JP2003222445A - Gas liquid separator for ejector cycle and oil separator - Google Patents

Gas liquid separator for ejector cycle and oil separator

Info

Publication number
JP2003222445A
JP2003222445A JP2002021548A JP2002021548A JP2003222445A JP 2003222445 A JP2003222445 A JP 2003222445A JP 2002021548 A JP2002021548 A JP 2002021548A JP 2002021548 A JP2002021548 A JP 2002021548A JP 2003222445 A JP2003222445 A JP 2003222445A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
phase refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002021548A
Other languages
Japanese (ja)
Inventor
Yasuhito Noguchi
康仁 野口
Toru Ikemoto
徹 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002021548A priority Critical patent/JP2003222445A/en
Publication of JP2003222445A publication Critical patent/JP2003222445A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the level of liquid-phase refrigerant accumulated in a gas/liquid separator and to prevent a lot of refrigerating machine oil from flowing into an evaporator. <P>SOLUTION: A tank body 51 of the gas liquid separator 50 is formed into a conical flask shape gradually increasing a tank cross sectional area S as approaching to its lower side, so that the turning speed of the refrigerant adjacent to a liquid-phase refrigerant outlet 54 is reduced to stabilize the level of the liquid-phase refrigerant accumulated in the gas-liquid separator 50. The refrigerating machine oil flowing in the upper side of a refrigerant passage 61a is sucked by using a sucking pressure of a compressor 10 so as to be fed to the separated and selected compressor 10, while preventing a lot of refrigerating machine oil from flowing into the side of the evaporator 30. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エジェクタサイク
ル用の気液分離器及びオイル分離器に関するものであ
る。
TECHNICAL FIELD The present invention relates to a gas-liquid separator and an oil separator for an ejector cycle.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】エジェ
クタサイクルとは、周知のごとく、エジェクタにて冷媒
を減圧膨張させて蒸発器にて蒸発した気相冷媒を吸引す
るとともに、膨張エネルギーを圧力エネルギーに変換し
て圧縮機の吸入圧を上昇させる冷凍サイクルである。
As is well known, the ejector cycle is a well-known ejector cycle in which a refrigerant is decompressed and expanded by an ejector to suck a vapor phase refrigerant evaporated in an evaporator and expansion energy is converted into pressure energy. It is a refrigerating cycle in which the suction pressure of the compressor is increased by converting into.

【0003】つまり、エジェクタサイクルでは、圧縮機
→放熱器→エジェクタ→気液分離器→圧縮機の順に循環
する冷媒流れと、気液分離器→蒸発器→エジェクタ→気
液分離器の順に循環する冷媒流れとが存在し、気液分離
器は、エジェクタから流出した冷媒を気相冷媒と液相冷
媒とに分離して気相冷媒を圧縮機の吸引側に供給し、液
相冷媒を蒸発器側に供給する。
That is, in the ejector cycle, the refrigerant flow circulates in the order of compressor → radiator → ejector → gas-liquid separator → compressor, and circulates in the order of gas-liquid separator → evaporator → ejector → gas-liquid separator. There is a refrigerant flow, the gas-liquid separator separates the refrigerant flowing out of the ejector into a gas-phase refrigerant and a liquid-phase refrigerant, supplies the gas-phase refrigerant to the suction side of the compressor, and evaporates the liquid-phase refrigerant. Supply to the side.

【0004】ところで、気液分離器内には、エジェクタ
から流出する高速の冷媒が流入するため、気液分離器内
に溜まっている液相冷媒の液面が流入した高速の冷媒に
より波打ったり、流入した高速の冷媒流が旋回すること
により気液分離器内に溜まっている液相冷媒が旋回し、
その際に作用する遠心力により気液分離器の内側壁に押
しやられしまう。
By the way, since the high-speed refrigerant flowing out of the ejector flows into the gas-liquid separator, the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator may be waved by the inflowing high-speed refrigerant. , The swirling high-speed refrigerant flow swirling causes the swirling of the liquid-phase refrigerant in the gas-liquid separator,
The centrifugal force acting at that time pushes the inner wall of the gas-liquid separator.

【0005】このように、エジェクタサイクル用の気液
分離器では、液相冷媒の液面が安定し難いので、液相冷
媒を蒸発器に安定的に供給することが難しいばかりか、
液相冷媒から分離した冷凍機油を分離抽出して圧縮機に
戻すことが難しい。
As described above, in the gas-liquid separator for the ejector cycle, the liquid surface of the liquid-phase refrigerant is difficult to stabilize, so that it is difficult to stably supply the liquid-phase refrigerant to the evaporator.
It is difficult to separate and extract the refrigerating machine oil separated from the liquid-phase refrigerant and return it to the compressor.

【0006】また、液相冷媒から分離した冷凍機油を分
離抽出することが難しいため、液相冷媒と共に多くの冷
凍機油が蒸発器内に流れ込んでしまい、冷凍機油が蒸発
器内面に付着するようにして、多量の冷凍機油が蒸発器
に滞留してしまう。
Further, since it is difficult to separate and extract the refrigerating machine oil separated from the liquid phase refrigerant, a large amount of refrigerating machine oil flows into the evaporator together with the liquid phase refrigerant so that the refrigerating machine oil adheres to the inner surface of the evaporator. As a result, a large amount of refrigerating machine oil stays in the evaporator.

