JP4887213B2 - Refrigerant distributor and air conditioner - Google Patents

Refrigerant distributor and air conditioner Download PDF

Info

Publication number
JP4887213B2
JP4887213B2 JP2007133013A JP2007133013A JP4887213B2 JP 4887213 B2 JP4887213 B2 JP 4887213B2 JP 2007133013 A JP2007133013 A JP 2007133013A JP 2007133013 A JP2007133013 A JP 2007133013A JP 4887213 B2 JP4887213 B2 JP 4887213B2
Authority
JP
Japan
Prior art keywords
refrigerant
porous body
inlet
header
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007133013A
Other languages
Japanese (ja)
Other versions
JP2008286488A (en
Inventor
敦彦 横関
研作 小国
賢治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007133013A priority Critical patent/JP4887213B2/en
Publication of JP2008286488A publication Critical patent/JP2008286488A/en
Application granted granted Critical
Publication of JP4887213B2 publication Critical patent/JP4887213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、冷媒分配器に係り、主として空気調和機等で蒸発器として動作する熱交換器に冷媒を分配する冷媒分配器に好適なものである。   The present invention relates to a refrigerant distributor, and is suitable for a refrigerant distributor that distributes refrigerant to a heat exchanger that mainly operates as an evaporator in an air conditioner or the like.

空気調和機に用いられる蒸発器として動作する熱交換器の冷媒入口側には、冷媒通路を複数に分流するための冷媒分配器が使用される。   On the refrigerant inlet side of a heat exchanger that operates as an evaporator used in an air conditioner, a refrigerant distributor for diverting a plurality of refrigerant passages is used.

従来の冷媒分配器として、特開2002−22313号公報(特許文献1)に示されたものがある。この冷媒分配器は、長手方向に多数の冷媒管接続口を有した容器と、この容器の一端から反対側近傍まで挿入された流入管とから構成し、容器と流入管との間に冷媒を流通させることにより、冷媒の流速を増加させて気相と液相の混合状態を保ち、下部の冷媒管と上部の冷媒管での冷媒を均等に分流させることができるようにしたものである。   A conventional refrigerant distributor is disclosed in Japanese Patent Application Laid-Open No. 2002-22313 (Patent Document 1). This refrigerant distributor is composed of a container having a number of refrigerant pipe connection ports in the longitudinal direction and an inflow pipe inserted from one end of the container to the vicinity of the opposite side, and refrigerant is introduced between the container and the inflow pipe. By flowing, the flow rate of the refrigerant is increased to maintain the mixed state of the gas phase and the liquid phase, and the refrigerant in the lower refrigerant pipe and the upper refrigerant pipe can be evenly divided.

また、従来の別の冷媒分配器として、特開2000−356437号公報(特許文献2)に示されたものがある。この冷媒分配器は、容器状の均質流化部胴体と、この均質流化部胴体に冷媒を導く1つの入口管と、均質流化部胴体から分岐されて2つの蒸発器に冷媒を供給する2つの出口管と、均質流化部胴体内に配置され冷媒成分を均質化する焼結合金製整流板とを備えて構成されている。   Another conventional refrigerant distributor is disclosed in Japanese Unexamined Patent Publication No. 2000-356437 (Patent Document 2). This refrigerant distributor has a container-like homogeneous fluidizing section body, one inlet pipe for introducing the refrigerant to the homogeneous fluidizing section body, and branches from the uniform fluidizing section body to supply the refrigerant to two evaporators. Two outlet pipes and a rectifying plate made of a sintered alloy that is disposed in the body of the homogenized fluidizing section and homogenizes the refrigerant component are configured.

特開2002−22313号公報JP 2002-22313 A 特開2000−356437号公報JP 2000-356437 A

特許文献1の冷媒分配器において、容器の一端から反対側近傍まで挿入する流入管による大幅なコストアップを招くと共に、冷媒の流速を増加させることだけで冷媒を均等に分流させることは極めて難しい、という課題がある。特に、最近多く用いられるようになってきている冷媒循環量を制御させて運転を行う容量制御型の空気調和機においては、運転状態によって冷媒の流速が遅くなり、気液二相流が重力の影響を受けて、下部の分配管では液冷媒が多くなってしまう、という課題がある。   In the refrigerant distributor of Patent Document 1, it causes a significant cost increase due to the inflow pipe inserted from one end of the container to the vicinity of the opposite side, and it is extremely difficult to evenly distribute the refrigerant only by increasing the flow rate of the refrigerant. There is a problem. In particular, in a capacity-controlled air conditioner that operates by controlling the amount of refrigerant circulation, which has been widely used recently, the flow rate of the refrigerant becomes slow depending on the operating state, and the gas-liquid two-phase flow is reduced by gravity. Under the influence, there is a problem that liquid refrigerant increases in the lower distribution pipe.

また、特許文献2の冷媒分配器では、2つの蒸発器に冷媒を供給する2つの出口管を均質流化部胴体から直接分岐しているため、均質流化部胴体から熱交換器の伝熱管部への距離が長くなること、出口管を曲げる必要がありその加工等が複雑化になることにより、コストアップを招くと共に、特許文献1の分流器に比べて、分流器の設置スペースが大きくなり、機器のコンパクト化が行えなくなる、という課題がある。   Further, in the refrigerant distributor of Patent Document 2, two outlet pipes for supplying refrigerant to the two evaporators are directly branched from the homogenized fluidizing section body, so that the heat exchanger tube of the heat exchanger is connected from the homogeneous fluidizing section body. As the distance to the part becomes longer, the outlet pipe needs to be bent and the processing becomes complicated, resulting in an increase in cost and a larger installation space for the current divider compared to the current divider of Patent Document 1. Therefore, there is a problem that the device cannot be made compact.

本発明の目的は、低コスト及び省スペースを維持しつつ、冷媒分流の均一化の向上を図ることができる冷媒分配器を提供することにある。   An object of the present invention is to provide a refrigerant distributor capable of improving the uniformity of refrigerant distribution while maintaining low cost and space saving.

