the bottom of the heat exchange tank 4 in FIG.

【0061】図3bに、一次冷媒分散板17および一次
冷媒吸込防止板18を熱交換槽4の底面部に設置した概
略図を示す。一次冷媒分散板17は熱交換槽4内部の底
から一定の隙間を設けて設置されており、中心に、円筒
状の一次冷媒吸込防止板18がはめ込まれている。6本
の一次冷媒流入管13は熱交換槽4の底から一次冷媒吸
込防止板18の外側に環状に均等に接続されており、二
次冷媒流出管16は一次冷媒吸込防止板18の内部とな
る熱交換槽4の底面の実質上中心に接続されている。
FIG. 3B is a schematic view in which the primary refrigerant dispersion plate 17 and the primary refrigerant suction prevention plate 18 are installed on the bottom of the heat exchange tank 4. The primary refrigerant dispersion plate 17 is provided with a certain gap from the bottom inside the heat exchange tank 4, and a cylindrical primary refrigerant suction prevention plate 18 is fitted in the center. The six primary refrigerant inflow pipes 13 are uniformly connected annularly from the bottom of the heat exchange tank 4 to the outside of the primary refrigerant suction prevention plate 18, and the secondary refrigerant outflow pipes 16 are connected to the inside of the primary refrigerant suction prevention plate 18. The heat exchange tank 4 is connected to substantially the center of the bottom surface.

【0062】第一の二次冷媒吸込防止手段として、図4
aに二次冷媒吸込防止板19aを、図4bに二次冷媒吸
込防止板19bのそれぞれの平面図を示す。
As the first secondary refrigerant suction prevention means, FIG.
FIG. 4A is a plan view of the secondary refrigerant suction prevention plate 19a, and FIG. 4B is a plan view of the secondary refrigerant suction prevention plate 19b.

【0063】二次冷媒吸込防止板19aは、熱交換槽4
の内径よりも小さな直径の円盤であり、熱交換槽4の円
筒軸と中心を実質上一致させて、円筒軸と垂直の方向に
設置されている。
The secondary refrigerant suction prevention plate 19a is connected to the heat exchange tank 4
Is a disk having a diameter smaller than the inner diameter of the heat exchange tank 4 and is set in a direction perpendicular to the cylindrical axis so that the center substantially coincides with the cylindrical axis of the heat exchange tank 4.

【0064】二次冷媒吸込防止板19bの外径は、熱交
換槽4の内径と同等の円盤であるが、その中心には二次
冷媒吸込防止板19aの直径よりも小さな直径の孔が開
いている。
The outer diameter of the secondary refrigerant suction preventing plate 19b is a disk equivalent to the inner diameter of the heat exchange tank 4, but a hole having a diameter smaller than the diameter of the secondary refrigerant suction preventing plate 19a is formed at the center thereof. ing.

【0065】図4cに、二次冷媒吸込防止板19aおよ
び19bを熱交換槽4の上面部に設置した概略図を示
す。二次冷媒吸込防止板19aおよび19bは、中心を
熱交換槽4の中心軸と実質上一致させて固定されてお
り、さらにいうと、一次冷媒流出管15より下方かつ、
熱交換槽4内の液状態の一次冷媒および二次冷媒の液面
よりも上方となる位置に設置される。一次冷媒流出管1
5は、熱交換槽4の上部中心部に接続されている。ま
た、6本の二次冷媒流入管14は、熱交換槽4上部より
熱交換槽4内部へ差し込まれ、その先端は二次冷媒吸込
防止板19bよりも下方に位置している。
FIG. 4C is a schematic diagram showing the secondary refrigerant suction prevention plates 19a and 19b installed on the upper surface of the heat exchange tank 4. The secondary refrigerant suction prevention plates 19a and 19b are fixed with their centers substantially aligned with the central axis of the heat exchange tank 4, and more specifically, below the primary refrigerant outflow pipe 15 and
The liquid refrigerant in the heat exchange tank 4 is installed at a position above the liquid surface of the primary refrigerant and the secondary refrigerant. Primary refrigerant outflow pipe 1
5 is connected to the upper central part of the heat exchange tank 4. The six secondary refrigerant inflow pipes 14 are inserted into the heat exchange tank 4 from the upper part of the heat exchange tank 4, and the tips thereof are located below the secondary refrigerant suction prevention plate 19b.

【0066】二次冷媒吸込防止板19aおよび19bと
6本の二次冷媒流入管14が干渉する部分では、二次冷
媒吸込防止板19aおよび19bに孔が開いており、そ
の孔の部分を二次冷媒流入管14が貫通する(図示せ
ず)。
In the portion where the secondary refrigerant suction preventing plates 19a and 19b interfere with the six secondary refrigerant inflow pipes 14, holes are formed in the secondary refrigerant suction preventing plates 19a and 19b. The next refrigerant inflow pipe 14 penetrates (not shown).

【0067】なお、6本の二次冷媒流入管14は、熱交
換槽4内の一次冷媒および二次冷媒の混合液の液面の前
後まで挿入されていることにより二次冷媒流入管14か
ら流入した二次冷媒が液面で飛び跳ねて一次冷媒流出管
15へ吸い込まれるの防止する効果がある。
The six secondary refrigerant inflow pipes 14 are inserted from the secondary refrigerant inflow pipe 14 to the front and rear of the liquid mixture of the primary refrigerant and the secondary refrigerant in the heat exchange tank 4. This has the effect of preventing the inflowing secondary refrigerant from jumping on the liquid surface and being sucked into the primary refrigerant outflow pipe 15.

【0068】これら熱交換槽4の構成により、一次冷媒
は、あらかじめ一次冷媒流入分岐部11で6本に分岐さ
れて気液二相状態で熱交換槽4最下部から流入し、さら
に、一次冷媒分散板17を経て多数の流束に細分されて
金属多孔質体20へ流入する(図3b・太線の矢印)。
With the configuration of the heat exchange tank 4, the primary refrigerant is branched into six at the primary refrigerant inflow / branch portion 11 and flows in the gas-liquid two-phase state from the lowermost part of the heat exchange tank 4. It is subdivided into a number of fluxes via the dispersion plate 17 and flows into the metal porous body 20 (FIG. 3b, thick arrow).

【0069】金属多孔質体20を下から上へ通過して二
次冷媒より熱を受け取り気液二相状態からガス状態へと
相変化した一次冷媒は、二次冷媒吸込防止板19bの中
央孔部を通過し、二次冷媒吸込防止板19aの外縁と熱
交換槽4の内壁の間を通過した後、一次冷媒流出管15
より流出する(図4c・太線の矢印)。
The primary refrigerant that has passed through the metal porous body 20 from below and received heat from the secondary refrigerant and has changed its phase from the gas-liquid two-phase state to the gas state is the central hole of the secondary refrigerant suction prevention plate 19b. After passing through the portion and passing between the outer edge of the secondary refrigerant suction prevention plate 19a and the inner wall of the heat exchange tank 4, the primary refrigerant outlet pipe 15
More outflow (FIG. 4c, bold arrow).

【0070】このとき、二次冷媒吸込防止板19aおよ
びbは互いに重なりあうことで、下方から跳ね上がる二
次冷媒の液滴が直線的に一次冷媒流出管15へ吸い込ま
れることが無いので、二次冷媒が一次冷媒流出管15よ
り流出するのを防止することができる。
At this time, since the secondary refrigerant suction prevention plates 19a and 19b overlap with each other, the secondary refrigerant droplets jumping from below will not be drawn straight into the primary refrigerant outflow pipe 15, so It is possible to prevent the refrigerant from flowing out of the primary refrigerant outflow pipe 15.

【0071】二次冷媒はあらかじめ二次冷媒流入分岐部
12で6本に分岐されて熱交換槽4最上部から差し込ま
れた二次冷媒流入管14により金属多孔質体20の上部
へ流入する(図4c・細線の矢印)。
The secondary refrigerant is branched into six at the secondary refrigerant inflow / branch portion 12 and flows into the upper portion of the metal porous body 20 through the secondary refrigerant inflow pipe 14 inserted from the top of the heat exchange tank 4 ( FIG. 4c, thin line arrow).

【0072】金属多孔質体20を上から下へ通過して一
次冷媒へ熱を奪われて冷却された二次冷媒は、一次冷媒
吸込防止板18の中央の孔を通り、二次冷媒流出管16
より流出する(図3b・細線の矢印)。
The secondary refrigerant, which has passed through the metal porous body 20 from the top to the bottom to be deprived of heat by the primary refrigerant and cooled, passes through the central hole of the primary refrigerant suction prevention plate 18 and passes through the secondary refrigerant outflow pipe. 16
More outflow (FIG. 3b, thin arrow).

