JP6716227B2 - Evaporator, turbo refrigerator equipped with the same - Google Patents

Evaporator, turbo refrigerator equipped with the same Download PDF

Info

Publication number
JP6716227B2
JP6716227B2 JP2015201239A JP2015201239A JP6716227B2 JP 6716227 B2 JP6716227 B2 JP 6716227B2 JP 2015201239 A JP2015201239 A JP 2015201239A JP 2015201239 A JP2015201239 A JP 2015201239A JP 6716227 B2 JP6716227 B2 JP 6716227B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
transfer tube
pressure vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201239A
Other languages
Japanese (ja)
Other versions
JP2017072343A (en
Inventor
直也 三吉
直也 三吉
上田 憲治
憲治 上田
白方 芳典
芳典 白方
紀行 松倉
紀行 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2015201239A priority Critical patent/JP6716227B2/en
Priority to US15/736,130 priority patent/US20180187932A1/en
Priority to PCT/JP2016/076068 priority patent/WO2017061211A1/en
Priority to CN201680036519.2A priority patent/CN107850359B/en
Publication of JP2017072343A publication Critical patent/JP2017072343A/en
Application granted granted Critical
Publication of JP6716227B2 publication Critical patent/JP6716227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/30Steam-separating arrangements using impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、低圧冷媒を気化させる蒸発器、これを備えたターボ冷凍装置に関するものである。 The present invention relates to an evaporator that evaporates a low-pressure refrigerant, and a turbo refrigeration system including the evaporator.

例えば地域冷暖房の熱源用として使用されているターボ冷凍装置は、周知のように、冷媒を圧縮するターボ圧縮機と、圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる制御弁と、膨張した冷媒を気液分離する中間冷却器と、膨張した冷媒を蒸発させる蒸発器とを備えて構成されている。 For example, as is well known, a turbo refrigeration system used as a heat source for district cooling and heating includes a turbo compressor that compresses a refrigerant, a condenser that condenses the compressed refrigerant, and a control valve that expands the condensed refrigerant. And an intercooler that separates the expanded refrigerant into a gas and a liquid, and an evaporator that evaporates the expanded refrigerant.

特許文献1に開示されているように、蒸発器は円胴シェル形状の圧力容器を備えており、この圧力容器を長手軸方向に貫通するように、水等の被冷却液を通過させる伝熱管群が配設されている。また、圧力容器の内部には、伝熱管群の下方に多数の冷媒流通孔が穿設された分布板(冷媒分配板)が設けられ、伝熱管群の上方にエリミネータ(デミスタ)が設けられている。 As disclosed in Patent Document 1, the evaporator includes a cylindrical shell-shaped pressure vessel, and a heat transfer tube through which a liquid to be cooled such as water passes so as to penetrate the pressure vessel in the longitudinal axis direction. A group is arranged. Further, inside the pressure vessel, a distribution plate (refrigerant distribution plate) having a large number of refrigerant circulation holes formed below the heat transfer tube group is provided, and an eliminator (demister) is provided above the heat transfer tube group. There is.

ターボ圧縮機により圧縮され、凝縮器にて凝縮された液相状の冷媒は、圧力容器の下部に設けられた冷媒入口から圧力容器内に流入し、分布板の多数の冷媒流通孔を通過することによって圧力容器の内部全域に拡散しながら伝熱管群と熱交換する。これにより伝熱管群の内部を流れる被冷却液が冷却され、この冷却された被冷却液が空調用の冷熱媒や工業用冷却液として利用される。 The liquid-phase refrigerant compressed by the turbo compressor and condensed by the condenser flows into the pressure vessel through the refrigerant inlet provided at the lower portion of the pressure vessel, and passes through many refrigerant circulation holes of the distribution plate. As a result, heat is exchanged with the heat transfer tube group while diffusing all over the pressure vessel. As a result, the liquid to be cooled flowing inside the heat transfer tube group is cooled, and the cooled liquid to be cooled is used as a cooling/heating medium for air conditioning or an industrial cooling liquid.

伝熱管群と熱交換した液相状の冷媒は温度差により沸騰して気化する。そして、エリミネータを通過する際に液相分を除去され、気相状の冷媒のみが圧力容器の上部に接続された吸入管からターボ圧縮機に吸入されて再び圧縮される。 The liquid-phase refrigerant that has exchanged heat with the heat transfer tube group boils and vaporizes due to the temperature difference. Then, the liquid phase component is removed when passing through the eliminator, and only the vapor phase refrigerant is sucked into the turbo compressor through the suction pipe connected to the upper portion of the pressure vessel and compressed again.

従来の蒸発器では、分布板における冷媒流通孔の内径や穿設間隔等が一定となっていた。即ち、分配板の単位面積あたりの冷媒流通孔の面積比率は、分布板の全域において一定となっていた。 In the conventional evaporator, the inner diameter of the refrigerant flow hole in the distribution plate, the perforation interval, and the like are constant. That is, the area ratio of the refrigerant circulation holes per unit area of the distribution plate was constant throughout the distribution plate.

また、エリミネータは、圧力容器内における冷媒の液面レベルよりも十分高い位置に配置されていた。その理由は、沸騰した冷媒の液状飛沫がエリミネータを通過して液相状のまま吸入管に入ってしまう、所謂キャリーオーバー(気液同伴)を防止してターボ圧縮機の効率低下を抑制するためである。 Further, the eliminator was arranged at a position sufficiently higher than the liquid level of the refrigerant in the pressure vessel. The reason for this is to prevent so-called carryover (entrainment of gas and liquid), in which liquid droplets of the boiling refrigerant pass through the eliminator and enter the suction pipe in the liquid phase, and suppress the efficiency reduction of the turbo compressor. Is.

特開昭61−280359号公報JP 61-280359A

最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒は、ターボ冷凍装置を高効率化させることができ、しかも地球温暖化係数が低いことから、次世代冷媒として期待されている。 A low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is expected as a next-generation refrigerant because it can enhance the efficiency of the turbo refrigeration system and has a low global warming potential.

このような低圧冷媒は、R134a等の高圧冷媒に比べてガス比体積が大きい特性を持つため、蒸発器の内部で伝熱管群と熱交換して沸騰した際に沸騰泡が大きくなる。したがって、伝熱管群が局所的に沸騰泡に囲まれる、所謂ドライアウトが発生しやすくなり、伝熱管群が冷媒二相液中に浸漬された状態に比べて伝熱性能が低下する傾向がある。 Since such a low-pressure refrigerant has a characteristic that the specific volume of gas is larger than that of a high-pressure refrigerant such as R134a, a boiling bubble becomes large when it boils by exchanging heat with the heat transfer tube group inside the evaporator. Therefore, the heat transfer tube group is locally surrounded by boiling bubbles, so-called dryout is likely to occur, and the heat transfer performance tends to be lower than that in the state where the heat transfer tube group is immersed in the refrigerant two-phase liquid. ..

また、蒸発器内部における伝熱管群の上流部では伝熱管群の内部を流れる被冷却液と冷媒との温度差が大きいために冷媒が激しく沸騰するが、伝熱管群の下流部では上記温度差が縮まることから冷媒の沸騰が穏やかになる。このため、蒸発器の内部における液相状の冷媒プールの液面高(フロスレベル)の設定や調整が難しくなる。 Further, in the upstream part of the heat transfer tube group inside the evaporator, the temperature of the liquid to be cooled flowing in the heat transfer tube group and the refrigerant is large, so that the refrigerant boils violently, but in the downstream part of the heat transfer tube group, the above temperature difference. Is reduced, the boiling of the refrigerant becomes moderate. Therefore, it becomes difficult to set or adjust the liquid level (floss level) of the liquid-phase refrigerant pool inside the evaporator.

さらに、伝熱管群ではギャップ流速が大きくなるため、個々の伝熱管に掛かる抗力による疲労破壊が懸念される。また、低圧冷媒を用いる場合には、蒸発器からターボ圧縮機に吸入される気化冷媒の体積流量が高圧冷媒に比べて格段に大きいため、蒸発器内部における気化冷媒の流速が高くなり、気化冷媒の流れに乗って液相状の冷媒がターボ圧縮機側にキャリーオーバーされやすく、ターボ圧縮機の効率低下が懸念される。 Furthermore, since the gap flow velocity is high in the heat transfer tube group, there is a fear of fatigue fracture due to the drag force applied to each heat transfer tube. When a low-pressure refrigerant is used, since the volumetric flow rate of the vaporized refrigerant sucked from the evaporator to the turbo compressor is significantly larger than that of the high-pressure refrigerant, the flow rate of the vaporized refrigerant inside the evaporator is high, and the vaporized refrigerant is The liquid-phase refrigerant is liable to carry over to the turbo compressor side due to the above flow, and the efficiency of the turbo compressor may be reduced.

本発明は、このような事情に鑑みてなされたものであり、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる蒸発器、これを備えたターボ冷凍装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a turbo refrigerating apparatus using a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG, prevents dry-out of a heat transfer tube group in an evaporator. It is an object of the present invention to provide an evaporator capable of enhancing heat transfer performance and suppressing a decrease in efficiency due to carryover of a liquid phase low-pressure refrigerant to the turbo compressor side, and a turbo refrigeration system including the evaporator. And

上記課題を解決するために、本発明は、以下の手段を採用する。
本発明の第1態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群とを備え、前記伝熱管群は、前記圧力容器の長手軸方向に交差する面方向を有する平板状の伝熱管支持板に支持され、前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、前記往路管群及び前記復路管群のそれぞれの上流側の位置付近に対応する範囲において他の範囲よりも大きくされるとともに、前記冷媒出口付近に対応する範囲において他の範囲よりも小さくされていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The evaporator according to the first aspect of the present invention is provided in a lower portion of the pressure vessel, which extends in a horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. The refrigerant inlet, the refrigerant outlet provided in the upper part of the pressure vessel, and the inside of the pressure vessel in the longitudinal axis direction, the liquid to be cooled is circulated therein, and the liquid to be cooled and the low pressure refrigerant and heat. and the heat transfer tube group to be replaced, is placed in the interior of the pressure vessel between the heat transfer tube group and the coolant inlet, comprising a plate-shaped refrigerant distribution plate refrigerant flow hole is bored, wherein the heat transfer The heat pipe group communicates with the outward pipe group extending from one end to the other end in the longitudinal direction inside the pressure vessel and the other end in the longitudinal axis direction inside the pressure container, and communicates with the outward pipe group in the longitudinal axis direction inside the pressure container. A return pipe group returning from the other end to one end, wherein the heat transfer tube group is supported by a flat heat transfer tube support plate having a surface direction intersecting the longitudinal axis direction of the pressure vessel, and is a unit in the refrigerant distribution plate. The area ratio of the refrigerant flow holes per area is made larger than other ranges in a range corresponding to the upstream side positions of the forward path tube group and the return path tube group, and corresponds to the vicinity of the refrigerant outlet. It is characterized in that it is smaller than the other ranges in the range .

上記のように、冷媒分配板における単位面積あたりの冷媒流通孔の面積比率が、伝熱管群の上流側の位置付近に対応する範囲において他の範囲よりも大きいため、冷媒入口から圧力容器内に導入された低圧冷媒は、伝熱管群の上流側の位置付近に多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。 As described above, the area ratio of the refrigerant circulation holes per unit area in the refrigerant distribution plate is larger than the other ranges in the range corresponding to the vicinity of the position on the upstream side of the heat transfer tube group, and thus from the refrigerant inlet to the pressure vessel. A large amount of the introduced low-pressure refrigerant is distributed near the position on the upstream side of the heat transfer tube group. Further, a relatively small amount of low pressure refrigerant is distributed to other positions. As a result, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel is made uniform.