発明の第の態様は、冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、前記多数の伝熱管の入口側に対向して長く延びるヘッダと、前記ヘッダから多数分岐されて直線状に延び且つ前記多数の伝熱管の入口側に接続される分岐管と、前記ヘッダの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流化部胴体、この均質流化部胴体内の中間部に配置され且つ微細な孔を有する多孔体、前記多孔体の入口側に前記多孔体の入口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する入口側網目フィルタ、及び前記多孔体の出口側に前記多孔体の出口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する出口側網目フィルタからなる均質流化部とを備えたことにある。 A first aspect of the present invention is a refrigerant distributor having a plurality of heat transfer tubes for flowing refrigerant in parallel and connected to a heat exchanger operating as an evaporator, and distributing and flowing the refrigerant to the plurality of heat transfer tubes. A header extending long opposite to the inlet side of the plurality of heat transfer tubes, a branch tube extending from the header and extending in a straight line and connected to the inlet side of the plurality of heat transfer tubes, and an inlet of the header A homogenized fluidizing section body connected to the side and having a channel cross-sectional area larger than that of the header, a porous body disposed in an intermediate portion of the homogeneous fluidizing section body and having fine pores, An inlet-side mesh filter having a flow area larger than the inlet area of the porous body on the inlet side of the body and having a mesh diameter smaller than the average pore diameter of the porous body, and an outlet area of the porous body on the outlet side of the porous body Larger distribution area Wherein in that a homogeneous Ryuka portion consisting outlet mesh filter having a small mesh size than the average pore diameter of the porous body while.

本発明の第2の態様は、冷媒を圧縮する圧縮機と、該圧縮機で圧縮された冷媒を凝縮する凝縮器と、該凝縮器により凝縮された冷媒を減圧する減圧手段と、冷媒を並列に流す多数の伝熱管を有し前記減圧手段により減圧された冷媒を蒸発させる蒸発器と、該蒸発器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器と、該蒸発器に対して送風を行う送風手段と、を備えた空気調和機において、前記冷媒分配器は、前記多数の伝熱管の入口側に対向して長く延びるヘッダと、前記ヘッダから多数分岐されて直線状に延び且つ前記多数の伝熱管の入口側に接続される分岐管と、前記ヘッダの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流化部胴体、この均質流化部胴体内の中間部に配置され且つ微細な孔を有する多孔体、前記多孔体の入口側に前記多孔体の入口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する入口側網目フィルタ、及び前記多孔体の出口側に前記多孔体の出口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する出口側網目フィルタからなる均質流化部とを備えたことにある。
係る本発明の第1及び第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記入口側網目フィルタを入口側に円錐状に突出して形成し、前記出口側網目フィルタを出口側に円錐状に突出して形成したこと。
According to a second aspect of the present invention, a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a decompression unit that decompresses the refrigerant condensed by the condenser, and the refrigerant are arranged in parallel. An evaporator that has a large number of heat transfer tubes that flow through the evaporator and that evaporates the refrigerant depressurized by the decompression means; a refrigerant distributor that is connected to the evaporator and distributes and flows the refrigerant to the plurality of heat transfer tubes; and the evaporation An air conditioner having a blowing means for blowing air to the heat exchanger, wherein the refrigerant distributor includes a header extending long facing the inlet side of the plurality of heat transfer tubes, and a plurality of straight lines branched from the header. A branch pipe that extends in a shape and is connected to the inlet side of the plurality of heat transfer tubes, and a homogenized fluidized section body that is connected to the inlet side of the header and has a channel cross-sectional area larger than the channel cross-sectional area of the header; Located in the middle of the body of this homogeneous fluidization section and A porous body having fine pores, an inlet-side mesh filter having a flow area larger than the inlet area of the porous body on the inlet side of the porous body and a mesh diameter smaller than the average pore diameter of the porous body, and the porous body And a homogeneous fluidizing portion comprising an outlet-side mesh filter having a flow area larger than the outlet area of the porous body and a mesh diameter smaller than the average pore diameter of the porous body.
More preferred specific configuration examples in the first and second aspects of the present invention are as follows.
(1) The inlet-side mesh filter is formed to protrude in a conical shape on the inlet side, and the outlet-side mesh filter is formed to protrude in a conical shape on the outlet side.

また、本発明の第3の態様は、冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、前記多数の伝熱管の入口側に対向して長く延びるヘッダと、前記ヘッダから多数分岐されて直線状に延び且つ前記多数の伝熱管の入口側に接続されると共に前記熱交換器へ通風される空気の風速分布に合わせて内径に差を持たせた分岐管と、前記ヘッダの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流化部胴体、及びこの均質流化部胴体内の中間部に配置され且つ微細な孔を有する多孔体からなる均質流化部とを備えたことにある。   Further, according to a third aspect of the present invention, there is provided a refrigerant distribution that has a large number of heat transfer tubes that flow refrigerant in parallel and is connected to a heat exchanger that operates as an evaporator, and distributes and flows the refrigerant to the plurality of heat transfer tubes. A plurality of headers extending long opposite to the inlet sides of the plurality of heat transfer tubes, a plurality of branches extending from the header, extending in a straight line, and connected to the inlet sides of the plurality of heat transfer tubes and to the heat exchanger A branch pipe having a difference in inner diameter according to the wind speed distribution of the air to be ventilated, and a homogenized fluidized body body connected to the inlet side of the header and having a flow path cross-sectional area larger than the flow path cross-sectional area of the header And a homogeneous fluidizing part which is arranged in the middle part of the homogeneous fluidizing part body and is made of a porous body having fine pores.

係る本発明の冷媒分配器によれば、低コスト及び省スペースを維持しつつ、冷媒分流の均一化の向上を図ることができる。   According to the refrigerant distributor of the present invention, it is possible to improve the uniform refrigerant distribution while maintaining low cost and space saving.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。
(第1実施形態)
本発明の第1実施形態の冷媒分配器を図1から図7を用いて説明する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.
(First embodiment)
A refrigerant distributor according to a first embodiment of the present invention will be described with reference to FIGS.

