JP4249380B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4249380B2
JP4249380B2 JP2000247383A JP2000247383A JP4249380B2 JP 4249380 B2 JP4249380 B2 JP 4249380B2 JP 2000247383 A JP2000247383 A JP 2000247383A JP 2000247383 A JP2000247383 A JP 2000247383A JP 4249380 B2 JP4249380 B2 JP 4249380B2
Authority
JP
Japan
Prior art keywords
gas
liquid separator
refrigerant
pipe
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000247383A
Other languages
Japanese (ja)
Other versions
JP2002061966A (en
Inventor
慎一 若本
広有 柴
守也 宮本
康文 畑村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000247383A priority Critical patent/JP4249380B2/en
Publication of JP2002061966A publication Critical patent/JP2002061966A/en
Application granted granted Critical
Publication of JP4249380B2 publication Critical patent/JP4249380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和装置に関するものである。
【0002】
【従来の技術】
従来の空気調和装置として、減圧器と室内側熱交換器との間に気液分離器を設け、減圧器により減圧した低圧冷媒を気液分離し(約20%がガス冷媒で残り約80%が液冷媒となる)、この分離したガス冷媒(このガス冷媒は潜熱を持たないため冷凍能力にはあまり寄与しない)を直接圧縮機の吸入側に流通させ、室内側熱交換器へはガス冷媒を流通させずに液冷媒のみを流通させ、このようにすることにより室内側熱交換器および接続配管などの低圧側配管での圧力損失を低減して、冷凍能力の向上を図ったものがある。このような従来の空気調和装置としては、例えば、特開平9−310925号公報に記載されたものが知られている。
この空気調和装置では、同公報に記載されているように気液分離器から圧縮機吸入側の低圧ガス配管と間にバイパス配管を設け、このバイパス配管中にバイパスされるガス冷媒と室外側熱交換器出口の液冷媒とが熱交換する熱交換器(熱回収熱交換器)を設け、さらにその下流側にキャピラリーチューブを設けている。なお、この熱交換器は、バイパス配管を流通する低圧ガス冷媒により高圧液冷媒を冷却して、液冷媒を過冷却させて熱回収し、冷凍能力を向上するものである。
【0003】
【発明が解決しようとする課題】
ところが、この従来の空気調和装置では、気液分離器からガス冷媒に混じって液冷媒が流出した場合、その液冷媒は熱交換器で蒸発してガス冷媒となり、キャピラリーチュ−ブにはガス冷媒のみが流通することになる。また、冷媒の単位体積あたりの圧力損失は、図13に示すように、乾き度が0.05から0.3の範囲で大きく、乾き度が1.0近くになると小さくなっている。したがって、バイパス配管を流通する冷媒の流通抵抗は、気液分離器からガス冷媒のみが流出している場合と気液分離器から液冷媒が混入して流出する場合とでは、あまり変わらないといえる。このため、従来のものでは、気液分離器からバイパス配管に液冷媒が流出し始めた場合、この液冷媒は熱回収熱交換器で気化されてガス冷媒となってキャピラリーチューブに流通し、バイパス配管の冷媒流通抵抗がそれほど増加せず、バイパス配管への液冷媒の流出を止めることができない。したがって、この液冷媒の流出分、冷凍能力の向上を図ることができないという問題のあることが分かった。
【0004】
この発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、液冷媒が気液分離器から圧縮機の低圧側にバイパスすることを防止して、冷凍能力のより一層の向上を図った空気調和装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮機、凝縮器、第1冷媒流量制御装置、蒸発器を主な構成部品として備え、これら構成部品を順次主配管で接続した空気調和装置であって、第1冷媒流量制御装置と蒸発器との間に接続した気液分離器と、第2冷媒流量制御装置を備え、かつ、この第2冷媒流量制御装置の一端を気液分離器に接続し、その他端を蒸発器から圧縮機に至る主配管に接続した第1バイパス配管とを備え、第1バイパス配管における第2冷媒流量制御装置の下流側に、凝縮器を流出した後の冷媒とこの第1バイパス配管を流通する冷媒とを熱交換する熱回収熱交換器を設け、この熱回収熱交換器から第1冷媒流量制御装置に至る主配管と、第2冷媒流量制御装置から熱回収熱交換器に至る第1バイパス配管との間に第2バイパス配管を設け、この第2バイパス配管中に第3冷媒流量制御装置を設けたものである。
【0007】
また、前記気液分離器は、本体容器を有し、前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部が前記本体容器に対し水平または上向きとなるように形成してもよい。
【0008】
また、前記気液分離器は、本体容器を有し、この気液分離器から前記蒸発器に至る配管の接続部が前記本体容器の下部に接続されているように形成しても良い。
【0009】
また、前記気液分離器は、本体容器を有し、この本体容器内における前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部とこの気液分離器から前記蒸発器に至る配管の接続部との間に、気液分離部材を有するように構成したものでも良い。
【0010】
また、前記気液分離器は、前記第1バイパス配管の接続部と前記気液分離器から前記蒸発器に至る配管の接続部とを上下に連結し、この連結部に対し、第1冷媒流量制御装置からこの気液分離器に至る配管の接続部を水平方向に接続したものとしても良い。
【0011】
【発明の実施の形態】
実施形態1.
以下、この発明を具体化した実施の形態1について図1および図2に基づいて説明する。なお、図1は実施の形態1に係る空気調和装置の冷媒回路図であり、図2はこの空気調和装置についての動作を説明するための圧力−エンタルピ線図である。
【0012】
図1に示す空気調和器は、圧縮機2、凝縮器3、第1冷媒流量制御装置(この場合膨張弁)4、複数個の熱交換器からなる蒸発器5を主な構成部品とし、これら構成部品を主配管6で順次接続したものである。
【0013】
また、この空気調和装置において、10は第1冷媒流量制御装置4と蒸発器5との間に接続した気液分離器であり、11は第1バイパス配管である。この第1バイパス配管11は、第2冷媒流量制御装置(この場合キャピラリーチューブ)12を有し、この第2冷媒流量制御装置の一方を気液分離器10に接続し、他方を蒸発器5から圧縮機2に至る主配管6に接続し、気液分離器10内のガス冷媒を圧縮機2の吸入側にバイパスさせるためのものである。
【0014】
次に、このように構成された空気調和装置の動作を、図2を参照しながら説明する。
圧縮機2から吐出された高温高圧のガス冷媒(図中a)は、凝縮器3で空気などの冷却流体と熱交換して凝縮し、高温高圧の液冷媒(図中b)に変化する。そして、第1冷媒流量制御装置4により低温低圧の湿り蒸気(気液混合の冷媒)に変化(図中c)し、気液分離器10に流入する。気液分離器10に流入した湿り蒸気は液冷媒(図中d)とガス冷媒(図中e)に分離され、液冷媒(図中d)は主配管6を通り蒸発器5に供給され、蒸発器5における圧力損失によって圧力が低下しながら空気などの被冷却物と熱交換して蒸発気化し、圧縮機2に戻る(図中f)。一方、第1バイパス配管11に流入したガス冷媒(図中e)は、第2冷媒流量制御装置12でわずかに減圧され、蒸発器5出口の低圧ガス冷媒と合流して圧縮機2に戻る(図中f)。
【0015】
上記のようなサイクルにおいて、気液分離器10で十分に液冷媒とガス冷媒の分離ができず、ガス冷媒と液冷媒との混合流体が第1バイパス配管11に流入した場合には、前記図13で説明したように乾き度0.05から0.3において冷媒の流通抵抗が大きくなるため、第2冷媒流量制御装置12における冷媒の圧力損失は、上記混合流体の場合の方がガス冷媒のみの場合よりも大きくなる。したがって第1バイパス配管11に液冷媒が流出した場合、第2冷媒流量制御装置12において急激な圧力損失を生じ、第1バイパス配管11を流れる冷媒流量が急激に低下し、気液分離器10から第1バイパス配管11への液冷媒の流出が抑制される。
【0016】
この実施の形態1では、蒸発器5は被冷却物が空気である場合について説明したが、この被冷却物は空気のみに限定されない。例えば、安価な夜間電力を利用して、水を冷却して氷を生成し、昼間この氷の冷熱を利用して冷房を行う氷蓄熱装置における製氷用熱交換器のように水を被冷却物とするものでも良い。
【0017】
実施の形態2.