蒸発器内部における伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群の伝熱性能を高めることができる。 In the vicinity of the upstream side of the heat transfer tube group inside the evaporator, the low-pressure refrigerant boils violently because of a large temperature difference with the liquid to be cooled flowing inside the heat transfer tube group. However, since a relatively large amount of low-pressure refrigerant is distributed to this position as compared to other positions, there is no situation in which the vicinity of the upstream side of the heat transfer tube group is surrounded by boiling bubbles of low-pressure refrigerant and dried out. The heat transfer tube group can be kept immersed in the refrigerant two-phase liquid. Therefore, the liquid to be cooled and the low-pressure refrigerant flowing inside the heat transfer tube group can be favorably heat-exchanged, and the heat transfer performance of the heat transfer tube group can be enhanced.

また、圧力容器の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、圧力容器の長手軸方向中間部にターボ圧縮機の吸入管に通じる冷媒出口を設けることにより、液相状の低圧冷媒が気化冷媒の流れに乗ってターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。 In addition, since the froth level of the low-pressure refrigerant pool does not rise higher than both ends in the longitudinal axis direction at the middle portion in the longitudinal axis direction of the pressure vessel, the refrigerant communicating with the suction pipe of the turbo compressor at the middle portion in the longitudinal axis direction of the pressure vessel. By providing the outlet, it is possible to prevent the liquid-phase low-pressure refrigerant from being carried over to the turbo compressor side along with the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor.

上記の蒸発器において、前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい構成としてもよい。 In the above-mentioned evaporator, the refrigerant inlet is provided at an intermediate portion in the longitudinal axis direction of the pressure vessel, and the area ratio of the refrigerant circulation holes in the refrigerant distribution plate is a range of longitudinal end portions of the refrigerant distribution plate. In, the structure may be larger than the range of the intermediate portion in the longitudinal axis direction.

上記構成の蒸発器によれば、圧力容器の長手軸方向中間部に設けられた冷媒入口から圧力容器内に導入された低圧冷媒は、圧力容器内部の長手軸方向両端部に多く供給され、冷媒入口の直上部となる圧力容器の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させ、伝熱管群の伝熱性能を高めることができる。 According to the evaporator having the above-mentioned configuration, the low-pressure refrigerant introduced into the pressure vessel from the refrigerant inlet provided at the longitudinal axis direction intermediate portion of the pressure vessel is supplied to both ends of the pressure vessel in the longitudinal axis direction, and the refrigerant. A relatively small amount is supplied to the intermediate portion in the longitudinal axis direction of the pressure vessel, which is immediately above the inlet. For this reason, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel is made uniform, and the liquid to be cooled flowing inside the heat-transfer tube group and the low-pressure refrigerant are satisfactorily heat-exchanged, and the heat transfer of the heat-transfer tube group is performed. Performance can be improved.

本発明の第2態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていることを特徴とする。 The evaporator according to the second aspect of the present invention is provided in a lower portion of the pressure vessel, which extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. The refrigerant inlet, the refrigerant outlet provided in the upper part of the pressure vessel, and the inside of the pressure vessel in the longitudinal axis direction, the liquid to be cooled is circulated therein, and the liquid to be cooled and the low pressure refrigerant and heat. A group of heat transfer tubes to be exchanged, a plate-like refrigerant distribution plate installed between the refrigerant inlet and the group of heat transfer tubes inside the pressure vessel, and having a refrigerant flow hole formed therein; A plurality of inlets are provided dispersed along the longitudinal direction of the pressure vessel.

低圧冷媒は、高圧冷媒に比べて比体積が大きいため、冷媒入口から蒸発器に流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板の圧損を大きくすると、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度が大きくなり、伝熱管群の振動や破損に繋がる。 Since the low-pressure refrigerant has a larger specific volume than the high-pressure refrigerant, the volumetric flow rate flowing from the refrigerant inlet into the evaporator is large and the dynamic pressure is high, but if the pressure loss of the refrigerant distribution plate is increased accordingly, the low-pressure refrigerant becomes the refrigerant. The speed of ejection from the refrigerant flow holes of the distribution plate increases, leading to vibration and damage to the heat transfer tube group.

上記構成の蒸発器によれば、冷媒入口が圧力容器の長手軸方向に沿って複数分散して設けられているため、冷媒入口を単一とした場合に比べて低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板の冷媒流通孔の径を大きくすることができ、これによって低圧冷媒が冷媒流通孔から噴出する速度を低下させ、伝熱管群の振動や破損を防止することができる。 According to the evaporator having the above-described configuration, since the refrigerant inlets are provided in a distributed manner along the longitudinal axis direction of the pressure vessel, the inflow speed of the low-pressure refrigerant is reduced as compared with the case where the refrigerant inlet is single. be able to. Therefore, it is possible to increase the diameter of the refrigerant flow hole of the refrigerant distribution plate, thereby reducing the speed at which the low-pressure refrigerant is ejected from the refrigerant flow hole, and preventing vibration and damage of the heat transfer tube group.

また、低圧冷媒を複数の冷媒入口から圧力容器の長手軸方向全長に亘って均等に流入させて圧力容器内部における低圧冷媒プールのフロスレベルを均一化することができる。これにより、伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制してターボ圧縮機の効率低下を回避することができる。 Further, the low-pressure refrigerant can be made to flow evenly from the plurality of refrigerant inlets over the entire length in the longitudinal direction of the pressure vessel to make the floss level of the low-pressure refrigerant pool inside the pressure vessel uniform. As a result, the heat transfer performance is improved by preventing the dry-out of the heat transfer tube group, and the carry-over to the turbo compressor side is suppressed by suppressing the liquid phase low pressure refrigerant from locally spurting up. It is possible to avoid a decrease in the efficiency of the compressor.

本発明の第3態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していることを特徴とする。 An evaporator according to a third aspect of the present invention is provided in a lower portion of the pressure vessel, which extends in a horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. The refrigerant inlet, the refrigerant outlet provided in the upper part of the pressure vessel, and the inside of the pressure vessel in the longitudinal axis direction, the liquid to be cooled is circulated therein, and the liquid to be cooled and the low pressure refrigerant and heat. A group of heat transfer tubes to be exchanged, a plate-like refrigerant distribution plate installed between the refrigerant inlet and the group of heat transfer tubes inside the pressure vessel, and having a refrigerant flow hole formed therein; It is characterized in that a flow passage cross-sectional area from the outer opening of the inlet to the pressure vessel is enlarged toward the pressure vessel from the outer opening.

上記構成の蒸発器によれば、冷媒入口の外側開口部から圧力容器までの流路断面積が圧力容器に向かって拡大するため、冷媒入口を流れる低圧冷媒の流速が圧力容器に向かって低下する。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
According to the evaporator having the above structure, the flow passage cross-sectional area from the outer opening of the refrigerant inlet to the pressure vessel increases toward the pressure vessel, so that the flow velocity of the low-pressure refrigerant flowing through the refrigerant inlet decreases toward the pressure vessel. ..
Therefore, the low-pressure refrigerant is discharged from the refrigerant distribution holes of the refrigerant distribution plate at a reduced speed to prevent vibration and damage of the heat transfer tube group, and the liquid-phase low-pressure refrigerant is locally blown up to perform turbo compression. Carryover to the machine side can be suppressed, and a decrease in the efficiency of the turbo compressor can be avoided.

本発明の第4態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていることを特徴とする。 The evaporator according to the fourth aspect of the present invention is provided in a lower portion of the pressure vessel, which extends in the horizontal direction and into which a low pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. The refrigerant inlet, the refrigerant outlet provided in the upper part of the pressure vessel, and the inside of the pressure vessel in the longitudinal axis direction, the liquid to be cooled is circulated therein, and the liquid to be cooled and the low pressure refrigerant and heat. A group of heat transfer tubes to be exchanged, a plate-like refrigerant distribution plate installed between the refrigerant inlet and the group of heat transfer tubes inside the pressure vessel, and having a refrigerant flow hole formed therein; The inlet is tubular connected to the pressure vessel, and a flow velocity damping member for damping the flow velocity of the low-pressure refrigerant is provided in the pipe.

上記構成の蒸発器によれば、流速減衰部材によって冷媒入口から圧力容器に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
According to the evaporator configured as described above, the flow velocity damping member reduces the flow velocity of the low-pressure refrigerant flowing from the coolant inlet into the pressure vessel.
Therefore, the low-pressure refrigerant is discharged from the refrigerant distribution holes of the refrigerant distribution plate at a reduced speed to prevent vibration and damage of the heat transfer tube group, and the liquid-phase low-pressure refrigerant is locally blown up to perform turbo compression. Carryover to the machine side can be suppressed, and a decrease in the efficiency of the turbo compressor can be avoided.

上記のいずれかの蒸発器において、前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置された構成としてもよい。 In any of the above evaporators, the heat transfer tube group includes a forward path tube group extending from one end to the other end in the longitudinal direction inside the pressure vessel, and a forward path tube group at the other end in the longitudinal axis direction inside the pressure vessel. A return pipe group which communicates with each other and returns from the other end in the longitudinal direction of the pressure vessel to the one end thereof, wherein the forward pipe group is arranged below and the return pipe group is arranged above inside the pressure container. The configuration may be changed.

上記構成の蒸発器によれば、伝熱管内を流れる被冷却液との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群が圧力容器の下部に配置され、被冷却液との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群が圧力容器の上部に配置される。
このため、低圧冷媒の激しい沸騰が圧力容器内における低圧冷媒プールの液面の下方で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。
According to the evaporator configured as described above, the forward pipe group in which the temperature difference between the liquid to be cooled flowing in the heat transfer tube is large and boiling of the low-pressure refrigerant is intense is arranged at the lower part of the pressure vessel, and the temperature difference between the liquid to be cooled is A small return pipe group, in which the boiling of the low-pressure refrigerant is moderate, is arranged at the upper part of the pressure vessel.
Therefore, the low-pressure refrigerant is vigorously boiled below the liquid surface of the low-pressure refrigerant pool in the pressure vessel, and the liquid-phase refrigerant is less likely to scatter on the liquid surface of the low-pressure refrigerant pool. Therefore, it is possible to prevent the liquid-phase refrigerant from being carried over to the turbo compressor side along with the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor.

上記のいずれかの蒸発器において、前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成された構成としてもよい。 In any of the above evaporators, the heat transfer tube group has a configuration in which a plurality of heat transfer tube bundles in which a plurality of heat transfer tubes are bundled are arranged in a horizontal direction, and a gap that extends vertically is formed between the heat transfer tube bundles. Good.

上記構成の蒸発器によれば、複数の伝熱管束の間にある鉛直な空隙が、伝熱管群と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒の液面に容易に浮上できる。したがって、冷媒液面下で伝熱管群が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群の伝熱性能を高めることができる。 According to the evaporator configured as described above, the vertical gap between the plurality of heat transfer tube bundles serves as a path for boiling bubbles of the low-pressure refrigerant that has boiled by exchanging heat with the heat transfer tube group. Thereby, the boiling bubbles can easily float on the liquid surface of the low-pressure refrigerant. Therefore, it is possible to prevent the heat transfer tube group from being surrounded by the boiling bubbles and being dried out below the liquid surface of the refrigerant, and to improve the heat transfer performance of the heat transfer tube group.