図1を参照しながら、本実施形態の冷媒分配器40を用いた冷凍サイクルの概要を説明する。図1において、実線矢印は暖房運転時の冷媒の流れを示し、破線矢印は冷房運転時の冷媒の流れを示す。   An outline of a refrigeration cycle using the refrigerant distributor 40 of the present embodiment will be described with reference to FIG. In FIG. 1, the solid line arrows indicate the refrigerant flow during the heating operation, and the broken line arrows indicate the refrigerant flow during the cooling operation.

暖房運転時の冷凍サイクルを説明すると、圧縮機1で圧縮されて高温高圧となったガス冷媒は、四方弁2を通過し、ガス阻止弁10及びガス接続配管9を通って、室内機200へと導かれる。室内機200へ導かれた冷媒は、室内熱交換器8で室内送風機31により送られた空気により冷却されて凝縮し、液冷媒となる。室内熱交換器8は暖房運転時に凝縮器として作用する。この液冷媒は、開状態の室内膨張弁7を通過し、液接続配管6及び液阻止弁5を通って、室外機100へと戻される。   The refrigeration cycle at the time of heating operation will be described. The gas refrigerant that has been compressed by the compressor 1 and becomes high temperature and pressure passes through the four-way valve 2, passes through the gas blocking valve 10 and the gas connection pipe 9, and goes to the indoor unit 200. It is guided. The refrigerant guided to the indoor unit 200 is cooled and condensed by the air sent by the indoor blower 31 in the indoor heat exchanger 8, and becomes a liquid refrigerant. The indoor heat exchanger 8 acts as a condenser during heating operation. This liquid refrigerant passes through the open indoor expansion valve 7, passes through the liquid connection pipe 6 and the liquid blocking valve 5, and is returned to the outdoor unit 100.

室外機100へ戻された液冷媒は、室外膨張弁4により減圧、沸騰され、気液二相状態になる。この気液二相状態の冷媒は、均質流化部50で二相流の気相と液相が微細化されて均一化され、液ヘッダ57にて上方に送られながら、途中分岐されている液分岐管58(図2参照)にて複数の流路に分岐される。各液分岐管58に分岐された冷媒は、室外熱交換器3の各伝熱管31(図2参照)に流入し、室外送風機30により送られる室外空気により加熱されて、蒸発してガス冷媒となる。室外熱交換器3は暖房運転時に蒸発器として作用する。このガス冷媒は、四方弁2を通過して、アキュムレータ11を通って圧縮機1に再び戻る。これによって、冷媒が循環するという一連のサイクルとなる。   The liquid refrigerant returned to the outdoor unit 100 is depressurized and boiled by the outdoor expansion valve 4 and enters a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is branched in the middle while the two-phase flow gas phase and liquid phase are refined and homogenized by the homogeneous flow unit 50 and sent upward by the liquid header 57. A liquid branch pipe 58 (see FIG. 2) branches into a plurality of flow paths. The refrigerant branched into each liquid branch pipe 58 flows into each heat transfer pipe 31 (see FIG. 2) of the outdoor heat exchanger 3, is heated by the outdoor air sent by the outdoor blower 30, and evaporates to become a gas refrigerant. Become. The outdoor heat exchanger 3 acts as an evaporator during heating operation. The gas refrigerant passes through the four-way valve 2 and returns to the compressor 1 through the accumulator 11 again. This forms a series of cycles in which the refrigerant circulates.

ここで、冷凍サイクル内の冷媒にはR410AやR404A、R407C、R134a等のフロン系冷媒が一般的に使用されるが、地球温暖化効果が少ないCO2やNH3、HC系のイソブタンやプロパン等の冷媒等が用いられることもある。   Here, fluorocarbon refrigerants such as R410A, R404A, R407C, and R134a are generally used as refrigerants in the refrigeration cycle. Etc. may be used.

そして、四方弁2を図1の実線のように切り替えることにより、冷媒の流路方向が切り替えられ、冷房運転とすることもできる。この場合には室外熱交換器3が凝縮器、室内熱交換器8が蒸発器として作用することとなる。   And the flow direction of a refrigerant | coolant can be switched by switching the four-way valve 2 like the continuous line of FIG. 1, and it can also be set as the cooling operation. In this case, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 8 functions as an evaporator.

次に、図2及び図3を参照しながら、蒸発器として作用する暖房運転時における室外熱交換器3、室外冷媒分配器40及び室外膨張弁4の構成及び動作について説明する。   Next, the configuration and operation of the outdoor heat exchanger 3, the outdoor refrigerant distributor 40, and the outdoor expansion valve 4 during the heating operation that acts as an evaporator will be described with reference to FIGS.

室外熱交換器3は、図2に示すように、冷媒を並列に流す多数の伝熱管31とフィン32とから構成されるフィンチューブ型熱交換器と呼ばれるもので構成されている。伝熱管31はU字状管で構成され、各伝熱管31の入口側及び出口側は、一方の面に位置され、それぞれ上下に配列されている。   As shown in FIG. 2, the outdoor heat exchanger 3 is configured by a so-called fin tube type heat exchanger composed of a large number of heat transfer tubes 31 and fins 32 that flow refrigerant in parallel. The heat transfer tube 31 is formed of a U-shaped tube, and the inlet side and the outlet side of each heat transfer tube 31 are positioned on one surface and are arranged vertically.

室外冷媒分配器40は、室外熱交換器3の多数の伝熱管31に冷媒を分配して流すためのものであり、図2に示すように、液ヘッダ57、液分岐管58、均質流化部50、ガスヘッダ70及びガス分岐管71を備えている。   The outdoor refrigerant distributor 40 is for distributing and flowing the refrigerant to a large number of heat transfer tubes 31 of the outdoor heat exchanger 3, and as shown in FIG. 2, a liquid header 57, a liquid branch pipe 58, a homogeneous flow Part 50, gas header 70 and gas branch pipe 71.