【0073】このとき、円筒型の一次冷媒吸込防止板1
8を熱交換槽4底面部の二次冷媒流出管16の周囲に設
置することで、二次冷媒流出管16の流出部近傍の断面
積を拡げることと同等の効果が得られ、二次冷媒流出管
16の断面積が拡がるので、一次冷媒吸込防止板18近
傍の二次冷媒の流速は比較的遅くなる。一次冷媒吸込防
止板18近傍の一次冷媒は密度が低いことおよび、熱交
換により気化することにより、熱交換槽4上方への浮力
が二次冷媒と共に二次冷媒流出管16より吸い込まれる
力よりも上回るために、一次冷媒が二次冷媒流出管16
から流出しないようにすることができる。
At this time, the cylindrical primary refrigerant suction prevention plate 1
8 is provided around the secondary refrigerant outflow pipe 16 at the bottom of the heat exchange tank 4, an effect equivalent to increasing the cross-sectional area near the outflow portion of the secondary refrigerant outflow pipe 16 is obtained. Since the cross-sectional area of the outflow pipe 16 increases, the flow rate of the secondary refrigerant near the primary refrigerant suction prevention plate 18 becomes relatively slow. Since the primary refrigerant in the vicinity of the primary refrigerant suction prevention plate 18 has a low density and is vaporized by heat exchange, the buoyancy above the heat exchange tank 4 is higher than the force sucked from the secondary refrigerant outflow pipe 16 together with the secondary refrigerant. The primary refrigerant flows into the secondary refrigerant outflow pipe 16
Can be prevented from spilling.

【0074】以上示したように、熱交換槽4内において
は、一次冷媒は下方から上方へ、気液二相状態からガス
状態へ変化しながら流れ、二次冷媒は上方から下方へ流
れ、一次冷媒と二次冷媒は金属多孔質体20を通過し、
金属多孔質体20の大きな比表面積を利用して、互いに
大きな接触面積を利用して十分に熱交換を行い、一次冷
媒は熱交換槽4上方から、二次冷媒は熱交換槽4の下方
からそれぞれ分離して流出させることができる。
As described above, in the heat exchange tank 4, the primary refrigerant flows from below to above while changing from a gas-liquid two-phase state to a gas state, and the secondary refrigerant flows from above to below. The refrigerant and the secondary refrigerant pass through the porous metal body 20,
Utilizing the large specific surface area of the metal porous body 20 and sufficiently exchanging heat using the large contact area with each other, the primary refrigerant is from above the heat exchange tank 4 and the secondary refrigerant is from below the heat exchange tank 4. Each can be separated and drained.

【0075】なお、本実施の形態では、熱交換槽に設置
した金属多孔質体20は、一次冷媒と二次冷媒の流束を
細分化して互いの接触面積を増大させることが目的であ
り、比表面積が従来の間接二次冷媒方式の空調システム
におけるプレート式熱交換器の比表面積(500m2
3)と同等以上の比表面積をもつ物質であれば、プレ
ート式熱交換器を用いた間接方式の二次冷媒空調システ
ム以上の熱交換効率を確保する事が可能であり、金属多
孔質体20に限らず、スチールウール、パッキング(金
属充填物)等の物質でも構わないが、熱伝導性能の高い
金属等であることが望ましい。
In the present embodiment, the purpose of the porous metal body 20 provided in the heat exchange tank is to subdivide the flux of the primary refrigerant and the secondary refrigerant to increase the contact area between them. The specific surface area of a plate-type heat exchanger in a conventional indirect secondary refrigerant air conditioning system (500 m 2 /
m 3 ) If the material has a specific surface area equal to or greater than that of m 3 ), it is possible to secure heat exchange efficiency higher than that of the indirect-type secondary refrigerant air conditioning system using a plate-type heat exchanger. The material is not limited to 20, but may be a material such as steel wool, packing (metal filling), or the like, but is preferably a metal having high heat conduction performance.

【0076】パッキングとは、金属線を巻いてスプリン
グ状に成型したり、金網を円筒状に巻いた小さな金属片
で、例えば精留塔等の内部に充填されるものであり、比
表面積がきわめて大きいという特徴を備えている。
The packing is a small piece of metal formed by winding a metal wire into a spring or forming a wire net into a cylindrical shape. The small piece is filled in, for example, a rectification tower or the like, and has a very large specific surface area. It has the feature of being large.

【0077】また、本実施の形態では、一次冷媒を細分
化して多数の流束に分けるための手段として、一次冷媒
流入部分岐配管と、多数の穴の空いた分散板を用いた
が、一次冷媒を細分化することが出来れば、この方法に
限るものではなく、熱交換槽4への一次冷媒の流路をさ
らに分割して流入させたり、熱交換槽4底面に限らず、
底部側面等からも流入させる等の方法でも構わない。
In the present embodiment, the primary refrigerant is divided into a number of fluxes by means of the primary refrigerant, and the primary refrigerant inflow branch pipe and the multi-hole dispersion plate are used. If the refrigerant can be subdivided, the method is not limited to this method, and the flow path of the primary refrigerant into the heat exchange tank 4 may be further divided and flown, and not limited to the bottom surface of the heat exchange tank 4,
It may be a method such as flowing from the bottom side surface or the like.

【0078】また、本実施の形態では、二次冷媒を細分
化して多数の流束に分けるための手段として、二次冷媒
流入部分岐配管を用いたが、二次冷媒を細分化すること
が出来ればこの方法に限るものではなく、二次冷媒流入
管の先端から、シャワー状のノズルで二次冷媒を流入さ
せる等の方法でも構わない。
Further, in the present embodiment, the secondary refrigerant inflow branch pipe is used as means for subdividing the secondary refrigerant into a number of fluxes. However, the secondary refrigerant may be subdivided. If possible, the method is not limited to this method, and a method in which the secondary refrigerant flows in from the tip of the secondary refrigerant inflow pipe with a shower nozzle may be used.

【0079】また、本実施の形態では、一次冷媒流出管
から二次冷媒の流出を防ぐ手段として互いの開口部をず
らした二枚の二次冷媒吸込防止板を用いたが、この方法
に限るものではなく、一次冷媒流出管近傍にワイヤーメ
ッシュを設置して、水滴を補修する等の方法でも構わな
い。
Further, in the present embodiment, two secondary refrigerant suction preventing plates whose openings are shifted from each other are used as means for preventing the secondary refrigerant from flowing out from the primary refrigerant outflow pipe. However, the present invention is limited to this method. Instead, a method of installing a wire mesh near the primary refrigerant outflow pipe to repair water drops may be used.

【0080】(第二の実施の形態)本発明における別の
二次冷媒冷凍サイクル装置の一例として、一次冷媒にH
C系自然冷媒のプロパンを、二次冷媒に清水を使用し
た、冷暖兼用の二次冷媒空調システムのシステム構成を
図5に示す。
(Second Embodiment) As an example of another secondary refrigerant refrigeration cycle apparatus according to the present invention, the primary refrigerant is H
FIG. 5 shows a system configuration of a secondary refrigerant air conditioning system for both cooling and heating, using propane as a C-based natural refrigerant and fresh water as a secondary refrigerant.

【0081】本システムは一次側冷凍サイクルと二次側
熱搬送サイクルから構成されており、一次側冷凍サイク
ルは圧縮機1、第一の熱交換器(以下、室外熱交換器と
いう)2、絞り装置(以下、膨張弁という)3、熱交換
槽4、オイルセパレータ5、アキュムレータ6、第一の
四方弁21、第二の四方弁22、三方弁23、冷房時一
次冷媒流出管24、暖房時一次冷媒流出管25等から成
り、それぞれが一次側接続配管7で接続され、一次冷媒
および冷凍機油が封入されている。
This system comprises a primary side refrigeration cycle and a secondary side heat transfer cycle. The primary side refrigeration cycle includes a compressor 1, a first heat exchanger (hereinafter referred to as an outdoor heat exchanger) 2, a throttle. Device (hereinafter referred to as expansion valve) 3, heat exchange tank 4, oil separator 5, accumulator 6, first four-way valve 21, second four-way valve 22, three-way valve 23, primary refrigerant outflow pipe 24 for cooling, and heating for heating It comprises a primary refrigerant outflow pipe 25 and the like, each of which is connected by a primary side connection pipe 7 and in which a primary refrigerant and a refrigerating machine oil are sealed.

【0082】二次側熱搬送サイクルは、第二の熱交換器
(以下、室内熱交換器という)8、循環ポンプ9、熱交
換槽4のそれぞれが二次側接続配管10で接続され、二
次冷媒が封入されている。
In the secondary heat transfer cycle, a second heat exchanger (hereinafter referred to as an indoor heat exchanger) 8, a circulating pump 9, and a heat exchange tank 4 are connected by a secondary connection pipe 10, The next refrigerant is enclosed.

【0083】図5において、太線は暖房運転時の一次冷
媒の流れを、細線は二次冷媒の流れを示しており、一次
側冷凍サイクルと二次側熱搬送サイクルの一部は室外機
の中にパッケージングされ、室内熱交換器8は室内機の
中にパッケージングされ、室外機と室内機は二次側接続
配管10および信号線(図示せず)等で接続されてい
る。
In FIG. 5, the bold line shows the flow of the primary refrigerant during the heating operation, and the thin line shows the flow of the secondary refrigerant. A part of the primary refrigeration cycle and the secondary heat transfer cycle is inside the outdoor unit. The indoor heat exchanger 8 is packaged in an indoor unit, and the outdoor unit and the indoor unit are connected by a secondary connection pipe 10 and a signal line (not shown).

【0084】オイルセパレータ5は圧縮機1から吐出さ
れた冷凍機油を再び圧縮機1の吸入管へ戻す返油管を備
えている。
The oil separator 5 has an oil return pipe for returning the refrigerating machine oil discharged from the compressor 1 to the suction pipe of the compressor 1 again.