上記の蒸発器において、前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置された構成としてもよい。 In the above-mentioned evaporator, the refrigerant circulation hole formed in the refrigerant distribution plate may be arranged vertically below the gap.

上記構成の蒸発器によれば、冷媒分配板に穿設された冷媒流通孔を通過して上方に放流される低圧冷媒の流れが、空隙を通過して伝熱管群の上端まで掛かるため、伝熱管群の伝熱性能を高めることができる。 According to the evaporator having the above configuration, the flow of the low-pressure refrigerant discharged upward through the refrigerant circulation holes formed in the refrigerant distribution plate passes through the gap and reaches the upper end of the heat transfer tube group. The heat transfer performance of the heat pipe group can be improved.

上記のいずれかの蒸発器において、前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置された構成としてもよい。 In any of the above evaporators, a demister that is located between the refrigerant outlet and the heat transfer tube group inside the pressure vessel and performs gas-liquid separation of the refrigerant is arranged directly above the heat transfer tube group. The configuration may be changed.

低圧冷媒を用いる場合、ガス流速が大きいので、噴き上がる液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタを設置すると、冷媒液面からデミスタまでの距離が長くなり、圧力容器のシェル径が大きくなってしまう。 When a low-pressure refrigerant is used, since the gas flow velocity is high, the distance until the jetted droplets of the liquid-phase refrigerant are separated from the vapor-phase refrigerant by its own weight becomes relatively long. Therefore, if the demister is installed at a position higher than the position where the droplets are separated by their own weight, the distance from the liquid surface of the refrigerant to the demister becomes long and the shell diameter of the pressure vessel becomes large.

上記のようにデミスタを伝熱管群の直上部に配置することにより、噴き上がる液滴量をデミスタによって減少させ、キャリーオーバー量を減少させることができる。さらに、デミスタを伝熱管群の直上部に配置することにより、デミスタ上の空間において低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて低圧冷媒のキャリーオーバーを防止することができる。 By disposing the demister just above the heat transfer tube group as described above, it is possible to reduce the amount of droplets to be jetted by the demister and reduce the carryover amount. Furthermore, by disposing the demister directly above the heat transfer tube group, the evaporation mist of the low-pressure refrigerant in the space above the demister is promoted to become droplets of a large diameter, and the distance at which the droplets are separated by their own weight is reduced. Carry over of the refrigerant can be prevented.

上記の蒸発器において、前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられた構成としてもよい。 In the above evaporator, the demister may be provided such that the entire circumference thereof is in contact with the inner circumference of the pressure vessel.

上記構成の蒸発器によれば、圧力容器の内部における低圧冷媒のガス流の全量がデミスタを通過しなければならず、ガス流の流動抵抗が増大する。このため、圧力容器内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。 According to the evaporator having the above structure, the entire amount of the gas flow of the low-pressure refrigerant inside the pressure container must pass through the demister, which increases the flow resistance of the gas flow. Therefore, the flow velocity distribution of the gas flow in the pressure vessel is leveled, the peak value of the local gas flow velocity is reduced, the amount of droplets generated is reduced, and the self-weight separation distance of droplets is shortened. Carry over of the refrigerant can be prevented.

上記のいずれかの蒸発器において、前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さくされた構成としてもよい。 In any of the above evaporators, the individual heat transfer tubes forming the heat transfer tube group have a surface direction intersecting the longitudinal axis direction of the pressure vessel and are spaced apart in the longitudinal axis direction of the pressure vessel. Installed by penetrating through the plurality of heat transfer tube support plates arranged, the installation interval of the heat transfer tube support plate in the vicinity of the upstream side position of the heat transfer tube group is greater than the installation interval of the heat transfer tube support plate at other positions. May be made smaller.

伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群が沸騰泡の振動に共振して破損する懸念がある。 Near the position on the upstream side of the heat transfer tube group, the low-pressure refrigerant boiled violently because the temperature difference between the liquid to be cooled and the low-pressure refrigerant flowing inside the heat transfer tube group was large, and the specific volume of the boiling bubbles was higher than that of the high-pressure refrigerant. Because it is large, it produces more vibration than when a high pressure refrigerant is used. Therefore, there is a concern that the heat transfer tube group may be damaged by resonating with the vibration of the boiling bubbles.

上記のように、伝熱管群の上流側の位置付近における伝熱管支持板の設置間隔を、他の位置における伝熱管支持板の設置間隔よりも小さくすることにより、伝熱管群の上流側付近における共振を抑制して破損を防止することができる。 As described above, by setting the installation interval of the heat transfer tube support plate in the vicinity of the upstream side position of the heat transfer tube group to be smaller than the installation interval of the heat transfer tube support plate in other positions, in the vicinity of the upstream side of the heat transfer tube group. Resonance can be suppressed and damage can be prevented.

本発明に係るターボ冷凍装置は、最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、圧縮された前記低圧冷媒を凝縮させる凝縮器と、膨張した前記低圧冷媒を蒸発させる上記のいずれかの蒸発器と、を具備してなることを特徴とする。 A turbo refrigerator according to the present invention includes a turbo compressor that compresses a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG, a condenser that condenses the compressed low-pressure refrigerant, and an evaporator that expands the low-pressure refrigerant. It is characterized by comprising any one of the above-mentioned evaporators.

上記構成のターボ冷凍装置によれば、低圧冷媒を用いた場合に、蒸発器内における低圧冷媒の沸騰泡による伝熱管群のドライアウトや、低圧冷媒の液滴がターボ圧縮機にキャリーオーバーされることを防止し、低圧冷媒による効率向上を図ることができる。 According to the turbo refrigerating apparatus having the above configuration, when a low-pressure refrigerant is used, dry-out of the heat transfer tube group due to boiling bubbles of the low-pressure refrigerant in the evaporator and droplets of the low-pressure refrigerant are carried over to the turbo compressor. This can be prevented and the efficiency can be improved by the low pressure refrigerant.

以上のように、本発明に係る蒸発器、これを備えたターボ冷凍装置によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる。 As described above, according to the evaporator and the turbo refrigerating apparatus including the same of the present invention, in the turbo refrigerating apparatus using the low pressure refrigerant used at the maximum pressure of less than 0.2 MPaG, the heat transfer tube group in the evaporator is provided. It is possible to prevent the dry-out and improve the heat transfer performance, and to suppress a decrease in efficiency due to carryover of the liquid-phase low-pressure refrigerant to the turbo compressor side.

本発明の実施形態に係るターボ冷凍装置の全体図である。1 is an overall view of a turbo refrigerating device according to an embodiment of the present invention. 図1のII矢視により本発明の第1実施形態を示す蒸発器の側面図である。It is a side view of the evaporator which shows 1st Embodiment of this invention by the II arrow of FIG. 図2のIII−III線に沿う蒸発器の縦断面図である。FIG. 3 is a vertical sectional view of the evaporator taken along the line III-III in FIG. 2. 図2のIV−IV線に沿う蒸発器の縦断面図である。FIG. 4 is a vertical sectional view of the evaporator taken along line IV-IV in FIG. 2. 本発明の第2実施形態を示す蒸発器の側面図である。It is a side view of an evaporator showing a 2nd embodiment of the present invention. 本発明の第3実施形態を示す蒸発器の縦断面図である。It is a longitudinal section of an evaporator showing a 3rd embodiment of the present invention. 図6のVII矢視図である。It is a VII arrow line view of FIG. (a),(b)は、それぞれ本発明の第4実施形態を示す冷媒入口の縦断面図である。(A), (b) is a longitudinal section of a refrigerant inlet showing a 4th embodiment of the present invention, respectively.

以下に、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るターボ冷凍装置の全体図である。このターボ冷凍装置1は、冷媒を圧縮するターボ圧縮機2と、凝縮器3と、高圧膨張弁4と、中間冷却器5と、低圧膨張弁6と、蒸発器7と、潤滑油タンク8と、回路箱9と、インバータユニット10と、操作盤11等を備えてユニット状に構成されている。潤滑油タンク8は、ターボ圧縮機2の軸受や増速器等に供給する潤滑油を貯留するタンクである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an overall view of a turbo refrigeration system according to an embodiment of the present invention. The turbo refrigeration system 1 includes a turbo compressor 2 that compresses a refrigerant, a condenser 3, a high pressure expansion valve 4, an intercooler 5, a low pressure expansion valve 6, an evaporator 7, and a lubricating oil tank 8. The circuit box 9, the inverter unit 10, the operation panel 11 and the like are provided to form a unit. The lubricating oil tank 8 is a tank that stores lubricating oil to be supplied to the bearings, the speed increaser, and the like of the turbo compressor 2.

凝縮器3と蒸発器7は耐圧性の高い円胴シェル形状に形成され、その軸線を略水平方向に延在させた状態で互いに隣り合うように平行に配置されている。凝縮器3は蒸発器7よりも相対的に高い位置に配置され、その下方に回路箱9が設置されている。中間冷却器5と潤滑油タンク8は、凝縮器3と蒸発器7との間に挟まれて設置されている。インバータユニット10は凝縮器3の上部に設置され、操作盤11は蒸発器7の上方に配置されている。潤滑油タンク8と回路箱9とインバータユニット10と操作盤11は、それぞれ平面視でターボ冷凍装置1の全体輪郭から大きくはみ出さないように配置されている。 The condenser 3 and the evaporator 7 are formed in a cylindrical shell shape having high pressure resistance, and are arranged in parallel so as to be adjacent to each other with their axes extending in a substantially horizontal direction. The condenser 3 is arranged at a position relatively higher than the evaporator 7, and a circuit box 9 is installed below the condenser 3. The intercooler 5 and the lubricating oil tank 8 are installed so as to be sandwiched between the condenser 3 and the evaporator 7. The inverter unit 10 is installed above the condenser 3, and the operation panel 11 is arranged above the evaporator 7. The lubricating oil tank 8, the circuit box 9, the inverter unit 10, and the operation panel 11 are arranged so as not to largely protrude from the overall contour of the turbo refrigeration system 1 in a plan view.

ターボ圧縮機2は、電動機13によって回転駆動される公知の遠心タービン型のものであり、その軸線を略水平方向に延在させた姿勢で蒸発器7の上方に配置されている。電動機13はインバータユニット10によって駆動される。ターボ圧縮機2は後述するように蒸発器7の冷媒出口23から吸入管14を経て供給される気相状の冷媒を圧縮する。冷媒としては、最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒が用いられる。 The turbo compressor 2 is of a known centrifugal turbine type that is rotationally driven by an electric motor 13, and is arranged above the evaporator 7 in a posture in which its axis extends in a substantially horizontal direction. The electric motor 13 is driven by the inverter unit 10. The turbo compressor 2 compresses the vapor-phase refrigerant supplied from the refrigerant outlet 23 of the evaporator 7 through the suction pipe 14 as described later. As the refrigerant, a low pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used.