液ヘッダ57は、多数の伝熱管31の入口側に対向して上下に長く延びるように配置されている。液ヘッダ57の流路断面積は、室外熱交換器3及び液分岐管58の流路断面積より大きく設定されている。液分岐管58は、液ヘッダ57から多数分岐されて直線状に延び、その先端部が各伝熱管31の入口側に接続されている。   The liquid header 57 is disposed so as to extend vertically up and down facing the inlet side of the large number of heat transfer tubes 31. The flow path cross-sectional area of the liquid header 57 is set larger than the flow path cross-sectional areas of the outdoor heat exchanger 3 and the liquid branch pipe 58. A number of liquid branch pipes 58 are branched from the liquid header 57 and extend in a straight line, and their tip ends are connected to the inlet side of each heat transfer pipe 31.

均質流化部50は、図2及び図3に示すように、液ヘッダ57の入口側に接続され且つ液ヘッダ57の流路断面積より大きい流路断面積を有する均質流化部胴体51と、この均質流化部胴体51内の中間部に配置され且つ微細な孔を有する多孔体53とからなっている。多孔体53は、カシメ部55a、55bにより均質流化部胴体51との間に隙間のないように固定されている。このため、流入口52から流入する気液二相冷媒はすべて多孔体53を通過し、流出口54から液ヘッダ57へ流出する。ここで、多孔体53はニッケル金属の焼結体や、デミスタ材の圧縮部材により構成されており、気孔および間隙の大きさ1〜0.3mm程度に成形されたものである。   As shown in FIGS. 2 and 3, the homogeneous fluidizing section 50 is connected to the inlet side of the liquid header 57 and has a uniform fluidizing section body 51 having a channel cross-sectional area larger than that of the liquid header 57. The porous body 53 is arranged in an intermediate portion in the uniform fluidizing section body 51 and has fine holes. The porous body 53 is fixed by caulking portions 55a and 55b so that there is no gap between the porous body 53 and the uniform fluidizing portion body 51. For this reason, all the gas-liquid two-phase refrigerant flowing from the inlet 52 passes through the porous body 53 and flows out from the outlet 54 to the liquid header 57. Here, the porous body 53 is composed of a nickel metal sintered body or a compression member made of a demister material, and is formed to have pores and gap sizes of about 1 to 0.3 mm.

ガスヘッダ70は、多数の伝熱管31の出口側に対向して上下に長く延びるように配置されている。ガスヘッダ70の流路断面積は、室外熱交換器3及び液分岐管58の流路断面積より大きく設定されている。ガス分岐管71は、ガスヘッダ70から多数分岐されて直線状に延び、その先端部が各伝熱管31の出口側に接続されている。液ヘッダ57とガスヘッダ70とは左右に隣接して配置されている。   The gas header 70 is disposed so as to extend vertically up and down facing the outlet sides of the numerous heat transfer tubes 31. The flow path cross-sectional area of the gas header 70 is set larger than the flow path cross-sectional areas of the outdoor heat exchanger 3 and the liquid branch pipe 58. A large number of gas branch pipes 71 are branched from the gas header 70 and extend in a straight line, and the tip ends thereof are connected to the outlet sides of the heat transfer pipes 31. The liquid header 57 and the gas header 70 are disposed adjacent to each other on the left and right.

暖房運転時に室外機100に流入した液冷媒は、室外膨張弁4を通過するときに減圧、沸騰されて気液二相状態になる。この気液二相状態の冷媒は、均質流化部50で二相流の気相と液相が微細化されて均一化され、その後液ヘッダ57を通して上方に送られながら、途中分岐されている液分岐管58にて複数の流路に分岐される。液分岐管58の入口では気液二相流が微細化された状態を保っているため、下部から上部までの液分岐管58のいずれにおいても乾き度(液相と気相の質量流量比)が等しくなる。そのため、室外熱交換器3を通る室外空気が均一な風速分布の場合においては、冷媒の流量および乾き度が等分配であれば、熱交換器出口のガス分岐管71での冷媒状態はどの流路においても、ほぼ同じ比エンタルピーの冷媒状態になり、結果として、熱交換器の熱交換量を最大にすることが可能となる。   The liquid refrigerant that has flowed into the outdoor unit 100 during the heating operation is reduced in pressure and boiled when passing through the outdoor expansion valve 4 to be in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is branched in the middle while the two-phase gas phase and liquid phase are refined and homogenized by the homogenization unit 50 and then sent upward through the liquid header 57. The liquid branch pipe 58 branches into a plurality of flow paths. Since the gas-liquid two-phase flow is kept fine at the inlet of the liquid branch pipe 58, the dryness (the mass flow ratio between the liquid phase and the gas phase) of any of the liquid branch pipes 58 from the lower part to the upper part. Are equal. Therefore, in the case where the outdoor air passing through the outdoor heat exchanger 3 has a uniform wind speed distribution, if the refrigerant flow rate and dryness are equally distributed, the refrigerant state in the gas branch pipe 71 at the outlet of the heat exchanger is Even in the road, the refrigerant state has substantially the same specific enthalpy, and as a result, the heat exchange amount of the heat exchanger can be maximized.

なお、室外熱交換器3を通る室外空気が不均一な風速分布である場合においては、その分布に合わせて液分岐管58の内径に差を持たせることや、一流路ごとの室外熱交換器3の伝熱管31長さに差をつけることにより容易に冷媒分配を調整することが可能となる。   In the case where the outdoor air passing through the outdoor heat exchanger 3 has a non-uniform wind speed distribution, a difference is made in the inner diameter of the liquid branch pipe 58 according to the distribution, or the outdoor heat exchanger for each flow path. The refrigerant distribution can be easily adjusted by making a difference in the length of the three heat transfer tubes 31.

次に、均質流化部50の有無による液ヘッダ57内の流動様式の違いを図4から図7を参照しながら説明する。図4及び図5が均質流化部50を有しない場合であり、図6及び図7が均質流化部50を有する本実施形態の場合である。   Next, the difference in the flow pattern in the liquid header 57 depending on the presence / absence of the uniform fluidizing section 50 will be described with reference to FIGS. 4 and 5 show the case where the homogeneous fluidizing section 50 is not provided, and FIGS. 6 and 7 show the case where the present embodiment has the homogeneous fluidizing section 50.

