JP2875373B2 - Water cooler - Google Patents

Water cooler

Info

Publication number
JP2875373B2
JP2875373B2 JP27902090A JP27902090A JP2875373B2 JP 2875373 B2 JP2875373 B2 JP 2875373B2 JP 27902090 A JP27902090 A JP 27902090A JP 27902090 A JP27902090 A JP 27902090A JP 2875373 B2 JP2875373 B2 JP 2875373B2
Authority
JP
Japan
Prior art keywords
cold water
water
pitch
baffle
chilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27902090A
Other languages
Japanese (ja)
Other versions
JPH04155190A (en
Inventor
哲雄 下出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27902090A priority Critical patent/JP2875373B2/en
Publication of JPH04155190A publication Critical patent/JPH04155190A/en
Application granted granted Critical
Publication of JP2875373B2 publication Critical patent/JP2875373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチラーユニツトにおける水冷却器のバツフル
プレートの配置に関する。
The present invention relates to the arrangement of baffle plates of a water cooler in a chiller unit.

〔従来の技術〕[Conventional technology]

従来の水冷却器のバツフルプレートの配置は、公技番
号88−10269号の公報に記載のように、バツフルプレー
トのピツチは冷水側の全領域で均等なピツチとなつてい
た。
The arrangement of the baffle plate of the conventional water cooler is such that the pitch of the baffle plate is uniform in the entire region on the cold water side, as described in Japanese Patent Publication No. 88-10269.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は冷水入口側で冷水温度が高く冷媒蒸発
温度との温度差が大きく、冷媒と冷水の熱交換特性が高
い領域と冷水出口側で冷水温度が低く冷媒蒸発温度との
温度差も小さく、かつ、冷媒もガス化、および、過熱化
を必要とし熱交換特性が低い領域とのいずれでもバツフ
ルピツチは同じで、冷水入口側領域での熱交換特性の高
い部分での冷水の流速を上げて、さらに、熱交換特性を
高め、伝熱管の有効利用を図ることについて考慮がされ
ておらず、伝熱管の本数を増やしたことで冷却性能を補
なう構造として製造原価を上げる問題があつた。本発明
の目的は、冷水入口側領域ではバツプルのピツチを狭く
し、冷水流速を上げ、熱交換特性を大幅に向上させ、冷
水出口側領域ではバツフルピツチを広げて冷水の通路抵
抗を増加させることなく、熱交換特性の低下分を差し引
いても、冷水入口側の熱交換特性分でカバーし、水冷却
器全体で冷却性能の向上を図ることにある。
In the above prior art, the chilled water temperature is high at the chilled water inlet side and the temperature difference from the refrigerant evaporation temperature is large, and the temperature difference between the chilled water temperature at the chilled water outlet side and the region where the refrigerant and chilled water heat exchange characteristics are high is small. In addition, the refrigerant also needs to be gasified and superheated, and the heat exchange characteristic is low in both the regions where the heat exchange characteristics are low, and the flow rate of the chilled water in the region where the heat exchange characteristics are high in the chilled water inlet side region is increased. In addition, no consideration was given to improving the heat exchange characteristics and effective use of the heat transfer tubes, and increasing the number of heat transfer tubes increased the manufacturing cost as a structure that supplemented the cooling performance. . An object of the present invention is to narrow the pitch of the buckle in the chilled water inlet side region, increase the chilled water flow rate, greatly improve the heat exchange characteristic, and increase the buckled pitch in the chilled water outlet side region without increasing the passage resistance of the chilled water. Even when the heat exchange characteristic is reduced, the heat exchange characteristic on the cold water inlet side is covered to improve the cooling performance of the entire water cooler.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、冷水入口側領域ではバツ
フルのピツチを狭く、冷水流速を上げ、冷水流速を上げ
た分だけ冷媒との熱交換特性を向上させ、冷水出口領域
に行くにつれてバツフルのピツチを徐々に広くし、冷水
の通路抵抗を増加させることなく、かつ、冷水出口領域
で冷水温度が低く冷媒との温度が少なく熱交換特性の悪
い領域での性能低下分を充分に補なうことで水冷却器全
体で冷却性能を図るため、冷水入口側と冷水出口側とで
はバツフルピツチを変えていた。
In order to achieve the above object, the pitch of the baffle is narrowed in the cold water inlet side area, the flow rate of the cold water is increased, the heat exchange characteristic with the refrigerant is improved by the increased flow rate of the cold water, and the pitch of the baffle is increased toward the cold water outlet area. Gradually increase the chilled water passage resistance, and sufficiently compensate for the performance degradation in the area where the chilled water temperature is low and the temperature with the refrigerant is low and the heat exchange characteristics are poor in the chilled water outlet area. In order to improve the cooling performance of the entire water cooler, the baffle pitch was changed between the cold water inlet side and the cold water outlet side.