【0085】一次冷媒と二次冷媒は互いに溶解しにく
く、一次冷媒の密度はガス状態・液状態共に、二次冷媒
の液状態の密度より低いために、熱交換槽4の中で混合
しても短時間で一次冷媒が上部に、二次冷媒が下部に、
互いに分離する性質を持っている。
Since the primary refrigerant and the secondary refrigerant are hardly dissolved in each other, and the density of the primary refrigerant is lower than the density of the liquid state of the secondary refrigerant in both the gas state and the liquid state, they are mixed in the heat exchange tank 4. In a short time, the primary refrigerant is at the top, the secondary refrigerant is at the bottom,
It has the property of being separated from each other.

【0086】一次側冷凍サイクルの暖房運転時は、圧縮
機1、オイルセパレータ5、第一の四方弁21、第二の
四方弁22、熱交換槽4(凝縮器として作用する)、暖
房時一次冷媒流出管25、三方弁23、第二の四方弁2
2、膨張弁3、室外熱交換器2(蒸発器として作用す
る)、第一の四方弁21、アキュムレータ6、圧縮機1
の順でそれぞれ一次側接続配管7を介して一次冷媒が流
れる。
During the heating operation of the primary refrigeration cycle, the compressor 1, the oil separator 5, the first four-way valve 21, the second four-way valve 22, the heat exchange tank 4 (acting as a condenser), Refrigerant outlet pipe 25, three-way valve 23, second four-way valve 2
2, expansion valve 3, outdoor heat exchanger 2 (acting as an evaporator), first four-way valve 21, accumulator 6, compressor 1
In this order, the primary refrigerant flows through the primary connection pipe 7.

【0087】一次側冷凍サイクルの冷房運転時は、圧縮
機1、オイルセパレータ5、第一の四方弁21、室外熱
交換器2(凝縮器として作用する)、膨張弁3、第二の
四方弁22、熱交換槽4(蒸発器として作用する)、冷
房時一次冷媒流出管24、三方弁23、第二の四方弁2
2、第一の四方弁21、アキュムレータ6、圧縮機1の
順でそれぞれ一次側接続配管7を介して一次冷媒が流れ
る。
During the cooling operation of the primary refrigeration cycle, the compressor 1, the oil separator 5, the first four-way valve 21, the outdoor heat exchanger 2 (acting as a condenser), the expansion valve 3, and the second four-way valve 22, a heat exchange tank 4 (acting as an evaporator), a cooling primary refrigerant outflow pipe 24, a three-way valve 23, a second four-way valve 2
2. The primary refrigerant flows in the order of the first four-way valve 21, the accumulator 6, and the compressor 1 via the primary connection pipe 7, respectively.

【0088】二次側熱搬送サイクルの運転は、暖房運転
・冷房運転に関わらず、熱交換槽4、室内熱交換器8、
循環ポンプ9、熱交換槽4の順でそれぞれ二次側接続配
管10を介して二次冷媒が流れる。
The operation of the secondary heat transfer cycle is performed regardless of the heating operation or the cooling operation, regardless of the operation of the heat exchange tank 4, the indoor heat exchanger 8,
The secondary refrigerant flows through the secondary connection pipe 10 in the order of the circulation pump 9 and the heat exchange tank 4.

【0089】暖房運転時は、一次冷媒は圧縮機1で圧縮
され、熱交換槽4で一次冷媒と熱交換を行って二次冷媒
へ熱を渡して凝縮し、膨張弁3で減圧されて、室外熱交
換器2で室外負荷である室外空気と熱交換を行って熱を
受け取って蒸発し、圧縮機1へ戻る。
During the heating operation, the primary refrigerant is compressed by the compressor 1, exchanges heat with the primary refrigerant in the heat exchange tank 4, transfers heat to the secondary refrigerant, condenses, and is depressurized by the expansion valve 3. The outdoor heat exchanger 2 exchanges heat with outdoor air, which is an outdoor load, receives heat, evaporates, and returns to the compressor 1.

【0090】二次冷媒は循環ポンプ9によって循環され
ながら、熱交換槽4で一次冷媒から熱を受け取って加熱
され、室内熱交換器8で室内負荷である室内空気へ熱を
奪われて冷却され、再び熱交換槽4へ戻る。
While being circulated by the circulation pump 9, the secondary refrigerant receives heat from the primary refrigerant in the heat exchange tank 4 and is heated, and the indoor heat exchanger 8 removes heat to the indoor load, which is an indoor load, and is cooled. Then, the process returns to the heat exchange tank 4 again.

【0091】冷房運転時は、一次冷媒は圧縮機1で圧縮
され、室外熱交換器2で室外負荷である室外空気と熱交
換を行って熱を放出して凝縮し、膨張弁3で減圧され
て、熱交換槽4で一次冷媒と熱交換を行って二次冷媒か
ら熱を奪って蒸発し、圧縮機1へ戻る。
During the cooling operation, the primary refrigerant is compressed by the compressor 1, exchanges heat with the outdoor air as an outdoor load in the outdoor heat exchanger 2, releases heat, condenses, and is decompressed by the expansion valve 3. Then, heat exchange is performed with the primary refrigerant in the heat exchange tank 4 to remove heat from the secondary refrigerant, evaporate, and return to the compressor 1.

【0092】二次冷媒は循環ポンプ9によって循環され
ながら、熱交換槽4で一次冷媒へ熱を奪われて冷却さ
れ、室内熱交換器8で室内負荷である室内空気から熱を
奪って加熱され、再び熱交換槽4へ戻る。
While being circulated by the circulation pump 9, the secondary refrigerant is deprived of heat by the primary refrigerant in the heat exchange tank 4 and cooled, and is heated by the indoor heat exchanger 8 by depriving the indoor load which is an indoor load of heat. Then, the process returns to the heat exchange tank 4 again.

【0093】図6に本発明の実施の形態2における熱交
換槽4の構成を示す。
FIG. 6 shows a configuration of the heat exchange tank 4 according to the second embodiment of the present invention.

【0094】熱交換槽4は円筒型容器であって、暖房運
転時の一次冷媒の流れを太い矢印で、二次冷媒の流れを
細い矢印で示している。熱交換槽4は一次冷媒流入分岐
部11、二次冷媒流入分岐部12を備え、熱交換槽4内
へ流入するそれぞれの冷媒配管は例えば6本に分岐され
る。
The heat exchange tank 4 is a cylindrical container, and the flow of the primary refrigerant during the heating operation is indicated by a thick arrow, and the flow of the secondary refrigerant is indicated by a thin arrow. The heat exchange tank 4 includes a primary refrigerant inflow branch portion 11 and a secondary refrigerant inflow branch portion 12, and each refrigerant pipe flowing into the heat exchange tank 4 is branched into, for example, six pipes.

【0095】6分岐された一次冷媒、二次冷媒はそれぞ
れ、6本の一次冷媒流入管13、6本の二次冷媒流入管
14から熱交換槽4に流入し、それぞれ冷房時一次冷媒
流出管24(冷房時)または暖房時一次冷媒流出管25
(暖房時)、二次冷媒流出管16から流出する。
The six-branched primary refrigerant and the secondary refrigerant flow into the heat exchange tank 4 from the six primary refrigerant inflow pipes 13 and the six secondary refrigerant inflow pipes 14, respectively, and are respectively cooled during the cooling. 24 (for cooling) or primary refrigerant outlet pipe 25 for heating
During heating, the refrigerant flows out of the secondary refrigerant outflow pipe 16.

【0096】なお、冷房時一次冷媒流出管24は熱交換
槽4の最上部に接続されており、暖房時一次冷媒流出管
25はその先端が、暖房運転時の熱交換槽4内の二次冷
媒液面以上かつ一次冷媒液面以下となる部分に位置する
ように予め設定されている。熱交換槽4内には一次冷媒
を複数の流束に細分化させる手段としての一次冷媒分散
板17、二次冷媒流出部近傍の断面積を広げる手段とし
て、一次冷媒吸込防止板18、第一の二次冷媒吸込防止
手段として二次冷媒吸込防止板19aおよび19b、第
二の二次冷媒吸込防止手段として二次冷媒吸込防止板1
9c、熱交換槽4内の充填物として金属多孔質体20が
設置されている。
The cooling-purpose primary refrigerant outflow pipe 24 is connected to the uppermost part of the heat exchange tank 4, and the heating-purpose primary refrigerant outflow pipe 25 has a distal end connected to the secondary refrigerant in the heat exchange tank 4 during the heating operation. It is set in advance so as to be located at a portion that is equal to or higher than the refrigerant liquid level and equal to or lower than the primary refrigerant liquid level. In the heat exchange tank 4, a primary refrigerant dispersion plate 17 as a means for subdividing the primary refrigerant into a plurality of fluxes, a primary refrigerant suction prevention plate 18, a first refrigerant The secondary refrigerant suction prevention plates 19a and 19b as the secondary refrigerant suction prevention means, and the secondary refrigerant suction prevention plate 1 as the second secondary refrigerant suction prevention means
9c, a metal porous body 20 is provided as a filler in the heat exchange tank 4.