図4は均質流化部50を有しない場合の液ヘッダ57及び各液分岐管58a〜58f内の流動様式を模式的に示し、図5は均質流化部50を有しない場合の各液分岐管58a〜58fの乾き度及び流量を示す。   FIG. 4 schematically shows a flow pattern in the liquid header 57 and the liquid branch pipes 58a to 58f when the homogeneous fluidizing part 50 is not provided, and FIG. 5 shows each liquid branch when the homogeneous fluidizing part 50 is not provided. The dryness and flow rate of the tubes 58a-58f are shown.

室外膨張弁4で減圧、沸騰して二相流となった冷媒は、図4に示すように液ヘッダ57内を上昇する。ここでの流動様式は液とガスのそれぞれの質量流束(単位:kg/ms)の大きさにより、環状流またはチャーン流、あるいはスラグ流の状態で流れている。冷媒流速が早いほど環状流になりやすく、遅いほど間欠的な流れであるチャーン流またはスラグ流になりやすい。 The refrigerant that has been depressurized and boiled by the outdoor expansion valve 4 to form a two-phase flow rises in the liquid header 57 as shown in FIG. The flow mode here is an annular flow, a churn flow, or a slag flow depending on the mass flux (unit: kg / ms 2 ) of the liquid and the gas. The faster the refrigerant flow rate, the easier it is to form an annular flow, and the slower the flow rate, the more likely it is a churn flow or slag flow that is an intermittent flow.

このため、液ヘッダ57の一番下部に位置する液分岐管58aでは、液冷媒の割合が多くなり、上部に位置する液分岐管58fではガス冷媒の割合が多くなる。即ち、図5に示すように、下部に位置する液分岐管58aの流量が多く、乾き度が高くなっており、上部に位置する液分岐管では逆に流量が少なく、乾き度が大きくなる。従って、均質流化部50を有しない場合の冷媒分配器では、液分岐管58a〜58fへの乾き度分配を均等にすることができない。   For this reason, in the liquid branch pipe 58a located in the lowest part of the liquid header 57, the ratio of a liquid refrigerant increases, and in the liquid branch pipe 58f located in an upper part, the ratio of a gas refrigerant increases. That is, as shown in FIG. 5, the flow rate of the liquid branch pipe 58a located in the lower part is high and the dryness is high, and the liquid branch pipe located in the upper part has a low flow rate and the dryness is high. Therefore, in the refrigerant distributor in the case of not having the homogenization flow part 50, the dryness distribution to the liquid branch pipes 58a to 58f cannot be made uniform.

図6は本実施形態の均質流化部50を有する場合の液ヘッダ57及び液分岐管58a〜58f内の流動様式を模式的に示し、図7は本実施形態均質流化部50を有する場合の各液分岐管58a〜58fの乾き度及び流量を示す。   FIG. 6 schematically shows a flow pattern in the liquid header 57 and the liquid branch pipes 58a to 58f in the case of having the homogeneous fluidizing part 50 of the present embodiment, and FIG. 7 is a case of having the homogeneous fluidizing part 50 in the present embodiment. The dryness and flow rate of each of the liquid branch pipes 58a to 58f are shown.

室外膨張弁4で減圧、沸騰して二相流となった冷媒は、均質流化部50により気液二相流の気泡と液とが混合された均質流になり、図6に示すように液ヘッダ57に流入し、液ヘッダ57内を上昇する。特に均質流化部胴体51は液ヘッダ57の流路断面積より大きい流路断面積を有しているので、冷媒の流速を遅くして気液二相流の気泡と液との混合を確実に行うと共に、液ヘッダ57での冷媒の流速を速くして混合状態の維持を可能としている。   The refrigerant that has been reduced in pressure and boiled by the outdoor expansion valve 4 to become a two-phase flow becomes a homogeneous flow in which the gas-liquid two-phase flow bubbles and liquid are mixed by the homogeneous flow unit 50, as shown in FIG. It flows into the liquid header 57 and rises in the liquid header 57. In particular, since the homogenized fluidized body body 51 has a channel cross-sectional area larger than the channel cross-sectional area of the liquid header 57, the flow rate of the refrigerant is slowed to ensure that the gas-liquid two-phase flow bubbles and liquid are mixed. In addition, the flow rate of the refrigerant in the liquid header 57 is increased to maintain the mixed state.

このため、下部に位置する液分岐管58aにおいても、上部に位置する液分岐管58fにおいても、均質な気液混合状態の冷媒が分配される。即ち、図7に示すように、流量および乾き度が分配管の位置によらずほぼ一定になることが分かる。なお、冷媒循環量を制御させて運転を行う容量制御型の空気調和機において、冷媒の流速が遅い場合でも、流量および乾き度を分配管の位置によらず一定にすることができる。   For this reason, in the liquid branch pipe 58a located at the lower part and the liquid branch pipe 58f located at the upper part, a homogeneous gas-liquid mixed refrigerant is distributed. That is, as shown in FIG. 7, it can be seen that the flow rate and the dryness are almost constant regardless of the position of the distribution pipe. In a capacity-controlled air conditioner that operates by controlling the refrigerant circulation rate, the flow rate and dryness can be made constant regardless of the position of the distribution pipe even when the flow rate of the refrigerant is low.

このようにして、本実施形態の冷媒分配器40によれば、低コスト及び省スペースを維持しつつ、冷媒分流の均一化の向上を図ることができる。熱交換器の分流が多くなる従って、冷媒分配が悪化するか、若しくは冷媒分配器のコストが大幅に上昇する従来の冷媒分配器に対して、本実施形態では低コストで分配性能が良好な冷媒分配器を提供することが可能である。   In this way, according to the refrigerant distributor 40 of the present embodiment, it is possible to improve the uniformity of the refrigerant distribution while maintaining low cost and space saving. Compared to conventional refrigerant distributors, where refrigerant distribution deteriorates or the cost of the refrigerant distributor rises significantly due to an increase in the diversion of the heat exchanger, this embodiment is a low-cost refrigerant with good distribution performance. It is possible to provide a distributor.