〔作用〕[Action]

水冷却器の性能はQ=K・A・ΔTMで表わせるQは冷
却能力,Aは伝熱管表面積,ΔTMは冷水温度と冷媒温度と
の対数平均温度,Kは熱伝達率である。また、Kは で表わせる。αは冷媒側熱伝達率、αは水側熱伝達
率で、αはα=av−bv2+cv3式で表わされ、a,b,c
は定数、vは水速、αは冷媒入口側で大きく、冷媒出
口側に行くにつれて低下するが本発明では直接関係な
い、αは水速が速いほど高くなる、またΔTMは冷水入
口側では冷水温度が高いので冷水出口側と比較して高
い。すなわち、冷水入口領域ではΔTMは必然的に大きい
ので、この領域ではKを高くするために冷水の流速を上
げれば相乗効果となつて表われる。このため、冷水入口
領域ではバツフルピツチを狭くすることだけで、伝熱管
のすき間は変わらないので、冷水流速は速くなるので、
αが高くなり結果としてK値が高くなつて水冷却器の
性能Qは向上するように動作する。また、冷水出口領域
ではΔTMが小さくなり、もともと性能的に向上を望めな
い領域であり、バツフルのピツチを広げ冷水流速を低下
させても性能Qの低下量は少ない。従つて、冷水入口側
ではバツフルのピツチを狭く冷水出口領域に行くつれ
て、徐々にバツフルピツチを広げているので冷水流速は
徐々に低下してくることになる。それによつて冷水の通
路抵抗も徐々に低下するようになるので、水冷却器の冷
水流路通過抵抗が増加することがない。
The performance of the water cooler can be expressed by Q = K · A · ΔTM, where Q is the cooling capacity, A is the surface area of the heat transfer tube, ΔTM is the logarithmic average temperature of the cold water temperature and the refrigerant temperature, and K is the heat transfer coefficient. K is Can be represented by alpha R refrigerant side heat transfer coefficient, alpha W in the water side heat transfer coefficient, alpha W is represented by α W = av-bv 2 + cv 3 formula, a, b, c
Is a constant, v is the water speed, α R is large at the refrigerant inlet side, and decreases as it goes to the refrigerant outlet side, but is not directly related in the present invention. Α W increases as the water speed increases, and ΔTM indicates the cold water inlet side. Since the cold water temperature is high, it is higher than the cold water outlet side. That is, since ΔTM is inevitably large in the cold water inlet region, increasing the flow rate of the cold water to increase K in this region has a synergistic effect. For this reason, in the chilled water inlet area, only by narrowing the baffle pitch, the gap of the heat transfer tube does not change, so the chilled water flow rate becomes faster,
performance Q of alpha W K value is high as a high will result is connexion water cooler operates to increase. Further, in the cold water outlet region, ΔTM is small, and it is a region where improvement in performance cannot be expected from the beginning. Even if the pitch of the baffle is widened and the flow rate of the cold water is reduced, the amount of decrease in the performance Q is small. Therefore, at the cold water inlet side, the baffle pitch is gradually widened as the buffle pitch narrows toward the cold water outlet area, so that the flow rate of the cold water gradually decreases. As a result, the passage resistance of the cold water gradually decreases, so that the passage resistance of the water cooler through the cold water channel does not increase.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。冷