次に、実施の形態2について図3および図4に基づき説明する。なお、図3は実施の形態2に係る空気調和装置の冷媒回路図であり、図4はこの空気調和装置についての動作を説明するための圧力−エンタルピ線図である。
【0018】
図3において、主配管6の経路は、前記実施の形態1の場合と同一であって、圧縮機2、凝縮器3、第1冷媒流量制御装置(この場合膨張弁)4、蒸発器5を主な構成部品とし順次接続されている。また、実施の形態1の場合と同様に、第1冷媒流量制御装置4と蒸発器5との間に気液分離器10が設けられ、さらに、気液分離器10と蒸発器5から圧縮機2に至る主配管6との間に第2冷媒流量制御装置(この場合キャピラリーチューブ)21を介装した第1バイパス配管20が設けられている。
【0019】
ただし、この第1バイパス配管20における第2冷媒流量制御装置21の下流側には、実施の形態1の場合と異なり、第1バイパス配管中を流通する低圧低温の冷媒と凝縮器3から流出した高圧高温の液冷媒とが熱交換する熱回収用熱交換器22が設けられている。なお、この熱回収熱交換器22は、第1バイパス配管内を流通する低圧低温の冷媒により凝縮器3から流出した高圧高温の液冷媒を過冷却して、バイパスされる低圧冷媒の冷熱を回収し、冷凍能力を向上させるものである。
【0020】
また、この実施の形態2では、主配管6における熱回収熱交換器22から第1冷媒流量制御装置4に至る配管と、第1バイパス配管20における第2冷媒流量制御装置21から熱回収熱交換器22に至る配管との間に、第2バイパス配管23を設け、この第2バイパス配管23中に第3冷媒流量制御装置(この場合膨張弁)24を設けている。
【0021】
次に、このような構成を有する第2実施の形態に係る空気調和装置の動作を図4を参照しながら説明する。
圧縮機2から吐出された高温高圧のガス冷媒(図中a)は、凝縮器3で空気などの冷却流体と熱交換して凝縮し、高温高圧の液冷媒(図中b)に変化する。この液冷媒は熱回収熱交換器22で過冷却された後(図中c)、大半の冷媒は第1冷媒流量制御装置4に流通し、この第1冷媒流量制御装置4により低温低圧の液冷媒とガス冷媒とが混合した湿り蒸気に変化(図中d)し、気液分離器10に流入する。そして、気液分離器10に流入した湿り蒸気は、ガス冷媒(図中f)と液冷媒(図中e)に分離され、液冷媒(図中e)は主配管6を通り蒸発器5に供給され、蒸発器5における圧力損失によって圧力が下がりながら空気などと熱交換して蒸発し、低温低圧のガス冷媒に変化し、圧縮機2ヘ流れる(図中i)。
【0022】
一方、凝縮器3を流出した液冷媒(図中c)の残部は、第2バイパス配管23に流入し、第3冷媒流量制御装置24により低温低圧の湿り蒸気に変化し(図中g)、第1バイパス配管20を流れるガス冷媒と合流する(図中h)。
また、気液分離器10で気液分離されたガス冷媒(図中f)は、第1バイパス配管20に流入し、第2冷媒流量制御装置21でわずかに減圧され(図中j)、第2バイパス配管23から流入する湿り蒸気(図中g)と合流する(図中h)。そして、熱回収熱交換器22で主配管6を流れる液冷媒と熱交換しながら蒸発し(図中i)、主配管6を流通する冷媒と合流して(図中i)、圧縮機2に戻る(図中i)。
【0023】
実施の形態2では以上のように構成されているため、実施の形態1における場合と同様、気液分離器10で十分に液冷媒とガス冷媒とに分離できず、ガス冷媒と液冷媒との混合流体が第1バイパス配管20に流入した場合には、第2冷媒流量制御装置21で急激な圧力損失を生じ、気液分離器10から第1バイパス配管20への液冷媒の流出が防止される。
【0024】
また、気液分離器10からのガス冷媒のみを熱回収用熱交換器22に流通させる場合と比較すると、この実施の形態2のように熱回収熱交換器22に液冷媒をバイパスさせた場合には、熱回収熱交換器22内での冷媒の流速が増加し、熱交換性能が向上し、蒸発器5仁尾くる冷媒量を少なくすることによる圧損低減とバイパスによる能力損失分の回収を両立するための熱回収熱交換器22の小型化が図れる。
【0025】
この実施の形態2では、蒸発器5は被冷却物が空気である場合について説明したが、この被冷却物は空気のみに限定されない。例えば、安価な夜間電力を利用して、水を冷却して氷を生成し、昼間この氷の冷熱を利用して冷房を行う氷蓄熱装置における製氷用熱交換器のように水を被冷却物とするものでも良い。
【0026】
【実施例】
次に、上記実施の形態1および実施の形態2に適用される気液分離器の具体的な構造について説明する。
【0027】
実施例1.
実施例1に係る気液分離器を図5に示す。図5において、10aは第1冷媒流量制御装置4から気液分離器10に至る配管の接続部、10bは気液分離器10から蒸発器5に至る配管の接続部、10cは第1バイパス配管11、20の接続部であり、10dは円筒状の本体容器である。また、これら接続部10a、10b、10cに付した矢印はそれぞれにおける冷媒の流通方向を示す。この構造の気液分離器10では、蒸発器5への冷媒が気液分離器10の下部(すなわち、本体容器10dの下部)から下向きに流出するように導出されているので、蒸発器5に流通する冷媒中にガス冷媒が混ざりにくいという効果がある。
【0028】
実施例2.
実施例2に係る気液分離器を図6に示す。図中に付された符号および矢印は実施例1と同様である。この場合は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aを下方から導入するとともに、気液分離器10から蒸発器5に至る配管の接続部10bを本体容器10dの下部から下向きに導出しているので、実施例1と同様の効果があるとともに、気液分離器10における気液分離効果が向上する。
【0029】
実施例3.
実施例3に係る気液分離器を図7に示す。図中に付された符号および矢印は実施例1と同様である。この場合は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aを横方向から本体容器10dに導入するとともに、気液分離器10から蒸発器5に至る配管の接続部10bを本体容器10dの下部から下向きに導出し、第1バイパス配管11、20の接続部10cを気液分離器10の上部(すなわち、本体容器10dの上部)から上方に向けて導出しているので、実施例1と同様の効果があるとともに、気液分離器10における気液分離効果がより向上する。
【0030】
実施例4.