なお、蒸発器として作用する冷房運転時における室内熱交換器8、室内冷媒分配器60及び室内膨張弁8の構成及び動作は、室外側の対応機器の構成及び動作と基本的に同一のため、重複する説明を省略する。
(第2〜第4実施形態)
次に、本発明の第2〜第4実施形態について図8〜図10を用いて説明する。この第2〜第4実施形態は、以下に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一である。
In addition, since the configuration and operation of the indoor heat exchanger 8, the indoor refrigerant distributor 60, and the indoor expansion valve 8 during the cooling operation that acts as an evaporator are basically the same as the configuration and operation of the corresponding devices on the outdoor side, A duplicate description is omitted.
(Second to fourth embodiments)
Next, 2nd-4th embodiment of this invention is described using FIGS. 8-10. The second to fourth embodiments differ from the first embodiment in the following points, and are basically the same as the first embodiment in other points.

第2実施形態では、図8に示すように、多孔体53の上流と下流に網目フィルタ56a、56bを設置したものである。具体的には、多孔体53の入口側に多孔体53の入口面積より大きな流通面積を有すると共に多孔体53の平均孔径よりも小さな網目径を有する入口側網目フィルタ56a、及び多孔体53の出口側に多孔体53の出口面積より大きな流通面積を有すると共に多孔体53の平均孔径よりも小さな網目径を有する出口側網目フィルタ56bを設置したものである。入口側網目フィルタ56aは入口側に円錐状に突出して形成され、出口側網目フィルタ56bは出口側に円錐状に突出して形成されている。この網目フィルタ56a、56bは多孔体53の平均孔径の大きさ1〜0.3mmよりも細かい網目径ものが用いられ、たとえば100メッシュ(0.254mmピッチ)のものが用いられる。   In the second embodiment, as shown in FIG. 8, mesh filters 56 a and 56 b are installed upstream and downstream of the porous body 53. Specifically, the inlet-side mesh filter 56 a having a flow area larger than the inlet area of the porous body 53 on the inlet side of the porous body 53 and having a mesh diameter smaller than the average pore diameter of the porous body 53, and the outlet of the porous body 53 An outlet-side mesh filter 56b having a flow area larger than the outlet area of the porous body 53 and having a mesh diameter smaller than the average pore diameter of the porous body 53 is installed on the side. The inlet side mesh filter 56a is formed so as to project conically on the inlet side, and the outlet side mesh filter 56b is formed so as to project conically on the outlet side. As the mesh filters 56a and 56b, those having a mesh diameter finer than the average pore diameter of 1 to 0.3 mm of the porous body 53 are used, for example, those having a mesh of 100 mesh (0.254 mm pitch).

このように網目フィルタ56a、56bを設けたものでは、冷凍サイクル内の金属紛等のコンタミが多孔体の間隙に詰まることを防止することが可能となる。   In the case where the mesh filters 56a and 56b are provided in this manner, it is possible to prevent contamination such as metal powder in the refrigeration cycle from clogging the gap between the porous bodies.

第3実施形態では、図9に示すように、液ヘッダ57の上部から気液二相流を流入させる構造に冷媒分配器50を用いたものである。この場合においても、第1実施形態のように下部から流入させた場合と同様に、液分岐管58が上部にあっても下部にあっても、冷媒の乾き度および流量をほぼ等分配にすることが可能である。   In the third embodiment, as shown in FIG. 9, the refrigerant distributor 50 is used in a structure that allows a gas-liquid two-phase flow to flow from the upper part of the liquid header 57. Also in this case, as in the case of the flow from the lower part as in the first embodiment, the refrigerant dryness and flow rate are almost equally distributed regardless of whether the liquid branch pipe 58 is at the upper part or the lower part. It is possible.

第4実施形態では、図10に示すように、液ヘッダ57の中央部から気液二相流を流入させる構造に冷媒分配器50を用いたものである。この場合においても、第1、第2実施形態のように下部や上部から流入させた場合と同様に、液分岐管58の上下位置に関わらず、冷媒の乾き度および流量をほぼ等分配にすることが可能である。   In the fourth embodiment, as shown in FIG. 10, the refrigerant distributor 50 is used in a structure that allows a gas-liquid two-phase flow to flow from the center of the liquid header 57. In this case as well, as in the case of the flow from the lower part or the upper part as in the first and second embodiments, the dryness and the flow rate of the refrigerant are almost equally distributed regardless of the vertical position of the liquid branch pipe 58. It is possible.