【0097】金属多孔質体20は金属に多くの細孔が開
けられたもので、容積に対する比表面積は500m2
3以上であり、一般的な間接熱交換方式で用いられる
プレート式熱交換器と同等以上の比表面積を確保してい
る。
The metal porous body 20 has many pores opened in the metal, and has a specific surface area of 500 m 2 / volume.
m 3 or more, which secures a specific surface area equal to or greater than that of a plate-type heat exchanger used in a general indirect heat exchange method.

【0098】このことにより、プレート式熱交換器と外
形体積および/または容積を同等以下としながら、熱交
換性能をさらに向上させることができる。
Thus, the heat exchange performance can be further improved while keeping the outer volume and / or the volume equal to or less than that of the plate heat exchanger.

【0099】一次冷媒分散板17および一次冷媒吸込防
止板18の構成は、実施の形態1における図3aおよび
図3bと同等である。
The structures of the primary refrigerant dispersion plate 17 and the primary refrigerant suction prevention plate 18 are the same as those of the first embodiment shown in FIGS. 3A and 3B.

【0100】また、第一の二次冷媒吸込防止板19aお
よびbの構成は、実施の形態1における図4a、図4b
および図4cと同等である。
Also, the structure of the first secondary refrigerant suction prevention plates 19a and 19b is the same as that of the first embodiment shown in FIGS.
And FIG. 4c.

【0101】また、第二の二次冷媒吸込防止板19cは
円筒型をしており、暖房時一次冷媒流出管25の周囲を
囲む形で設置され、二次冷媒流入管14から流入した二
次冷媒が暖房運転時に暖房時一次冷媒流出管25へ吸い
込まれるのを防止することができる。
Further, the second secondary refrigerant suction prevention plate 19c has a cylindrical shape and is installed so as to surround the primary refrigerant outflow pipe 25 at the time of heating. The refrigerant can be prevented from being sucked into the primary refrigerant outflow pipe 25 during the heating operation.

【0102】これら熱交換槽4の構成により、暖房運転
時は、一次冷媒は、あらかじめ一次冷媒流入分岐部11
で6本に分岐されてガス状態で熱交換槽4最下部から流
入し、さらに、一次冷媒分散板17を経て多数の流束に
細分されて金属多孔質体20へ流入する。
Due to the configuration of the heat exchange tank 4, during the heating operation, the primary refrigerant is supplied to the primary refrigerant inflow / branch 11 in advance.
Then, it is branched into six and flows in a gaseous state from the lowermost part of the heat exchange tank 4, further divided into a number of fluxes through the primary refrigerant dispersion plate 17 and flows into the metal porous body 20.

【0103】金属多孔質体20を下から上へ通過して二
次冷媒へ熱を与えてガス状態から液状態へと相変化した
一次冷媒は、二次冷媒よりも密度が小さく、互いに溶解
しない特徴があることから、相分離して液状態の二次冷
媒の上に液状態の一次冷媒が滞留する。本システムを安
定して運転することで、熱交換槽4内で液状態の一次冷
媒の滞留する部位は特定されるので、予め暖房時一次冷
媒流出管25の先端を液状態の一次冷媒の滞留する部位
に設定することで液状態の一次冷媒を選択的に暖房時一
次冷媒流出管25より流出させることができる。
The primary refrigerant, which has passed through the porous metal body 20 from below and applied heat to the secondary refrigerant to change the phase from the gas state to the liquid state, has a lower density than the secondary refrigerant and does not dissolve in each other. Because of the feature, the primary refrigerant in the liquid state stays on the secondary refrigerant in the liquid state after phase separation. By operating this system stably, the location of the primary refrigerant in the liquid state in the heat exchange tank 4 is specified. The primary refrigerant in the liquid state can be selectively discharged from the primary refrigerant outflow pipe 25 at the time of heating by setting the primary refrigerant at a portion where the primary refrigerant flows.

【0104】このとき、二次冷媒吸込防止板19cによ
り二次冷媒流入管14より流入した二次冷媒が熱交換槽
4上部に滞留した液状態の一次冷媒と混合されるのを防
がれるので、二次冷媒が暖房時一次冷媒流出管25から
流出しないようにすることができる。
At this time, the secondary refrigerant suction preventing plate 19c prevents the secondary refrigerant flowing from the secondary refrigerant inflow pipe 14 from being mixed with the liquid primary refrigerant retained in the upper part of the heat exchange tank 4. In addition, the secondary refrigerant can be prevented from flowing out of the primary refrigerant outflow pipe 25 during heating.

【0105】一方、二次冷媒は、あらかじめ二次冷媒流
入分岐部12で6本に分岐されて熱交換槽4最上部から
差し込まれた二次冷媒流入管14により金属多孔質体2
0の上部へ流入する。
On the other hand, the secondary refrigerant is branched into six at the secondary refrigerant inflow / branch section 12 in advance, and the secondary refrigerant inflow pipe 14 inserted from the top of the heat exchange tank 4 is used to form the metal porous body 2.
Flow into the top of 0.

【0106】金属多孔質体20を上から下へ通過して一
次冷媒より熱を受けて加熱された二次冷媒は、一次冷媒
吸込防止板18の中央の孔を通り、二次冷媒流出管16
より流出する。
The secondary refrigerant, which has passed through the metal porous body 20 from the top down and received heat from the primary refrigerant and has been heated, passes through the central hole of the primary refrigerant suction prevention plate 18 and passes through the secondary refrigerant outflow pipe 16.
More outflow.

【0107】このとき、円筒型の一次冷媒吸込防止板1
8を熱交換槽4底面部の二次冷媒流出管16の周囲に設
置することで、二次冷媒流出管の流出部近傍の断面積を
拡げることと同等の効果が得られ、二次冷媒流出管16
の断面積が拡がるので、一次冷媒吸込防止板18近傍の
二次冷媒の流速は比較的遅くなる。一次冷媒吸込防止板
18近傍の一次冷媒は密度が低いことより、熱交換槽4
上方への浮力が二次冷媒と共に二次冷媒流出管16より
吸い込まれる力よりも上回るために、一次冷媒が二次冷
媒流出管16から流出しないようにすることができる。
At this time, the cylindrical primary refrigerant suction prevention plate 1
8 is provided around the secondary refrigerant outflow pipe 16 at the bottom of the heat exchange tank 4, an effect equivalent to increasing the cross-sectional area in the vicinity of the outflow portion of the secondary refrigerant outflow pipe is obtained. Tube 16
, The flow rate of the secondary refrigerant near the primary refrigerant suction prevention plate 18 becomes relatively slow. Since the primary refrigerant near the primary refrigerant suction prevention plate 18 has a low density, the heat exchange tank 4
Since the upward buoyancy exceeds the force sucked from the secondary refrigerant outflow pipe 16 together with the secondary refrigerant, the primary refrigerant can be prevented from flowing out of the secondary refrigerant outflow pipe 16.

【0108】また、冷房運転時は、一次冷媒は、あらか
じめ一次冷媒流入分岐部11で6本に分岐されて気液二
相状態で熱交換槽4最下部から流入し、さらに、一次冷
媒分散板17を経て多数の流束に細分されて金属多孔質
体20へ流入する(図3b・太線の矢印)。
During the cooling operation, the primary refrigerant is branched into six at the primary refrigerant inflow / branch portion 11 and flows in the gas-liquid two-phase state from the bottom of the heat exchange tank 4. After passing through 17, the flux is subdivided into a number of fluxes and flows into the metal porous body 20 (FIG. 3 b, thick arrow).

【0109】金属多孔質体20を下から上へ通過して二
次冷媒より熱を受け取り気液二相状態からガス状態へと
相変化した一次冷媒は、二次冷媒吸込防止板19bの中
央孔部を通過し、二次冷媒吸込防止板19aの外縁と熱
交換槽4の内壁の間を通過した後、冷房時一次冷媒流出
管24より流出する(図4c・太線の矢印)。
The primary refrigerant that has passed through the metal porous body 20 from below and received heat from the secondary refrigerant and has changed its phase from the gas-liquid two-phase state to the gas state is the central hole of the secondary refrigerant suction prevention plate 19b. After passing through the portion and passing between the outer edge of the secondary refrigerant suction prevention plate 19a and the inner wall of the heat exchange tank 4, it flows out from the primary refrigerant outflow pipe 24 during cooling (FIG. 4c, thick line arrow).

【0110】このとき、二次冷媒吸込防止板19aおよ
びbは互いに重なりあうことで、下方から跳ね上がる二
次冷媒の液滴が直線的に冷房時一次冷媒流出管15へ吸
い込まれることが無いので、一次冷媒が一次冷媒流出管
15より流出するのを防止することができる。
At this time, since the secondary refrigerant suction preventing plates 19a and b overlap each other, the droplets of the secondary refrigerant that jump from below are not drawn straight into the primary refrigerant outflow pipe 15 during cooling. It is possible to prevent the primary refrigerant from flowing out of the primary refrigerant outflow pipe 15.