水は冷水入口パイプ1より水冷却器に流入する。ここか
らはシエル内2の伝熱管の外側で伝熱管3と伝熱管のす
き間とバツフルプレート4でかこまれた部分が流れる。
伝熱管と伝熱管のすき間は水冷却器全領域で均等なすき
間をもつように配置されている。また、バツフルプレー
ト4は交互に隣りのバツフルプレート4へ冷水が移動出
来るように部分的に切欠かれている。すなわち、バツフ
ルプレート4a−nのピツチをを変化させることで、冷水
の流速を変化させることが出来る。ここでバツフルプレ
ート4a〜nのピツチを冷水入口側で狭く徐々に隣接する
バツフルプレート4b〜nのピツチを広げ、最終的に冷水
出口側で最も広くなるように配置する。すなわち、バツ
フルプレート4aとバツフルプレート4bのすき間は最も小
さく、バツフルプレート4bとバツフルプレート4cのすき
間は少し大きくなり、バツプルプレート4a〜nでnにな
るほど徐々にすき間を大きくし、バツプルプレート4n−
とバツフルプレート4nのすき間は最も広くなるように
配置する。すき間が徐々に広くなるので冷水の流速は徐
々に低下していくことになる。最終的に冷水流速は最も
おそくなり、冷水出口パイプ5より出て行くことにな
る。本実施例によれば、冷水入口部領域で冷水流速は最
も速く、冷水出口部領域に近づくにつれて遅くなるの
で、冷水入口部領域では冷水の熱伝達率を大幅に向上さ
せる効果がある。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. Cold water flows into the water cooler through the cold water inlet pipe 1. From here, the portion surrounded by the heat transfer tube 3 and the gap between the heat transfer tube and the baffle plate 4 flows outside the heat transfer tube in the shell 2.
The gap between the heat transfer tubes is arranged so as to have a uniform gap over the entire area of the water cooler. Further, the baffle plate 4 is partially cut out so that cold water can move to an adjacent baffle plate 4 alternately. That is, the flow rate of the cold water can be changed by changing the pitch of the baffle plates 4a-n. Here, the pitch of the baffle plates 4a to 4n is narrowed gradually on the inlet side of the cold water, and the pitch of the adjacent baffle plates 4b to n is gradually widened and finally arranged so as to be the widest on the cold water outlet side. That is, the gap between the baffle plate 4a and the baffle plate 4b is the smallest, the gap between the baffle plate 4b and the baffle plate 4c is slightly larger, and the gap is gradually increased as n becomes larger in the baffle plates 4a to 4n. Bappur plate 4n−
The gap between 1 and baffle plate 4n is arranged to be the widest. Since the gap gradually widens, the flow rate of the cold water gradually decreases. Eventually, the flow rate of the chilled water becomes the slowest, and the chilled water exits from the chilled water outlet pipe 5. According to the present embodiment, the flow rate of the chilled water is the fastest in the chilled water inlet area, and becomes slower as it approaches the chilled water outlet area. Therefore, the heat transfer coefficient of the chilled water is greatly improved in the chilled water inlet area.