実施例4に係る気液分離器を図8に示す。図中に付された符号および矢印は実施例1と同様である。この実施例4は、側断面図は実施例3と同様である。すなわち、気液分離器10から蒸発器5に至る配管の接続部10bを本体容器10dの下部から下向きに導出し、第1バイパス配管11、20の接続部10cを本体容器10dの上部から上方に向けて導出し、さらに、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aを本体容器10dに対し横方向から導入する点では実施例3と同様であるが、この接続部10aを気液分離器10の円筒状本体10dの内壁の接線方向とすることにより、第1冷媒流量制御装置4から気液分離器10に導入される気液混合の湿り蒸気を本体容器10d内で旋回させることにより、気液分離効果をより一層向上させたものである。
【0031】
実施例5.
実施例5に係る気液分離器を図9に示す。図中に付された符号および矢印は実施例1と同様である。この実施例5は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10a、気液分離器10から蒸発器5に至る配管の接続部10b、および第1バイパス配管11、20の接続部10cの構成は実施例1と同様であるが、気液分離器10内(すなわち、本体容器10d内)の中間より下方の高さ部に水平断面全体にわたる多孔板、邪魔板、多孔質材料などからなり、衝突効果により湿り冷媒中の液滴を分離する気液分離部材25を設けたものである。したがって、この実施例5の場合には、先の実施例1に比しより一層気液分離効果を向上させることができる。
【0032】
実施例6.
実施例6に係る気液分離器を図10に示す。図中に付された符号および矢印は実施例1と同様である。この実施例6は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10a、気液分離器10から蒸発器5に至る配管の接続部10b、および第1バイパス配管11、20の接続部10cの構成は実施例2と同様であるが、気液分離器10内の下部において、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aと気液分離器10から蒸発器5に至る配管の接続部10bとの間に、多孔板、邪魔板、多孔質材料などからなる衝突効果により気液分離作用をなす気液分離部材26を立設したものである。したがって、この実施例6の場合には、先の実施例2に比しより一層気液分離効果を向上させることができる。
【0033】
実施例7.
実施例7に係る気液分離器を図11に示す。図中に付された符号および矢印は実施例1と同様である。この実施例7は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10a、気液分離器10から蒸発器5に至る配管の接続部10b、および第1バイパス配管11、20の接続部10cを図示のごとくT字型に組み合わせることにより気液分離器10を構成したものものである。すなわち、この実施例7の気液分離器10は、第1バイパス配管11、20の接続部10cと気液分離器10から蒸発器5に至る配管の接続部10bとを直立状の配管に構成し、その分岐点に水平方向から第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aを接続したものである。
【0034】
このように構成することにより、第1冷媒流量制御装置4から流れてきた気液混合冷媒(湿り冷媒)が接続部10bおよび10cを構成する管壁に衝突して気液分離され、液冷媒がこの接続部10b内の管壁に沿って下方に流れて蒸発器5に流出し、また、ガス冷媒が接続部10c内を上昇して第1バイパス配管11、20へ流出する。
したがって、この実施例7の場合には、先の実施例1〜6の容器型気液分離器の場合に比し気液分離効果を低下させることなく、コストを低減することができる。
【0035】
実施例8.
実施例8に係る気液分離器を図12に示す。図中に付された符号および矢印は実施例1と同様である。この実施例8は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10a、気液分離器10から蒸発器5に至る配管の接続部10b、および第1バイパス配管11、20の接続部10cを図示のごとくT字型に組み合わせることにより気液分離器10を構成したものものである。すなわち、この実施例8の気液分離器10は、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10aと第1バイパス配管11、20の接続部10cとを直立状の配管に構成し、気液分離器10から蒸発器5に至る配管の接続部10bをこの直立状の配管部における接続部10bと10cとの接合点から水平に分岐したものである。
【0036】
このように構成することにより、第1冷媒流量制御装置4から流れてきた気液混合冷媒の流れは、液冷媒が接続部10a内の管壁に沿って流れ、ガス冷媒が接続部10a内の管中央を流れる環状流となり、液冷媒を多く含む冷媒が水平方向に分岐された気液分離器10から蒸発器5に至る配管の接続部10b内に流出されていく。
したがって、この実施例8の場合には、先の実施例1〜6の容器型気液分離器の場合に比し、また、先の実施例7の場合に比し、気液分離効果は低下するが、コストを低減できる点は実施例7の場合と同様である。また、他の要素部品の配置等から先の実施例7を採用できない場合に必要となることが想定される。
【0037】
実施例9.
実施例9に係る気液分離器を図13に示す。この実施例9は、実施例7における第1バイパス配管11、20の接続部10c内に多孔板、邪魔板、多孔質材料などからなり、衝突効果により湿り冷媒中の液滴を分離する気液分離部材27を設けたものであって、その他の構成は実施例7と同一であり、実施例7と共通する部分には同一の符号および矢印付している。
したがって、この実施例9によれば、気液分離器10からバイパスされる冷媒は、気液分離部材27を通して流出することになるので、実施例7に比し、気液分離器10における気液分離効果がさらに向上する。
【0038】
実施例10.
実施例10に係る気液分離器を図14に示す。この実施例10は、実施例7において、第1冷媒流量制御装置4から気液分離器10に至る配管の接続部10a、気液分離器10から蒸発器5に至る配管の接続部10b、および第1バイパス配管11、20の接続部10cをT字型に結合する結合部に、多孔板、邪魔板、多孔質材料などからなり、衝突効果により湿り冷媒中の液滴を分離する気液分離部材28を設けたものであって、その他の構成は実施例7と同一であり、実施例7と共通する部分には同一の符号および矢印付している。
したがって、この実施例10によれば、前記接続部10aから流入する湿り冷媒は、この気液分離部材27における衝突効果による気液分離作用により気液分離され、この気液分離部材27を通して分岐されて流出することになるので、実施例7に比し、気液分離器10における気液分離効果がさらに向上する。
【0039】
【発明の効果】
この発明は以上のように構成されているため、次のような効果を奏する。
本発明によれば、圧縮機、凝縮器、第1冷媒流量制御装置、蒸発器を主な構成部品として備え、これら構成部品を順次主配管で接続した空気調和装置であって、第1冷媒流量制御装置と蒸発器との間に接続した気液分離器と、第2冷媒流量制御装置を備え、かつ、この第2冷媒流量制御装置の一端を気液分離器に接続し、その他端を蒸発器から圧縮機に至る主配管に接続した第1バイパス配管とを備えたものであるので、ガス冷媒が蒸発器に流出されることを防止するとともに、液冷媒が気液分離器から圧縮機の低圧側にバイパスされることを防止して、高効率で信頼性の高い運転を行うことができる。
また、第1バイパス配管における第2冷媒流量制御装置の下流側に、凝縮器を流出した後の冷媒とこの第1バイパス配管を流通する冷媒とを熱交換する熱回収熱交換器を設け、この熱回収熱交換器から第1冷媒流量制御装置に至る主配管と、第2冷媒流量制御装置から熱回収熱交換器に至る第1バイパス配管との間に第2バイパス配管を設け、この第2バイパス配管中に第3冷媒流量制御装置を設けたものであるので、第1の発明と同様の効果を奏することができながら、凝縮器から流出する液冷媒を効率良く過冷却させて冷凍能力を向上させることができる。
【0041】
また、前記気液分離器は、本体容器を有し、前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部が前記本体容器に対し水平または上向きとなるように形成されているので、気液分離器における気液分離効率が向上し、冷凍能力が向上する。
【0042】
また、前記気液分離器は、本体容器を有し、この気液分離器から前記蒸発器に至る配管の接続部が前記本体容器の下部に接続されているので、気液分離器における分離効率が向上し、気液分離器における気液分離効率が向上し、冷凍能力が向上する。
【0043】
また、前記気液分離器は、本体容器を有し、この本体容器内における前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部とこの気液分離器から前記蒸発器に至る配管の接続部との間に、気液分離部材を有するので、気液分離器における分離効率が向上し、冷凍能力が向上する。
【0044】
また、前記気液分離器は、前記第1バイパス配管の接続部と前記気液分離器から前記蒸発器に至る配管の接続部とを上下に連結し、この連結部に対し、第1冷媒流量制御装置からこの気液分離器に至る配管の接続部を水平方向に接続してなるので、気液分離器における分離効率が向上し、冷凍能力が向上する。また、気液分離器は簡易な構造となるのでコストを低減することができる。
【図面の簡単な説明】
【図1】 実施の形態1に係る空気調和装置の冷媒回路図である。
【図2】 実施の形態1に係る空気調和装置についての動作を説明するための圧力−エンタルピ線図である。
【図3】 実施の形態2に係る空気調和装置の冷媒回路図である。
【図4】 実施の形態1に係る空気調和装置についての動作を説明するための圧力−エンタルピ線図である。
【図5】 実施例1に係る気液分離器の構造図である。
【図6】 実施例2に係る気液分離器の構造図である。
【図7】 実施例3に係る気液分離器の構造図である。
【図8】 実施例4に係る気液分離器の構造図である。
【図9】 実施例5に係る気液分離器の構造図である。
【図10】 実施例6に係る気液分離器の構造図である。
【図11】 実施例7に係る気液分離器の構造図である。
【図12】 実施例8に係る気液分離器の構造図である。
【図13】 実施例9に係る気液分離器の構造図である。
【図14】 実施例10に係る気液分離器の構造図である。
【図15】 冷媒がR22である場合の単位体積あたりの圧力損失を乾き度との関係で示した図である。
【符号の説明】
2 圧縮機、3 凝縮器、4 第1冷媒流量制御装置、5蒸発器、6 主配管、10 気液分離器、10a 第1冷媒流量制御装置から気液分離器に至る配管の接続部、10b 気液分離器から蒸発器に至る配管の接続部、10c 第1バイパス配管の接続部、10d 円筒状本体、11、20 第1バイパス配管、12、24 第2冷媒流量制御装置、21 第2冷媒流量制御装置、22 熱回収熱交換器、23 第2バイパス配管、24 第3冷媒流量制御装置、25、26、27,28 気液分離部材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner.
[0002]
[Prior art]