【0111】一方、二次冷媒は、あらかじめ二次冷媒流
入分岐部12で6本に分岐されて熱交換槽4最上部から
差し込まれた二次冷媒流入管14により金属多孔質体2
0の上部へ流入する。
On the other hand, the secondary refrigerant is branched into six at the secondary refrigerant inflow / branch portion 12 in advance, and the secondary refrigerant inflow pipe 14 inserted from the top of the heat exchange tank 4 inserts the metal porous body 2 into the metal refrigerant.
Flow into the top of 0.

【0112】金属多孔質体20を上から下へ通過して一
次冷媒へ熱を奪われて冷却された二次冷媒は、一次冷媒
吸込防止板18の中央の孔を通り、二次冷媒流出管16
より流出する。
The secondary refrigerant, which has passed through the metal porous body 20 from the top to the bottom to be deprived of heat by the primary refrigerant and cooled, passes through the central hole of the primary refrigerant suction prevention plate 18 and passes through the secondary refrigerant outflow pipe. 16
More outflow.

【0113】このとき、円筒型の一次冷媒吸込防止板1
8を熱交換槽4底面部の二次冷媒流出管16の周囲に設
置することで、二次冷媒流出管の流出部近傍の断面積を
拡げることと同等の効果が得られ、二次冷媒流出管16
の断面積が拡がるので、一次冷媒吸込防止板18近傍の
二次冷媒の流速は比較的遅くなる。一次冷媒吸込防止板
18近傍の一次冷媒は密度が低いことおよび、熱交換に
より気化することにより、熱交換槽4上方への浮力が二
次冷媒と共に二次冷媒流出管16より吸い込まれる力よ
りも上回るために、一次冷媒が二次冷媒流出管16から
流出しないようにすることができる。
At this time, the cylindrical primary refrigerant suction prevention plate 1
8 is provided around the secondary refrigerant outflow pipe 16 at the bottom of the heat exchange tank 4, an effect equivalent to increasing the cross-sectional area in the vicinity of the outlet of the secondary refrigerant outflow pipe is obtained, and the secondary refrigerant outflow occurs. Tube 16
, The flow rate of the secondary refrigerant near the primary refrigerant suction prevention plate 18 becomes relatively slow. Since the primary refrigerant in the vicinity of the primary refrigerant suction prevention plate 18 has a low density and is vaporized by heat exchange, the buoyancy above the heat exchange tank 4 is higher than the force sucked from the secondary refrigerant outflow pipe 16 together with the secondary refrigerant. As a result, the primary refrigerant can be prevented from flowing out of the secondary refrigerant outflow pipe 16.

【0114】以上、示したように、熱交換槽4内におい
ては、一次冷媒は下方から上方へ、冷房運転時は気液二
相状態からガス状態へ相変化しながら、また、暖房運転
時はガス状態から液状態へ変化しながらそれぞれ流れ、
二次冷媒は上方から下方へ流れ、一次冷媒と二次冷媒は
金属多孔質体20を通過し、金属多孔質体20の大きな
比表面積を利用して、互いに大きな接触面積を利用して
十分に熱交換を行い、一次冷媒は熱交換槽4上方から、
二次冷媒は熱交換槽4の下方からそれぞれ分離して流出
するようにできる。
As described above, in the heat exchange tank 4, the primary refrigerant changes from the lower side to the upper side, changes from the gas-liquid two-phase state to the gas state during the cooling operation, and changes during the heating operation. Each flows while changing from the gas state to the liquid state,
The secondary refrigerant flows downward from above, and the primary refrigerant and the secondary refrigerant pass through the porous metal body 20 and utilize the large specific surface area of the porous metal body 20 to sufficiently utilize the large contact area with each other. Heat exchange is performed, and the primary refrigerant is
The secondary refrigerant can flow out separately from below the heat exchange tank 4.

【0115】なお、本実施の形態では、熱交換槽4に設
置した金属多孔質体20は、一次冷媒と二次冷媒を細分
化して互いの接触面積を増大させることが目的であり、
比表面積が従来の間接二次冷媒方式の空調システムにお
けるプレート式熱交換器の比表面積(500m2/m3
と同等以上の比表面積をもつ物質であれば、プレート式
熱交換器を用いた間接方式の二次冷媒空調システム以上
の熱交換効率を確保する事が可能であり、金属多孔質体
に限らず、スチールウール、パッキングをはじめとする
物質でも構わないが、熱伝導性能の高い金属等であるこ
とが望ましい。
In the present embodiment, the purpose of the metal porous body 20 installed in the heat exchange tank 4 is to subdivide the primary refrigerant and the secondary refrigerant to increase the contact area between them.
The specific surface area is the specific surface area (500 m 2 / m 3 ) of the plate heat exchanger in the conventional indirect secondary refrigerant air conditioning system.
If the substance has a specific surface area equal to or greater than that of the indirect type secondary refrigerant air conditioning system using a plate heat exchanger, it is possible to secure heat exchange efficiency higher than that of a metal porous body. , Steel wool, packing, and other substances may be used, but it is preferable that the material be a metal having high heat conductivity.

【0116】また、本実施の形態では、一次冷媒を細分
化して多数の流束に分けるための手段として、一次冷媒
流入部分岐配管と、多数の孔の空いた一次冷媒分散板を
用いたが、一次冷媒を細分化することが出来れば、この
方法に限るものではなく、熱交換槽への一次冷媒の流路
をさらに分割して流入させたり、熱交換槽底面に限ら
ず、底部側面等からも流入させる等の方法でも構わな
い。
Further, in this embodiment, the primary refrigerant is divided into a number of fluxes by means of the primary refrigerant, and the primary refrigerant inlet branch pipe and the primary refrigerant dispersion plate having a large number of holes are used. If the primary refrigerant can be subdivided, the method is not limited to this method, and the flow path of the primary refrigerant into the heat exchange tank may be further divided and flown into the heat exchange tank. It is also possible to use a method of inflowing water from the inside.

【0117】また、本実施の形態では、二次冷媒を細分
化して多数の流束に分けるための手段として、二次冷媒
流入部分岐配管を用いたが、二次冷媒を細分化すること
が出来ればこの方法に限るものではなく、二次冷媒流出
入管の先端から、シャワー状のノズルで二次冷媒を流入
させる等の方法でも構わない。
Further, in the present embodiment, the secondary refrigerant inflow branch pipe is used as means for subdividing the secondary refrigerant into a number of fluxes. However, the secondary refrigerant may be subdivided. If possible, the method is not limited to this method, and a method in which the secondary refrigerant flows in from a tip of the secondary refrigerant inflow / outflow pipe with a shower nozzle may be used.

【0118】また、本実施の形態では、一次冷媒流出管
から二次冷媒の流出を防ぐ手段として開口部の異なる二
枚の二次冷媒吸込防止板を用いたが、この方法に限るも
のではなく、一次冷媒流出管近傍にワイヤーメッシュを
設置して、水滴を捕集するなどの方法でも構わない。
In this embodiment, two secondary refrigerant suction prevention plates having different openings are used as means for preventing the secondary refrigerant from flowing out of the primary refrigerant outflow pipe. However, the present invention is not limited to this method. Alternatively, a method in which a wire mesh is installed near the primary refrigerant outflow pipe to collect water droplets may be used.

【0119】また、本実施の形態では、一次側冷凍サイ
クルにおいて、冷房運転時・暖房運転時共に一次冷媒が
熱交換槽4下部から流入して熱交換槽4上部から流出す
るように、第二の四方弁22を用いて、一次冷媒の流路
を切り替えたが、四方弁に限るものではなく、複数のバ
ルブなどによって流路を切り替えてももちろん構わな
い。
Further, in the present embodiment, in the primary side refrigeration cycle, the secondary refrigerant flows from the lower part of the heat exchange tank 4 and flows out of the upper part of the heat exchange tank 4 during both the cooling operation and the heating operation. Although the flow path of the primary refrigerant is switched using the four-way valve 22, the flow path is not limited to the four-way valve, and the flow path may be switched by a plurality of valves or the like.

【0120】また、本実施の形態では、熱交換槽4にお
ける一次冷媒と二次冷媒との接触面積を増大させるため
に、金属多孔質体、パッキング(金属充填物)、または
ワイヤーメッシュを熱交換槽4に配置するとしたが、表
面に凹凸形状を有する物体を熱交換槽4に配置し、一次
冷媒および二次冷媒の進行方向を複雑にすることによっ
て、熱交換槽4における一次冷媒と二次冷媒との接触面
積を増大させてもよい。
In this embodiment, in order to increase the contact area between the primary refrigerant and the secondary refrigerant in the heat exchange tank 4, the metal porous body, the packing (metal filler), or the wire mesh is heat-exchanged. Although it is assumed that the primary refrigerant and the secondary refrigerant are arranged in the heat exchange tank 4 and the traveling directions of the primary refrigerant and the secondary refrigerant are complicated, the primary refrigerant and the secondary refrigerant in the heat exchange tank 4 are arranged. The contact area with the refrigerant may be increased.