本発明の第1実施形態の冷媒分配器を備えた空気調和機の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the air conditioner provided with the refrigerant distributor of 1st Embodiment of this invention. 図1の空気調和機の暖房運転時における室外熱交換器、室外冷媒分配器及び室外膨張弁を示す説明図である。It is explanatory drawing which shows the outdoor heat exchanger at the time of heating operation of the air conditioner of FIG. 1, an outdoor refrigerant | coolant divider | distributor, and an outdoor expansion valve. 図2の冷媒分配器における均質流化部の断面図である。It is sectional drawing of the homogeneous flow part in the refrigerant | coolant divider | distributor of FIG. 均質流化部を有しない冷媒分配器の内部流動状態を説明する図である。It is a figure explaining the internal flow state of the refrigerant distributor which does not have a homogeneous flow part. 均質流化部を有しない冷媒分配器の特性図である。It is a characteristic view of the refrigerant distributor which does not have a homogeneous flow part. 図2の均質流化部を有する冷媒分配器の内部流動状態を説明する図である。It is a figure explaining the internal flow state of the refrigerant distributor which has a homogeneous flow part of FIG. 図2の均質流化部を有する冷媒分配器の特性図である。It is a characteristic view of the refrigerant distributor which has the homogeneous flow part of FIG. 本発明の第2実施形態の冷媒分配器における均質流化部の断面図である。It is sectional drawing of the homogeneous flow part in the refrigerant distributor of 2nd Embodiment of this invention. 本発明の第3実施形態の空気調和機の暖房運転時における室外熱交換器、室外冷媒分配器及び室外膨張弁を示す説明図である。It is explanatory drawing which shows the outdoor heat exchanger, the outdoor refrigerant distributor, and the outdoor expansion valve at the time of the heating operation of the air conditioner of 3rd Embodiment of this invention. 本発明の第4実施形態の空気調和機の暖房運転時における室外熱交換器、室外冷媒分配器及び室外膨張弁を示す説明図である。It is explanatory drawing which shows the outdoor heat exchanger, the outdoor refrigerant distributor, and the outdoor expansion valve at the time of the heating operation of the air conditioner of 4th Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…室外熱交換器、4…室外膨張弁、5…液阻止弁、6…液側接続配管、7…室内膨張弁、8…室内熱交換器、9…ガス側接続配管、10…ガス阻止弁、11…アキュムレータ、31…伝熱管、32…フィン、40…室外冷媒分配器、50…均質流化部、51…均質流化部胴体、52…流入口、53…多孔体、54…流出口、55a、55b…カシメ、56a、56b…フィルタ、57…液ヘッダ、58a〜58f…液分岐管、60…室内冷媒分配器、70…ガスヘッダ、71…ガス分配管、100…室外機、200…室内機。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor expansion valve, 5 ... Liquid blocking valve, 6 ... Liquid side connection piping, 7 ... Indoor expansion valve, 8 ... Indoor heat exchanger, 9 DESCRIPTION OF SYMBOLS ... Gas side connection piping, 10 ... Gas blocking valve, 11 ... Accumulator, 31 ... Heat transfer pipe, 32 ... Fin, 40 ... Outdoor refrigerant distributor, 50 ... Homogeneous fluidization part, 51 ... Homogeneous fluidization part fuselage, 52 ... Flow Inlet, 53 ... porous body, 54 ... outlet, 55a, 55b ... caulking, 56a, 56b ... filter, 57 ... liquid header, 58a-58f ... liquid branch pipe, 60 ... indoor refrigerant distributor, 70 ... gas header, 71 ... Gas distribution pipe, 100: outdoor unit, 200: indoor unit.

Claims (4)

冷媒を並列に流す多数の伝熱管を有し且つ蒸発器として動作する熱交換器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器において、
前記多数の伝熱管の入口側に対向して長く延びるヘッダと、
前記ヘッダから多数分岐されて直線状に延び且つ前記多数の伝熱管の入口側に接続される分岐管と、
前記ヘッダの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流化部胴体、この均質流化部胴体内の中間部に配置され且つ微細な孔を有する多孔体、前記多孔体の入口側に前記多孔体の入口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する入口側網目フィルタ、及び前記多孔体の出口側に前記多孔体の出口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する出口側網目フィルタからなる均質流化部とを備えたことを特徴とする冷媒分配器。
In a refrigerant distributor having a large number of heat transfer tubes that flow the refrigerant in parallel and connected to a heat exchanger that operates as an evaporator, and distributing and flowing the refrigerant to the multiple heat transfer tubes,
A header extending long facing the inlet side of the plurality of heat transfer tubes;
A branch pipe branched from the header and extending in a straight line and connected to the inlet side of the heat transfer pipe;
Having an inlet connected to the side and homogeneous Ryuka unit body having a flow path cross-sectional area larger than flow path cross-sectional area of the header is disposed in an intermediate portion of the homogeneous Ryuka section fuselage this and fine holes of the header A porous body , an inlet-side mesh filter having a flow area larger than an inlet area of the porous body on the inlet side of the porous body and having a mesh diameter smaller than an average pore diameter of the porous body, and the outlet side of the porous body A refrigerant distributor, comprising: a homogeneous fluidizing portion having an outlet mesh filter having a flow area larger than an outlet area of the porous body and having a mesh diameter smaller than an average pore diameter of the porous body .
請求項1の冷媒分配器において、前記入口側網目フィルタを入口側に円錐状に突出して形成し、前記出口側網目フィルタを出口側に円錐状に突出して形成したことを特徴とする冷媒分配器。 2. The refrigerant distributor according to claim 1, wherein the inlet-side mesh filter is formed to project conically on the inlet side, and the outlet-side mesh filter is formed to project conically on the outlet side . . 冷媒を圧縮する圧縮機と、A compressor for compressing the refrigerant;
該圧縮機で圧縮された冷媒を凝縮する凝縮器と、A condenser for condensing the refrigerant compressed by the compressor;
該凝縮器により凝縮された冷媒を減圧する減圧手段と、Decompression means for decompressing the refrigerant condensed by the condenser;
冷媒を並列に流す多数の伝熱管を有し前記減圧手段により減圧された冷媒を蒸発させる蒸発器と、An evaporator having a plurality of heat transfer tubes for flowing the refrigerant in parallel and evaporating the refrigerant decompressed by the decompression means;
該蒸発器に接続され、前記多数の伝熱管に冷媒を分配して流す冷媒分配器と、A refrigerant distributor connected to the evaporator and distributing and flowing the refrigerant to the plurality of heat transfer tubes;
該蒸発器に対して送風を行う送風手段と、を備えた空気調和機において、In an air conditioner provided with a blowing means for blowing air to the evaporator,
前記冷媒分配器は、The refrigerant distributor is
前記多数の伝熱管の入口側に対向して長く延びるヘッダと、A header extending long facing the inlet side of the plurality of heat transfer tubes;
前記ヘッダから多数分岐されて直線状に延び且つ前記多数の伝熱管の入口側に接続される分岐管と、A branch pipe branched from the header and extending in a straight line and connected to the inlet side of the heat transfer pipe;
前記ヘッダの入口側に接続され且つ前記ヘッダの流路断面積より大きい流路断面積を有する均質流化部胴体、この均質流化部胴体内の中間部に配置され且つ微細な孔を有する多孔体、前記多孔体の入口側に前記多孔体の入口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する入口側網目フィルタ、及び前記多孔体の出口側に前記多孔体の出口面積より大きな流通面積を有すると共に前記多孔体の平均孔径よりも小さな網目径を有する出口側網目フィルタからなる均質流化部とを備えたHomogeneous fluidized section body connected to the inlet side of the header and having a flow path cross-sectional area larger than the flow path sectional area of the header, and a porous body disposed in an intermediate portion of the homogeneous fluidized section body and having fine holes Body, an inlet-side mesh filter having a flow area larger than the inlet area of the porous body on the inlet side of the porous body and having a mesh diameter smaller than the average pore diameter of the porous body, and the porous on the outlet side of the porous body A homogeneous fluidizing portion comprising an outlet-side mesh filter having a flow area larger than the outlet area of the body and having a mesh diameter smaller than the average pore diameter of the porous body.
ことを特徴とする空気調和機。An air conditioner characterized by that.
請求項3の空気調和機において、前記入口側網目フィルタを入口側に円錐状に突出して形成し、前記出口側網目フィルタを出口側に円錐状に突出して形成したことを特徴とする空気調和機。4. The air conditioner according to claim 3, wherein the inlet-side mesh filter is formed so as to project conically on the inlet side, and the outlet-side mesh filter is formed so as to project conically on the outlet side. .
JP2007133013A 2007-05-18 2007-05-18 Refrigerant distributor and air conditioner Active JP4887213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133013A JP4887213B2 (en) 2007-05-18 2007-05-18 Refrigerant distributor and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133013A JP4887213B2 (en) 2007-05-18 2007-05-18 Refrigerant distributor and air conditioner