As a conventional air conditioner, a gas-liquid separator is provided between the pressure reducer and the indoor heat exchanger, and the low-pressure refrigerant decompressed by the pressure reducer is gas-liquid separated (about 20% is gas refrigerant and the remaining about 80% This separated gas refrigerant (this gas refrigerant has no latent heat and therefore does not contribute much to the refrigeration capacity) is directly circulated to the intake side of the compressor, and is supplied to the indoor heat exchanger. Some liquid refrigerants are circulated without circulated, and in this way, pressure loss in low-pressure side pipes such as indoor heat exchangers and connection pipes is reduced to improve the refrigerating capacity. . As such a conventional air conditioner, for example, the one described in JP-A-9-310925 is known.
In this air conditioner, as described in the publication, a bypass pipe is provided between the gas-liquid separator and the low-pressure gas pipe on the compressor suction side, and the gas refrigerant bypassed in the bypass pipe and the outdoor heat A heat exchanger (heat recovery heat exchanger) for exchanging heat with the liquid refrigerant at the exchanger outlet is provided, and a capillary tube is further provided on the downstream side. In this heat exchanger, the high pressure liquid refrigerant is cooled by the low pressure gas refrigerant flowing through the bypass pipe, and the liquid refrigerant is supercooled to recover heat, thereby improving the refrigerating capacity.
[0003]
[Problems to be solved by the invention]
However, in this conventional air conditioner, when the liquid refrigerant flows out of the gas-liquid separator and is mixed with the gas refrigerant, the liquid refrigerant evaporates in the heat exchanger to become a gas refrigerant, and the capillary tube has a gas refrigerant. Only will be distributed. Further, as shown in FIG. 13, the pressure loss per unit volume of the refrigerant is large when the dryness is in the range of 0.05 to 0.3, and is small when the dryness is close to 1.0. Therefore, it can be said that the flow resistance of the refrigerant flowing through the bypass pipe is not much different between the case where only the gas refrigerant is flowing out from the gas-liquid separator and the case where the liquid refrigerant is mixed out from the gas-liquid separator. . For this reason, in the prior art, when the liquid refrigerant starts to flow out from the gas-liquid separator to the bypass pipe, the liquid refrigerant is vaporized by the heat recovery heat exchanger and becomes a gas refrigerant, which is circulated through the capillary tube. The refrigerant flow resistance of the pipe does not increase so much, and the outflow of the liquid refrigerant to the bypass pipe cannot be stopped. Therefore, it has been found that there is a problem that the outflow of the liquid refrigerant and the refrigerating capacity cannot be improved.
[0004]
The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide an air conditioner that prevents the liquid refrigerant from bypassing from the gas-liquid separator to the low pressure side of the compressor and further improves the refrigeration capacity.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an air conditioner comprising a compressor, a condenser, a first refrigerant flow control device, and an evaporator as main components, and these components are sequentially connected by a main pipe. A gas-liquid separator connected between the first refrigerant flow control device and the evaporator, and a second refrigerant flow control device, and one end of the second refrigerant flow control device is connected to the gas-liquid separator. And a first bypass pipe connected to the main pipe from the evaporator to the compressor at the other end, and the refrigerant after flowing out of the condenser on the downstream side of the second refrigerant flow control device in the first bypass pipe; A heat recovery heat exchanger for exchanging heat with the refrigerant flowing through the first bypass pipe is provided, the main pipe extending from the heat recovery heat exchanger to the first refrigerant flow control device, and the heat recovery from the second refrigerant flow control device. The second bar is connected to the first bypass pipe leading to the heat exchanger. Pass pipe is provided, in the second bypass pipe is provided with a third refrigerant flow rate control device.
[0007]
Further, the gas-liquid separator has a main body container, and a connection portion of a pipe from the first refrigerant flow control device to the gas-liquid separator is formed to be horizontal or upward with respect to the main body container. Also good.
[0008]
Further, the gas-liquid separator may have a main body container, and a connection portion of a pipe from the gas-liquid separator to the evaporator may be connected to a lower portion of the main body container.
[0009]
In addition, the gas-liquid separator has a main body container, and a pipe connection portion from the first refrigerant flow control device to the gas-liquid separator in the main body container and the vapor-liquid separator to the evaporator. It may be configured so as to have a gas-liquid separation member between the connecting portions of the pipes to reach.