【0121】以上述べたように、上記実施の形態では、
例えば、比表面積が500m2/m3以上である、金属多
孔質体、パッキング、ワイヤーメッシュまたは、表面に
凹凸形状を有する物体を熱交換槽4に配置することによ
り、熱交換槽4内における一次冷媒と二次冷媒の熱交換
が促進され、熱交換槽4の容量を大きくすることなく、
高効率な二次冷媒冷凍サイクル装置とすることが出来
る。
As described above, in the above embodiment,
For example, by arranging a metal porous body, a packing, a wire mesh, or an object having an uneven surface on the surface thereof having a specific surface area of 500 m 2 / m 3 or more in the heat exchange tank 4, The heat exchange between the refrigerant and the secondary refrigerant is promoted, and without increasing the capacity of the heat exchange tank 4,
A highly efficient secondary refrigerant refrigeration cycle device can be provided.

【0122】また、上記実施の形態では、一次冷媒およ
び二次冷媒の少なくとも一方を、互いに接触する前に複
数の流束に細分化させる手段を備えたことで、熱交換槽
4内における一次冷媒と二次冷媒の接触面積が増大して
熱交換が促進し、熱交換槽4の容量を大きくすることな
く、高効率な二次冷媒冷凍サイクル装置とすることが出
来る。
Further, in the above-described embodiment, since the means for subdividing at least one of the primary refrigerant and the secondary refrigerant into a plurality of fluxes before contacting each other is provided, the primary refrigerant in the heat exchange tank 4 is provided. The heat exchange is promoted by increasing the contact area of the secondary refrigerant and the secondary refrigerant, and a secondary refrigerant refrigeration cycle device with high efficiency can be provided without increasing the capacity of the heat exchange tank 4.

【0123】また、上記実施の形態では、一次冷媒およ
び二次冷媒を複数の流束に細分化させる手段として、熱
交換槽4に一次冷媒および二次冷媒のそれぞれが熱交換
槽4へ流入するための一次冷媒流入管および二次冷媒流
入管を設け、少なくとも一方は、複数の流路に分岐して
熱交換槽へ流入させることで、熱交換槽4内における一
次冷媒と二次冷媒の接触面積が増大して熱交換が促進
し、熱交換槽4の容量を大きくすることなく、高効率な
二次冷媒冷凍サイクル装置とすることが出来る。
In the above embodiment, each of the primary refrigerant and the secondary refrigerant flows into the heat exchange tank 4 as means for subdividing the primary refrigerant and the secondary refrigerant into a plurality of fluxes. A primary refrigerant inflow pipe and a secondary refrigerant inflow pipe are provided, at least one of which branches into a plurality of flow paths and flows into a heat exchange tank, whereby contact between the primary refrigerant and the secondary refrigerant in the heat exchange tank 4 is established. The area is increased, heat exchange is promoted, and a highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4.

【0124】また、上記実施の形態では、一次冷媒およ
び二次冷媒を複数の流束に細分化させる手段として、一
次冷媒および二次冷媒の少なくとも一方を、熱交換槽4
に流入した後に、多数の細孔の開いた平板を通過させる
ことで、熱交換槽4内における一次冷媒と二次冷媒の接
触面積が増大して熱交換が促進し、熱交換槽4の容量を
大きくすることなく、高効率な二次冷媒冷凍サイクル装
置とすることが出来る。
In the above embodiment, at least one of the primary refrigerant and the secondary refrigerant is supplied to the heat exchange tank 4 as means for subdividing the primary refrigerant and the secondary refrigerant into a plurality of fluxes.
After flowing into the heat exchange tank 4, the contact area between the primary refrigerant and the secondary refrigerant in the heat exchange tank 4 is increased and heat exchange is promoted, and the capacity of the heat exchange tank 4 is increased. , And a highly efficient secondary refrigerant refrigeration cycle device can be provided.

【0125】また、上記実施の形態では、熱交換槽4
に、二次冷媒流出管を備え、熱交換槽4に接続されてい
る二次冷媒流出部近傍の二次冷媒流出管の断面積を拡げ
たことで、一次冷媒と二次冷媒の混合・分離が促進し、
熱交換槽4の容量を大きくすることなく高効率な二次冷
媒冷凍サイクル装置とすることが出来る。二次冷媒断面
積拡大手段として、例えば熱交換槽内の底面部に設置さ
れ、二次冷媒流出管よりも直径の大きな円筒を用いるこ
とができる。二次冷媒流出部における断面積が広がるこ
とで、流出部端における二次冷媒流出速度が遅くなるの
で、一次冷媒を二次冷媒と共に吸い込みにくくなる。
In the above embodiment, the heat exchange tank 4
The secondary refrigerant outlet pipe near the secondary refrigerant outlet connected to the heat exchange tank 4 and having a larger cross-sectional area, thereby mixing and separating the primary refrigerant and the secondary refrigerant. Promotes,
A highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4. As the secondary refrigerant cross-sectional area enlarging means, for example, a cylinder installed at the bottom portion in the heat exchange tank and having a larger diameter than the secondary refrigerant outflow pipe can be used. Since the secondary refrigerant outflow speed at the end of the outflow portion is reduced by increasing the cross-sectional area at the secondary refrigerant outflow portion, it becomes difficult to suck the primary refrigerant together with the secondary refrigerant.

【0126】また、上記実施の形態では、熱交換槽4が
第一の一次冷媒流出管および/または第二の一次冷媒流
出管を備え、第一の一次冷媒流出管の先端が熱交換槽最
上部に接続され、第二の一次冷媒流出管の先端が熱交換
槽4内の二次冷媒液面以上かつ一次冷媒液面以下となる
位置に接続されたことで、一次冷媒と二次冷媒の混合・
分離が促進し、熱交換槽4の容量を大きくすることなく
高効率な二次冷媒冷凍サイクル装置とすることが出来
る。
Further, in the above embodiment, the heat exchange tank 4 has the first primary refrigerant outflow pipe and / or the second primary refrigerant outflow pipe, and the tip of the first primary refrigerant outflow pipe is the heat exchange tank. It is connected to the upper part, and since the tip of the second primary refrigerant outflow pipe is connected to a position in the heat exchange tank 4 that is equal to or higher than the secondary refrigerant liquid level and equal to or lower than the primary refrigerant liquid level, the primary refrigerant and the secondary refrigerant mixture·
Separation is promoted, and a high-efficiency secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4.

【0127】また、上記実施の形態では、熱交換槽4内
の、第一の一次冷媒流出管の先端と熱交換槽4内一次冷
媒液面の間に、第一の二次冷媒吸込防止手段を設けたこ
とで、一次冷媒と二次冷媒の混合・分離が促進し、熱交
換槽4の容量を大きくすることなく高効率な二次冷媒冷
凍サイクル装置とすることが出来る。
In the above embodiment, the first secondary refrigerant suction preventing means is provided between the end of the first primary refrigerant outflow pipe and the primary refrigerant liquid level in the heat exchange tank 4 in the heat exchange tank 4. Is provided, the mixing and separation of the primary refrigerant and the secondary refrigerant are promoted, and a highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4.

【0128】また、第一の二次冷媒吸込防止手段とし
て、少なくとも、一次冷媒流出管部近傍に開口部の異な
る少なくとも二枚の平板を用いたことで、一次冷媒と二
次冷媒の混合・分離が促進し、熱交換槽4の容量を大き
くすることなく高効率な二次冷媒冷凍サイクル装置とす
ることが出来る。
Further, at least two flat plates having different openings are used in the vicinity of the primary refrigerant outlet pipe as the first secondary refrigerant suction preventing means, so that the primary refrigerant and the secondary refrigerant can be mixed and separated. , And a highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4.

【0129】または、第一の二次冷媒吸込防止手段とし
て、少なくとも、一次冷媒流出管部近傍にワイヤーメッ
シュを用いることによっても、一次冷媒と二次冷媒の混
合・分離が促進し、熱交換槽4の容量を大きくすること
なく高効率な二次冷媒冷凍サイクル装置とすることが出
来る。
Alternatively, by using a wire mesh at least in the vicinity of the primary refrigerant outlet pipe as the first secondary refrigerant suction preventing means, the mixing and separation of the primary refrigerant and the secondary refrigerant is promoted, and the heat exchange tank is prevented. Thus, a highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the fourth refrigerant cycle.

【0130】また、二次冷媒流入管が、熱交換槽4内の
一次冷媒液面または二次冷媒液面のいずれかの近傍まで
熱交換槽4内に挿入されたことで、一次冷媒と二次冷媒
の混合・分離が促進し、熱交換槽4の容量を大きくする
ことなく高効率な二次冷媒冷凍サイクル装置とすること
が出来る。
Further, since the secondary refrigerant inflow pipe is inserted into the heat exchange tank 4 up to the vicinity of either the primary refrigerant liquid level or the secondary refrigerant liquid level in the heat exchange tank 4, the secondary refrigerant is connected with the primary refrigerant. Mixing / separation of the secondary refrigerant is promoted, and a secondary refrigerant refrigeration cycle device with high efficiency can be provided without increasing the capacity of the heat exchange tank 4.

【0131】また、二次冷媒流入管と第二の一次冷媒流
出管の間に、第二の二次冷媒吸込防止手段を設けたこと
で、一次冷媒と二次冷媒の混合・分離が促進し、熱交換
槽4の容量を大きくすることなく高効率な二次冷媒冷凍
サイクル装置とすることが出来る。
Further, the provision of the second secondary refrigerant suction preventing means between the secondary refrigerant inflow pipe and the second primary refrigerant outflow pipe promotes mixing and separation of the primary refrigerant and the secondary refrigerant. Thus, a highly efficient secondary refrigerant refrigeration cycle apparatus can be provided without increasing the capacity of the heat exchange tank 4.