〔発明の効果〕〔The invention's effect〕

本発明によれば、バツフルピツチを段階的に変化さ
せ、冷水入口部領域での水冷却器の性能に大きく作用す
る領域で冷水流速を上げ、冷水流速のフアクタで定まる
水側熱伝達率を大幅に向上させ、冷水出口部領域での冷
水温度が低いことによる対数平均温度が小さく、冷水流
速を上げても水側熱伝達率の向上を望めない領域では逆
に冷水流速を下げて、冷水の通路抵抗も増加させること
なく、水冷却器全体での水側熱伝達率を向上させること
が出来るので、水冷却器の性能向上の効果がある。
According to the present invention, the water pitch is changed stepwise, the chilled water flow rate is increased in a region largely affecting the performance of the water cooler in the chilled water inlet region, and the water-side heat transfer coefficient determined by the chilled water flow rate factor is greatly increased. In the area where the logarithmic average temperature is small due to the low chilled water temperature in the chilled water outlet area and the improvement of the water-side heat transfer coefficient cannot be expected even if the chilled water flow rate is increased, the chilled water flow rate is reduced, Since the water-side heat transfer coefficient in the entire water cooler can be improved without increasing the resistance, there is an effect of improving the performance of the water cooler.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の水側部の断面図である。 1……冷水入口パイプ、2……シェル、3……伝熱管、
4,4a〜n……バツフルプレート、5……冷水出口パイ
プ、6……チユーブプレート。
FIG. 1 is a sectional view of a water side according to an embodiment of the present invention. 1 ... cold water inlet pipe, 2 ... shell, 3 ... heat transfer tube,
4, 4a to n: baffle plate, 5: cold water outlet pipe, 6: tube plate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F28F 9/24 F28F 1/38 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F28F 9/24 F28F 1/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シエルと、チユーブプレートと、伝熱管
と、バツフルプレートと、冷水出入口パイプとを含む水
冷却器において、 冷水入口側領域では前記バツフルのピツチを狭く、冷水
出口側に行くにつれて前記バツフルのピツチを徐々に広
くしたことを特徴とする水冷却器。
In a water cooler including a shell, a tube plate, a heat transfer tube, a baffle plate, and a cold water inlet / outlet pipe, a pitch of the baffle is narrowed in a cold water inlet side region, and the pitch of the baffle is reduced toward a cold water outlet side. A water cooler characterized by gradually widening the pitch of the baffle.
JP27902090A 1990-10-19 1990-10-19 Water cooler Expired - Fee Related JP2875373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27902090A JP2875373B2 (en) 1990-10-19 1990-10-19 Water cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27902090A JP2875373B2 (en) 1990-10-19 1990-10-19 Water cooler

Publications (2)

Publication Number Publication Date
JPH04155190A JPH04155190A (en) 1992-05-28
JP2875373B2 true JP2875373B2 (en) 1999-03-31

Family

ID=17605277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27902090A Expired - Fee Related JP2875373B2 (en) 1990-10-19 1990-10-19 Water cooler

Country Status (1)

Country Link
JP (1) JP2875373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149433A1 (en) * 2012-04-05 2013-10-10 Zhu Hongfeng Cooking stove

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016670A (en) * 2010-07-09 2012-01-26 Ihi Corp Multitube reactor and method for setting position where baffle is installed in the multitube reactor
JP6716227B2 (en) * 2015-10-09 2020-07-01 三菱重工サーマルシステムズ株式会社 Evaporator, turbo refrigerator equipped with the same
CN108871035A (en) * 2018-09-18 2018-11-23 张化机(苏州)重装有限公司 Convenient for the Pipe bundle structure of pressure testing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149433A1 (en) * 2012-04-05 2013-10-10 Zhu Hongfeng Cooking stove

Also Published As

Publication number Publication date
JPH04155190A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US4365667A (en) Heat exchanger
JPS58217195A (en) Heat exchanger
JP2875373B2 (en) Water cooler
JPH0271096A (en) Heat exchanger with fin
JPH0684876B2 (en) Heat exchanger with fins
JPS61191889A (en) Heat exchanger
JPS616592A (en) Finned heat exchanger
JPS58158496A (en) Finned-tube type heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPH06147532A (en) Air conditioner
JPS616591A (en) Finned heat exchanger
JPS61202094A (en) Heat exchanger
JPS63197887A (en) Heat exchanger
JPS60194292A (en) Heat exchanger equipped with fin
JPH025326Y2 (en)
JPS60248997A (en) Heat exchanger
JP2516966B2 (en) Heat exchanger with fins
JPH071156B2 (en) Heat transfer fins and heat exchangers
JPH03170756A (en) Vertical type condenser
JP3226182B2 (en) Heat exchanger tubes for heat exchangers
JP3038625B2 (en) Water tube boiler
JPH01300133A (en) Air conditioner
JPS63197884A (en) Finned heat exchanger
JPH0827155B2 (en) Heat exchanger
JPS61272594A (en) Finned heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees