JP2002364936A - Refrigeration unit - Google Patents

Refrigeration unit

Info

Publication number
JP2002364936A
JP2002364936A JP2001173955A JP2001173955A JP2002364936A JP 2002364936 A JP2002364936 A JP 2002364936A JP 2001173955 A JP2001173955 A JP 2001173955A JP 2001173955 A JP2001173955 A JP 2001173955A JP 2002364936 A JP2002364936 A JP 2002364936A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
flow path
azeotropic mixed
mixed refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173955A
Other languages
Japanese (ja)
Inventor
Natsuo Kanzaki
奈津夫 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001173955A priority Critical patent/JP2002364936A/en
Publication of JP2002364936A publication Critical patent/JP2002364936A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration unit capable of maintaining or enhancing effects of the conventional arts, i.e., improvement of COP, by compactly constituting an integrated unit of a supercooler and an evaporator and employing an easy constitution. SOLUTION: The supercooler 5 includes a first internal passage 15a allowing a non-azeotropic mixture solution upstream of an expansion valve 16 to flow, and a second internal passage 15b branched from an internal passage 17a of the evaporator 17 provided downstream of the expansion valve 16. The non- azeotropic mixture solution is allowed to flow opposite to the first internal passage 15a to join the internal passage 17a of the evaporator 17, and is constituted integrally with the evaporator 17. The circulation flow rate of the non- azeotropic mixture solution flowing in the internal passage 17a, and the circulation flow rate of the non-azeotropic solution flowing in the second internal passage 15b of the supercooler 15, are determined on the basis of the ratio of their circulation flow rates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いる冷凍装置の技術分野に属するものである。
The present invention belongs to the technical field of a refrigerating apparatus using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】近年、地球を取り巻くオゾン層を保護
し、地球の温暖化を防止するために、従来広く採用され
てきた冷媒、例えば冷媒R22の使用が国際的に禁止さ
れ、冷媒R22の代替冷媒の開発が急務になっている。
冷媒R22の代替冷媒としては、目下のところ冷媒R4
07C、R410Aが注目されている。しかしながら、
これら冷媒R407C、R410Aは冷媒R22に比較
して、単独で使用しても低い成績係数(COP:蒸発能
力/動力)しか得られないために、複数の冷媒からなる
非共沸混合冷媒を用いて成績係数(以下、COPとい
う。)を改善し得るようにした種々の提案がなされてい
る。
2. Description of the Related Art In recent years, in order to protect the ozone layer surrounding the earth and prevent global warming, the use of a refrigerant widely used, for example, the refrigerant R22, has been internationally banned and replaced with the refrigerant R22. The development of refrigerants is urgently needed.
As an alternative refrigerant to the refrigerant R22, the refrigerant R4 is currently used.
07C and R410A are attracting attention. However,
Since these refrigerants R407C and R410A can obtain only a low coefficient of performance (COP: evaporation capacity / power) even when used alone as compared with refrigerant R22, they use a non-azeotropic mixed refrigerant composed of a plurality of refrigerants. Various proposals have been made to improve the coefficient of performance (hereinafter referred to as COP).

【0003】非共沸混合冷媒を用いた冷凍装置の場合に
は、熱交換器に小温度差の流体を対向流で熱交換(対向
流熱交換)させる形態のものを採用することにより、冷
凍装置の成績係数が大幅に改善されることが知られてい
る。ところで、蒸発器において、この蒸発器の冷媒流出
口における冷媒ガスが過度の過熱状態であると、冷媒ガ
スの影響によって蒸発器の伝熱係数が大幅に低下するの
で、小温度差での熱交換ができなくなってしまうことも
知られている。このような不具合を予防し、上記のよう
な小温度差での対向流熱交換を実現するためには、蒸発
器の冷媒流出口における冷媒ガスを適正な過熱度、ひい
ては適正な湿り状態にする必要がある。そのため、具体
的には、冷媒同士で熱交換を行う冷媒熱交換器(過冷却
器)を採用することが提案されている。
[0003] In the case of a refrigerating apparatus using a non-azeotropic mixed refrigerant, a refrigerating apparatus employing a form in which a heat exchanger exchanges heat of a fluid having a small temperature difference in a counterflow (counterflow heat exchange) is adopted. It is known that the coefficient of performance of the device is significantly improved. By the way, in the evaporator, if the refrigerant gas at the refrigerant outlet of the evaporator is in an excessively overheated state, the heat transfer coefficient of the evaporator is greatly reduced due to the influence of the refrigerant gas, so that heat exchange with a small temperature difference is performed. It is also known that you can no longer do. In order to prevent such inconveniences and to realize the counterflow heat exchange with the small temperature difference as described above, the refrigerant gas at the refrigerant outlet of the evaporator is set to an appropriate degree of superheat, and thus to an appropriate wet state. There is a need. Therefore, specifically, it has been proposed to employ a refrigerant heat exchanger (supercooler) that performs heat exchange between refrigerants.

【0004】前記過冷却器は、その熱交換性能の低下を
防ぐためには、圧力損失を極力抑えた設計とすることが
極めて重要である。例えば、過冷却器として、いわゆる
シェル&チューブ式のものを採用した場合、圧力損失を
抑えるためには相当数の本数のチューブを必要とするこ
とと、そのチューブに冷媒の未蒸発分を均等に配分する
ことが極めて困難であるために、結局のところ、蒸発伝
熱性能は単一のガスを利用した場合のものと同様になっ
てしまう。このようなシェル&チューブ式の過冷却器
で、高い蒸発伝熱性能を求めるとなると、設計上、過冷
却器が過大にならざるを得ないという問題が生じてしま
う。
It is very important that the supercooler is designed to minimize the pressure loss in order to prevent the heat exchange performance from deteriorating. For example, when a so-called shell-and-tube type is used as a subcooler, a considerable number of tubes are required to suppress the pressure loss, and the unvaporized portion of the refrigerant is evenly distributed to the tubes. Due to the extreme difficulty in distributing, after all, the evaporative heat transfer performance will be similar to that using a single gas. If high evaporative heat transfer performance is required in such a shell-and-tube type supercooler, there arises a problem that the supercooler must be excessively large in design.