【0132】その第二の二次冷媒吸込防止手段として、
二次冷媒流入管と第二の一次冷媒流出管の間に配置した
平板を用いることで、一次冷媒と二次冷媒の混合・分離
が促進し、熱交換槽4の容量を大きくすることなく高効
率な二次冷媒冷凍サイクル装置とすることが出来る。
As the second secondary refrigerant suction prevention means,
By using a flat plate disposed between the secondary refrigerant inflow pipe and the second primary refrigerant outflow pipe, the mixing and separation of the primary refrigerant and the secondary refrigerant are promoted, and the heat exchange tank 4 is increased without increasing the capacity. An efficient secondary refrigerant refrigeration cycle device can be provided.

【0133】[0133]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、一次冷媒と二次冷媒とが直接接触する面
積を増大させて、効率良く熱交換を行い、また、一次冷
媒と二次冷媒を確実に分離させる二次冷媒冷凍サイクル
装置を提供することができる。
As is apparent from the above description, the present invention increases the area where the primary refrigerant and the secondary refrigerant are in direct contact with each other to efficiently perform heat exchange, A secondary refrigerant refrigeration cycle device that reliably separates the refrigerant can be provided.

【図面の簡単な発明】BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の形態1における冷房専用の二次
冷媒冷凍サイクルの構成図
FIG. 1 is a configuration diagram of a secondary refrigerant refrigeration cycle dedicated to cooling in Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における冷房専用の二次
冷媒冷凍サイクルの熱交換槽の構成図
FIG. 2 is a configuration diagram of a heat exchange tank of a secondary refrigerant refrigeration cycle dedicated to cooling in Embodiment 1 of the present invention.

【図3】本発明の実施の形態1における二次冷媒冷凍サ
イクルの熱交換槽内の部品の構成図
FIG. 3 is a configuration diagram of components in a heat exchange tank of the secondary refrigerant refrigeration cycle according to Embodiment 1 of the present invention.

【図4】本発明の実施の形態1における二次冷媒冷凍サ
イクルの熱交換槽内の部品の構成図
FIG. 4 is a configuration diagram of components in a heat exchange tank of the secondary refrigerant refrigeration cycle according to Embodiment 1 of the present invention.

【図5】本発明の実施の形態2における冷房専用の二次
冷媒冷凍サイクルの構成図
FIG. 5 is a configuration diagram of a secondary refrigerant refrigeration cycle dedicated to cooling in Embodiment 2 of the present invention.

【図6】本発明の実施の形態2における冷房専用の二次
冷媒冷凍サイクルの熱交換槽の構成図
FIG. 6 is a configuration diagram of a heat exchange tank of a secondary refrigerant refrigeration cycle dedicated to cooling in Embodiment 2 of the present invention.

【図7】従来における二次冷媒冷凍サイクルの一事例に
おける構成図
FIG. 7 is a configuration diagram of an example of a conventional secondary refrigerant refrigeration cycle.

【図8】従来における二次冷媒冷凍サイクルの一事例に
おける熱交換槽における構成図
FIG. 8 is a configuration diagram of a heat exchange tank in an example of a conventional secondary refrigerant refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 第一の熱交換器(室外熱交換器) 3 絞り装置(膨張弁) 4 熱交換槽 5 オイルセパレータ 6 アキュムレータ 7 一次側接続配管 8 第二の熱交換器(室内熱交換器) 9 循環ポンプ 10 二次側接続配管 11 一次冷媒流入分岐部 12 二次冷媒流入分岐部 13 一次冷媒流入管 14 二次冷媒流入管 15 一次冷媒流出管 16 二次冷媒流出管 17 一次冷媒分散板 18 一次冷媒吸込防止板 19a、b、c 二次冷媒吸込防止板 20 金属多孔質体 21 第一の四方弁 22 第二の四方弁 23 三方弁 24 冷房時一次冷媒流出管 25 暖房時一次冷媒流出管 27 圧縮機 28 四方弁 29 第一の熱交換器(室外熱交換器) 30 絞り装置(膨張弁) 31 熱交換槽 32 一次側接続配管 33 第二の熱交換器(室内熱交換器) 34 循環ポンプ 35 二次側接続配管 36 仕切板 37 一次冷媒流入管 38 二次冷媒流入管 39 二次冷媒流出管 40 冷房時一次冷媒流出管 41 暖房時一次冷媒流出管 REFERENCE SIGNS LIST 1 compressor 2 first heat exchanger (outdoor heat exchanger) 3 expansion device (expansion valve) 4 heat exchange tank 5 oil separator 6 accumulator 7 primary connection pipe 8 second heat exchanger (indoor heat exchanger) Reference Signs List 9 circulation pump 10 secondary connection pipe 11 primary refrigerant inflow / branch part 12 secondary refrigerant inflow / branch part 13 primary refrigerant inflow pipe 14 secondary refrigerant inflow pipe 15 primary refrigerant outflow pipe 16 secondary refrigerant outflow pipe 17 primary refrigerant distribution plate 18 Primary refrigerant suction prevention plate 19a, b, c Secondary refrigerant suction prevention plate 20 Metal porous body 21 First four-way valve 22 Second four-way valve 23 Three-way valve 24 Primary refrigerant outflow pipe for cooling 25 Primary refrigerant outflow pipe for heating 27 Compressor 28 Four-way valve 29 First heat exchanger (outdoor heat exchanger) 30 Throttling device (expansion valve) 31 Heat exchange tank 32 Primary connection pipe 33 Second heat exchanger (Indoor heat exchanger) 34 Circulation Pump 35 secondary side connecting pipe 36 partition plate 37 primary refrigerant inlet pipe 38 secondary coolant inlet pipe 39 the secondary refrigerant outlet pipe 40 primary refrigerant outlet pipe 41 Heating during the primary refrigerant outlet pipe during cooling