[0010]
The gas-liquid separator vertically connects a connection portion of the first bypass pipe and a connection portion of the pipe from the gas-liquid separator to the evaporator, and the first refrigerant flow rate is connected to the connection portion. It is good also as what connected the connection part of the piping from a control apparatus to this gas-liquid separator in the horizontal direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1. FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1, and FIG. 2 is a pressure-enthalpy diagram for explaining the operation of the air-conditioning apparatus.
[0012]
The air conditioner shown in FIG. 1 includes a compressor 2, a condenser 3, a first refrigerant flow control device (in this case, an expansion valve) 4, and an evaporator 5 including a plurality of heat exchangers as main components. The components are sequentially connected by the main pipe 6.
[0013]
In this air conditioner, 10 is a gas-liquid separator connected between the first refrigerant flow control device 4 and the evaporator 5, and 11 is a first bypass pipe. The first bypass pipe 11 has a second refrigerant flow control device (capillary tube in this case) 12, one of the second refrigerant flow control devices is connected to the gas-liquid separator 10, and the other is connected to the evaporator 5. The gas refrigerant in the gas-liquid separator 10 is connected to the main pipe 6 leading to the compressor 2 and is bypassed to the suction side of the compressor 2.
[0014]
Next, the operation of the air conditioner configured as described above will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant (a in the figure) discharged from the compressor 2 is condensed by exchanging heat with a cooling fluid such as air in the condenser 3 and changed into a high-temperature and high-pressure liquid refrigerant (b in the figure). Then, the first refrigerant flow control device 4 changes to low-temperature and low-pressure wet steam (gas-liquid mixed refrigerant) (c in the figure) and flows into the gas-liquid separator 10. The wet steam flowing into the gas-liquid separator 10 is separated into a liquid refrigerant (d in the figure) and a gas refrigerant (e in the figure), and the liquid refrigerant (d in the figure) is supplied to the evaporator 5 through the main pipe 6. While the pressure is reduced due to the pressure loss in the evaporator 5, it exchanges heat with an object to be cooled such as air to evaporate and returns to the compressor 2 (f in the figure). On the other hand, the gas refrigerant (e in the figure) flowing into the first bypass pipe 11 is slightly depressurized by the second refrigerant flow control device 12, merges with the low-pressure gas refrigerant at the outlet of the evaporator 5, and returns to the compressor 2 ( F) in the figure.
[0015]
In the above-described cycle, when the gas-liquid separator 10 cannot sufficiently separate the liquid refrigerant and the gas refrigerant and the mixed fluid of the gas refrigerant and the liquid refrigerant flows into the first bypass pipe 11, As described in FIG. 13, since the flow resistance of the refrigerant increases at a dryness of 0.05 to 0.3, the pressure loss of the refrigerant in the second refrigerant flow control device 12 is only the gas refrigerant in the case of the above mixed fluid. It becomes bigger than the case. Therefore, when the liquid refrigerant flows into the first bypass pipe 11, an abrupt pressure loss occurs in the second refrigerant flow control device 12, and the refrigerant flow rate flowing through the first bypass pipe 11 rapidly decreases, and the gas-liquid separator 10 The outflow of the liquid refrigerant to the first bypass pipe 11 is suppressed.
[0016]
In this Embodiment 1, although the evaporator 5 demonstrated the case where the to-be-cooled object was air, this to-be-cooled object is not limited only to air. For example, using cold night electricity, water is cooled to produce ice, and water is cooled like an ice storage heat exchanger in an ice storage device that cools the ice using the cold heat of the daytime. It may be.
[0017]
Embodiment 2. FIG.
Next, the second embodiment will be described with reference to FIGS. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2, and FIG. 4 is a pressure-enthalpy diagram for explaining the operation of the air-conditioning apparatus.
[0018]
In FIG. 3, the route of the main pipe 6 is the same as that of the first embodiment, and the compressor 2, the condenser 3, the first refrigerant flow control device (in this case, the expansion valve) 4, and the evaporator 5 are connected. It is sequentially connected as main components. Further, as in the case of the first embodiment, a gas-liquid separator 10 is provided between the first refrigerant flow control device 4 and the evaporator 5, and the compressor is further connected from the gas-liquid separator 10 and the evaporator 5 to the compressor. A first bypass pipe 20 having a second refrigerant flow control device (capillary tube in this case) 21 is provided between the main pipe 6 and the main pipe 6.
[0019]
However, unlike the case of the first embodiment, the first bypass pipe 20 flows out of the low-pressure and low-temperature refrigerant flowing through the first bypass pipe and the condenser 3 on the downstream side of the second refrigerant flow rate control device 21. A heat recovery heat exchanger 22 for exchanging heat with the high-pressure and high-temperature liquid refrigerant is provided. The heat recovery heat exchanger 22 supercools the high-pressure and high-temperature liquid refrigerant flowing out of the condenser 3 with the low-pressure and low-temperature refrigerant flowing in the first bypass pipe, and recovers the cold heat of the bypassed low-pressure refrigerant. Thus, the refrigeration capacity is improved.
[0020]
Further, in the second embodiment, heat recovery heat exchange from the heat recovery heat exchanger 22 in the main pipe 6 to the first refrigerant flow control device 4 and from the second refrigerant flow control device 21 in the first bypass pipe 20 is performed. A second bypass pipe 23 is provided between the pipe and the pipe 22, and a third refrigerant flow control device (in this case, an expansion valve) 24 is provided in the second bypass pipe 23.
[0021]
Next, the operation of the air conditioner according to the second embodiment having such a configuration will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant (a in the figure) discharged from the compressor 2 is condensed by exchanging heat with a cooling fluid such as air in the condenser 3 and changed into a high-temperature and high-pressure liquid refrigerant (b in the figure). After the liquid refrigerant is supercooled by the heat recovery heat exchanger 22 (c in the figure), most of the refrigerant flows to the first refrigerant flow control device 4, and the first refrigerant flow control device 4 cools the liquid at low temperature and low pressure. It changes into wet steam in which the refrigerant and the gas refrigerant are mixed (d in the figure) and flows into the gas-liquid separator 10. The wet steam flowing into the gas-liquid separator 10 is separated into a gas refrigerant (f in the figure) and a liquid refrigerant (e in the figure), and the liquid refrigerant (e in the figure) passes through the main pipe 6 to the evaporator 5. It is supplied, evaporates by exchanging heat with air or the like while the pressure decreases due to pressure loss in the evaporator 5, changes to a low-temperature and low-pressure gas refrigerant, and flows to the compressor 2 (i in the figure).
[0022]
On the other hand, the remaining part of the liquid refrigerant (c in the figure) that has flowed out of the condenser 3 flows into the second bypass pipe 23 and is changed to low-temperature and low-pressure wet steam by the third refrigerant flow control device 24 (g in the figure). The gas refrigerant flows through the first bypass pipe 20 (h in the figure).
Further, the gas refrigerant (f in the figure) separated by the gas-liquid separator 10 flows into the first bypass pipe 20, and is slightly decompressed by the second refrigerant flow control device 21 (j in the figure). 2 Merges with wet steam (g in the figure) flowing in from the bypass pipe 23 (h in the figure). The heat recovery heat exchanger 22 evaporates while exchanging heat with the liquid refrigerant flowing through the main pipe 6 (i in the figure), merges with the refrigerant flowing through the main pipe 6 (i in the figure), and enters the compressor 2. Return (i in the figure).