Publications (2)

Publication Number Publication Date
JP2008286488A JP2008286488A (en) 2008-11-27
JP4887213B2 true JP4887213B2 (en) 2012-02-29

Family

ID=40146370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133013A Active JP4887213B2 (en) 2007-05-18 2007-05-18 Refrigerant distributor and air conditioner

Country Status (1)

Country Link
JP (1) JP4887213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476035A (en) * 2017-03-29 2019-11-19 大金工业株式会社 Heat exchanger

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030932B2 (en) * 2008-12-10 2012-09-19 三菱電機株式会社 Heat exchanger and air-conditioning refrigeration system
GB0905870D0 (en) * 2009-04-03 2009-05-20 Eaton Williams Group Ltd A rear door heat exchanger
JP2012032060A (en) * 2010-07-29 2012-02-16 Chofu Seisakusho Co Ltd Latent heat recovery heat exchanger and water heater using the same
JP2012172862A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Multi-chamber air conditioner
EP2998680B1 (en) * 2013-05-15 2018-11-07 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air conditioner
JP6054269B2 (en) * 2013-08-29 2016-12-27 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle apparatus and refrigerator using the same
US10054376B2 (en) 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
CN105683639B (en) * 2013-10-29 2018-01-19 三菱电机株式会社 Pipe joint, heat exchanger and air-conditioning device
US10712062B2 (en) * 2015-10-26 2020-07-14 Mitsubishi Electric Corporation Refrigerant distributor and air-conditioning apparatus using the same
JP6650335B2 (en) * 2016-04-21 2020-02-19 日立ジョンソンコントロールズ空調株式会社 Refrigerant splitter-coupled expansion valve and refrigeration cycle device and air conditioner using the same
JP6946105B2 (en) * 2017-08-02 2021-10-06 三菱重工サーマルシステムズ株式会社 Heat exchanger
SG11202006153WA (en) 2018-01-18 2020-08-28 Mitsubishi Electric Corp Heat exchanger, outdoor unit and refrigeration cycle apparatus
KR102046632B1 (en) * 2018-01-19 2019-11-19 엘지전자 주식회사 Refrigerant distributor for air conditioner
JP6644194B1 (en) * 2019-01-21 2020-02-12 三菱電機株式会社 Outdoor units and air conditioners
CN111520934A (en) * 2020-05-18 2020-08-11 浙江盾安热工科技有限公司 Heat exchanger and air conditioner with same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217764A (en) * 1989-02-17 1990-08-30 Matsushita Electric Ind Co Ltd Expansion valve
JPH05203293A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Oil separator for refrigerating plant
JPH08193768A (en) * 1995-01-18 1996-07-30 Daikin Ind Ltd Fluid shunt
JP3435621B2 (en) * 1996-10-08 2003-08-11 株式会社日立製作所 Air conditioner
JP3219014B2 (en) * 1997-03-27 2001-10-15 ダイキン工業株式会社 Heat exchanger for air conditioner
JP3900976B2 (en) * 2002-03-06 2007-04-04 三菱電機株式会社 Air conditioner and method of operating air conditioner
JP2005049043A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Heat exchanger and air conditioner
JP2005331154A (en) * 2004-05-19 2005-12-02 Saginomiya Seisakusho Inc Throttle valve device and air conditioner
JP2006336992A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476035A (en) * 2017-03-29 2019-11-19 大金工业株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2008286488A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4887213B2 (en) Refrigerant distributor and air conditioner
JP6202451B2 (en) Heat exchanger and air conditioner
JP2009222366A (en) Refrigerant distributor
WO2014199501A1 (en) Air-conditioning device
US10612823B2 (en) Condenser
US11402162B2 (en) Distributor and heat exchanger
CN108027223B (en) Laminated type collector, heat exchanger and conditioner
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
JP2018194251A (en) Heat exchanger
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2012021679A (en) Refrigerant distribution device, heat exchange device with the same, and air conditioning apparatus with the heat exchange device
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
WO2017150221A1 (en) Heat exchanger and air conditioner
US20220136740A1 (en) Refrigeration cycle apparatus
JP2013185757A (en) Refrigerant distributor, and heat pump device
WO2021214849A1 (en) Air conditioner, freezer, and distributor
WO2018051611A1 (en) Heat exchanger and heat pump system using same
JP6391838B2 (en) Heat exchanger unit and refrigeration cycle system
WO2020178930A1 (en) Air conditioning apparatus, refrigeration machine, and distributor
KR102169284B1 (en) Heat exchanger and air conditional having the same
KR20190029049A (en) Heatexchanger formed as one body with capillary
EP4368918A1 (en) Heat exchanger and refrigeration cycle device
US20240175599A1 (en) Air conditioner and method for controlling an air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4887213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250