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡座 典穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西脇 文俊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriho Okaza 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 一次冷媒を圧縮する圧縮機と、前記一次
冷媒と外部負荷との間で熱交換を行わせるための第一の
熱交換器と、前記一次冷媒を減圧膨張させる絞り装置
と、前記一次冷媒と二次冷媒とが流入し、それら一次冷
媒と二次冷媒とを直接接触させて熱交換を行わせるため
の熱交換槽と、前記圧縮機、前記第一の熱交換器、前記
絞り装置および前記熱交換槽を接続する一次側接続配管
とを少なくとも有する一次側冷凍サイクルと、 前記熱交換槽と、循環ポンプと、前記二次冷媒と内部負
荷との間で熱交換を行わせるための第二の熱交換器と、
前記熱交換槽、前記循環ポンプおよび前記第二の熱交換
器を接続する二次側接続配管とを有する二次側熱搬送サ
イクルとを備え、 前記熱交換槽には、表面に凹凸形状を有する、および/
または複数の孔を有する接触面積増大手段が配置されて
いることを特徴とする二次冷媒冷凍サイクル装置。
A compressor for compressing the primary refrigerant, a first heat exchanger for exchanging heat between the primary refrigerant and an external load, a throttle device for decompressing and expanding the primary refrigerant, The primary refrigerant and the secondary refrigerant flow in, a heat exchange tank for causing the primary refrigerant and the secondary refrigerant to directly contact and perform heat exchange, the compressor, the first heat exchanger, A primary-side refrigeration cycle having at least an expansion device and a primary-side connection pipe connecting the heat exchange tank; and causing heat exchange between the heat exchange tank, the circulation pump, the secondary refrigerant, and an internal load. A second heat exchanger for
A secondary heat transfer cycle having a secondary connection pipe connecting the heat exchange tank, the circulation pump and the second heat exchanger, and the heat exchange tank has an uneven shape on its surface. ,and/
Alternatively, a secondary refrigerant refrigeration cycle apparatus, wherein a contact area increasing means having a plurality of holes is arranged.
【請求項2】 前記接触面積増大手段は、金属多孔質
体、パッキング(金属充填物)、またはワイヤーメッシ
ュであることを特徴とする請求項1に記載の二次冷媒冷
凍サイクル装置。
2. The secondary refrigerant refrigeration cycle apparatus according to claim 1, wherein the contact area increasing means is a metal porous body, a packing (metal filling), or a wire mesh.
【請求項3】 前記熱交換槽の容積に対する、前記接触
面積増大手段の表面積の割合を示す比表面積は、500
2/m3以上であることを特徴とする請求項1または2
に記載の二次冷媒冷凍サイクル装置。
3. A specific surface area indicating a ratio of a surface area of the contact area increasing means to a volume of the heat exchange tank is 500.
3. The structure according to claim 1, wherein the ratio is at least m 2 / m 3.
2. The secondary refrigerant refrigeration cycle device according to item 1.
【請求項4】 前記一次冷媒および/または前記二次冷
媒を、複数の流束に細分化させて前記熱交換槽の内部に
流入させる冷媒細分化手段を備えたことを特徴とする請
求項1から3のいずれかに記載の二次冷媒冷凍サイクル
装置。
4. A refrigerant subdivision means for subdividing the primary refrigerant and / or the secondary refrigerant into a plurality of fluxes and flowing into the heat exchange tank. 4. The secondary refrigerant refrigeration cycle device according to any one of items 1 to 3.
【請求項5】 前記冷媒細分化手段は、前記一次側接続
配管と接続している複数の一次冷媒流入管、および/ま
たは前記二次側接続配管と接続している複数の二次冷媒
流入管であることを特徴とする請求項4に記載の二次冷
媒冷凍サイクル装置。
5. The plurality of primary refrigerant inflow pipes connected to the primary side connection pipe and / or the plurality of secondary refrigerant inflow pipes connected to the secondary side connection pipe. The secondary refrigerant refrigeration cycle apparatus according to claim 4, wherein:
【請求項6】 前記冷媒細分化手段は、前記熱交換槽に
配置され、多数の細孔が設けられた板状体であることを
特徴とする請求項4に記載の二次冷媒冷凍サイクル装
置。
6. The secondary refrigerant refrigeration cycle apparatus according to claim 4, wherein the refrigerant subdivision means is a plate-like body provided in the heat exchange tank and provided with a large number of pores. .
【請求項7】 前記熱交換槽は、前記二次冷媒を外部に
流出させるための二次冷媒流出管と、前記二次冷媒流出
管に流入する直前の前記二次冷媒の断面積を拡大する二
次冷媒断面積拡大手段とを有することを特徴とする請求
項1から6のいずれかに記載の二次冷媒冷凍サイクル装
置。
7. The heat exchange tank enlarges a cross-sectional area of the secondary refrigerant outflow pipe for allowing the secondary refrigerant to flow out, and a cross-sectional area of the secondary refrigerant immediately before flowing into the secondary refrigerant outflow pipe. The secondary refrigerant refrigeration cycle apparatus according to any one of claims 1 to 6, further comprising a secondary refrigerant cross-sectional area expanding means.
【請求項8】 前記熱交換槽は、前記一次冷媒を外部に
流出させるための一次冷媒流出管を少なくとも複数本有
し、 前記複数本の一次冷媒流出管のうちの少なくとも一本の
先端は、前記熱交換槽内の前記二次冷媒液面以上かつ前
記一次冷媒液面以下となる位置に設けられていることを
特徴とする請求項1から7のいずれかに記載の二次冷媒
冷凍サイクル装置。
8. The heat exchange tank has at least a plurality of primary refrigerant outflow pipes for allowing the primary refrigerant to flow out, and at least one of the plurality of primary refrigerant outflow pipes has a tip, The secondary refrigerant refrigeration cycle device according to any one of claims 1 to 7, wherein the secondary refrigerant refrigeration cycle device is provided at a position in the heat exchange tank that is equal to or higher than the secondary refrigerant liquid level and equal to or lower than the primary refrigerant liquid level. .
【請求項9】 前記熱交換槽は、前記二次冷媒が前記一
次冷媒流出管に吸入されるのを防止する二次冷媒吸込防
止手段を有することを特徴とする請求項8に記載の二次
冷媒冷凍サイクル装置。
9. The secondary heat exchanger according to claim 8, wherein the heat exchange tank has secondary refrigerant suction prevention means for preventing the secondary refrigerant from being sucked into the primary refrigerant outlet pipe. Refrigerant refrigeration cycle device.
【請求項10】 前記二次冷媒吸込防止手段として、少
なくとも、前記一次冷媒流出管部の下方に開口部の異な
る少なくとも二枚の平板を備えたことを特徴とする請求
項9に記載の二次冷媒冷凍サイクル装置。
10. The secondary refrigerant according to claim 9, wherein the secondary refrigerant suction prevention means includes at least two flat plates having different openings below the primary refrigerant outlet pipe. Refrigerant refrigeration cycle device.
【請求項11】 前記二次冷媒吸入防止手段は、前記一
次冷媒流出管の先端部に設けられたワイヤーメッシュで
あることを特徴とする請求項9に記載の二次冷媒冷凍サ
イクル装置。
11. The secondary refrigerant refrigeration cycle apparatus according to claim 9, wherein the secondary refrigerant suction prevention means is a wire mesh provided at a tip end of the primary refrigerant outflow pipe.
【請求項12】 前記二次冷媒流入管は、前記熱交換槽
内の前記一次冷媒および/または前記二次冷媒の液面の
近傍まで前記熱交換槽内に挿入されていることを特徴と
する請求項5から11のいずれかに記載の二次冷媒冷凍
サイクル装置。
12. The heat exchanger according to claim 1, wherein the secondary refrigerant inflow pipe is inserted into the heat exchange tank up to near a liquid level of the primary refrigerant and / or the secondary refrigerant in the heat exchange tank. The secondary refrigerant refrigeration cycle device according to claim 5.
【請求項13】 前記熱交換槽内において、前記二次冷
媒流入管の先端部と、前記一次冷媒流出管の先端部との
間に、前記二次冷媒が前記一次冷媒流出管に吸入される
のを防止する第二の二次冷媒吸入防止手段が配置されて
いることを特徴とする請求項7から12のいずれかに記
載の二次冷媒冷凍サイクル装置。
13. In the heat exchange tank, the secondary refrigerant is sucked into the primary refrigerant outflow pipe between a distal end of the secondary refrigerant inflow pipe and a distal end of the primary refrigerant outflow pipe. The secondary refrigerant refrigeration cycle apparatus according to any one of claims 7 to 12, further comprising a second secondary refrigerant suction preventing means for preventing the refrigerant from being drawn.
【請求項14】 前記第二の二次冷媒吸入防止手段は平
板であることを特徴とする請求項13に記載の二次冷媒
冷凍サイクル装置。
14. The secondary refrigerant refrigeration cycle apparatus according to claim 13, wherein said second secondary refrigerant suction prevention means is a flat plate.
JP2000080621A 2000-03-22 2000-03-22 Secondary refrigerant refrigerating cycle system Pending JP2001263836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080621A JP2001263836A (en) 2000-03-22 2000-03-22 Secondary refrigerant refrigerating cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080621A JP2001263836A (en) 2000-03-22 2000-03-22 Secondary refrigerant refrigerating cycle system

Publications (1)

Publication Number Publication Date
JP2001263836A true JP2001263836A (en) 2001-09-26

Family

ID=18597705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080621A Pending JP2001263836A (en) 2000-03-22 2000-03-22 Secondary refrigerant refrigerating cycle system

Country Status (1)

Country Link
JP (1) JP2001263836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444050A (en) * 1987-08-12 1989-02-16 Shinko Electric Ind Co Base for electronic component
JP2009008334A (en) * 2007-06-28 2009-01-15 Showa Tansan Co Ltd Heat transfer medium, and heat transfer device using the same
JP2015087051A (en) * 2013-10-30 2015-05-07 三菱重工業株式会社 Refrigerant system equipped with direct-contact heat exchanger
JP2017156083A (en) * 2017-06-09 2017-09-07 三菱重工業株式会社 Refrigerant system with direct contact heat exchanger
WO2018155028A1 (en) * 2017-02-21 2018-08-30 三菱重工サーマルシステムズ株式会社 Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444050A (en) * 1987-08-12 1989-02-16 Shinko Electric Ind Co Base for electronic component
JP2009008334A (en) * 2007-06-28 2009-01-15 Showa Tansan Co Ltd Heat transfer medium, and heat transfer device using the same
JP2015087051A (en) * 2013-10-30 2015-05-07 三菱重工業株式会社 Refrigerant system equipped with direct-contact heat exchanger
WO2018155028A1 (en) * 2017-02-21 2018-08-30 三菱重工サーマルシステムズ株式会社 Refrigerant system provided with direct contact heat exchanger, and control method of refrigerant system
JP2017156083A (en) * 2017-06-09 2017-09-07 三菱重工業株式会社 Refrigerant system with direct contact heat exchanger

Similar Documents

Publication Publication Date Title
JP4180801B2 (en) Refrigeration and air conditioning cycle equipment
JP4887213B2 (en) Refrigerant distributor and air conditioner
JP2007192447A (en) Evaporator
EP3208558B1 (en) Adsorber
JP2000249479A (en) Heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2006003022A (en) Refrigerating unit and intermediate pressure receiver
JPH10141820A (en) Plate type heat exchanger
JP2001263836A (en) Secondary refrigerant refrigerating cycle system
CN106104171A (en) Accumulator and refrigerating circulatory device
JP4249380B2 (en) Air conditioner
JP2003106576A (en) Ice heat storage air conditioning system
JP6656950B2 (en) Heat exchangers and air conditioners
JP2000205706A (en) Refrigerating device
JP2002071281A (en) Secondary refrigerant refrigeration cycling device
JP2013002790A (en) Refrigerating device
JP2002130963A (en) Intercooler and air conditioning device for co2 refrigerant vehicle
JP2001317884A (en) Heat exchanger
JP3891907B2 (en) Evaporator and refrigerator
JP2015068560A (en) Refrigeration cycle device user-side unit
JPH08178445A (en) Heat pump type air conditioner
JP2002372345A (en) Air conditioner
US20240175599A1 (en) Air conditioner and method for controlling an air conditioner
JPH10281572A (en) Secondary refrigerant freezer
CN220321464U (en) Heat exchange device, outdoor unit and air conditioner