[0023]
Since the second embodiment is configured as described above, similarly to the first embodiment, the gas-liquid separator 10 cannot sufficiently separate the liquid refrigerant and the gas refrigerant. When the mixed fluid flows into the first bypass pipe 20, a sudden pressure loss occurs in the second refrigerant flow control device 21, and the liquid refrigerant is prevented from flowing out from the gas-liquid separator 10 to the first bypass pipe 20. The
[0024]
Further, when only the gas refrigerant from the gas-liquid separator 10 is circulated to the heat recovery heat exchanger 22, the liquid refrigerant is bypassed to the heat recovery heat exchanger 22 as in the second embodiment. The flow rate of the refrigerant in the heat recovery heat exchanger 22 is increased, the heat exchange performance is improved, and both the pressure loss reduction by reducing the amount of refrigerant in the evaporator 5 and the recovery of the capacity loss by bypass are compatible. Therefore, the heat recovery heat exchanger 22 can be downsized.
[0025]
In this Embodiment 2, although the evaporator 5 demonstrated the case where the to-be-cooled object was air, this to-be-cooled object is not limited only to air. For example, using cold night electricity, water is cooled to produce ice, and water is cooled like an ice storage heat exchanger in an ice storage device that cools the ice using the cold heat of the daytime. It may be.
[0026]
【Example】
Next, a specific structure of the gas-liquid separator applied to the first embodiment and the second embodiment will be described.
[0027]
Example 1.
A gas-liquid separator according to Example 1 is shown in FIG. In FIG. 5, 10a is a connecting portion of a pipe from the first refrigerant flow control device 4 to the gas-liquid separator 10, 10b is a connecting portion of a pipe from the gas-liquid separator 10 to the evaporator 5, and 10c is a first bypass pipe. 11 and 20, and 10 d is a cylindrical main body container. Moreover, the arrow attached | subjected to these connection part 10a, 10b, 10c shows the distribution direction of the refrigerant | coolant in each. In the gas-liquid separator 10 having this structure, the refrigerant to the evaporator 5 is led out downward from the lower part of the gas-liquid separator 10 (that is, the lower part of the main body container 10d). There is an effect that the gas refrigerant is not easily mixed in the circulating refrigerant.
[0028]
Example 2
A gas-liquid separator according to Example 2 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In this case, the pipe connection 10a from the first refrigerant flow control device 4 to the gas-liquid separator 10 is introduced from below, and the pipe connection 10b from the gas-liquid separator 10 to the evaporator 5 is connected to the main body container. Since it is derived downward from the lower part of 10d, it has the same effect as in the first embodiment, and the gas-liquid separation effect in the gas-liquid separator 10 is improved.
[0029]
Example 3 FIG.
A gas-liquid separator according to Example 3 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In this case, the pipe connecting portion 10a leading from the first refrigerant flow control device 4 to the gas-liquid separator 10 is introduced into the main body container 10d from the lateral direction, and the pipe connecting from the gas-liquid separator 10 to the evaporator 5 is connected. The part 10b is led out downward from the lower part of the main body container 10d, and the connection part 10c of the first bypass pipes 11 and 20 is led out upward from the upper part of the gas-liquid separator 10 (that is, the upper part of the main body container 10d). Therefore, the effects similar to those of the first embodiment are obtained, and the gas-liquid separation effect in the gas-liquid separator 10 is further improved.
[0030]
Example 4
A gas-liquid separator according to Example 4 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. The fourth embodiment is the same as the third embodiment in a side sectional view. That is, the connecting portion 10b of the pipe extending from the gas-liquid separator 10 to the evaporator 5 is led downward from the lower portion of the main body container 10d, and the connecting portion 10c of the first bypass pipes 11 and 20 is extended upward from the upper portion of the main body container 10d. This is the same as in the third embodiment in that the connecting portion 10a of the pipe leading from the first refrigerant flow control device 4 to the gas-liquid separator 10 is introduced from the lateral direction into the main body container 10d. By connecting the connecting portion 10a to the tangential direction of the inner wall of the cylindrical main body 10d of the gas-liquid separator 10, the wet vapor of the gas-liquid mixture introduced from the first refrigerant flow control device 4 to the gas-liquid separator 10 is supplied to the main body container. The gas-liquid separation effect is further improved by swirling within 10d.
[0031]
Embodiment 5 FIG.
A gas-liquid separator according to Example 5 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In the fifth embodiment, a pipe connection portion 10a extending from the first refrigerant flow control device 4 to the gas-liquid separator 10, a pipe connection portion 10b extending from the gas-liquid separator 10 to the evaporator 5, and a first bypass pipe 11 are used. , 20 is the same as that of the first embodiment, but the perforated plate and the baffle plate over the entire horizontal section at the height below the middle in the gas-liquid separator 10 (that is, in the main body container 10d). The gas-liquid separation member 25 is made of a porous material and the like and separates droplets in the wet refrigerant by a collision effect. Therefore, in the case of the fifth embodiment, the gas-liquid separation effect can be further improved as compared with the first embodiment.
[0032]
Example 6
A gas-liquid separator according to Example 6 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In the sixth embodiment, a connecting portion 10a of a pipe extending from the first refrigerant flow control device 4 to the gas-liquid separator 10, a connecting portion 10b of a pipe extending from the gas-liquid separator 10 to the evaporator 5, and a first bypass pipe 11 are used. , 20 is the same as the configuration of the second embodiment, but in the lower part of the gas-liquid separator 10, the connection portion 10a of the pipe from the first refrigerant flow control device 4 to the gas-liquid separator 10 and the gas are separated. A gas-liquid separation member 26 that performs a gas-liquid separation action by a collision effect made of a perforated plate, a baffle plate, a porous material or the like is erected between the connecting portion 10 b of the pipe from the liquid separator 10 to the evaporator 5. Is. Therefore, in the case of the sixth embodiment, the gas-liquid separation effect can be further improved as compared with the second embodiment.
[0033]
Example 7
A gas-liquid separator according to Example 7 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In the seventh embodiment, a connecting portion 10a of a pipe extending from the first refrigerant flow control device 4 to the gas-liquid separator 10, a connecting portion 10b of a pipe extending from the gas-liquid separator 10 to the evaporator 5, and a first bypass pipe 11 are used. The gas-liquid separator 10 is configured by combining 20 connecting portions 10c in a T shape as shown in the figure. That is, in the gas-liquid separator 10 of the seventh embodiment, the connection portion 10c of the first bypass pipes 11 and 20 and the connection portion 10b of the pipe extending from the gas-liquid separator 10 to the evaporator 5 are configured as upright pipes. Then, a connecting portion 10a of a pipe from the first refrigerant flow control device 4 to the gas-liquid separator 10 is connected to the branch point from the horizontal direction.
[0034]
With this configuration, the gas-liquid mixed refrigerant (wet refrigerant) flowing from the first refrigerant flow control device 4 collides with the tube walls constituting the connecting portions 10b and 10c to be separated into gas and liquid, and the liquid refrigerant is It flows downward along the tube wall in the connecting portion 10b and flows out to the evaporator 5, and the gas refrigerant rises in the connecting portion 10c and flows out to the first bypass pipes 11 and 20.
Therefore, in the case of this Example 7, cost can be reduced, without reducing the gas-liquid separation effect compared with the case of the container-type gas-liquid separator of previous Examples 1-6.
[0035]
Example 8 FIG.