【0007】そして、冷凍機油が蒸発器内面に付着する
と、液相冷媒と蒸発器との間の熱伝達率が低下して液相
冷媒の蒸発を阻害し、蒸発器の熱交換効率の低下を招く
とともに、実質的な冷媒通路断面積が縮小して蒸発器内
を流れる冷媒流量の減少、及びこれに呼応して蒸発器で
の吸熱能力の低下を招く。
When the refrigerating machine oil adheres to the inner surface of the evaporator, the heat transfer coefficient between the liquid-phase refrigerant and the evaporator is reduced, which hinders the evaporation of the liquid-phase refrigerant and lowers the heat exchange efficiency of the evaporator. At the same time, the cross-sectional area of the refrigerant passage is substantially reduced to decrease the flow rate of the refrigerant flowing in the evaporator, and in response to this, the heat absorption capacity of the evaporator is decreased.

【0008】さらに、蒸発器で冷凍機油が滞留するた
め、圧縮機にて冷凍機油不足、つまり潤滑不足が発生す
るおそれもある。
Further, since the refrigerating machine oil stays in the evaporator, there is a possibility that the compressor may lack the refrigerating machine oil, that is, lack of lubrication.

【0009】本発明は、上記点に鑑み、気液分離器内に
溜まった液相冷媒の液面を安定させる、又は蒸発器に多
量の冷凍機油が流れ込むことを防止することを目的とす
る。
In view of the above points, an object of the present invention is to stabilize the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator or prevent a large amount of refrigerating machine oil from flowing into the evaporator.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、圧縮機(1
0)にて圧縮された高温高圧の冷媒を放冷する放熱器
(20)と、低温低圧の冷媒を蒸発させる蒸発器(3
0)、放熱器(20)から流出した冷媒の圧力エネルギ
ーを速度エネルギーに変換して冷媒を減圧膨張させるノ
ズル、及びノズルから噴射する冷媒と蒸発器(30)か
ら吸引した冷媒とを混合させながら速度エネルギーを圧
力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部
とを有するエジェクタ(40)とを備えるエジェクタサ
イクルに適用され、エジェクタ(40)から流出した冷
媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機
(10)の吸引側に供給し、液相冷媒を蒸発器(30)
側に供給する気液分離器であって、エジェクタ(40)
から流出した冷媒が流入する流入部(52)、気相冷媒
を流出させる気相冷媒流出部(53)、及び液相冷媒を
流出させる液相冷媒流出部(54)が設けられたタンク
本体(51)を有し、タンク本体(51)のうち液相冷
媒流出部(54)が設けられた部位におけるタンク断面
積(S1)は、タンク本体(51)のうち流入部(5
2)が設けられた部位におけるタンク断面積(S2)に
比べて大きいことを特徴とする。
In order to achieve the above object, the present invention provides a compressor (1
0) a radiator (20) for cooling the high temperature and high pressure refrigerant, and an evaporator (3) for evaporating the low temperature and low pressure refrigerant.
0), a nozzle for converting pressure energy of the refrigerant flowing out from the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and mixing the refrigerant injected from the nozzle with the refrigerant sucked from the evaporator (30) It is applied to an ejector cycle including an ejector (40) having a pressure increasing unit that converts velocity energy into pressure energy to increase the pressure of the refrigerant, and the refrigerant flowing out from the ejector (40) is converted into a gas-phase refrigerant and a liquid-phase refrigerant. Gas phase refrigerant is supplied to the suction side of the compressor (10) and liquid phase refrigerant is separated into the evaporator (30).
Which is a gas-liquid separator which is supplied to the side of the ejector (40)
A tank main body provided with an inflow part (52) into which the refrigerant flowing out of the tank flows, a gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and a liquid-phase refrigerant outflow part (54) to outflow the liquid-phase refrigerant ( 51), and the tank cross-sectional area (S1) at the portion of the tank body (51) where the liquid-phase refrigerant outflow portion (54) is provided has an inflow portion (5) of the tank body (51).
It is characterized in that it is larger than the tank cross-sectional area (S2) at the portion where 2) is provided.

【0011】これにより、タンク本体(51)のうち液
相冷媒流出部(54)近傍における冷媒流速が、タンク
本体(51)のうち流入口(52)近傍における冷媒流
速より小さくなるので、気液分離器(50)内に溜まっ
た液相冷媒の液面を安定させることができる。
As a result, the refrigerant flow velocity in the vicinity of the liquid-phase refrigerant outflow portion (54) of the tank body (51) becomes smaller than the refrigerant flow velocity in the vicinity of the inflow port (52) of the tank body (51). The liquid level of the liquid-phase refrigerant accumulated in the separator (50) can be stabilized.

【0012】請求項2に記載の発明では、圧縮機(1
0)にて圧縮された高温高圧の冷媒を放冷する放熱器
(20)と、低温低圧の冷媒を蒸発させる蒸発器(3
0)、放熱器(20)から流出した冷媒の圧力エネルギ
ーを速度エネルギーに変換して冷媒を減圧膨張させるノ
ズル、及びノズルから噴射する冷媒と蒸発器(30)か
ら吸引した冷媒とを混合させながら速度エネルギーを圧
力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部
とを有するエジェクタ(40)とを備えるエジェクタサ
イクルに適用され、エジェクタ(40)から流出した冷
媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機
(10)の吸引側に供給し、液相冷媒を蒸発器(30)
側に供給する気液分離器であって、エジェクタ(40)
から流出した冷媒が流入する流入部(52)、気相冷媒
を流出させる気相冷媒流出部(53)、及び液相冷媒を
流出させる液相冷媒流出部(54)が設けられたタンク
本体(51)を有し、タンク本体(51)は下方側に向
かうほど、タンク断面積(S)が増大するような円錐フ
ラスコ状に形成されており、さらに、液相冷媒流出部
(54)は流入部(52)より下方側に設けられ、気相
冷媒流出部(53)は液相冷媒流出部(54)より上方
側に設けられていることを特徴とする。
According to the second aspect of the invention, the compressor (1
0) a radiator (20) for cooling the high temperature and high pressure refrigerant, and an evaporator (3) for evaporating the low temperature and low pressure refrigerant.
0), a nozzle for converting pressure energy of the refrigerant flowing out from the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and mixing the refrigerant injected from the nozzle with the refrigerant sucked from the evaporator (30) It is applied to an ejector cycle including an ejector (40) having a pressure increasing unit that converts velocity energy into pressure energy to increase the pressure of the refrigerant, and the refrigerant flowing out from the ejector (40) is converted into a gas-phase refrigerant and a liquid-phase refrigerant. Gas phase refrigerant is supplied to the suction side of the compressor (10) and liquid phase refrigerant is separated into the evaporator (30).
Which is a gas-liquid separator which is supplied to the side of the ejector (40)
A tank main body provided with an inflow part (52) into which the refrigerant flowing out of the tank flows, a gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and a liquid-phase refrigerant outflow part (54) to outflow the liquid-phase refrigerant ( 51), the tank main body (51) is formed in a conical flask shape such that the tank cross-sectional area (S) increases toward the lower side, and the liquid-phase refrigerant outflow portion (54) flows in. It is characterized in that it is provided below the portion (52) and the vapor-phase refrigerant outflow portion (53) is provided above the liquid-phase refrigerant outflow portion (54).

【0013】これにより、タンク本体(51)のうち液
相冷媒流出部(54)近傍における冷媒流速が、タンク
本体(51)のうち流入口(52)近傍における冷媒流
速より小さくなるので、気液分離器(50)内に溜まっ
た液相冷媒の液面を安定させることができる。
As a result, the refrigerant flow velocity in the vicinity of the liquid-phase refrigerant outflow portion (54) of the tank body (51) becomes smaller than the refrigerant flow velocity in the vicinity of the inflow port (52) of the tank body (51). The liquid level of the liquid-phase refrigerant accumulated in the separator (50) can be stabilized.

【0014】請求項3に記載の発明では、圧縮機(1
0)にて圧縮された高温高圧の冷媒を放冷する放熱器
(20)と、低温低圧の冷媒を蒸発させる蒸発器(3
0)、放熱器(20)から流出した冷媒の圧力エネルギ
ーを速度エネルギーに変換して冷媒を減圧膨張させるノ
ズル、及びノズルから噴射する冷媒と蒸発器(30)か
ら吸引した冷媒とを混合させながら速度エネルギーを圧
力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部
とを有するエジェクタ(40)と、エジェクタ(40)
から流出した冷媒を気相冷媒と液相冷媒とに分離して気
相冷媒を圧縮機(10)の吸引側に供給し、液相冷媒を
蒸発器(30)側に供給する気液分離器(50)とを備
えるエジェクタサイクルに適用され、気液分離器(5
0)から蒸発器(30)に供給される液相冷媒中から冷
凍機油を抽出するオイル分離器であって、気液分離器
(50)から蒸発器(30)に供給される液相冷媒が流
れる冷媒通路(61a)を構成する通路部材(61)
と、冷媒通路(61a)の上方側又は下方側に設けら
れ、連通口(62)を介して冷媒通路(61a)と連通
するオイル室(63a)を構成するチャンバ手段(6
3)とを有することを特徴とする。
In the invention described in claim 3, the compressor (1
0) a radiator (20) for cooling the high temperature and high pressure refrigerant, and an evaporator (3) for evaporating the low temperature and low pressure refrigerant.
0), a nozzle for converting pressure energy of the refrigerant flowing out from the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and mixing the refrigerant injected from the nozzle with the refrigerant sucked from the evaporator (30) An ejector (40) having a pressure increasing unit for converting velocity energy into pressure energy to increase the pressure of the refrigerant, and an ejector (40)
A gas-liquid separator that separates the refrigerant that has flowed out of the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, supplies the gas-phase refrigerant to the suction side of the compressor (10), and supplies the liquid-phase refrigerant to the evaporator (30) side. (50) is applied to an ejector cycle, and a gas-liquid separator (5
0) is an oil separator for extracting refrigerating machine oil from the liquid phase refrigerant supplied to the evaporator (30), wherein the liquid phase refrigerant supplied from the gas-liquid separator (50) to the evaporator (30) is Passage member (61) forming a flowing coolant passage (61a)
And a chamber means (6) which is provided above or below the refrigerant passage (61a) and constitutes an oil chamber (63a) which communicates with the refrigerant passage (61a) through the communication port (62).
3) and are included.

【0015】これにより、冷凍機油の占める割合が高い
液がオイル室(63a)に流れ込むので、多量の冷凍機
油を蒸発器(30)側に流すことなく、分離抽出した圧
縮機(10)に供給することができる。
As a result, a liquid having a high proportion of refrigerating machine oil flows into the oil chamber (63a), so that a large amount of refrigerating machine oil is supplied to the separated and extracted compressor (10) without flowing to the evaporator (30) side. can do.

【0016】請求項4に記載の発明では、圧縮機(1
0)にて圧縮された高温高圧の冷媒を放冷する放熱器
(20)と、低温低圧の冷媒を蒸発させる蒸発器(3
0)、放熱器(20)から流出した冷媒の圧力エネルギ
ーを速度エネルギーに変換して冷媒を減圧膨張させるノ
ズル、及びノズルから噴射する冷媒と蒸発器(30)か
ら吸引した冷媒とを混合させながら速度エネルギーを圧
力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部
とを有するエジェクタ(40)と、エジェクタ(40)
から流出した冷媒を気相冷媒と液相冷媒とに分離して気
相冷媒を圧縮機(10)の吸引側に供給し、液相冷媒を
蒸発器(30)側に供給する、請求項1又は2に記載の
気液分離器(50)と、気液分離器(50)から蒸発器
(30)に供給される液相冷媒中から冷凍機油を抽出し
て圧縮機(10)に戻す、請求項3に記載のオイル分離
器(60)とを備えるエジェクタサイクル。
In the invention according to claim 4, the compressor (1
0) a radiator (20) for cooling the high temperature and high pressure refrigerant, and an evaporator (3) for evaporating the low temperature and low pressure refrigerant.
0), a nozzle for converting pressure energy of the refrigerant flowing out from the radiator (20) into velocity energy to expand the refrigerant under reduced pressure, and mixing the refrigerant injected from the nozzle with the refrigerant sucked from the evaporator (30) An ejector (40) having a pressure increasing unit for converting velocity energy into pressure energy to increase the pressure of the refrigerant, and an ejector (40)
The refrigerant flowing out of the compressor is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant is supplied to the suction side of the compressor (10), and the liquid-phase refrigerant is supplied to the evaporator (30) side. Alternatively, the refrigerating machine oil is extracted from the gas-liquid separator (50) according to 2 and the liquid-phase refrigerant supplied from the gas-liquid separator (50) to the evaporator (30) and returned to the compressor (10). An ejector cycle comprising the oil separator (60) according to claim 3.

【0017】これにより、気液分離器(50)内に溜ま
った液相冷媒の液面を安定させることができるので、液
相冷媒を蒸発器(30)に安定的に供給することができ
る。延いては、封入冷媒量を低減することができるの
で、エジェクタサイクルの製造原価低減を図ることがで
きる。
As a result, the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator (50) can be stabilized, so that the liquid-phase refrigerant can be stably supplied to the evaporator (30). Furthermore, since the amount of the enclosed refrigerant can be reduced, the manufacturing cost of the ejector cycle can be reduced.

【0018】また、多量の冷凍機油を蒸発器(30)側
に流すことなく、分離抽出した圧縮機(10)に供給す
ることができるので、蒸発器(30)での吸熱能力の低
下、及び圧縮機(10)にて冷凍機油不足が発生するこ
とを未然に防止できるとともに、封入冷媒量及び封入冷
凍機油量を更に低減することができる。
Further, since a large amount of refrigerating machine oil can be supplied to the compressor (10) which has been separated and extracted without flowing to the side of the evaporator (30), the endothermic capacity of the evaporator (30) is reduced, and It is possible to prevent a shortage of refrigerating machine oil from occurring in the compressor (10), and further reduce the amount of enclosed refrigerant and the amount of enclosed refrigerating machine oil.

【0019】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in the parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0020】[0020]

【発明の実施の形態】本実施形態は、本発明に係るエジ
ェクタサイクルを空調装置に適用したものであって、図
1は本実施形態に係るエジェクタサイクルの模式図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In this embodiment, the ejector cycle according to the present invention is applied to an air conditioner, and FIG. 1 is a schematic diagram of the ejector cycle according to the present embodiment.

【0021】圧縮機10は冷媒を吸入圧縮するものであ
り、凝縮器20は圧縮機10から吐出した冷媒と室外空
気とを熱交換して冷媒が吸熱した熱を放冷する高圧側熱
交換器である。因みに、本実施形態では、冷媒としてフ
ロン(R404)を用いているが、冷媒として二酸化炭
素を用いてもよいことは言うまでもない。
The compressor 10 sucks and compresses the refrigerant, and the condenser 20 exchanges heat between the refrigerant discharged from the compressor 10 and the outdoor air, and releases the heat absorbed by the refrigerant to cool the high pressure side heat exchanger. Is. Incidentally, in the present embodiment, CFC (R404) is used as the refrigerant, but it goes without saying that carbon dioxide may be used as the refrigerant.

【0022】なお、冷媒としてフロンを用いた場合に
は、凝縮器20にて冷媒が凝縮するが、冷媒として、二
酸化炭素を用いた場合には、高圧側冷媒圧力は冷媒の臨
界圧力以上となり、かつ、凝縮器20内で冷媒が凝縮す
ることなく、冷媒入口側から冷媒出口側に向かうほど冷
媒温度が低下するような温度分布を有するので、凝縮器
20は放熱器として機能する。
When Freon is used as the refrigerant, the refrigerant is condensed in the condenser 20, but when carbon dioxide is used as the refrigerant, the refrigerant pressure on the high pressure side becomes equal to or higher than the critical pressure of the refrigerant, Moreover, since the refrigerant has a temperature distribution such that the refrigerant temperature does not condense in the condenser 20 and decreases from the refrigerant inlet side toward the refrigerant outlet side, the condenser 20 functions as a radiator.

【0023】蒸発器30は室内に吹き出す空気と液相冷
媒とを熱交換させて液相冷媒を蒸発させることにより冷
媒を蒸発させて空気から吸熱する低圧側熱交換器であ
り、エジェクタ40は、冷媒を減圧膨張させるノズル、
並びに蒸発器30にて蒸発した気相冷媒を吸引するとと
もに膨張エネルギーを圧力エネルギーに変換して圧縮機
10の吸入圧を上昇させる混合部及びディフューザから
なる昇圧部を有して構成された減圧手段とポンプ手段と
を兼ねるものである。
The evaporator 30 is a low-pressure heat exchanger that heat-exchanges the air blown into the room with the liquid-phase refrigerant to evaporate the liquid-phase refrigerant to evaporate the refrigerant and absorb heat from the air. The ejector 40 is A nozzle for expanding the refrigerant under reduced pressure,
In addition, the decompression unit is configured to have a pressure increasing unit including a mixing unit and a diffuser for sucking the vapor phase refrigerant evaporated in the evaporator 30 and converting the expansion energy into pressure energy to increase the suction pressure of the compressor 10. And the pump means.

【0024】気液分離器50はエジェクタ40から流出
した冷媒が流入するとともに、その流入した冷媒を気相
冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段
であり、気液分離器50の気相冷媒流出口は圧縮機10
の吸引側に接続され、液相冷媒流出口は蒸発器30側の
流入側に接続される。なお、気液分離器50の詳細は後
述する。
The gas-liquid separator 50 is a gas-liquid separation means for storing the refrigerant by separating the inflowing refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant while the refrigerant flowing out from the ejector 40 flows in. The gas-phase refrigerant outlet of the compressor 50 is the compressor 10
Of the liquid phase refrigerant is connected to the inflow side of the evaporator 30. The details of the gas-liquid separator 50 will be described later.

【0025】オイル分離器60は、気液分離器50から
蒸発器30に供給される液相冷媒中から冷凍機油を抽出
するオイルセパレータであり、このオイル分離器60に
て分離抽出された冷凍機油は、圧縮機10に戻される。
なお、オイル分離器60の詳細は後述する。
The oil separator 60 is an oil separator for extracting refrigerating machine oil from the liquid-phase refrigerant supplied from the gas-liquid separator 50 to the evaporator 30, and the refrigerating machine oil separated and extracted by the oil separator 60. Are returned to the compressor 10.
The details of the oil separator 60 will be described later.

【0026】次に、気液分離器50の構造及びその作用
効果を述べる。
Next, the structure of the gas-liquid separator 50 and its function and effect will be described.

【0027】図2は気液分離器50の模式図であり、タ
ンク本体51は、エジェクタ40から流出した冷媒が流
入する流入部をなす流入口52、気相冷媒を流出させる
気相冷媒流出部をなす気相冷媒流出口53、及び液相冷
媒を流出させる液相冷媒流出部をなす液相冷媒流出口5
4が設けられ、かつ、下方側に向かうほど、タンク断面
積Sが増大するような円錐フラスコ状に形成された冷媒
容器である。
FIG. 2 is a schematic diagram of the gas-liquid separator 50. The tank main body 51 has an inflow port 52 serving as an inflow part into which the refrigerant discharged from the ejector 40 flows, and a gas-phase refrigerant outflow part for discharging the gas-phase refrigerant. Gas-phase refrigerant outlet port 53 that forms a liquid-phase refrigerant outlet port 5 that forms a liquid-phase refrigerant outlet portion that causes the liquid-phase refrigerant to flow out.
4 is provided, and the refrigerant container is formed in a conical flask shape such that the tank cross-sectional area S increases toward the lower side.

【0028】このとき、液相冷媒流出口54は流入口5
2より下方側に設けられ、気相冷媒流出口53は液相冷
媒流出口54及び流入口52より上方側に設けられてい
るので、タンク本体51のうち液相冷媒流出口54が設
けられた部位におけるタンク断面積S1は、タンク本体
51のうち流入口52が設けられた部位におけるタンク
断面積S2に比べて大きくなっている。
At this time, the liquid-phase refrigerant outlet 54 is the inlet 5
2, the gas-phase refrigerant outlet port 53 is provided above the liquid-phase refrigerant outlet port 54 and the inlet port 52, so that the liquid-phase refrigerant outlet port 54 of the tank body 51 is provided. The tank cross-sectional area S1 in the portion is larger than the tank cross-sectional area S2 in the portion of the tank main body 51 where the inflow port 52 is provided.

【0029】なお、タンク本体51は、加工性に優れた
材質であり、本実施形態では、アルミニウム合金を採用
している。
The tank body 51 is made of a material excellent in workability, and in this embodiment, an aluminum alloy is used.

【0030】ところで、タンク本体51内に流入した高
速の冷媒流は、タンク本体51内で急拡大してその流速
が低下するが、タンク本体51のうち液相冷媒流出口5
4が設けられた部位におけるタンク断面積S1が、タン
ク本体51のうち流入口52が設けられた部位における
タンク断面積S2に比べて大きくなっているので、タン
ク本体51のうち液相冷媒流出口54近傍における冷媒
流速が、タンク本体51のうち流入口52近傍における
冷媒流速より小さくなる。
By the way, the high-speed refrigerant flow that has flowed into the tank main body 51 rapidly expands in the tank main body 51 and its flow velocity decreases.
4 is larger than the tank cross-sectional area S2 in the portion of the tank body 51 where the inflow port 52 is provided, the liquid-phase refrigerant outlet port of the tank body 51 is larger. The coolant flow velocity in the vicinity of 54 is smaller than the coolant flow velocity in the vicinity of the inflow port 52 of the tank main body 51.

【0031】したがって、気液分離器50内に溜まった
液相冷媒の液面を安定させることができるので、液相冷
媒を蒸発器30に安定的に供給することができる。延い
ては、封入冷媒量を低減することができるので、エジェ
クタサイクルの製造原価低減を図ることができる。
Therefore, since the liquid surface of the liquid-phase refrigerant accumulated in the gas-liquid separator 50 can be stabilized, the liquid-phase refrigerant can be stably supplied to the evaporator 30. Furthermore, since the amount of the enclosed refrigerant can be reduced, the manufacturing cost of the ejector cycle can be reduced.

【0032】次に、オイル分離器60の構造及びその作
用効果を述べる。
Next, the structure of the oil separator 60 and its function and effect will be described.

【0033】図3はオイル分離器60の模式図であり、
通路部材をなす冷媒配管61は、気液分離器50から蒸
発器30に供給される液相冷媒が流れる冷媒通路61a
を構成するアルミニウム製の扁平チューブであり、この
冷媒配管61、すなわち冷媒通路61aの上方側には、
連通口62を介して冷媒通路61aと連通するオイル室
63aを構成するチャンバ手段をなすハウジング63が
ろう付けされている。
FIG. 3 is a schematic diagram of the oil separator 60.
The refrigerant pipe 61 forming the passage member is a refrigerant passage 61a through which the liquid-phase refrigerant supplied from the gas-liquid separator 50 to the evaporator 30 flows.
Is a flat tube made of aluminum, which is formed on the refrigerant pipe 61, that is, on the upper side of the refrigerant passage 61a.
A housing 63, which is a chamber means that constitutes an oil chamber 63a that communicates with the refrigerant passage 61a through the communication port 62, is brazed.

【0034】このとき、冷媒通路61aを流れる冷媒と
冷凍機油とは穏やかな層流状態で流れるため、冷媒通路
61aにおいて、冷凍機油が上方側に位置するように液
相冷媒層と冷凍機油層とに分離して流れる。このため、
冷凍機油の占める割合が高い液がオイル室63aに流れ
込むので、多量の冷凍機油を蒸発器30側に流すことな
く、分離抽出した圧縮機10に供給することができる。
At this time, since the refrigerant flowing through the refrigerant passage 61a and the refrigerating machine oil flow in a gentle laminar flow state, the liquid phase refrigerant layer and the refrigerating machine oil layer are arranged so that the refrigerating machine oil is located on the upper side in the refrigerant passage 61a. Separates and flows. For this reason,
Since the liquid having a high proportion of refrigerating machine oil flows into the oil chamber 63a, a large amount of refrigerating machine oil can be supplied to the separated and extracted compressor 10 without flowing to the evaporator 30 side.

【0035】したがって、蒸発器30での吸熱能力の低
下、及び圧縮機10にて冷凍機油不足が発生することを
未然に防止できるとともに、封入冷媒量及び封入冷凍機
油量を低減することができる。
Therefore, it is possible to prevent the reduction of the heat absorption capacity of the evaporator 30 and the shortage of the refrigerating machine oil in the compressor 10, and it is possible to reduce the enclosed refrigerant amount and the enclosed refrigerating machine oil amount.

【0036】なお、オイル室63aは圧縮機10の吸入
側に接続されていることに加えて、冷媒通路61aの下
方側を流れる液相冷媒が蒸発しようとして体積膨張する
ことから、この蒸発しようとして体積膨張する冷媒に押
し込まれるように冷凍機油がオイル室63aに確実に吸
引される。
In addition to the fact that the oil chamber 63a is connected to the suction side of the compressor 10, the liquid-phase refrigerant flowing in the lower side of the refrigerant passage 61a is attempting to evaporate and its volume expands. Refrigerating machine oil is surely sucked into the oil chamber 63a so as to be pushed into the volumetrically expanding refrigerant.

【0037】因みに、本実施形態では、冷凍機油とし
て、液相冷媒より密度が小さいので、冷媒通路61aの
上方側に連通口62を設けたが、液相冷媒より密度が大
きい冷凍機油を用いる場合には、冷媒通路61aの上方
側に連通口62を設ける必要がある。
Incidentally, in this embodiment, since the refrigerator oil has a lower density than the liquid-phase refrigerant, the communication port 62 is provided above the refrigerant passage 61a. However, when the refrigerator oil having a higher density than the liquid-phase refrigerant is used. It is necessary to provide a communication port 62 on the upper side of the refrigerant passage 61a.

【0038】(その他の実施形態)上述の実施形態で
は、空調装置に本発明を適用したが、本発明はこれに限
定されるものではなく、給湯器や冷蔵庫等にも適用する
ことができる。
(Other Embodiments) In the above-described embodiments, the present invention is applied to the air conditioner, but the present invention is not limited to this and can be applied to a water heater, a refrigerator, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るエジェクタサイクルの
模式図である。
FIG. 1 is a schematic diagram of an ejector cycle according to an embodiment of the present invention.

【図2】本発明の実施形態に係る気液分離器の模式図で
ある。
FIG. 2 is a schematic diagram of a gas-liquid separator according to an embodiment of the present invention.

【図3】本発明の実施形態に係るオイル分離器の模式図
である。
FIG. 3 is a schematic diagram of an oil separator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…圧縮機、20…凝縮器、30…蒸発器、40…エ
ジェクタ、50…気液分離器、51…タンク本体、60
…オイル分離器、61a…冷媒通路。
10 ... Compressor, 20 ... Condenser, 30 ... Evaporator, 40 ... Ejector, 50 ... Gas-liquid separator, 51 ... Tank body, 60
... Oil separator, 61a ... Refrigerant passage.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する放熱器(20)と、 低温低圧の冷媒を蒸発させる蒸発器(30)、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)とを備えるエジェ
クタサイクルに適用され、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する気液分離器であって、 前記エジェクタ(40)から流出した冷媒が流入する流
入部(52)、気相冷媒を流出させる気相冷媒流出部
(53)、及び液相冷媒を流出させる液相冷媒流出部
(54)が設けられたタンク本体(51)を有し、 前記タンク本体(51)のうち前記液相冷媒流出部(5
4)が設けられた部位におけるタンク断面積(S1)
は、前記タンク本体(51)のうち前記流入部(52)
が設けられた部位におけるタンク断面積(S2)に比べ
て大きいことを特徴とするエジェクタサイクル用の気液
分離器。
1. A radiator (20) for allowing a high-temperature and high-pressure refrigerant compressed by a compressor (10) to cool, and an evaporator (30) for evaporating a low-temperature and low-pressure refrigerant, the radiator (20) A nozzle that converts the pressure energy of the refrigerant that has flowed out into velocity energy to expand the refrigerant under reduced pressure, and the refrigerant that is injected from the nozzle and the evaporator (3
0) and an ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the ejector cycle is applied from the ejector (40). Gas-liquid separation in which the discharged refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant is supplied to the suction side of the compressor (10), and the liquid-phase refrigerant is supplied to the evaporator (30) side. And an inflow part (52) into which the refrigerant flowing out from the ejector (40) flows, a gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and a liquid-phase refrigerant outflow part to outflow the liquid-phase refrigerant. (54) is provided in the tank main body (51), the liquid phase refrigerant outflow portion (5
4) Tank cross-sectional area (S1)
Is the inflow part (52) of the tank body (51)
A gas-liquid separator for an ejector cycle, which is larger than a tank cross-sectional area (S2) in a portion where is provided.
【請求項2】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する放熱器(20)と、 低温低圧の冷媒を蒸発させる蒸発器(30)、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)とを備えるエジェ
クタサイクルに適用され、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する気液分離器であって、 前記エジェクタ(40)から流出した冷媒が流入する流
入部(52)、気相冷媒を流出させる気相冷媒流出部
(53)、及び液相冷媒を流出させる液相冷媒流出部
(54)が設けられたタンク本体(51)を有し、 前記タンク本体(51)は下方側に向かうほど、タンク
断面積(S)が増大するような円錐フラスコ状に形成さ
れており、 さらに、前記液相冷媒流出部(54)は前記流入部(5
2)より下方側に設けられ、前記気相冷媒流出部(5
3)は前記液相冷媒流出部(54)より上方側に設けら
れていることを特徴とするエジェクタサイクル用の気液
分離器。
2. A radiator (20) for cooling the high temperature and high pressure refrigerant compressed by the compressor (10), an evaporator (30) for evaporating the low temperature and low pressure refrigerant, and the radiator (20) A nozzle that converts the pressure energy of the refrigerant that has flowed out into velocity energy to expand the refrigerant under reduced pressure, and the refrigerant that is injected from the nozzle and the evaporator (3
0) and an ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the ejector cycle is applied from the ejector (40). Gas-liquid separation in which the discharged refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant is supplied to the suction side of the compressor (10), and the liquid-phase refrigerant is supplied to the evaporator (30) side. And an inflow part (52) into which the refrigerant flowing out of the ejector (40) flows, a gas-phase refrigerant outflow part (53) to outflow the gas-phase refrigerant, and a liquid-phase refrigerant outflow part to outflow the liquid-phase refrigerant. (54) is provided in the tank body (51), and the tank body (51) is formed in a conical flask shape such that the tank cross-sectional area (S) increases toward the lower side. , The above The liquid-phase refrigerant outflow portion (54) is the inflow portion (5
2) provided below the gas phase refrigerant outflow portion (5)
3) A gas-liquid separator for an ejector cycle, which is provided above the liquid-phase refrigerant outflow portion (54).
【請求項3】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する放熱器(20)と、 低温低圧の冷媒を蒸発させる蒸発器(30)、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)と、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する気液分離器(50)とを備えるエジェクタサイク
ルに適用され、前記気液分離器(50)から前記蒸発器
(30)に供給される液相冷媒中から冷凍機油を抽出す
るオイル分離器であって、 前記気液分離器(50)から前記蒸発器(30)に供給
される液相冷媒が流れる冷媒通路(61a)を構成する
通路部材(61)と、 前記冷媒通路(61a)の上方側又は下方側に設けら
れ、連通口(62)を介して前記冷媒通路(61a)と
連通するオイル室(63a)を構成するチャンバ手段
(63)とを有することを特徴とするエジェクタサイク
ル用のオイル分離器。
3. A radiator (20) for cooling the high-temperature and high-pressure refrigerant compressed by the compressor (10), an evaporator (30) for evaporating the low-temperature and low-pressure refrigerant, and the radiator (20) A nozzle that converts the pressure energy of the refrigerant that has flowed out into velocity energy to expand the refrigerant under reduced pressure, and the refrigerant that is injected from the nozzle and the evaporator (3
0), the ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the refrigerant flowing out from the ejector (40) is a vapor phase refrigerant. A gas-liquid separator (50) for supplying the gas-phase refrigerant to the suction side of the compressor (10) and supplying the liquid-phase refrigerant to the evaporator (30) side. An oil separator which is applied to an ejector cycle and extracts refrigerating machine oil from a liquid-phase refrigerant supplied from the gas-liquid separator (50) to the evaporator (30), the gas-liquid separator (50) A passage member (61) constituting a refrigerant passage (61a) through which a liquid-phase refrigerant supplied from the evaporator (30) to the evaporator (30) is provided, and a communication port (61) is provided above or below the refrigerant passage (61a). 62) through the refrigerant Road (61a) and the oil separator for an ejector cycle, characterized in that it comprises an oil chamber for communicating the chamber means constituting the (63a) (63).
【請求項4】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する放熱器(20)と、 低温低圧の冷媒を蒸発させる蒸発器(30)、 前記放熱器(20)から流出した冷媒の圧力エネルギー
を速度エネルギーに変換して冷媒を減圧膨張させるノズ
ル、及び前記ノズルから噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部とを有するエジェクタ(40)と、 前記エジェクタ(40)から流出した冷媒を気相冷媒と
液相冷媒とに分離して気相冷媒を前記圧縮機(10)の
吸引側に供給し、液相冷媒を前記蒸発器(30)側に供
給する、請求項1又は2に記載の気液分離器(50)
と、 前記気液分離器(50)から前記蒸発器(30)に供給
される液相冷媒中から冷凍機油を抽出して前記圧縮機
(10)に戻す、請求項3に記載のオイル分離器(6
0)とを備えるエジェクタサイクル。
4. A radiator (20) for allowing the high-temperature and high-pressure refrigerant compressed by the compressor (10) to cool, and an evaporator (30) for evaporating the low-temperature and low-pressure refrigerant from the radiator (20). A nozzle that converts the pressure energy of the refrigerant that has flowed out into velocity energy to expand the refrigerant under reduced pressure, and the refrigerant that is injected from the nozzle and the evaporator (3
0), the ejector (40) having a pressure increasing unit for increasing the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant, and the refrigerant flowing out from the ejector (40) is a vapor phase refrigerant. The gas according to claim 1 or 2, which is separated into a liquid phase refrigerant and a gas phase refrigerant to supply the gas phase refrigerant to the suction side of the compressor (10) and to supply the liquid phase refrigerant to the evaporator (30) side. Liquid separator (50)
The oil separator according to claim 3, wherein refrigerating machine oil is extracted from the liquid-phase refrigerant supplied from the gas-liquid separator (50) to the evaporator (30) and returned to the compressor (10). (6
0) and an ejector cycle.
JP2002021548A 2002-01-30 2002-01-30 Gas liquid separator for ejector cycle and oil separator Withdrawn JP2003222445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021548A JP2003222445A (en) 2002-01-30 2002-01-30 Gas liquid separator for ejector cycle and oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021548A JP2003222445A (en) 2002-01-30 2002-01-30 Gas liquid separator for ejector cycle and oil separator

Publications (1)

Publication Number Publication Date
JP2003222445A true JP2003222445A (en) 2003-08-08

Family

ID=27744768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021548A Withdrawn JP2003222445A (en) 2002-01-30 2002-01-30 Gas liquid separator for ejector cycle and oil separator

Country Status (1)

Country Link
JP (1) JP2003222445A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048549A (en) * 2009-12-02 2010-03-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
CN103604258A (en) * 2013-11-12 2014-02-26 上海交通大学 Liquid-discharged gas-liquid separator
CN103673436A (en) * 2013-12-24 2014-03-26 上海交通大学 Gas-liquid separator with oil return and liquid discharging functions
JP2014202430A (en) * 2013-04-05 2014-10-27 株式会社デンソー Ejector
JP2015031405A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
JP2015031404A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
CN104583690A (en) * 2013-06-06 2015-04-29 松下知识产权经营株式会社 Oil separator and method for manufacturing oil separator
JP2017020676A (en) * 2015-07-08 2017-01-26 株式会社デンソー Ejector
CN103868294B (en) * 2012-12-10 2017-04-19 浙江盾安机械有限公司 Gas-liquid separator and compressor
WO2018186130A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigerant cycle device
WO2018186129A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigeration cycle device
WO2023007620A1 (en) * 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048549A (en) * 2009-12-02 2010-03-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
CN103868294B (en) * 2012-12-10 2017-04-19 浙江盾安机械有限公司 Gas-liquid separator and compressor
JP2014202430A (en) * 2013-04-05 2014-10-27 株式会社デンソー Ejector
CN104583690A (en) * 2013-06-06 2015-04-29 松下知识产权经营株式会社 Oil separator and method for manufacturing oil separator
CN104583690B (en) * 2013-06-06 2018-03-02 松下知识产权经营株式会社 The manufacture method of oil eliminator and manufacture oil eliminator
JP2015031405A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
JP2015031404A (en) * 2013-07-31 2015-02-16 株式会社デンソー Ejector
CN103604258A (en) * 2013-11-12 2014-02-26 上海交通大学 Liquid-discharged gas-liquid separator
CN103673436A (en) * 2013-12-24 2014-03-26 上海交通大学 Gas-liquid separator with oil return and liquid discharging functions
JP2017020676A (en) * 2015-07-08 2017-01-26 株式会社デンソー Ejector
WO2018186130A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigerant cycle device
WO2018186129A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigeration cycle device
WO2023007620A1 (en) * 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container

Similar Documents

Publication Publication Date Title
JP6150140B2 (en) Heat exchange device and heat pump device
JP3322263B1 (en) Ejector cycle, gas-liquid separator used therefor, and water heater and heat management system using this ejector cycle
KR101968517B1 (en) Ejector-combination type vapor compression cooling-thermal energy conversion dual system
JP2007046806A (en) Ejector type cycle
US7694529B2 (en) Refrigerant cycle device with ejector
JP2004012097A (en) Heat exchanger
CN1170860A (en) Dual inlet oil separator for chiller
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
JP2003329336A (en) Gas-liquid separator for steam-compression type refrigerating cycle and ejector cycle
JP2004116938A (en) Ejector cycle
JP2003114063A (en) Ejector cycle
JP4665856B2 (en) Vortex tube and refrigerant circuit using the same
JP2003139098A (en) Ejector
JP4147793B2 (en) Gas-liquid separator for ejector cycle
KR20110097367A (en) Chiller
JP2004239493A (en) Heat pump cycle
JP2004108615A (en) Steam compression type refrigeration cycle with ejector
JP2002349978A (en) Ejector cycle
US20220026114A1 (en) System and method of mechanical compression refrigeration based on two-phase ejector
JP2004003804A (en) Vapor compression type refrigerating machine
JP2008309343A (en) Expansion mechanism and refrigerating apparatus having the same
CN208751090U (en) Using the refrigeration system of thermal siphon oil return
US5564289A (en) Direct-contact type cooling tank with upward refrigerant passage
JP4249380B2 (en) Air conditioner
JP2000035251A (en) Three layers separator in cooling cycle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405