ターボ圧縮機2の吐出口と凝縮器3の上部との間が吐出管15により接続され、凝縮器3の底部と中間冷却器5の底部との間が冷媒管16により接続されている。また、中間冷却器5の底部と蒸発器7との間が冷媒管17により接続され、中間冷却器5の上部とターボ圧縮機2の中段との間が冷媒管18により接続されている。冷媒管16には高圧膨張弁4が設けられ、冷媒管17には低圧膨張弁6が設けられている。 The discharge port of the turbo compressor 2 and the upper part of the condenser 3 are connected by a discharge pipe 15, and the bottom part of the condenser 3 and the bottom part of the intercooler 5 are connected by a refrigerant pipe 16. A refrigerant pipe 17 connects between the bottom of the intercooler 5 and the evaporator 7, and a refrigerant pipe 18 connects between the top of the intercooler 5 and the middle stage of the turbo compressor 2. The refrigerant pipe 16 is provided with the high-pressure expansion valve 4, and the refrigerant pipe 17 is provided with the low-pressure expansion valve 6.

[第1実施形態]
図2〜図4は蒸発器7の第1実施形態を示している。
図2に示すように、蒸発器7は、水平方向に延在する円胴シェル形状の圧力容器21と、この圧力容器21の下部に設けられる冷媒入口22と、圧力容器21の上部に設けられる冷媒出口23と、圧力容器21の内部を長手軸方向に通過する伝熱管群25と、冷媒分配板26と、デミスタ27とを具備して構成されている。
[First Embodiment]
2 to 4 show a first embodiment of the evaporator 7.
As shown in FIG. 2, the evaporator 7 is provided in a cylindrical shell-shaped pressure vessel 21 extending in the horizontal direction, a refrigerant inlet 22 provided in the lower portion of the pressure vessel 21, and an upper portion of the pressure vessel 21. It comprises a refrigerant outlet 23, a heat transfer tube group 25 passing through the inside of the pressure vessel 21 in the longitudinal axis direction, a refrigerant distribution plate 26, and a demister 27.

冷媒入口22と冷媒出口23は、それぞれ圧力容器21の長手軸方向中間部に配置されており、冷媒入口22は圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成され、冷媒出口23は圧力容器21の上部から鉛直上方に延出する短いパイプ状に形成されている。図1に示すように、冷媒入口22には中間冷却器5の底部から延出する冷媒管17が接続され、冷媒出口23にはターボ圧縮機2の吸入管14が接続されている。 The refrigerant inlet 22 and the refrigerant outlet 23 are respectively arranged in the middle portion in the longitudinal axis direction of the pressure vessel 21, and the refrigerant inlet 22 is formed in a short pipe shape extending horizontally and tangentially from the bottom portion of the pressure vessel 21, The refrigerant outlet 23 is formed in a short pipe shape extending vertically upward from the upper portion of the pressure vessel 21. As shown in FIG. 1, the refrigerant inlet 22 is connected to the refrigerant pipe 17 extending from the bottom portion of the intercooler 5, and the refrigerant outlet 23 is connected to the suction pipe 14 of the turbo compressor 2.

圧力容器21の内部には、その一端(例えば図2に向かって左端)の下側に入口チャンバ31、その上に出口チャンバ32が、それぞれ独立した部屋として設けられている。また、圧力容器21の内部他端(例えば図2に向かって右端)にはUターンチャンバ33が独立した部屋として設けられている。これらのチャンバ31,32,33はいずれもデミスタ27よりも下に配置されている。入口チャンバ31には入口ノズル34が設けられ、出口チャンバ32には出口ノズル35が設けられている。 Inside the pressure vessel 21, an inlet chamber 31 is provided below one end (for example, the left end in FIG. 2), and an outlet chamber 32 is provided above the inlet chamber 31 as independent chambers. A U-turn chamber 33 is provided as an independent room at the other end (for example, the right end in FIG. 2) inside the pressure vessel 21. All of these chambers 31, 32 and 33 are arranged below the demister 27. The inlet chamber 31 is provided with an inlet nozzle 34, and the outlet chamber 32 is provided with an outlet nozzle 35.

図2および図3、図4に示すように、伝熱管群25は、圧力容器21内部の長手軸方向一端(図2中の左端)から他端(図2中の右端)まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを備えている。具体的には、往路管群25Aは入口チャンバ31とUターンチャンバ33の下部との間を繋ぐように配設され、復路管群25Bは出口チャンバ32とUターンチャンバ33の上部との間を繋ぐように配設されている。即ち、往路管群25Aは圧力容器21の内部下方に配置され、復路管群25Bは圧力容器21の内部上方に配置されている。 As shown in FIG. 2, FIG. 3 and FIG. 4, the heat transfer tube group 25 is a forward tube group extending from one end (left end in FIG. 2) in the longitudinal axis direction inside the pressure vessel 21 to the other end (right end in FIG. 2). 25A and a return pipe group 25B communicating with the outward pipe group 25A at the other end in the longitudinal direction inside the pressure container 21 and returning from the other end in the longitudinal axis direction inside the pressure container 21 to one end. Specifically, the forward pipe group 25A is arranged so as to connect between the inlet chamber 31 and the lower part of the U-turn chamber 33, and the return pipe group 25B connects between the outlet chamber 32 and the upper part of the U-turn chamber 33. It is arranged to connect. That is, the outward pipe group 25A is arranged below the inside of the pressure container 21, and the return pipe group 25B is arranged above the inside of the pressure container 21.

入口ノズル34からは、冷媒に冷却される被冷却液として、例えば水(水道水、精製水、蒸留水等)が流入するようになっている。この水は、入口チャンバ31から流入して往路管群25Aを流れ、Uターンチャンバ33にてUターンした後、復路管群25Bを流れ、出口チャンバ21を経て出口ノズル35から冷水として流出する。 From the inlet nozzle 34, for example, water (tap water, purified water, distilled water, etc.) flows in as a liquid to be cooled that is cooled by the refrigerant. The water flows in from the inlet chamber 31 through the outward pipe group 25A, makes a U-turn in the U-turn chamber 33, then flows through the return pipe group 25B, and then flows out as cold water from the outlet nozzle 35 through the outlet chamber 21.

図3、図4に示すように、伝熱管群25を構成する往路管群25Aと復路管群25Bは、それぞれ多数の伝熱管が束ねられた伝熱管束25aが水平方向に複数(例えば4つずつ)平行に配列された構成である。各伝熱管束25aの間には鉛直方向に延びる空隙S1が形成されている。また、往路管群25Aと復路管群25Bとの間には水平方向に延びる空隙S2が形成されている。 As shown in FIG. 3 and FIG. 4, in the forward path tube group 25A and the return path tube group 25B that form the heat transfer tube group 25, a plurality of heat transfer tube bundles 25a in which a large number of heat transfer tubes are bundled are arranged in the horizontal direction (for example, four heat transfer tube groups 25a). Each) is arranged in parallel. A space S1 extending in the vertical direction is formed between each heat transfer tube bundle 25a. Further, a space S2 extending in the horizontal direction is formed between the outward pipe group 25A and the return pipe group 25B.

図2に示すように、伝熱管群25(25A,25B)を構成する個々の伝熱管は、圧力容器21の内部において複数の伝熱管支持板37に支持されながら圧力容器21の内部に固定されている。これらの伝熱管支持板37は、圧力容器21の長手軸方向に交差する面方向を有する平板状であり、圧力容器21の長手軸方向に間隔を空けて複数配置され、圧力容器21の内面に固定されている。伝熱管支持板37には多数の貫通穴が穿設されており、これらの貫通穴に伝熱管が密に挿通されている。 As shown in FIG. 2, the individual heat transfer tubes forming the heat transfer tube group 25 (25A, 25B) are fixed inside the pressure vessel 21 while being supported by the plurality of heat transfer tube support plates 37 inside the pressure vessel 21. ing. These heat transfer tube support plates 37 are flat plates having a surface direction that intersects the longitudinal axis direction of the pressure vessel 21, and are arranged in plural at intervals in the longitudinal axis direction of the pressure vessel 21. It is fixed. A large number of through holes are formed in the heat transfer tube support plate 37, and the heat transfer tubes are densely inserted into these through holes.

圧力容器21の長手軸方向に沿う伝熱管支持板37の設置間隔は、伝熱管群25の上流側の位置付近、つまり往路管群25Aの上流側の位置(図2中の左方)付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。例えば、L1はL2の半分程度となっている。 The heat transfer tube support plate 37 is installed along the longitudinal axis of the pressure vessel 21 near the upstream position of the heat transfer tube group 25, that is, near the upstream position of the forward tube group 25A (left side in FIG. 2). The installation interval L1 is smaller than the installation interval L2 at other positions. For example, L1 is about half of L2.

一方、図2〜図4に示すように、冷媒分配板26は、圧力容器21の内部において冷媒入口22と伝熱管群25(往路管群25A)との間に設置されている。この冷媒分配板26は、多数の冷媒流通孔26aが穿設された板状の部材である。 On the other hand, as shown in FIGS. 2 to 4, the refrigerant distribution plate 26 is installed inside the pressure vessel 21 between the refrigerant inlet 22 and the heat transfer tube group 25 (outgoing tube group 25A). The refrigerant distribution plate 26 is a plate-shaped member having a large number of refrigerant circulation holes 26a.

この冷媒分配板26における単位面積あたりの冷媒流通孔26aの面積比率は、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において、他の範囲、例えば伝熱管群25の中間区間の位置に対応する範囲A2よりも大きくされている。また、この冷媒流通孔26aの面積比率は、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。例えば、範囲A1,A3における冷媒流通孔26aの面積比率は33〜38%、範囲A2における冷媒流通孔26aの面積比率は24〜33%を例示することができるが、この範囲のみには限定されない。 The area ratio of the refrigerant flow holes 26a per unit area in the refrigerant distribution plate 26 is within a range A1 corresponding to the vicinity of the upstream side position of the heat transfer tube group 25 (25A), for example, in the middle of the heat transfer tube group 25. It is set larger than the range A2 corresponding to the position of the section. Further, the area ratio of the refrigerant circulation holes 26a is set to be larger in the ranges A1 and A3 at both ends in the longitudinal axis direction of the refrigerant distribution plate 26 than in the range A2 in the longitudinal direction middle part. For example, the area ratio of the refrigerant flow holes 26a in the ranges A1 and A3 can be 33 to 38%, and the area ratio of the refrigerant flow holes 26a in the range A2 can be 24 to 33%, but the invention is not limited to this range. ..

図3、図4に示すように、伝熱管群25(25A,25B)を構成する複数の伝熱管束25aの間に形成された鉛直方向に延びる空隙S1の鉛直下に、冷媒分配板26の冷媒流通孔26aが配置されている。つまり、平面視で、空隙S1の長手方向に沿って冷媒流通孔26aが配列されている。 As shown in FIG. 3 and FIG. 4, the refrigerant distribution plate 26 is provided vertically below the space S1 extending in the vertical direction formed between the plurality of heat transfer tube bundles 25a forming the heat transfer tube group 25 (25A, 25B). The refrigerant circulation hole 26a is arranged. That is, in plan view, the coolant circulation holes 26a are arranged along the longitudinal direction of the space S1.

図2〜図4に示すように、デミスタ27は、圧力容器21の内部において冷媒出口23と伝熱管群25(復路管群25B)との間に配置されている。デミスタ27は、例えばワイヤーをメッシュ状に絡め合わせた通気性に富む部材であり、低圧冷媒の気液分離を行うものである。ワイヤーメッシュに限らず、通気性が良ければ他の多孔状の物質であってもよい。 As shown in FIGS. 2 to 4, the demister 27 is arranged inside the pressure vessel 21 between the refrigerant outlet 23 and the heat transfer tube group 25 (return tube group 25B). The demister 27 is a member having a high air permeability, for example, in which wires are entwined in a mesh shape, and performs gas-liquid separation of the low-pressure refrigerant. The material is not limited to the wire mesh, and other porous material may be used as long as it has good air permeability.

デミスタ27は、その周囲全周が圧力容器21の内周に接するように取り付けられており、このデミスタ27を境に圧力容器21の内部空間が上下に二分されている。また、デミスタ27の設置高さは、伝熱管群25の直上部とされている。具体的には、伝熱管群25とデミスタ27との間隔はチューブ配置ピッチの2倍程度とされている。一方、デミスタ27と冷媒出口23との間には比較的大きな高低差(例えば圧力容器21の直径の50%程度以上)が設けられている。 The demister 27 is attached so that the entire circumference thereof is in contact with the inner circumference of the pressure vessel 21, and the inner space of the pressure vessel 21 is divided into upper and lower parts with the demister 27 as a boundary. Further, the installation height of the demister 27 is set directly above the heat transfer tube group 25. Specifically, the distance between the heat transfer tube group 25 and the demister 27 is about twice the tube arrangement pitch. On the other hand, a relatively large height difference (for example, about 50% or more of the diameter of the pressure vessel 21) is provided between the demister 27 and the refrigerant outlet 23.

以上のように構成された蒸発器7を備えたターボ冷凍装置1において、ターボ圧縮機2は電動機13に回転駆動され、蒸発器7から吸入管14を経て供給される気相状の低圧冷媒を圧縮し、この圧縮された低圧冷媒を吐出管15から凝縮器3に送給する。 In the turbo refrigerating apparatus 1 including the evaporator 7 configured as described above, the turbo compressor 2 is rotationally driven by the electric motor 13 to transfer the gas phase low pressure refrigerant supplied from the evaporator 7 through the suction pipe 14. The compressed low-pressure refrigerant is sent from the discharge pipe 15 to the condenser 3.

凝縮器3の内部では、ターボ圧縮機2で圧縮された高温の低圧冷媒が冷却水と熱交換されることにより凝縮熱を冷却されて凝縮液化される。凝縮器3で液相状になった低圧冷媒は、凝縮器3から延出する冷媒管16に設けられた高圧膨張弁4を通過することにより膨張し、気液混合状態となって中間冷却器5に給送され、ここに一旦貯留される。 Inside the condenser 3, the high-temperature low-pressure refrigerant compressed by the turbo compressor 2 is heat-exchanged with the cooling water to cool the condensation heat to be condensed and liquefied. The low-pressure refrigerant in the liquid phase in the condenser 3 expands by passing through the high-pressure expansion valve 4 provided in the refrigerant pipe 16 extending from the condenser 3 to become a gas-liquid mixed state, and the intercooler. 5, and is temporarily stored there.

中間冷却器5の内部では、高圧膨張弁4にて膨張した気液混合状態の低圧冷媒が気相分と液相分とに気液分離される。ここで分離された低圧冷媒の液相分は、中間冷却器5の底部から延出する冷媒管17に設けられた低圧膨張弁6によりさらに膨張して気液二相流となって蒸発器7に給送される。また、中間冷却器5で分離された低圧冷媒の気相分は、中間冷却器5の上部から延出する冷媒管18を経てターボ圧縮機2の中段部に給送され、再び圧縮される。 Inside the intercooler 5, the low-pressure refrigerant in a gas-liquid mixed state expanded by the high-pressure expansion valve 4 is separated into a gas phase and a liquid phase. The liquid phase component of the low-pressure refrigerant separated here is further expanded by the low-pressure expansion valve 6 provided in the refrigerant pipe 17 extending from the bottom portion of the intercooler 5, and becomes a gas-liquid two-phase flow to become the evaporator 7 Be delivered to. Further, the gas phase component of the low-pressure refrigerant separated by the intercooler 5 is fed to the middle stage part of the turbo compressor 2 via the refrigerant pipe 18 extending from the upper part of the intercooler 5, and is compressed again.

図2〜図4に示すように、蒸発器7では、低圧膨張弁6において断熱膨張した後の低温な気液二相流状の低圧冷媒が冷媒入口22から圧力容器21の内部に流入し、冷媒分配板26の下方で圧力容器21の長手軸方向に分散した後、冷媒分配板26の冷媒流通孔26aを通過して上方に流れる。そして、圧力容器21の内部で低圧冷媒のプールが形成される。この低圧冷媒プールの液面レベルは、伝熱管群25とデミスタ27との間となるように自動調整される。 As shown in FIGS. 2 to 4, in the evaporator 7, the low temperature gas-liquid two-phase flow low-pressure refrigerant after adiabatic expansion in the low-pressure expansion valve 6 flows into the pressure vessel 21 from the refrigerant inlet 22. After being dispersed in the longitudinal axis direction of the pressure vessel 21 below the refrigerant distribution plate 26, the refrigerant flows through the refrigerant circulation holes 26 a of the refrigerant distribution plate 26 and flows upward. Then, a pool of low-pressure refrigerant is formed inside the pressure vessel 21. The liquid level of the low-pressure refrigerant pool is automatically adjusted so as to be between the heat transfer tube group 25 and the demister 27.

伝熱管群25(25A,25B)は、圧力容器21の内部で低圧冷媒プール中に浸漬された状態となり、低圧冷媒と熱交換する。これにより、伝熱管群25の内部を通過する水が冷却されて冷水になる。この冷水は空調用の冷熱媒や工業用冷却水等として利用される。 The heat transfer tube group 25 (25A, 25B) is immersed in the low pressure refrigerant pool inside the pressure vessel 21, and exchanges heat with the low pressure refrigerant. As a result, the water passing through the inside of the heat transfer tube group 25 is cooled and becomes cold water. This cold water is used as a cooling/heating medium for air conditioning or industrial cooling water.

伝熱管群25との熱交換により蒸発(気化)した低圧冷媒は、デミスタ27によって気液分離される。即ち、気化した低圧冷媒(気化冷媒)が圧力容器21の内部を冷媒出口23に向かう時には、高圧冷媒に比べて比体積が大きい低圧冷媒の特性によって速い流れが形成される。そして、低圧冷媒プールから噴き上げられた未気化の液相冷媒の液滴が、気化冷媒の速い流れに同伴して冷媒出口23から出ようとし、キャリーオーバーが発生する虞がある。 The low-pressure refrigerant evaporated (vaporized) by heat exchange with the heat transfer tube group 25 is gas-liquid separated by the demister 27. That is, when the vaporized low pressure refrigerant (vaporized refrigerant) is directed to the refrigerant outlet 23 inside the pressure vessel 21, a fast flow is formed due to the characteristics of the low pressure refrigerant having a larger specific volume than the high pressure refrigerant. Then, the droplets of the non-evaporated liquid-phase refrigerant blown up from the low-pressure refrigerant pool tend to come out from the refrigerant outlet 23 along with the fast flow of the vaporized refrigerant, which may cause carryover.

しかし、この液滴は多孔状のデミスタ27に捕捉されて分離され、重力により低圧冷媒プールに落下するため、キャリーオーバーが防止される。このように気液分離された気化冷媒は、冷媒出口23から出て吸入管14を経て再びターボ圧縮機2に吸入・圧縮され、以下、この冷凍サイクルが繰り返される。 However, this droplet is captured and separated by the porous demister 27 and falls into the low-pressure refrigerant pool due to gravity, so carryover is prevented. The vaporized refrigerant thus separated into gas and liquid is discharged from the refrigerant outlet 23, is again sucked and compressed by the turbo compressor 2 via the suction pipe 14, and then this refrigeration cycle is repeated.

この蒸発器7は、圧力容器21の内部において冷媒入口22と伝熱管群25(25A,25B)との間に設置されている冷媒分配板26における冷媒流通孔26aの面積比率が、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において他の範囲A2よりも大きくされている。 In this evaporator 7, the area ratio of the refrigerant flow holes 26a in the refrigerant distribution plate 26 installed between the refrigerant inlet 22 and the heat transfer tube group 25 (25A, 25B) inside the pressure vessel 21 is determined by the heat transfer tube group. The range A1 corresponding to the vicinity of the upstream position of 25 (25A) is made larger than the other ranges A2.

このため、冷媒入口22から圧力容器21内に導入された低圧冷媒は、伝熱管群25(25A)の上流側の位置付近に比較的多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。 Therefore, the low-pressure refrigerant introduced from the refrigerant inlet 22 into the pressure vessel 21 is distributed in a relatively large amount near the upstream position of the heat transfer tube group 25 (25A). Further, a relatively small amount of low pressure refrigerant is distributed to other positions. As a result, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel 21 is made uniform.

蒸発器21の内部における伝熱管群25(25A)の上流側の位置付近では、伝熱管群25(25A)の内部を流れる水との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には上記のように他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群25(25A)の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群25(25A,25B)が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群25(25A,25B)の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。 In the vicinity of the position on the upstream side of the heat transfer tube group 25 (25A) inside the evaporator 21, the low-pressure refrigerant boils violently because the temperature difference with the water flowing inside the heat transfer tube group 25 (25A) is large. However, since a relatively large amount of low-pressure refrigerant is distributed to this position as compared with other positions as described above, the vicinity of the upstream side of the heat transfer tube group 25 (25A) is surrounded by the boiling bubbles of the low-pressure refrigerant. Therefore, the heat transfer tube group 25 (25A, 25B) can be maintained in a state in which it is immersed in the refrigerant two-phase liquid. Therefore, the liquid to be cooled and the low-pressure refrigerant flowing inside the heat transfer tube group 25 (25A, 25B) can be favorably heat-exchanged, and the heat transfer performance of the heat transfer tube group 25 (25A, 25B) can be improved. it can.

上記のように圧力容器21の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、本実施形態のように圧力容器21の長手軸方向中間部にターボ圧縮機2の吸入管14に通じる冷媒出口23を設けることにより、液相状の冷媒が気化冷媒の流れに乗ってターボ圧縮機2側にキャリーオーバーされることを効果的に防止し、ターボ圧縮機2の効率低下を抑制することができる。 As described above, the floss level of the low-pressure refrigerant pool does not rise higher than both ends in the longitudinal axis direction in the middle portion in the longitudinal axis direction of the pressure container 21, so that the middle portion in the longitudinal axis direction of the pressure container 21 as in the present embodiment. By providing the refrigerant outlet 23 that communicates with the suction pipe 14 of the turbo compressor 2, it is possible to effectively prevent the liquid-phase refrigerant from carrying over to the turbo compressor 2 side along with the flow of the vaporized refrigerant. It is possible to suppress a decrease in efficiency of the turbo compressor 2.

また、この蒸発器7は、冷媒入口22が圧力容器21の長手軸方向中間部に設けられるとともに、冷媒分配板26における冷媒流通孔26aの面積比率が、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。 In addition, in the evaporator 7, the refrigerant inlet 22 is provided in the middle portion in the longitudinal axis direction of the pressure vessel 21, and the area ratio of the refrigerant circulation holes 26 a in the refrigerant distribution plate 26 is such that both end portions in the longitudinal axis direction of the refrigerant distribution plate 26. The ranges A1 and A3 are larger than the range A2 of the intermediate portion in the longitudinal axis direction.

このため、圧力容器21の長手軸方向中間部に設けられた冷媒入口22から圧力容器21内に導入された低圧冷媒は、圧力容器21内部の長手軸方向両端部に多く供給され、冷媒入口22の直上部となる圧力容器21の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群25(25A,25B)の内部を流れる水と低圧冷媒とを良好に熱交換させ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。 Therefore, the low-pressure refrigerant introduced into the pressure vessel 21 through the refrigerant inlet 22 provided at the longitudinal axis direction intermediate portion of the pressure vessel 21 is largely supplied to both ends of the pressure vessel 21 in the longitudinal axis direction. A relatively small amount is supplied to the intermediate portion in the longitudinal axis direction of the pressure vessel 21 which is immediately above. For this reason, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel 21 is made uniform, and the water flowing inside the heat transfer tube group 25 (25A, 25B) and the low-pressure refrigerant are satisfactorily heat-exchanged and transferred. The heat transfer performance of the heat pipe group 25 (25A, 25B) can be improved.

さらに、この蒸発器7の伝熱管群25は、圧力容器21内部の長手軸方向一端から他端まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを具備している。そして、圧力容器21の内部において往路管群25Aが下方に配置され、復路管群25Bが上方に配置されている。 Further, the heat transfer tube group 25 of the evaporator 7 communicates with the outward path tube group 25A extending from one end in the longitudinal axis direction inside the pressure vessel 21 to the other end, and the outward path tube group 25A at the other end in the longitudinal axis direction inside the pressure vessel 21. The return vessel group 25B that returns from the other end in the longitudinal axis direction to the one end in the pressure vessel 21 is provided. The forward pipe group 25A is arranged below the pressure vessel 21 and the return pipe group 25B is arranged above it.

このように伝熱管群25を構成すれば、伝熱管内を流れる水との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群25Aが圧力容器21の下部に配置され、伝熱管内を流れる水との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群25Bが圧力容器21の上部に配置される。 When the heat transfer tube group 25 is configured in this way, the outward path tube group 25A in which the temperature difference with the water flowing in the heat transfer tube is large and the boiling of the low-pressure refrigerant is intense is arranged in the lower portion of the pressure vessel 21 and flows in the heat transfer tube. A return pipe group 25</b>B in which the temperature difference from water is small and the boiling of the low-pressure refrigerant is gentle is arranged above the pressure vessel 21.

このため、低圧冷媒の激しい沸騰が圧力容器21内における低圧冷媒プールの液面の下方(深部)で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機2側にキャリーオーバーされることを防止し、ターボ圧縮機2の効率低下を抑制することができる。 Therefore, the low-pressure refrigerant is vigorously boiled below the liquid surface of the low-pressure refrigerant pool in the pressure vessel 21 (deep part), and the liquid-phase refrigerant is less likely to be scattered on the liquid surface of the low-pressure refrigerant pool. Therefore, it is possible to prevent the liquid-phase refrigerant from being carried over to the turbo compressor 2 side by being accompanied by the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor 2.

伝熱管群25(25A,25B)は、複数の伝熱管が束ねられた伝熱管束25aが水平方向に複数配列され、これらの伝熱管束25aの間に鉛直方向に延びる空隙S1が形成されている。 In the heat transfer tube group 25 (25A, 25B), a plurality of heat transfer tube bundles 25a in which a plurality of heat transfer tubes are bundled are arranged in the horizontal direction, and a space S1 extending vertically is formed between the heat transfer tube bundles 25a. There is.

この複数の伝熱管束25aの間にある鉛直な空隙S1が、伝熱管群25(25A,25B)と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒プールの液面に容易に浮上することができる。したがって、冷媒液面下で伝熱管群25(25A,25B)が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群25(25A,25B)の伝熱性能を高めることができる。 The vertical void S1 between the plurality of heat transfer tube bundles 25a serves as a path for boiling bubbles of the low-pressure refrigerant that has boiled by exchanging heat with the heat transfer tube group 25 (25A, 25B). Thereby, the boiling bubbles can easily float on the liquid surface of the low-pressure refrigerant pool. Therefore, it is possible to prevent the heat transfer tube group 25 (25A, 25B) from being surrounded by boiling bubbles and being dried out under the liquid surface of the refrigerant, and to improve the heat transfer performance of the heat transfer tube group 25 (25A, 25B).

これに加えて、空隙S1の鉛直下に、冷媒分配板26に穿設された冷媒流通孔26aが配置されているため、冷媒分配板26の冷媒流通孔26aを通過して上方に放流される低圧冷媒の流れが、空隙S1を通過して伝熱管群25(25A,25B)の上端まで掛かる。したがって、伝熱管群25(25A,25B)の伝熱性能を高めることができる。 In addition to this, since the coolant distribution hole 26a formed in the coolant distribution plate 26 is arranged vertically below the space S1, the coolant distribution hole 26a of the coolant distribution plate 26 is discharged upward. The flow of the low-pressure refrigerant passes through the space S1 and reaches the upper end of the heat transfer tube group 25 (25A, 25B). Therefore, the heat transfer performance of the heat transfer tube group 25 (25A, 25B) can be improved.

このターボ冷凍装置1のように低圧冷媒を用いる場合、高圧冷媒に比べて比堆積が大きい低圧冷媒の特性により、蒸発器7の圧力容器21内部におけるガス流速が速くなる。このため、圧力容器21内部の低圧冷媒プールから噴き上がった液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタ27を設置すると、冷媒液面からデミスタ27までの距離が長くなり、圧力容器21のシェル径が大きくなってしまう。 When a low-pressure refrigerant is used as in the turbo refrigerator 1, the gas flow velocity inside the pressure vessel 21 of the evaporator 7 becomes faster due to the characteristics of the low-pressure refrigerant having a larger specific deposition than the high-pressure refrigerant. For this reason, the distance until the droplets of the liquid-phase refrigerant blown up from the low-pressure refrigerant pool inside the pressure vessel 21 are separated from the vapor-phase refrigerant by its own weight becomes relatively long. Therefore, if the demister 27 is installed at a position higher than the position where the droplets are separated by their own weight, the distance from the liquid surface of the refrigerant to the demister 27 becomes long and the shell diameter of the pressure vessel 21 becomes large.

この蒸発器7では、デミスタ27を伝熱管群25の直上部に配置することにより、低圧冷媒プールから噴き上がる液滴量をデミスタ27によって減少させ、低圧冷媒の液滴が冷媒出口23から出てしまうこと(キャリーオーバー)を抑制している。
さらに、デミスタ27を伝熱管群25の直上部に配置することにより、相対的にデミスタ27上の空間高さを大きくし、低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて、この点でも低圧冷媒のキャリーオーバーを抑制することができる。
In this evaporator 7, by disposing the demister 27 directly above the heat transfer tube group 25, the amount of droplets ejected from the low-pressure refrigerant pool is reduced by the demister 27, and droplets of the low-pressure refrigerant emerge from the refrigerant outlet 23. Suppressing carryover.
Furthermore, by disposing the demister 27 directly above the heat transfer tube group 25, the space height above the demister 27 is relatively increased, and the evaporation mist of the low-pressure refrigerant is promoted to become droplets with a large diameter. The carry-over of the low-pressure refrigerant can also be suppressed in this respect by reducing the distance by which the droplets are separated by their own weight.

さらに、この蒸発器7では、デミスタ27が、その周囲全周が圧力容器21の内周全周に接するように設けられている。これにより、圧力容器21の内部における低圧冷媒のガス流の全量がデミスタ27を通過することになり、ガス流の流動抵抗が増大する。このため、圧力容器21内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。 Further, in this evaporator 7, the demister 27 is provided so that the entire circumference thereof is in contact with the entire inner circumference of the pressure vessel 21. As a result, the entire amount of the gas flow of the low-pressure refrigerant inside the pressure vessel 21 passes through the demister 27, and the flow resistance of the gas flow increases. Therefore, the flow velocity distribution of the gas flow in the pressure vessel 21 is leveled, the peak value of the local gas flow velocity is reduced, the amount of droplets generated is reduced, and the self-weight separation distance of the droplets is shortened. Carryover of the low pressure refrigerant can be prevented.

また、この蒸発器7では、伝熱管群25の個々の伝熱管を支持している複数の伝熱管支持板37の、伝熱管群25の上流側の位置付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。 In addition, in the evaporator 7, the installation interval L1 of the plurality of heat transfer tube support plates 37 supporting the individual heat transfer tubes of the heat transfer tube group 25 in the vicinity of the position on the upstream side of the heat transfer tube group 25 is different from other positions. Is smaller than the installation interval L2.

伝熱管群25の上流側の位置付近では、前述のように伝熱管群25の内部を流れる水と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群25が沸騰泡の振動に共振して破損する懸念がある。 In the vicinity of the position on the upstream side of the heat transfer tube group 25, as described above, the temperature difference between the water flowing inside the heat transfer tube group 25 and the low pressure refrigerant is large, so that the low pressure refrigerant is boiled violently, and the specific volume of the boiling bubbles is Since it is larger than the high-pressure refrigerant, it generates more vibration than when the high-pressure refrigerant is used. Therefore, there is a concern that the heat transfer tube group 25 resonates with the vibration of the boiling bubbles and is damaged.

上記のように、伝熱管群25の上流側の位置付近における伝熱管支持板37の設置間隔L1を、他の位置における設置間隔L2よりも小さくすることにより、伝熱管群25の上流側付近における設置剛性を高め、共振を抑制して破損を防止することができる。 As described above, by setting the installation interval L1 of the heat transfer tube support plate 37 near the position on the upstream side of the heat transfer tube group 25 to be smaller than the installation interval L2 at other positions, the vicinity of the upstream side of the heat transfer tube group 25. The installation rigidity can be increased, resonance can be suppressed, and damage can be prevented.

[第2実施形態]
図5は本発明の第2実施形態を示す蒸発器の側面図である。
この蒸発器7Aは、圧力容器21の冷媒入口22Aが、圧力容器21の長手軸方向に沿って複数分散して設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。このため、同一構成の各部分には同一符号を付与して説明を省略する。
[Second Embodiment]
FIG. 5 is a side view of an evaporator showing a second embodiment of the present invention.
This evaporator 7A is different from the evaporator 7 (refrigerant inlet 22) of the first embodiment in that a plurality of refrigerant inlets 22A of the pressure vessel 21 are provided dispersed along the longitudinal axis direction of the pressure vessel 21. However, the other configurations are the same. Therefore, the same reference numerals are given to the respective parts having the same configuration, and the description thereof will be omitted.

本実施形態では、例えば2つの冷媒入口22Aが、圧力容器21の長手軸方向に沿って分散し、各々の間が離間するように設けられている。冷媒入口22Aを3箇所以上に設けてもよい。これらの冷媒入口22Aは、第1実施形態の冷媒入口22と同じく、圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成されている。各冷媒入口22Aの口径は、第1実施形態の冷媒入口22の口径よりも小さくされている。 In the present embodiment, for example, two refrigerant inlets 22A are provided so as to be dispersed along the longitudinal axis direction of the pressure vessel 21 and to be separated from each other. The refrigerant inlet 22A may be provided at three or more places. Like the refrigerant inlet 22 of the first embodiment, these refrigerant inlets 22A are formed in a short pipe shape extending horizontally and tangentially from the bottom of the pressure vessel 21. The diameter of each refrigerant inlet 22A is smaller than the diameter of the refrigerant inlet 22 of the first embodiment.

前述の通り、低圧冷媒は、高圧冷媒に比べて比体積が大きいため、蒸発器7Aに流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板26の冷媒流通孔26aを小さくする等して圧損を大きくすると、低圧冷媒が冷媒流通孔26aから噴出する速度が大きくなり、伝熱管群25の振動や破損に繋がる。 As described above, since the low-pressure refrigerant has a larger specific volume than the high-pressure refrigerant, the volumetric flow rate flowing into the evaporator 7A is large and the dynamic pressure is high, but the refrigerant circulation hole 26a of the refrigerant distribution plate 26 is made small accordingly. If the pressure loss is increased by, for example, increasing the speed at which the low-pressure refrigerant is ejected from the refrigerant flow holes 26a, the vibration and damage of the heat transfer tube group 25 will occur.

この蒸発器7Aのように2つ、あるいは3つ以上の冷媒入口22Aを圧力容器21の長手軸方向に沿って離間させて設けることにより、第1実施形態のように単一の冷媒入口22を設けた場合に比べて圧力容器21内部への低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板26の冷媒流通孔26aの径を大きくすることができ、これによって低圧冷媒が冷媒流通孔26aから噴出する速度を低下させることができる。 Like the evaporator 7A, two or three or more refrigerant inlets 22A are provided separately from each other along the longitudinal axis direction of the pressure vessel 21, so that a single refrigerant inlet 22 as in the first embodiment is provided. The inflow rate of the low-pressure refrigerant into the pressure vessel 21 can be reduced as compared with the case where the pressure vessel 21 is provided. For this reason, the diameter of the refrigerant distribution hole 26a of the refrigerant distribution plate 26 can be increased, and thus the speed at which the low-pressure refrigerant is ejected from the refrigerant distribution hole 26a can be reduced.

これにより、伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。 This prevents vibration and damage to the heat transfer tube group 25, and suppresses carry-over of the liquid-phase low-pressure refrigerant locally to the turbo compressor 2 side, for example, to suppress the carry-over. It is possible to avoid a decrease in efficiency.

[第3実施形態]
図6は本発明の第3実施形態を示す蒸発器の縦断面図であり、図7は図6のVII矢視図である。
この蒸発器7Bは、圧力容器21の底部に設けられている冷媒入口22の外側開口部22aから圧力容器21までの流路断面積が、外側開口部22aから圧力容器21に向かって拡大している。具体的には、外側開口部22aと圧力容器21との間に拡張流路22bが設けられている。それ以外の構成は図3に示す第1実施形態の蒸発器7と同様であるため、同一構成の各部分には同一符号を付与して説明を省略する。
[Third Embodiment]
FIG. 6 is a vertical cross-sectional view of an evaporator showing a third embodiment of the present invention, and FIG. 7 is a view on arrow VII of FIG.
In this evaporator 7B, the flow passage cross-sectional area from the outer opening 22a of the refrigerant inlet 22 provided at the bottom of the pressure container 21 to the pressure container 21 is increased from the outer opening 22a toward the pressure container 21. There is. Specifically, the expansion flow path 22b is provided between the outer opening 22a and the pressure vessel 21. The other configurations are the same as those of the evaporator 7 of the first embodiment shown in FIG. 3, and therefore, the same reference numerals are given to the respective portions having the same configuration and the description thereof will be omitted.

拡張流路22bは、例えば箱状に形成されており、その流路断面積が冷媒入口22の流路断面積よりも大きくされている。例えば拡張流路22bの流路断面積は冷媒入口22の流路断面積の2〜5倍程度に設定される。なお、拡張流路22bの形状は箱状のみに限定されず、その流路断面積が冷媒入口22の外側開口部22aよりも大きければ他の形状であってもよい。例えば、拡張流路22bをバルジ形状等にしてもよい。また、拡張流路22bを設けずに、冷媒入口22を、その外側開口部22aから圧力容器21側に向かって径が大きくなるテーパー管状とすること等が考えられる。 The expansion flow channel 22b is formed in a box shape, for example, and has a flow channel cross-sectional area larger than that of the refrigerant inlet 22. For example, the flow passage cross-sectional area of the expansion flow passage 22b is set to about 2 to 5 times the flow passage cross-sectional area of the refrigerant inlet 22. The shape of the expansion flow channel 22b is not limited to the box shape, and may be any other shape as long as the flow channel cross-sectional area is larger than the outer opening 22a of the refrigerant inlet 22. For example, the expansion flow path 22b may have a bulge shape or the like. Further, it is conceivable that the refrigerant inlet 22 is formed in a tapered tubular shape whose diameter increases from the outer opening 22a toward the pressure vessel 21 side without providing the expansion flow passage 22b.

このように、冷媒入口22の外側開口部22aから圧力容器21までの流路断面積を圧力容器21に向かって拡大させることにより、冷媒入口22を流れる低圧冷媒の流速が圧力容器21に向かって低下する。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
In this way, the flow passage cross-sectional area from the outer opening 22a of the refrigerant inlet 22 to the pressure container 21 is enlarged toward the pressure container 21, so that the flow velocity of the low-pressure refrigerant flowing through the refrigerant inlet 22 is directed toward the pressure container 21. descend.
Therefore, the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation holes 26a of the refrigerant distribution plate 26 is reduced to prevent vibration and damage of the heat transfer tube group 25, and the liquid-phase low-pressure refrigerant is locally ejected. As a result, carryover to the turbo compressor 2 side can be suppressed, and a decrease in efficiency of the turbo compressor 2 can be avoided.

[第4実施形態]
図8(a),(b)は本発明の第4実施形態を示す蒸発器の縦断面図である。
この蒸発器7Cは、冷媒入口22の管内に、低圧冷媒の流速を減衰させる流速減衰部材が設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。
[Fourth Embodiment]
8A and 8B are vertical cross-sectional views of an evaporator showing a fourth embodiment of the present invention.
This evaporator 7C differs from the evaporator 7 (refrigerant inlet 22) of the first embodiment in that a flow velocity attenuating member for attenuating the flow velocity of the low-pressure refrigerant is provided inside the pipe of the refrigerant inlet 22, and other configurations. Are the same.

流速減衰部材としては、図8(a)に示すように、冷媒入口22の管内に多孔板(パンチングプレート等)22cを設置したり、図8(b)に示すように、冷媒入口22の管内に複数の邪魔板22dを迷路状に設置したりすることが考えられる。冷媒入口22の管内における低圧冷媒の流速を減衰させることができれば、これら以外のものを流速減衰部材として設置してもよい。 As the flow velocity attenuating member, as shown in FIG. 8A, a perforated plate (punching plate or the like) 22c is installed in the pipe of the refrigerant inlet 22, or as shown in FIG. It is possible to install a plurality of baffles 22d in a maze. As long as the flow velocity of the low-pressure refrigerant in the pipe of the coolant inlet 22 can be attenuated, other components may be installed as the flow velocity attenuating member.

このように、冷媒入口22の管内に流速減衰部材22c,22dを設けることにより、冷媒入口22から圧力容器21に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
Thus, by providing the flow velocity attenuating members 22c and 22d in the pipe of the refrigerant inlet 22, the flow velocity of the low pressure refrigerant flowing from the refrigerant inlet 22 into the pressure vessel 21 is reduced.
Therefore, the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation holes 26a of the refrigerant distribution plate 26 is reduced to prevent vibration and damage of the heat transfer tube group 25, and the liquid-phase low-pressure refrigerant is locally ejected. As a result, it is possible to suppress carryover to the turbo compressor 2 side and avoid a decrease in efficiency of the turbo compressor 2.

以上に説明したように、本実施形態に係る蒸発器7,7A,7B,7C、およびこれらの蒸発器を備えたターボ冷凍装置1によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置1において、蒸発器内における伝熱管25群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機2側にキャリーオーバーされることによる効率低下を抑制することができる。 As described above, according to the evaporators 7, 7A, 7B, 7C and the turbo refrigeration system 1 including these evaporators according to the present embodiment, the low-pressure refrigerant used at the maximum pressure of less than 0.2 MPaG. In the turbo refrigerating apparatus 1 using, the heat transfer performance is improved by preventing the dry-out of the heat transfer tubes 25 in the evaporator, and the liquid phase low pressure refrigerant is carried over to the turbo compressor 2 side. It is possible to suppress a decrease in efficiency.

なお、本発明は上記実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、上記の第1〜第4実施形態を組み合わせる等してもよい。 Note that the present invention is not limited to the configurations of the above-described embodiments, and modifications and improvements can be appropriately added. Embodiments thus modified or improved are also included in the scope of rights of the present invention. And For example, the first to fourth embodiments described above may be combined.

1 ターボ冷凍装置
2 ターボ圧縮機
3 凝縮器
7 蒸発器
21 圧力容器
22 冷媒入口
22a 冷媒入口の外側開口部
22b 拡張流路
22c 多孔板(流速減衰部材)
22d 邪魔板(流速減衰部材)
23 冷媒出口
25 伝熱管群
25A 往路管群
25B 復路管群
25a 伝熱管束
26 冷媒分配板
26a 冷媒流通孔
27 デミスタ
37 伝熱管支持板
A1 伝熱管群の上流側の位置付近に対応する範囲(冷媒分配板の長手軸方向端部の範囲)
A2 伝熱管群の他の位置に対応する範囲(冷媒分配板の長手軸方向中間部の範囲)
A3 冷媒分配板の長手軸方向端部の範囲
L1,L2 伝熱管支持板の設置間隔
S1 空隙
1 Turbo Refrigerator 2 Turbo Compressor 3 Condenser 7 Evaporator 21 Pressure Vessel 22 Refrigerant Inlet 22a Refrigerant Inlet Outer Opening 22b Expansion Channel 22c Perforated Plate (Flow Rate Damping Member)
22d Baffle plate (flow velocity damping member)
23 Refrigerant outlet 25 Heat transfer tube group 25A Forward path tube group 25B Return path tube group 25a Heat transfer tube bundle 26 Refrigerant distribution plate 26a Refrigerant distribution hole 27 Demister 37 Heat transfer tube support plate A1 Range corresponding to the vicinity of the upstream side of the heat transfer tube group (refrigerant Range of the longitudinal end of the distribution plate)
A2 Range corresponding to other positions of the heat transfer tube group (range of the intermediate portion in the longitudinal axis direction of the refrigerant distribution plate)
A3 Range of end portions in the longitudinal axis direction of the refrigerant distribution plate L1, L2 Installation interval S1 of heat transfer tube support plate S1 Void

Claims (12)

水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群とを備え、
前記伝熱管群は、前記圧力容器の長手軸方向に交差する面方向を有する平板状の伝熱管支持板に支持され、
前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、前記往路管群及び前記復路管群のそれぞれの上流側の位置付近に対応する範囲において他の範囲よりも大きくされるとともに、前記冷媒出口付近に対応する範囲において他の範囲よりも小さくされていることを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced,
A refrigerant inlet provided at the bottom of the pressure vessel,
A refrigerant outlet provided in the upper part of the pressure vessel,
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and heat-exchanges the liquid to be cooled with the low-pressure refrigerant,
A plate-shaped refrigerant distribution plate provided between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant flow hole formed therein;
The heat transfer tube group communicates with the forward path tube group extending from one end to the other end in the longitudinal axis direction inside the pressure vessel, and the forward path tube group at the other end in the longitudinal axis direction inside the pressure vessel, and the longitudinal direction inside the pressure vessel. And a return pipe group that returns from the other end in the axial direction to one end,
The heat transfer tube group is supported by a flat plate heat transfer tube support plate having a surface direction intersecting the longitudinal axis direction of the pressure vessel,
The area ratio of the refrigerant flow holes per unit area in the refrigerant distribution plate is made larger than other ranges in the range corresponding to the upstream side position of each of the outward pipe group and the return pipe group, An evaporator characterized in that a range corresponding to the vicinity of the refrigerant outlet is made smaller than other ranges.
前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、
前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい請求項1に記載の蒸発器。
The refrigerant inlet is provided at an intermediate portion in the longitudinal direction of the pressure vessel,
The evaporator according to claim 1, wherein the area ratio of the refrigerant flow holes in the refrigerant distribution plate is larger in a range of an end portion in the longitudinal axis direction of the refrigerant distribution plate than in a range of an intermediate portion in the longitudinal axis direction.
前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に間隔を空けて配置された複数の前記伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さい請求項1または2に記載の蒸発器。 Individual heat transfer tubes constituting the heat transfer tube group is placed is through a plurality of the heat transfer tube support plates arranged at intervals in the longitudinal direction of the front Symbol pressure vessel, upstream of the heat transfer tube group The evaporator according to claim 1 or 2 , wherein an installation interval of the heat transfer tube support plate in the vicinity of the position is smaller than an installation interval of the heat transfer tube support plate in another position. 水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていて、
前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced,
A refrigerant inlet provided at the bottom of the pressure vessel,
A refrigerant outlet provided in the upper part of the pressure vessel,
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and heat-exchanges the liquid to be cooled with the low-pressure refrigerant,
A plate-shaped refrigerant distribution plate provided between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant flow hole formed therein;
The refrigerant inlet is provided in a plurality dispersed along the longitudinal direction of the pressure vessel ,
Each heat transfer tube constituting the heat transfer tube group has a plurality of heat transfer tube support plates which have a surface direction intersecting the longitudinal axis direction of the pressure vessel and are arranged at intervals in the longitudinal axis direction of the pressure vessel. An evaporator characterized in that an installation interval of the heat transfer tube support plates in the vicinity of a position on the upstream side of the heat transfer tube group is smaller than an installation interval of the heat transfer tube support plates in other positions . ..
水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していて、
前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced,
A refrigerant inlet provided at the bottom of the pressure vessel,
A refrigerant outlet provided in the upper part of the pressure vessel,
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and heat-exchanges the liquid to be cooled with the low-pressure refrigerant,
A plate-shaped refrigerant distribution plate provided between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant flow hole formed therein;
The flow path cross-sectional area from the outer opening of the refrigerant inlet to the pressure vessel is expanding from the outer opening toward the pressure vessel ,
Each heat transfer tube constituting the heat transfer tube group has a plurality of heat transfer tube support plates which have a surface direction intersecting the longitudinal axis direction of the pressure vessel and are arranged at intervals in the longitudinal axis direction of the pressure vessel. An evaporator characterized in that an installation interval of the heat transfer tube support plates in the vicinity of a position on the upstream side of the heat transfer tube group is smaller than an installation interval of the heat transfer tube support plates in other positions . ..
水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていて、
前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さいことを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced,
A refrigerant inlet provided at the bottom of the pressure vessel,
A refrigerant outlet provided in the upper part of the pressure vessel,
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and heat-exchanges the liquid to be cooled with the low-pressure refrigerant,
A plate-shaped refrigerant distribution plate provided between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant flow hole formed therein;
The refrigerant inlet is tubular connected to the pressure vessel, a flow velocity damping member for damping the flow velocity of the low pressure refrigerant is provided in the pipe ,
Each heat transfer tube constituting the heat transfer tube group has a plurality of heat transfer tube support plates which have a surface direction intersecting the longitudinal axis direction of the pressure vessel and are arranged at intervals in the longitudinal axis direction of the pressure vessel. An evaporator characterized in that an installation interval of the heat transfer tube support plates in the vicinity of a position on the upstream side of the heat transfer tube group is smaller than an installation interval of the heat transfer tube support plates in other positions . ..
前記伝熱管群は、
前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、
前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、
前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置されている請求項1からのいずれかに記載の蒸発器。
The heat transfer tube group,
A forward tube group extending from one end to the other end in the longitudinal direction inside the pressure vessel,
A return path tube group communicating with the outward path tube group at the other end in the longitudinal axis direction inside the pressure vessel, and returning from the other end in the longitudinal axis direction inside the pressure vessel to one end,
The evaporator according to any one of claims 1 to 6 , wherein the outward pipe group is arranged below the inside of the pressure vessel, and the return pipe group is arranged above.
前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成されている請求項1からのいずれかに記載の蒸発器。 The heat transfer tube group is a plurality of heat transfer tubes are arrayed in the heat transfer tube bundle is horizontal bundled, according to any of claims 1 to 7 in which the air gap extending in the vertical direction in the heat transfer tube bundles is formed Evaporator. 前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置されている請求項に記載の蒸発器。 The evaporator according to claim 8 , wherein the refrigerant circulation hole formed in the refrigerant distribution plate is arranged vertically below the gap. 前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記低圧冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置されている請求項1からのいずれかに記載の蒸発器。 Located between the heat transfer tube group and the coolant outlet in the interior of the pressure vessel, demister for gas-liquid separation of the low-pressure refrigerant, claim 1, which is disposed directly above the heat transfer tube group 9 The evaporator according to any one of 1. 前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられている請求項10に記載の蒸発器。 The evaporator according to claim 10 , wherein the demister is provided such that the entire circumference thereof is in contact with the inner circumference of the pressure vessel. 最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、
圧縮された前記低圧冷媒を凝縮させる凝縮器と、
膨張した前記低圧冷媒を蒸発させる請求項1から11のいずれかに記載の蒸発器と、
を具備してなることを特徴とするターボ冷凍装置。
A turbo compressor that compresses a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG,
A condenser for condensing the compressed low-pressure refrigerant,
The evaporator according to any one of claims 1 to 11, which evaporates the expanded low-pressure refrigerant,
A turbo refrigerating apparatus comprising:
JP2015201239A 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same Active JP6716227B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same
US15/736,130 US20180187932A1 (en) 2015-10-09 2016-09-06 Evaporator and centrifugal chiller provided with the same
PCT/JP2016/076068 WO2017061211A1 (en) 2015-10-09 2016-09-06 Evaporator and turbo-freezer provided with same
CN201680036519.2A CN107850359B (en) 2015-10-09 2016-09-06 Evaporator and turbo refrigeration device provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same

Publications (2)

Publication Number Publication Date
JP2017072343A JP2017072343A (en) 2017-04-13
JP6716227B2 true JP6716227B2 (en) 2020-07-01

Family

ID=58487574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201239A Active JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same

Country Status (4)

Country Link
US (1) US20180187932A1 (en)
JP (1) JP6716227B2 (en)
CN (1) CN107850359B (en)
WO (1) WO2017061211A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190926A (en) * 2016-04-15 2017-10-19 三菱重工サーマルシステムズ株式会社 Evaporator, turbo refrigeration device including the same
JP6524990B2 (en) * 2016-12-09 2019-06-05 ダイキン工業株式会社 Heat transfer device and heat transfer method using the same
EP3627073A1 (en) 2018-09-18 2020-03-25 Daikin applied Europe S.p.A. Flooded evaporator
EP3690376B1 (en) * 2019-02-04 2021-07-21 Carrier Corporation Heat exchanger
JP7261131B2 (en) * 2019-09-05 2023-04-19 荏原冷熱システム株式会社 Evaporators used in centrifugal chillers, and centrifugal chillers
CN110947192A (en) * 2019-12-02 2020-04-03 大连海事大学 Vertical energy-saving evaporator
US11747060B2 (en) 2020-06-17 2023-09-05 Carrier Corporation Vapor compression system and method for operating heat exchanger
CN114264188A (en) * 2020-09-16 2022-04-01 浙江盾安人工环境股份有限公司 Fluid distribution device and heat exchanger with same
CN115076589A (en) * 2021-06-29 2022-09-20 中国石油天然气集团有限公司 Integrated device of lean glycol buffer tank and lean glycol-rich glycol heat exchanger and use method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454959U (en) * 1977-09-26 1979-04-16
JPS58183471U (en) * 1982-05-27 1983-12-07 ダイキン工業株式会社 flooded evaporator
JPS60251302A (en) * 1984-05-28 1985-12-12 株式会社日立製作所 Moisture separating heater
JPS61175492A (en) * 1985-01-31 1986-08-07 Toshiba Corp Evaporator for non-azeotropic mixture medium
JP2510041Y2 (en) * 1990-10-16 1996-09-11 石川島播磨重工業株式会社 Evaporator for low temperature fluid
JP2875373B2 (en) * 1990-10-19 1999-03-31 株式会社日立製作所 Water cooler
JP3829452B2 (en) * 1998-01-12 2006-10-04 三菱電機株式会社 Heat exchanger
JPH11294706A (en) * 1998-04-08 1999-10-29 Mitsubishi Heavy Ind Ltd Shell-tube heat exchanger type horizontal steam generator
US6167713B1 (en) * 1999-03-12 2001-01-02 American Standard Inc. Falling film evaporator having two-phase distribution system
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
JP4192413B2 (en) * 2000-09-06 2008-12-10 株式会社Ihi Ice cooler supercooler
JP3572250B2 (en) * 2000-10-24 2004-09-29 三菱重工業株式会社 Condenser for refrigerator
JP4451998B2 (en) * 2001-05-22 2010-04-14 三菱重工業株式会社 Evaporator and refrigerator having the same
US8574451B2 (en) * 2005-06-24 2013-11-05 Honeywell International Inc. Trans-chloro-3,3,3-trifluoropropene for use in chiller applications
WO2009114398A1 (en) * 2008-03-07 2009-09-17 Arkema Inc. Use of r-1233 in liquid chillers
CN103429982B (en) * 2011-02-04 2016-06-29 洛克希德马丁公司 There is the heat exchanger of foam fin
US10579947B2 (en) * 2011-07-08 2020-03-03 Avaya Inc. System and method for scheduling based on service completion objectives
JP5916360B2 (en) * 2011-11-30 2016-05-11 三菱重工業株式会社 Turbo refrigerator
JP6423221B2 (en) * 2014-09-25 2018-11-14 三菱重工サーマルシステムズ株式会社 Evaporator and refrigerator

Also Published As

Publication number Publication date
CN107850359A (en) 2018-03-27
WO2017061211A1 (en) 2017-04-13
CN107850359B (en) 2021-03-26
JP2017072343A (en) 2017-04-13
US20180187932A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6716227B2 (en) Evaporator, turbo refrigerator equipped with the same
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
CN104303000B (en) Heat exchanger
US10132537B1 (en) Heat exchanger
JP7364930B2 (en) Heat exchanger
JP2019507862A (en) Heat exchanger
US11029094B2 (en) Heat exchanger
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
CN104395687A (en) Heat exchanger
CN113195997B (en) Heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150