A gas-liquid separator according to Example 8 is shown in FIG. Reference numerals and arrows given in the drawing are the same as those in the first embodiment. In the eighth embodiment, a connecting portion 10a of a pipe extending from the first refrigerant flow control device 4 to the gas-liquid separator 10, a connecting portion 10b of a pipe extending from the gas-liquid separator 10 to the evaporator 5, and a first bypass pipe 11 are used. The gas-liquid separator 10 is configured by combining 20 connecting portions 10c in a T shape as shown in the figure. That is, in the gas-liquid separator 10 of the eighth embodiment, the connecting portion 10a of the pipe from the first refrigerant flow control device 4 to the gas-liquid separator 10 and the connecting portion 10c of the first bypass pipes 11 and 20 are upright. The connecting portion 10b of the piping from the gas-liquid separator 10 to the evaporator 5 is horizontally branched from the junction of the connecting portions 10b and 10c in this upright piping portion.
[0036]
By configuring in this way, the flow of the gas-liquid mixed refrigerant flowing from the first refrigerant flow control device 4 is such that the liquid refrigerant flows along the tube wall in the connecting portion 10a and the gas refrigerant in the connecting portion 10a. An annular flow flows through the center of the pipe, and a refrigerant containing a large amount of liquid refrigerant flows out into the connecting portion 10b of the pipe from the gas-liquid separator 10 branched in the horizontal direction to the evaporator 5.
Therefore, in the case of this Example 8, compared with the case of the container-type gas-liquid separator of previous Examples 1-6, compared with the case of previous Example 7, the gas-liquid separation effect is reduced. However, the point that the cost can be reduced is the same as in the case of the seventh embodiment. Further, it is assumed that it is necessary when the previous embodiment 7 cannot be adopted due to the arrangement of other element parts.
[0037]
Example 9
A gas-liquid separator according to Example 9 is shown in FIG. In the ninth embodiment, the connection portion 10c of the first bypass pipes 11 and 20 in the seventh embodiment is made of a porous plate, a baffle plate, a porous material, etc., and the gas-liquid that separates droplets in the wet refrigerant by the collision effect. The separation member 27 is provided, and the other configuration is the same as that of the seventh embodiment, and portions common to the seventh embodiment are denoted by the same reference numerals and arrows.
Therefore, according to the ninth embodiment, since the refrigerant bypassed from the gas-liquid separator 10 flows out through the gas-liquid separation member 27, the gas-liquid separator in the gas-liquid separator 10 is compared with the seventh embodiment. The separation effect is further improved.
[0038]
Example 10
FIG. 14 shows a gas-liquid separator according to Example 10. The tenth embodiment is the same as the seventh embodiment in which a pipe connection 10a from the first refrigerant flow control device 4 to the gas-liquid separator 10, a pipe connection 10b from the gas-liquid separator 10 to the evaporator 5, and A gas-liquid separation that consists of a perforated plate, baffle plate, porous material, etc., in the connecting portion 10c connecting the connecting portions 10c of the first bypass pipes 11, 20 in a T-shape, and that separates droplets in the wet refrigerant by a collision effect. The member 28 is provided, and the other configuration is the same as that of the seventh embodiment, and parts common to the seventh embodiment are denoted by the same reference numerals and arrows.
Therefore, according to the tenth embodiment, the wet refrigerant flowing from the connecting portion 10 a is separated into gas and liquid by the gas-liquid separation action due to the collision effect in the gas-liquid separation member 27 and branched through the gas-liquid separation member 27. Therefore, the gas-liquid separation effect in the gas-liquid separator 10 is further improved as compared with the seventh embodiment.
[0039]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the onset bright, compressor, condenser, first refrigerant flow rate control device, an evaporator as main components, an air conditioner which connects these components sequentially in the main pipe, the first refrigerant A gas-liquid separator connected between the flow control device and the evaporator; a second refrigerant flow control device; and one end of the second refrigerant flow control device connected to the gas-liquid separator, and the other end Since the first bypass pipe connected to the main pipe from the evaporator to the compressor is provided, the gas refrigerant is prevented from flowing out to the evaporator and the liquid refrigerant is discharged from the gas-liquid separator to the compressor. Therefore, it is possible to perform a highly efficient and reliable operation.
Further, a heat recovery heat exchanger for exchanging heat between the refrigerant after flowing out the condenser and the refrigerant flowing through the first bypass pipe is provided on the downstream side of the second refrigerant flow control device in the first bypass pipe. A second bypass pipe is provided between the main pipe from the heat recovery heat exchanger to the first refrigerant flow controller and the first bypass pipe from the second refrigerant flow controller to the heat recovery heat exchanger. Since the third refrigerant flow rate control device is provided in the bypass pipe, the refrigeration capacity can be improved by efficiently subcooling the liquid refrigerant flowing out of the condenser while achieving the same effect as the first invention. Can be improved.
[0041]
The front-handed liquid separator includes a main container, the connecting portion of the pipe leading to the gas-liquid separator from the first refrigerant flow rate control device is formed so as to be horizontal or upward relative to the main container Therefore, the gas-liquid separation efficiency in the gas-liquid separator is improved, and the refrigerating capacity is improved.
[0042]
The front-handed liquid separator includes a main container, the connecting portion of the pipe extending to the evaporator from the gas-liquid separator is connected to the lower portion of the main body container, separated in the gas-liquid separator Efficiency improves, the gas-liquid separation efficiency in a gas-liquid separator improves, and a refrigerating capacity improves.
[0043]
The front-handed liquid separator includes a main container, a connecting portion of the pipe extending from the first refrigerant flow rate control device in the body vessel to the gas-liquid separator wherein the evaporator from the gas-liquid separator Since the gas-liquid separation member is provided between the connecting portion of the pipes leading to, the separation efficiency in the gas-liquid separator is improved, and the refrigerating capacity is improved.
[0044]
Further, the prior Kiki liquid separator, connects the connection portion of the pipe extending to the evaporator from the gas-liquid separator and the connecting portion of the first bypass pipe vertically, with respect to the connecting portion, the first refrigerant Since the connecting portion of the pipe from the flow rate control device to the gas-liquid separator is connected in the horizontal direction, the separation efficiency in the gas-liquid separator is improved and the refrigerating capacity is improved. Further, since the gas-liquid separator has a simple structure, the cost can be reduced.
[Brief description of the drawings]
1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1. FIG.
2 is a pressure-enthalpy diagram for explaining the operation of the air-conditioning apparatus according to Embodiment 1. FIG.
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2.
FIG. 4 is a pressure-enthalpy diagram for explaining the operation of the air-conditioning apparatus according to Embodiment 1.
5 is a structural diagram of a gas-liquid separator according to Embodiment 1. FIG.
6 is a structural diagram of a gas-liquid separator according to Embodiment 2. FIG.
FIG. 7 is a structural diagram of a gas-liquid separator according to a third embodiment.
FIG. 8 is a structural diagram of a gas-liquid separator according to a fourth embodiment.
FIG. 9 is a structural diagram of a gas-liquid separator according to a fifth embodiment.
FIG. 10 is a structural diagram of a gas-liquid separator according to a sixth embodiment.
FIG. 11 is a structural diagram of a gas-liquid separator according to a seventh embodiment.
FIG. 12 is a structural diagram of a gas-liquid separator according to an eighth embodiment.
13 is a structural diagram of a gas-liquid separator according to Embodiment 9. FIG.
14 is a structural diagram of a gas-liquid separator according to Embodiment 10. FIG.
FIG. 15 is a diagram showing the pressure loss per unit volume when the refrigerant is R22 in relation to the dryness.
[Explanation of symbols]
2 Compressor, 3 Condenser, 4 First refrigerant flow control device, 5 Evaporator, 6 Main piping, 10 Gas-liquid separator, 10a Pipe connection from the first refrigerant flow control device to the gas-liquid separator, 10b Pipe connection part from gas-liquid separator to evaporator, 10c Connection part of first bypass pipe, 10d Cylindrical body, 11, 20 First bypass pipe, 12, 24 Second refrigerant flow control device, 21 Second refrigerant Flow control device, 22 Heat recovery heat exchanger, 23 Second bypass pipe, 24 Third refrigerant flow control device, 25, 26, 27, 28 Gas-liquid separation member.

Claims (5)

圧縮機、凝縮器、第1冷媒流量制御装置、蒸発器を主な構成部品として備え、これら構成部品を順次主配管で接続した空気調和装置であって、
前記第1冷媒流量制御装置と蒸発器との間に接続した気液分離器と、
第2冷媒流量制御装置を備え、かつ、この第2冷媒流量制御装置の一端を前記気液分離器に接続し、その他端を前記蒸発器から前記圧縮機に至る前記主配管に接続した第1バイパス配管とを備え、
前記第1バイパス配管における前記第2冷媒流量制御装置の下流側に、前記凝縮器を流出した後の冷媒とこの第1バイパス配管を流通する冷媒とを熱交換する熱回収熱交換器を設け、
この熱回収熱交換器から前記第1冷媒流量制御装置に至る前記主配管と、前記第2冷媒流量制御装置から前記熱回収熱交換器に至る前記第1バイパス配管との間に第2バイパス配管を設け、この第2バイパス配管中に第3冷媒流量制御装置を設けたことを特徴とする空気調和装置。
An air conditioner comprising a compressor, a condenser, a first refrigerant flow control device, and an evaporator as main components, and sequentially connecting these components through a main pipe,
A gas-liquid separator connected between the first refrigerant flow control device and the evaporator;
A first refrigerant flow control device is provided, and one end of the second refrigerant flow control device is connected to the gas-liquid separator, and the other end is connected to the main pipe from the evaporator to the compressor. With bypass piping ,
On the downstream side of the second refrigerant flow control device in the first bypass pipe, a heat recovery heat exchanger for exchanging heat between the refrigerant after flowing out the condenser and the refrigerant flowing through the first bypass pipe is provided,
A second bypass pipe between the main pipe from the heat recovery heat exchanger to the first refrigerant flow control device and the first bypass pipe from the second refrigerant flow control device to the heat recovery heat exchanger. And an air conditioner characterized in that a third refrigerant flow rate control device is provided in the second bypass pipe .
前記気液分離器は、本体容器を有し、前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部が前記本体容器に対し水平または上向きとなるように形成されていることを特徴とする請求項1に記載の空気調和装置。The gas-liquid separator has a main body container, and a connection portion of a pipe from the first refrigerant flow control device to the gas-liquid separator is formed to be horizontal or upward with respect to the main body container. The air conditioning apparatus according to claim 1 . 前記気液分離器は、本体容器を有し、この気液分離器から前記蒸発器に至る配管の接続部が前記本体容器の下部に接続されていることを特徴とする請求項1に記載の空気調和装置。The gas-liquid separator includes a main body container, according to claim 1, the connecting portion of the pipe extending to the evaporator from the gas-liquid separator is characterized in that it is connected to the lower portion of the main container Air conditioner. 前記気液分離器は、本体容器を有し、この本体容器内における前記第1冷媒流量制御装置からこの気液分離器に至る配管の接続部とこの気液分離器から前記蒸発器に至る配管の接続部との間に、気液分離部材を有することを特徴とする請求項1に記載の空気調和装置。The gas-liquid separator has a main body container, and a connecting portion of a pipe from the first refrigerant flow control device to the gas-liquid separator in the main body container and a pipe from the gas-liquid separator to the evaporator The air-conditioning apparatus according to claim 1, further comprising a gas-liquid separation member between the first and second connecting portions. 前記気液分離器は、前記第1バイパス配管の接続部と前記気液分離器から前記蒸発器に至る配管の接続部とを上下に連結し、この連結部に対し、第1冷媒流量制御装置からこの気液分離器に至る配管の接続部を水平方向に接続してなることを特徴とする請求項1に記載の空気調和装置。The gas-liquid separator vertically connects a connecting portion of the first bypass pipe and a connecting portion of a pipe extending from the gas-liquid separator to the evaporator, and the first refrigerant flow control device is connected to the connecting portion. The air conditioner according to claim 1, wherein a connecting portion of a pipe extending from the gas to the gas-liquid separator is connected in a horizontal direction.
JP2000247383A 2000-08-17 2000-08-17 Air conditioner Expired - Lifetime JP4249380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247383A JP4249380B2 (en) 2000-08-17 2000-08-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247383A JP4249380B2 (en) 2000-08-17 2000-08-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002061966A JP2002061966A (en) 2002-02-28
JP4249380B2 true JP4249380B2 (en) 2009-04-02

Family

ID=18737488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247383A Expired - Lifetime JP4249380B2 (en) 2000-08-17 2000-08-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP4249380B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719246B2 (en) * 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
KR100606632B1 (en) 2004-06-18 2006-08-02 주식회사 알레 A heating and cooling system for a fresh gas separator
MX2007012510A (en) * 2005-05-24 2007-11-09 Carrier Corp Parallel-flow evaporators with liquid trap for providing better flow distribution.
CN101310154B (en) * 2005-11-14 2012-12-05 日冷工业株式会社 Gas-liquid separator and refrigerating apparatus equipped therewith
JP5230537B2 (en) * 2009-06-05 2013-07-10 株式会社ジャパンアクアテック Gas separator
JP6409456B2 (en) * 2014-09-29 2018-10-24 アイシン精機株式会社 Air conditioner
CN105402958A (en) * 2015-12-29 2016-03-16 海信(山东)空调有限公司 Air conditioner and control method of air conditioning refrigerants

Also Published As

Publication number Publication date
JP2002061966A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
JP3538492B2 (en) Refrigeration cycle device
TW200921030A (en) Economized vapor compression circuit
JPH11304293A (en) Refrigerant condenser
JPH07113555A (en) Air conditioner
CN1170860A (en) Dual inlet oil separator for chiller
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
KR20180104416A (en) Air conditioning system
US9134057B2 (en) Refrigeration cycle and condenser with supercooling unit
JP4249380B2 (en) Air conditioner
CN102455090B (en) Sub-cooling condenser
JP2002061992A (en) Air conditioner
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
CN202339054U (en) Subcooling condenser
KR101291035B1 (en) A Condenser having Multiple Gas-Liquid Separators
JP2002364936A (en) Refrigeration unit
JPH1047811A (en) Condenser
CN217423483U (en) Air conditioning system
JP3256856B2 (en) Refrigeration system
KR102342956B1 (en) High efficiency evaporative condenser
JPH10259959A (en) Heating device using refrigeration cycle
JP3480205B2 (en) Air conditioner
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
JP2005134009A (en) Refrigerant distributor
JP2002090007A (en) Receiver drier for refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term