【0005】例えば、特開2000−18735には、
非共沸混合媒体を用いて、過熱器自体をコンパクトなも
のにし、かつCOPの改善をなし得るようにした冷凍装
置が開示されている。この従来例に係る冷凍装置は、上
記課題を解決するために、過冷却器と蒸発器とを一体化
して、蒸発器の冷媒流出口と過冷却器の下部の冷媒流入
口とを配管で接続したものである。
For example, Japanese Patent Application Laid-Open No. 2000-18735 discloses that
A refrigeration system using a non-azeotropic mixture medium to make the superheater itself compact and capable of improving the COP is disclosed. In order to solve the above problem, the refrigeration apparatus according to this conventional example integrates a supercooler and an evaporator, and connects a refrigerant outlet of the evaporator and a refrigerant inlet of a lower part of the supercooler by piping. It was done.

【0006】以下、この従来例に係る冷凍装置を、同公
報に記載されている同一名称を以って説明する。
[0006] The refrigeration apparatus according to this conventional example will be described below using the same names described in the publication.

【0007】上記従来例に係る冷凍装置は、少なくとも
圧縮機、凝縮用第1熱交換器(以下、凝縮器という。)、
受液器、第1膨張弁、蒸発用第2熱交換器(以下、蒸発
器という。)を含む閉じた非共沸混合冷媒用の循環流路
(循環閉流路に相当する。)を備えた冷凍装置において、
上記第1膨張弁に達する前の高圧冷媒を流入させて上か
ら下に流動させ、下部から上記第1膨張弁に向けて流出
させる一方、上記蒸発器から流出した低圧冷媒を流入さ
せて下から上に流動させ、上記圧縮機の吸込部に向けて
ガス状にして流出させる縦形1パス対向流タイプの熱交
換器である液過冷却器(以下、過冷却器という。)を設け
ると共に、上記蒸発器が、上記第1膨張弁を経て流入し
た冷媒を下から上に流動させる一方、被冷却水を上から
下に流動させる縦形1パス対向流タイプで、かつ未蒸発
分を含んだ冷媒を上記過冷却器に向けて流出させ、かつ
上記過冷却器および上記蒸発器のそれぞれを、プレート
式熱交換器の流体流路を形成する複数のプレートからな
るプレート群を挟着する両側面の耐圧部材からなる端面
板の一方の単面板を省いた構造にすると共に、この両者
の単面板を省いた側面同士を当接させ、この当接させた
側面に対向し、かつ上記過冷却器の高圧冷媒流出入口お
よび低圧冷媒流出入口を設けた耐圧部材からなる第1反
面板と、上記当接させた側面に対向し、かつ上記蒸発器
の冷媒流出入口および被冷却水流出入口を設けた耐圧部
材からなる第2端面板により上記過冷却器および上記蒸
発器の各プレート群を挟着して、上記過冷却器および上
記蒸発器を一体的に形成したものである。
[0007] The refrigeration apparatus according to the conventional example includes at least a compressor, a first heat exchanger for condensation (hereinafter, referred to as a condenser),
A closed circulation path for a non-azeotropic mixed refrigerant including a liquid receiver, a first expansion valve, and a second heat exchanger for evaporation (hereinafter, referred to as an evaporator).
(Corresponding to a closed circulation channel).
The high-pressure refrigerant before reaching the first expansion valve is allowed to flow and flow from top to bottom, and is allowed to flow from the lower portion toward the first expansion valve, while the low-pressure refrigerant flowing from the evaporator is allowed to flow and from below. A liquid subcooler (hereinafter, referred to as a supercooler), which is a vertical one-pass counterflow type heat exchanger that flows upward and gasifies and flows out toward the suction portion of the compressor, is provided. The evaporator is a vertical one-pass counter-flow type in which the refrigerant flowing through the first expansion valve flows from bottom to top while the water to be cooled flows from top to bottom, and the refrigerant containing the unevaporated component. Withstand pressure on both sides of a plate group consisting of a plurality of plates forming a fluid flow path of a plate heat exchanger, wherein each of the subcooler and the evaporator is discharged toward the subcooler. One of the end face plates made of members In addition to the omitted structure, the two sides of the single-sided plate were abutted against each other, opposed to the abutted side surface, and the high-pressure refrigerant outflow inlet and the low-pressure refrigerant outflow inlet of the supercooler were provided. A first opposite face plate made of a pressure-resistant member and a second end face plate made of a pressure-resistant member provided with a refrigerant outflow port and a cooled water outflow port of the evaporator, facing the contacted side surface; The subcooler and the evaporator are integrally formed by sandwiching each plate group of the evaporator.

【0008】[0008]

【発明が解決しようとする課題】上記従来例に係る冷凍
装置の場合には、上記のとおり、過冷却器と蒸発器とが
一体的に形成されると共に、蒸発器の冷媒流出口と過冷
却器の下部の冷媒流出口とが配管で接続されている。従
って、この従来例に係る冷凍装置では全量の冷媒液が過
冷却器に流入するように構成されているために、冷媒液
流の圧力損失を抑えようとすると、相当多くのプレート
が必要になるから、一体的に形成された過冷却器と蒸発
器とが大型、かつその構造が複雑になるという問題が生
じる。
In the refrigerating apparatus according to the prior art, as described above, the supercooler and the evaporator are integrally formed, and the refrigerant outlet of the evaporator and the supercooler are connected. The refrigerant outlet at the lower part of the vessel is connected by piping. Therefore, in the refrigeration apparatus according to the conventional example, since the entire amount of the refrigerant liquid flows into the subcooler, a large number of plates are required to suppress the pressure loss of the refrigerant liquid flow. Therefore, there arises a problem that the integrally formed supercooler and evaporator are large and their structures are complicated.

【0009】従って、本発明の目的は、一体化した過冷
却器と蒸発器とをコンパクトなものとし、かつ平易な構
成で、COPを改善するという従来例の効果を維持、あ
るいは向上を可能ならしめる冷凍装置を提供することで
ある。
Accordingly, an object of the present invention is to make the integrated subcooler and evaporator compact and have a simple structure, while maintaining or improving the effect of the conventional example of improving COP. An object of the present invention is to provide a refrigerating device for squeezing.

【0010】[0010]

【課題を解決するための手段】本発明は、上記実情に鑑
みてなされたものであって、従って上記課題を解決する
ために、本発明の請求項1に係る冷凍装置が採用した手
段は、少なくとも圧縮機、凝縮器、膨張弁、蒸発器を含
む非共沸混合冷媒用の循環閉流路を備えた冷凍装置にお
いて、前記膨張弁の上流の非共沸混合冷媒が流れる第1
内部流路と、前記膨張弁の下流の前記蒸発器の内部流
路、または前記膨張弁と前記蒸発器との間の流路から分
岐し、前記第1内部流路と対向して非共沸混合冷媒が流
れ、さらに前記蒸発器の内部流路、または前記蒸発器と
前記圧縮機との間の流路と合流する第2内部流路とを内
包する過冷却器が前記蒸発器と一体的に形成され、前記
蒸発器の内部流路を流れる非共沸混合冷媒の循環流量
と、前記過冷却器の第2内部流路を流れる非共沸混合冷
媒の循環流量とが、それらの冷媒循環流量比に基づいて
設定されてなることを特徴とするものである。
Means for Solving the Problems The present invention has been made in view of the above-mentioned circumstances, and in order to solve the above-mentioned problems, means adopted by a refrigeration apparatus according to claim 1 of the present invention is as follows. In a refrigeration system having a closed circulation path for a non-azeotropic mixed refrigerant including at least a compressor, a condenser, an expansion valve, and an evaporator, the first non-azeotropic mixed refrigerant upstream of the expansion valve flows.
An internal flow path, a branch from an internal flow path of the evaporator downstream of the expansion valve, or a flow path between the expansion valve and the evaporator, and non-azeotropically opposed to the first internal flow path A subcooler in which the mixed refrigerant flows and further includes an internal flow path of the evaporator or a second internal flow path that merges with a flow path between the evaporator and the compressor is integrated with the evaporator. And the circulating flow rate of the non-azeotropic mixed refrigerant flowing through the internal flow path of the evaporator and the circulating flow rate of the non-azeotropic mixed refrigerant flowing through the second internal flow path of the supercooler It is characterized by being set based on the flow ratio.

【0011】また、本発明の請求項2に係る冷凍装置が
採用した手段は、請求項1に記載の冷凍装置において、
前記冷媒循環流量比は、前記蒸発器の冷媒流出口におけ
る非共沸混合冷媒中の冷媒ガスの重量比率であるクオリ
ティxが、この非共沸混合冷媒中に未蒸発分が残存する
予め定められた第1設定値以下になるように設定され、
前記過冷却器の冷媒流出口における非共沸混合冷媒の過
熱度tshが予め定められた第2設定値以上になるよう
に設定され、非共沸混合冷媒ガスの比熱がCpgであ
り、かつ非共沸混合冷媒液の潜熱がλであるとしたと
き、tsh×Cpg/{(1−x)×λ}の式を満足する
ように決定されてなることを特徴とするものである。
The means employed by the refrigeration apparatus according to claim 2 of the present invention is the refrigeration apparatus according to claim 1,
The refrigerant circulation flow rate ratio is a weight x of the refrigerant gas in the non-azeotropic mixed refrigerant at the refrigerant outlet of the evaporator, and the quality x is a predetermined amount in which the unevaporated component remains in the non-azeotropic mixed refrigerant. Is set to be equal to or less than the first set value,
The superheat degree tsh of the non-azeotropic mixed refrigerant at the refrigerant outlet of the subcooler is set to be equal to or more than a second predetermined value, the specific heat of the non-azeotropic mixed refrigerant gas is Cpg, and Assuming that the latent heat of the azeotropic mixed refrigerant liquid is λ, the latent heat is determined so as to satisfy an expression of tsh × Cpg / {(1-x) × λ}.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態に係る
冷凍装置を、その全体構成説明図の図1を参照しながら
説明する。この冷凍装置は、図1から良く理解されるよ
うに、複数の冷媒からなる非共沸混合冷媒を、圧縮機1
1、凝縮器12、受液器13、過冷却器15、膨張弁1
6、蒸発器17を経由させると共に、圧縮機11に戻す
循環閉流路Lを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a refrigeration apparatus according to an embodiment of the present invention will be described with reference to FIG. As is well understood from FIG. 1, the refrigeration apparatus converts a non-azeotropic mixed refrigerant including a plurality of refrigerants into a compressor 1.
1, condenser 12, liquid receiver 13, subcooler 15, expansion valve 1
6. A circulation closed flow path L that passes through the evaporator 17 and returns to the compressor 11 is provided.

【0013】前記圧縮機11は、例えば単段圧縮機であ
っても、また低段、高段圧縮機本体を直列に配設した2
段圧縮機の何れであってもよく、その形式としては、例
えばスクリュ式、レシプロ式、ターボ式の何れであって
もよい。なお、2段圧縮機の場合、図示しない中間流路
は低段圧縮機本体の吸込口Sと高段圧縮機本体の出口と
の間にあって、かつこれらの吸込口S、出口Tの何れに
も連通しない循環閉流路Lの部分に連通している。
The compressor 11 may be, for example, a single-stage compressor or a two-stage compressor in which low-stage and high-stage compressor bodies are arranged in series.
Any type of stage compressor may be used, and the type may be, for example, any of a screw type, a reciprocating type, and a turbo type. In the case of the two-stage compressor, an intermediate flow path (not shown) is located between the suction port S of the low-stage compressor main body and the outlet of the high-stage compressor main body, and is connected to both of the suction port S and the outlet T. It communicates with the portion of the closed circulation channel L that does not communicate.

【0014】前記凝縮器12は、従来から知られている
縦型1パス対向流タイプのプレート式の構成になるもの
である。この凝縮器12では、圧縮機11の出口Tから
吐出された冷媒を上部に設けた冷媒流入口21から流入
させて上部から下部に流動させると共に、下部に設けた
冷媒流出口22から流出させる一方、冷却水を下部に設
けた冷却水流入口23から流入させて下部から上部に流
動させさせると共に、上部に設けた冷却水出口24から
流出させ、冷媒と冷却水との間で熱交換をさせるように
構成されている。
The condenser 12 is of a plate type of a conventionally known vertical one-pass counterflow type. In the condenser 12, the refrigerant discharged from the outlet T of the compressor 11 flows in from the refrigerant inlet 21 provided in the upper part and flows from the upper part to the lower part, and flows out from the refrigerant outlet 22 provided in the lower part. The cooling water flows from the cooling water inlet 23 provided at the lower part to flow from the lower part to the upper part, and flows out from the cooling water outlet 24 provided at the upper part, so that the heat exchange between the refrigerant and the cooling water is performed. Is configured.

【0015】前記受液器13は、凝縮器12の下方位置
に配設されている。そのために、凝縮器12内で凝縮し
た冷媒液は、この凝縮器12内に滞留することなく、直
ちに受液器13内に流下する。このように、受液器13
を凝縮器12の下方に配設することにより、凝縮した冷
媒液を直ちに凝縮器12外に流出させるように構成され
ているため、良好な熱交換が行われる。
The liquid receiver 13 is disposed below the condenser 12. Therefore, the refrigerant liquid condensed in the condenser 12 immediately flows into the liquid receiver 13 without staying in the condenser 12. Thus, the receiver 13
Is disposed below the condenser 12, so that the condensed refrigerant liquid is immediately discharged to the outside of the condenser 12, so that good heat exchange is performed.

【0016】前記過冷却器15と蒸発器17とは、一体
的に構成されている。斯かる構成にすることにより、蒸
発器17内において、液状態の冷媒をできるだけ多く含
んだ状態、つまり冷媒中のガスの重量比率(クオリティ)
ができるだけ小さくなるようにして、冷媒と、例えば冷
却水等の被冷却液との熱交換を行わせており、ガス状態
の冷媒と被冷却液との間の熱交換の場合に比較して効率
よく熱交換が行われるようになっている。また、過冷却
器15にて蒸発器17からの液状態の低圧媒体の気化熱
を利用して高圧冷媒を過冷却するようにしており、この
ことにより蒸発器17に流入する減圧後の冷媒の温度は
非共沸混合冷媒特有の温度低下現象に従って低下するの
で、熱交換効率がよくなり、COPも向上する。
The supercooler 15 and the evaporator 17 are integrally formed. With such a configuration, in the evaporator 17, a state in which the refrigerant in the liquid state is contained as much as possible, that is, the weight ratio of the gas in the refrigerant (quality)
Is made as small as possible, and heat exchange is performed between the refrigerant and the liquid to be cooled, for example, cooling water, and the efficiency is improved as compared with the case of heat exchange between the gaseous refrigerant and the liquid to be cooled. Heat exchange is often performed. The supercooler 15 supercools the high-pressure refrigerant by using the heat of vaporization of the low-pressure medium in the liquid state from the evaporator 17. Since the temperature is reduced according to the temperature reduction phenomenon peculiar to the non-azeotropic refrigerant mixture, the heat exchange efficiency is improved and the COP is also improved.

【0017】具体的には、受液器13から流出した高圧
冷媒は、上部に設けられた高圧冷媒流入口25から過冷
却器15に流入し、内部に設けられた第1内部流路15
aを流下し、次いで下部に設けられた高圧冷媒流出口2
6から一旦流出した後、膨張弁16を介して、この膨張
弁16の下流側の蒸発器17に流入するように構成され
ている。そして、液状態の高圧冷媒を膨張弁16により
膨張させて、圧力および温度が降下した冷媒を、液状態
で蒸発器17の下部の冷媒流入口35から流入させると
共に、この蒸発器17内で分岐させ、一方は蒸発器17
の内部に設けられた内部流路17aに通じさせ、他方は
過冷却器15の内部に設けられた第2内部流路15bに
通じさせる。過冷却器15では、第1内部流路15aと
第2内部流路15bとが対向するように構成されてい
て、冷媒がこれらの内部を対向して流れるので、冷媒同
士の熱交換が効果的に促進されることとなる。
Specifically, the high-pressure refrigerant flowing out of the liquid receiver 13 flows into the supercooler 15 from the high-pressure refrigerant inlet 25 provided at the upper part, and the first internal flow path 15 provided therein is provided.
a, and then a high-pressure refrigerant outlet 2 provided in the lower part
After flowing out of the expansion valve 16 once, it flows into the evaporator 17 downstream of the expansion valve 16 via the expansion valve 16. The high-pressure refrigerant in the liquid state is expanded by the expansion valve 16, and the refrigerant having a reduced pressure and temperature flows in the liquid state from the refrigerant inlet 35 below the evaporator 17, and branches in the evaporator 17. And one is the evaporator 17
And the other is connected to a second internal flow path 15b provided inside the subcooler 15. In the supercooler 15, the first internal flow path 15a and the second internal flow path 15b are configured to be opposed to each other. Since the refrigerant flows through these insides, heat exchange between the refrigerants is effective. Will be promoted.

【0018】そして、蒸発器17の内部に設けられた内
部流路17aを流れる冷媒は、下部から上部側に流動
し、上部の冷媒流出口36から、液過冷却器15の第2
内部流路15bから流れてきた冷媒と合流して、未蒸発
分を含む状態で流出するようになっている。また、蒸発
器17では、被冷却水を上部の被冷却液流入口37から
流入させ、上部から下部に流動させると共に、前記冷媒
と熱交換させた後に、下部の被冷却液流出口38から流
出させるようになっている。
The refrigerant flowing through the internal flow path 17a provided inside the evaporator 17 flows from the lower part to the upper part, and flows from the upper refrigerant outlet 36 to the second subcooler 15 of the liquid subcooler 15.
The refrigerant merges with the refrigerant flowing from the internal flow path 15b, and flows out in a state including an unevaporated component. Further, in the evaporator 17, the water to be cooled flows in from the upper liquid inlet 37, flows from the upper part to the lower part, and after the heat exchange with the refrigerant, flows out from the lower liquid outlet 38 in the lower part. It is made to let.

【0019】この冷凍装置の構成を、いわゆるチラーと
して使用する場合には、通常、凝縮器12に流入させる
冷却流体として、冷却塔で冷却した冷却水を使用するた
め、凝縮器12の冷却水流入口23に流入する冷却水の
温度は32℃程度である。これに応じて、蒸発器17に
流入させる被冷却流体の設計条件上の温度は、例えば、
12〜7℃前後となる。そのために、凝縮器12で凝縮
された冷却冷媒の液温度は35℃前後となり、蒸発器1
7での冷媒の蒸発温度は5℃前後となる。従って、過冷
却器15では、蒸発器17側の過熱度は20℃前後まで
可能ということになる。
When the configuration of the refrigeration apparatus is used as a so-called chiller, cooling water cooled by a cooling tower is usually used as a cooling fluid flowing into the condenser 12. The temperature of the cooling water flowing into 23 is about 32 ° C. Accordingly, the temperature of the fluid to be cooled flowing into the evaporator 17 under the design conditions is, for example,
It will be around 12-7 ° C. Therefore, the liquid temperature of the cooling refrigerant condensed in the condenser 12 becomes about 35 ° C., and the evaporator 1
The evaporation temperature of the refrigerant at 7 is about 5 ° C. Therefore, in the subcooler 15, the degree of superheat on the side of the evaporator 17 can be up to about 20 ° C.

【0020】このような構成になる冷凍装置において、
さらに蒸発器17の内部流路17aを流れる冷媒の循環
流量aと、過冷却器15の第2内部流路15bを流れる
冷媒の循環流量bとの冷媒循環流量比a/bが、ある所
定値になるように決定することにより、「一体化した過
冷却器と蒸発器とをコンパクトなものとし、かつ平易な
構成で、COPを改善するという従来例に係る冷凍装置
の効果を維持、あるいは向上を可能ならしめる冷凍装置
を実現する」という本願発明の目的を達成することがで
きる。
In the refrigerating apparatus having such a configuration,
Further, the refrigerant circulation flow ratio a / b between the circulation flow rate a of the refrigerant flowing through the internal flow path 17a of the evaporator 17 and the circulation flow rate b of the refrigerant flowing through the second internal flow path 15b of the subcooler 15 is a predetermined value. By maintaining the refrigeration system according to the conventional example of improving the COP with a compact integrated supercooler and evaporator, with a simple configuration, and maintaining or improving the efficiency. To realize a refrigeration apparatus that enables the above ".

【0021】前記冷媒循環流量比a/bは、蒸発器17
の冷媒流出口36側において冷媒中に未蒸発冷媒液(未
蒸発分)が残存し、かつ第1所定値以下になるように予
め定めた、冷媒中のガスの重量比率である冷媒のクオリ
ティ、第2所定値(過熱温度)以上になるように予め定め
た、過冷却器15の冷媒流出口26側における冷媒の過
熱度等によって決定される。例えば、前記第1所定値が
1、前記第2所定値が5℃以上になるように決定するの
が好ましい。
The refrigerant circulation flow ratio a / b is determined by the evaporator 17
Unevaporated refrigerant liquid (unevaporated component) remains in the refrigerant at the refrigerant outlet 36 side of the refrigerant, and is predetermined to be equal to or less than the first predetermined value, the quality of the refrigerant being the weight ratio of gas in the refrigerant, It is determined by the degree of superheat of the refrigerant on the refrigerant outlet 26 side of the subcooler 15 which is predetermined so as to be equal to or more than a second predetermined value (superheat temperature). For example, it is preferable to determine the first predetermined value to be 1 and the second predetermined value to be 5 ° C. or more.

【0022】より具体的には、蒸発器17の冷媒流出口
36側における冷媒のクオリティがxであり、過冷却器
15の冷媒流出口における冷媒の過熱度(℃)がtshで
あり、冷媒ガスの比熱(KJ/kg℃)がCpgであり、
冷媒液の潜熱(KJ/kg)がλであるとしたとき、冷媒
循環流量比a/bはtsh×Cpg/{(1−x)×λ}
の式を満足するように決定される。なお、冷媒ガス比熱
は冷媒(ガス)の種類によって定まる固定値であり、また
冷媒液の潜熱は冷媒(液)の種類によって定まる固定値で
ある。
More specifically, the refrigerant quality at the refrigerant outlet 36 side of the evaporator 17 is x, the superheat degree (° C.) of the refrigerant at the refrigerant outlet of the subcooler 15 is tsh, and the refrigerant gas Has a specific heat (KJ / kg ° C.) of Cpg,
When the latent heat (KJ / kg) of the refrigerant liquid is λ, the refrigerant circulation flow rate ratio a / b is tsh × Cpg / {(1-x) × λ}.
Is determined so as to satisfy the following equation. The specific heat of the refrigerant gas is a fixed value determined by the type of the refrigerant (gas), and the latent heat of the refrigerant liquid is a fixed value determined by the type of the refrigerant (liquid).

【0023】ここで、例えば、冷媒循環流量比a/bを
8/2とし、冷媒の過熱度を20℃とすると、冷媒液の
潜熱は約200KJ/kgであり、また冷媒ガスの比熱
は約1.2KJ/kgであるから、蒸発器17の冷媒流
出口36における冷媒は、クオリティxが0.97の湿
り状態になるので、優れた冷却性能を発揮することがで
きる。
Here, for example, assuming that the refrigerant circulation flow ratio a / b is 8/2 and the degree of superheat of the refrigerant is 20 ° C., the latent heat of the refrigerant liquid is about 200 KJ / kg, and the specific heat of the refrigerant gas is about Since it is 1.2 KJ / kg, the refrigerant at the refrigerant outlet 36 of the evaporator 17 is in a wet state with the quality x of 0.97, so that it is possible to exhibit excellent cooling performance.

【0024】つまり、蒸発器17の冷媒流出口36側に
おける冷媒のクオリティxが予め定めた第1所定値以下
になるように、かつ過冷却器15の冷媒流出口側におけ
る冷媒の過熱度が予め定めた第2所定値 (所定温度)以
上になるように、冷媒循環流量比a/bを決定する。そ
して、冷媒流入口35から流入する冷媒が決定した流量
比率になるように蒸発器17の内部流路17aと、過冷
却器15の第2内部流路15bとに分流させればよいも
のである。非共沸混合冷媒を使用した過冷却器15の特
徴として、過冷却した分だけ蒸発開始温度が低下するの
で、蒸発器17における熱交換効率が向上するという効
果もある。
That is, the quality x of the refrigerant at the refrigerant outlet 36 side of the evaporator 17 is equal to or less than a predetermined first predetermined value, and the degree of superheat of the refrigerant at the refrigerant outlet side of the subcooler 15 is set in advance. The refrigerant circulation flow rate ratio a / b is determined so as to be equal to or higher than a predetermined second predetermined value (predetermined temperature). Then, the refrigerant flowing from the refrigerant inlet 35 may be divided into the internal flow path 17a of the evaporator 17 and the second internal flow path 15b of the supercooler 15 so that the flow rate becomes the determined flow rate. . As a feature of the subcooler 15 using the non-azeotropic mixed refrigerant, the evaporation start temperature is reduced by an amount corresponding to the supercooling, so that the heat exchange efficiency in the evaporator 17 is improved.

【0025】なお、蒸発器17の内部流路17aと、過
冷却器15の第2内部流路15bとへの冷媒の分流は、
蒸発器17と過冷却器15とに同一種類のプレートを使
用した場合には、過熱ガスの割合が大きい過冷却器の方
が同一循環流量での冷媒圧力損失が大きくなるので、蒸
発冷媒側の圧力損失差を考慮すれば、単純にプレートの
枚数比で決定される。
It should be noted that the flow of refrigerant into the internal flow path 17a of the evaporator 17 and the second internal flow path 15b of the subcooler 15
When the same type of plate is used for the evaporator 17 and the subcooler 15, the supercooler having a higher ratio of the superheated gas has a larger refrigerant pressure loss at the same circulation flow rate. If the pressure loss difference is taken into consideration, it is simply determined by the ratio of the number of plates.

【0026】但し、蒸発器と過冷却器の必要熱交換量と
伝熱面積の関係から単純に循環流量比だけで決定する
と、所定の設定条件を維持することができない場合に
は、蒸発器17と過冷却器15のプレートの種類を同一
循環流量時の圧力損失の異なるものとして循環流量比を
変える方法や、蒸発器17と過冷却器15の境目にオリ
フィスを入れて循環流量比を変える方法を採用すること
も可能である。
However, if it is determined simply from the relationship between the required heat exchange amount of the evaporator and the subcooler and the heat transfer area only by the circulation flow ratio, if the predetermined set conditions cannot be maintained, the evaporator 17 A method of changing the circulation flow ratio assuming that the types of plates of the and the supercooler 15 have different pressure losses at the same circulation flow, and a method of changing the circulation flow ratio by inserting an orifice at the boundary between the evaporator 17 and the supercooler 15 It is also possible to employ.

【0027】また、本実施の形態に係る冷凍装置によれ
ば、蒸発器17に流入する低温、低圧の冷媒液が、この
蒸発器17内で分流され、一方が蒸発器17の内部に設
けられた内部流路17aを流れ、他方が過冷却器15の
内部に設けられた第2内部流路15bを流れる構成にな
っていて、従来例に係る冷凍装置のように、全量の冷媒
液を過冷却器へ流入させる構成でないために、多くのプ
レートを使用するまでもなく圧力損失を抑えることがで
き、その構造が簡単化され、小型化することが可能にな
る。
Further, according to the refrigeration apparatus of the present embodiment, the low-temperature and low-pressure refrigerant liquid flowing into the evaporator 17 is divided in the evaporator 17, and one of the refrigerant liquids is provided inside the evaporator 17. And the other flows through a second internal flow path 15b provided inside the subcooler 15, and the entire amount of the refrigerant liquid flows as in the refrigeration apparatus according to the conventional example. Since the configuration is not such that it flows into the cooler, the pressure loss can be suppressed without using many plates, and the structure can be simplified and the size can be reduced.

【0028】ところで、圧縮比の大きな冷凍装置の場合
には、冷却性能の改善のためにエコノマイザが使用され
る。この場合には、高圧冷媒液がエコノマイザにより過
冷却されるために大きな過熱度を取ることができなくな
る。しかしながら、エコノマイザによる冷媒の過冷却温
度を適正に選択してやれば、上記のような効用が妨げら
れるようなことがない。
Incidentally, in the case of a refrigeration system having a large compression ratio, an economizer is used to improve the cooling performance. In this case, a high degree of superheat cannot be obtained because the high-pressure refrigerant liquid is supercooled by the economizer. However, if the supercooling temperature of the refrigerant by the economizer is properly selected, the above-mentioned effects are not hindered.

【0029】以上では、膨張弁16による膨張により低
圧、低温にした冷媒液を蒸発器17内で分岐させ、一方
を蒸発器17の内部に設けられた内部流路17aに通じ
させ、他方を過冷却器15の内部に設けられた第2内部
流路15bに通じさせ、そして蒸発器17の内部に設け
られた内部流路17aを流れて被冷却液と熱交換した冷
媒に、液過冷却器15の第2内部流路15bから流れて
きた冷媒を合流させて、蒸発器17の上部の冷媒流出口
36から流出させる場合を例として説明した。
In the above, the refrigerant liquid which has been reduced in pressure and temperature by the expansion of the expansion valve 16 is branched in the evaporator 17, one of which is communicated with the internal flow path 17a provided inside the evaporator 17, and the other is filtered. The liquid subcooler is connected to the second internal flow path 15b provided inside the cooler 15 and flows through the internal flow path 17a provided inside the evaporator 17 to exchange heat with the liquid to be cooled. The case has been described as an example where the refrigerant flowing from the fifteen second internal flow paths 15b is combined and allowed to flow out of the refrigerant outlet 36 at the upper part of the evaporator 17.

【0030】しかしながら、膨張弁16と蒸発器17と
の間の流路から分岐させた外部配管を過冷却器15の第
2内部流路15bの下部に接続する一方、この第2内部
流路15bの上部に接続した外部配管の他端を蒸発器1
7と圧縮機11との間の流路に接続してなる構成にして
も同等の機能を果たすことができるから、冷凍装置の構
成は上記実施の形態に限定されるものではない。
However, the external pipe branched from the flow path between the expansion valve 16 and the evaporator 17 is connected to the lower part of the second internal flow path 15b of the subcooler 15, while the second internal flow path 15b The other end of the external pipe connected to the upper part of the evaporator 1
The same function can be achieved with a configuration that is connected to the flow path between the compressor 7 and the compressor 11, so that the configuration of the refrigeration apparatus is not limited to the above embodiment.

【0031】[0031]

【発明の効果】本発明の請求項1または2に係る冷凍装
置は、この冷凍装置の膨張弁の上流の非共沸混合冷媒が
流れる第1内部流路と、前記膨張弁の下流の蒸発器の内
部流路、または前記膨張弁と前記蒸発器との間の流路か
ら分岐し、前記第1内部流路と対向して非共沸混合冷媒
が流れ、さらに前記蒸発器の内部流路、または前記蒸発
器と圧縮機との間の流路と合流する第2内部流路とを内
包する過冷却器が前記蒸発器と一体的に形成され、前記
蒸発器の内部流路を流れる非共沸混合冷媒の循環流量
と、前記過冷却器の第2内部流路を流れる非共沸混合冷
媒の循環流量とが、それらの冷媒循環流量比に基づいて
設定されるように構成されている。
The refrigeration apparatus according to claim 1 or 2 of the present invention has a first internal flow path through which a non-azeotropic mixed refrigerant flows upstream of an expansion valve of the refrigeration apparatus, and an evaporator downstream of the expansion valve. An internal flow path, or branches off from a flow path between the expansion valve and the evaporator, a non-azeotropic mixed refrigerant flows in opposition to the first internal flow path, and further an internal flow path of the evaporator, Alternatively, a subcooler that includes a second internal flow path that merges with a flow path between the evaporator and the compressor is formed integrally with the evaporator, and a non-cooling device that flows through the internal flow path of the evaporator is formed. The circulating flow rate of the boiling mixed refrigerant and the circulating flow rate of the non-azeotropic mixed refrigerant flowing through the second internal flow path of the supercooler are configured to be set based on the refrigerant circulating flow rate ratio.

【0032】従って、本発明の請求項1または2に係る
冷凍装置によれば、冷媒循環流量比を、蒸発器の冷媒流
出口側における冷媒のクオリティが予め定めた所定の値
以下になるように、そして過冷却器の冷媒流出口側にお
ける冷媒の過熱度が予め定めた所定の値以上になるよう
に決定して、膨張弁による断熱膨張で低圧、低温になっ
た冷媒液を蒸発器の内部流路と、過冷却すべき高圧冷媒
液を流す過冷却器の第1内部流路に対して対向流を流す
第2内部流路とに適切な割合で分流させて流入させるこ
とにより、過冷却器で高圧冷媒液を効果的に冷却するこ
とができ、そして蒸発器の冷媒流出口側における冷媒の
クオリティを小さくすることができるので、優れた冷却
性能を発揮することができるという優れた効果がある。
Therefore, according to the refrigeration system of the present invention, the refrigerant circulation flow ratio is adjusted so that the quality of the refrigerant at the refrigerant outlet side of the evaporator is equal to or less than a predetermined value. Then, it is determined that the degree of superheat of the refrigerant at the refrigerant outlet side of the subcooler is equal to or greater than a predetermined value, and the low-pressure, low-temperature refrigerant liquid is reduced inside the evaporator by adiabatic expansion by the expansion valve. Sub-cooling is performed by diverting and flowing at an appropriate ratio into the flow path and the second internal flow path that causes the counterflow to flow to the first internal flow path of the supercooler through which the high-pressure refrigerant liquid to be supercooled flows. The high-pressure refrigerant liquid can be effectively cooled by the evaporator, and the quality of the refrigerant at the refrigerant outlet side of the evaporator can be reduced, so that the excellent effect that excellent cooling performance can be exhibited. is there.

【0033】さらに、本発明の請求項1または2に係る
冷凍装置によれば、従来例に係る冷凍装置のように、全
量の冷媒液を過冷却器へ流入させる構成でないため、多
くのプレートを使用するまでもなく圧力損失を抑えるこ
とができ、一体的に形成された過冷却器と蒸発器との構
造が簡単化され、小型化することが可能になるという優
れた効果がある。
Further, according to the refrigeration apparatus according to claim 1 or 2 of the present invention, unlike the refrigeration apparatus according to the conventional example, since it is not configured to allow the entire amount of the refrigerant liquid to flow into the subcooler, many plates are required. There is an excellent effect that the pressure loss can be suppressed even before use, the structure of the integrally formed supercooler and evaporator can be simplified, and the size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る冷凍装置の全体構成
説明図である。
FIG. 1 is an explanatory diagram of an entire configuration of a refrigeration apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…圧縮機、12…凝縮器、13…受液器、15…過
冷却器、15a…第1内部流路、15b…第2内部流
路、16…膨張弁、17…蒸発器、17a…内部流路 21…冷媒流入口、22…冷媒流出口、23…冷却水流
入口、24…冷却水流出口、25…高圧冷媒流入口、2
6…高圧冷媒流出口 35…冷媒流入口、36…冷媒流出口、37…被被冷却
液流入口、38…被冷却液流出口 L…循環閉流路、S…吸込口、T…出口(圧縮機)
DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Condenser, 13 ... Liquid receiver, 15 ... Supercooler, 15a ... First internal flow path, 15b ... Second internal flow path, 16 ... Expansion valve, 17 ... Evaporator, 17a ... Internal flow path 21: refrigerant inlet, 22: refrigerant outlet, 23: cooling water inlet, 24: cooling water outlet, 25: high-pressure refrigerant inlet, 2
6 high-pressure refrigerant outlet 35 refrigerant inlet 36 refrigerant outlet 37 liquid inlet to be cooled 38 liquid outlet to be cooled L closed circulation channel S suction inlet T outlet (Compressor)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、凝縮器、膨張弁、蒸
発器を含む非共沸混合冷媒用の循環閉流路を備えた冷凍
装置において、前記膨張弁の上流の非共沸混合冷媒が流
れる第1内部流路と、前記膨張弁の下流の前記蒸発器の
内部流路、または前記膨張弁と前記蒸発器との間の流路
から分岐し、前記第1内部流路と対向して非共沸混合冷
媒が流れ、さらに前記蒸発器の内部流路、または前記蒸
発器と前記圧縮機との間の流路と合流する第2内部流路
とを内包する過冷却器が前記蒸発器と一体的に形成さ
れ、前記蒸発器の内部流路を流れる非共沸混合冷媒の循
環流量と、前記過冷却器の第2内部流路を流れる非共沸
混合冷媒の循環流量とが、それらの冷媒循環流量比に基
づいて設定されてなることを特徴とする冷凍装置。
1. A refrigeration system having a closed circulation path for a non-azeotropic mixed refrigerant including at least a compressor, a condenser, an expansion valve, and an evaporator, wherein the non-azeotropic mixed refrigerant upstream of the expansion valve flows. A first internal flow path, a flow path branched from the internal flow path of the evaporator downstream of the expansion valve, or a flow path between the expansion valve and the evaporator; An azeotropic mixed refrigerant flows, and a subcooler that further includes an internal flow path of the evaporator, or a second internal flow path that merges with a flow path between the evaporator and the compressor, is a subcooler. The circulating flow rate of the non-azeotropic mixed refrigerant formed integrally and flowing through the internal flow path of the evaporator, and the circulating flow rate of the non-azeotropic mixed refrigerant flowing through the second internal flow path of the subcooler are those A refrigeration apparatus characterized by being set based on a refrigerant circulation flow ratio.
【請求項2】 前記冷媒循環流量比は、前記蒸発器の冷
媒流出口における非共沸混合冷媒中の冷媒ガスの重量比
率であるクオリティxが、この非共沸混合冷媒中に未蒸
発分が残存する予め定められた第1設定値以下になるよ
うに設定され、前記過冷却器の冷媒流出口における非共
沸混合冷媒の過熱度tshが予め定められた第2設定値
以上になるように設定され、非共沸混合冷媒ガスの比熱
がCpgであり、かつ非共沸混合冷媒液の潜熱がλであ
るとしたとき、tsh×Cpg/{(1−x)×λ}の式
を満足するように決定されてなることを特徴とする請求
項1に記載の冷凍装置。
2. The refrigerant circulating flow rate ratio is a quality x which is a weight ratio of a refrigerant gas in a non-azeotropic mixed refrigerant at a refrigerant outlet of the evaporator, and an unevaporated component is contained in the non-azeotropic mixed refrigerant. It is set so as to be equal to or less than the remaining predetermined first set value, and the superheat degree tsh of the non-azeotropic mixed refrigerant at the refrigerant outlet of the supercooler is equal to or larger than the second predetermined set value. Assuming that the specific heat of the non-azeotropic mixed refrigerant gas is Cpg and the latent heat of the non-azeotropic mixed refrigerant liquid is λ, the expression tsh × Cpg / {(1-x) × λ} is satisfied. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is determined to be operated.
JP2001173955A 2001-06-08 2001-06-08 Refrigeration unit Pending JP2002364936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173955A JP2002364936A (en) 2001-06-08 2001-06-08 Refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173955A JP2002364936A (en) 2001-06-08 2001-06-08 Refrigeration unit

Publications (1)

Publication Number Publication Date
JP2002364936A true JP2002364936A (en) 2002-12-18

Family

ID=19015316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173955A Pending JP2002364936A (en) 2001-06-08 2001-06-08 Refrigeration unit

Country Status (1)

Country Link
JP (1) JP2002364936A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
WO2010104057A1 (en) * 2009-03-12 2010-09-16 三菱重工業株式会社 Heat pump device
WO2012101677A1 (en) * 2011-01-27 2012-08-02 三菱電機株式会社 Air conditioner
WO2012101676A1 (en) 2011-01-27 2012-08-02 三菱電機株式会社 Air conditioner
WO2013001976A1 (en) * 2011-06-28 2013-01-03 ダイキン工業株式会社 Air conditioner
CN102967086A (en) * 2011-09-01 2013-03-13 丹佛斯(杭州)板式换热器有限公司 Plate-type evaporator and refrigeration system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
WO2010104057A1 (en) * 2009-03-12 2010-09-16 三菱重工業株式会社 Heat pump device
JP2010210224A (en) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd Heat pump device
WO2012101677A1 (en) * 2011-01-27 2012-08-02 三菱電機株式会社 Air conditioner
WO2012101676A1 (en) 2011-01-27 2012-08-02 三菱電機株式会社 Air conditioner
JP5528582B2 (en) * 2011-01-27 2014-06-25 三菱電機株式会社 Air conditioner
JPWO2012101677A1 (en) * 2011-01-27 2014-06-30 三菱電機株式会社 Air conditioner
JP5674822B2 (en) * 2011-01-27 2015-02-25 三菱電機株式会社 Air conditioner
US9157649B2 (en) 2011-01-27 2015-10-13 Mitsubishi Electric Corporation Air-conditioning apparatus
US9732992B2 (en) 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
WO2013001976A1 (en) * 2011-06-28 2013-01-03 ダイキン工業株式会社 Air conditioner
CN102967086A (en) * 2011-09-01 2013-03-13 丹佛斯(杭州)板式换热器有限公司 Plate-type evaporator and refrigeration system

Similar Documents

Publication Publication Date Title
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
US8020405B2 (en) Air conditioning apparatus
EP0779481A2 (en) Refrigeration cycle system
KR19990064122A (en) Air conditioner
JP2008281326A (en) Refrigerating unit and heat exchanger used for the refrigerating unit
US20010037649A1 (en) Air conditioner using flammable refrigerant
TWI571606B (en) A refrigeration unit using a triple tube heat exchanger
JP2000088431A (en) Brine cooler
JP2018021730A (en) Refrigeration cycle device
JP2002364936A (en) Refrigeration unit
JP3877207B2 (en) Hot water supply system for CO2 refrigeration cycle
JP2000304380A (en) Heat exchanger
WO2012002248A1 (en) Refrigeration apparatus
JP4249380B2 (en) Air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP2001355924A (en) Air conditioner
JP2003194427A (en) Cooling device
JPS6022250B2 (en) vapor compression refrigeration equipment
JP2000018735A (en) Refrigerating machine
JPH109714A (en) Freezer
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
JPH04257660A (en) Two stage compression refrigerating cycle device
JP3256856B2 (en) Refrigeration system
KR200259324Y1 (en) Refrigeration cycle