JPS63197884A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPS63197884A
JPS63197884A JP3037187A JP3037187A JPS63197884A JP S63197884 A JPS63197884 A JP S63197884A JP 3037187 A JP3037187 A JP 3037187A JP 3037187 A JP3037187 A JP 3037187A JP S63197884 A JPS63197884 A JP S63197884A
Authority
JP
Japan
Prior art keywords
heat exchanger
fins
thermal conducting
area
conducting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037187A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Shinji Fujimoto
藤本 真嗣
Hiroaki Kan
管 宏明
Hiroyoshi Tanaka
博由 田中
Makoto Obata
真 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP3037187A priority Critical patent/JPS63197884A/en
Publication of JPS63197884A publication Critical patent/JPS63197884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the effective thermal conducting area of fins without increasing aeration resistance in a heat exchanger to be used in an air conditioner and a refrigerator or the like by a method wherein some projections are provided on fins near thermal conducting pipes in such a manner as a part is overlapped on projected planes of the thermal conducting pipes in respect to an air flow direction. CONSTITUTION:Semi-spherical projections 15 which are smaller than the sectional area of a thermal conducting pipe 10 are arranged at front and rear surfaces of fins 12 near a downstream area of the thermal conducting pipe 10 in such a manner as their part may overlap a projected plane 14 of the thermal conducting pipe to in respect to a direction of air stream 13. A height (h) of the projection 15 is about 1/3 of a spacing (pf) of fins 12. Due to this fact, a flow separating from the surface of the thermal conducting pipe 10 is flowed to around at a rear part of the thermal conducting pipe 10 by projections 15, so that an area of a dead flow area 16 generated at a downstream flow of the thermal conducting pipe 10 is decreased. As a result of these actions, it is possible to make a substantial increase in the thermal conductivity without increasing any aeration resistance and further it is possible to make a small-sized and high performance finned heat exchanger.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調、冷凍等に使用され冷媒と空気等の流体
間で熱の授受を行う熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in air conditioning, refrigeration, etc., which transfers heat between a refrigerant and a fluid such as air.

従来の技術 従来、この種の熱交換器は第8図に示したように、Uベ
ンドにより互いに接続された伝熱管1とアルミ等を材料
とするフィン2よりな9、伝熱管1の内部を流れる冷媒
とフィン2間を流れる空気3が熱交換を行う構成を有し
ていた。この様な熱交換器は近年、小型、高性能化が要
求されているが、騒音等の観点からフィン間の空気流速
は低く抑えられているため管内側の熱抵抗に比して空気
側の熱抵抗は高い。そこで現在は空気側の伝熱面積を拡
大することで管内側の熱抵抗との差を減少させる様に工
夫している。しかしながら、伝熱面を拡大することには
物理的な限界が存在するとともに、経済性、省スペース
性等の点から問題もあり、空気側の熱抵抗を低下させる
ことがこの様な熱交換器に於て重要な課題となっている
2. Description of the Related Art Conventionally, as shown in FIG. 8, this type of heat exchanger consists of heat exchanger tubes 1 connected to each other by U-bends, fins 2 made of aluminum or the like 9, and the inside of the heat exchanger tubes 1. It had a configuration in which the flowing refrigerant and the air 3 flowing between the fins 2 exchange heat. In recent years, such heat exchangers have been required to be smaller and have higher performance, but the air flow velocity between the fins is kept low from the viewpoint of noise etc. High thermal resistance. Therefore, efforts are currently being made to reduce the difference in thermal resistance from the inside of the tube by expanding the heat transfer area on the air side. However, there are physical limits to enlarging the heat transfer surface, and there are also problems in terms of economy and space saving, so it is important to reduce the thermal resistance on the air side. This has become an important issue.

第6図及び第7図は、従来の熱交換器の一例を示したも
のである。第6図は平面図、第7図は側面図である。伝
熱管4の内部はフロン等の冷媒が循環しており、その冷
媒の熱が伝熱管4からフィンカラー5へ伝わり、フィン
6へ伝わる。フィン6の前方からは空気7が流動してフ
ィン6間を通過するが、その際に温度の異なったフィン
6の表面から冷媒から伝わる熱の授受を行うのである。
FIGS. 6 and 7 show an example of a conventional heat exchanger. FIG. 6 is a plan view, and FIG. 7 is a side view. A refrigerant such as fluorocarbon is circulated inside the heat exchanger tube 4, and the heat of the refrigerant is transmitted from the heat exchanger tube 4 to the fin collar 5 and then to the fins 6. Air 7 flows from in front of the fins 6 and passes between the fins 6, and at this time, heat transmitted from the refrigerant is transferred from the surfaces of the fins 6, which have different temperatures.

この作用によって冷媒と空気の熱交換が連続的に行われ
る。
This action causes continuous heat exchange between the refrigerant and the air.

発明が解決しようとする問題点 第6図及び第7図に示した従来例はちどシ管配列のフラ
ットフィンと呼ばれるものであるが、この管配列は基盤
目状に管配列したものより熱伝達率が高く一般に良く使
用されている。それは、第6図のドツトで示した様に、
1列目の伝熱管4の後流域に生じる兆水域の大きさが2
列目の伝熱管4の存在によυ大きくなるのを抑えられて
いるためである。しかしながら、この場合でも全伝熱面
積のうち死水域が占める割合は20〜30%もある。即
ち、全体の2〜3割も無効な部分が存在するわけで、か
つ死水域が大きいということはそれだけ通風抵抗が大き
いことも意味し、熱交換器及び送風機の小型化の妨げと
なっていた。
Problems to be Solved by the Invention The conventional example shown in Figs. 6 and 7 is a so-called flat fin with a square tube arrangement, but this tube arrangement has a better heat transfer rate than the one in which the tubes are arranged in a grid pattern. It has a high rate and is commonly used. As shown by the dots in Figure 6,
The size of the trillion water area generated in the downstream area of the first row of heat transfer tubes 4 is 2
This is because the presence of the heat exchanger tubes 4 in the rows suppresses the increase in υ. However, even in this case, the dead area accounts for as much as 20 to 30% of the total heat transfer area. In other words, 20 to 30% of the total area is ineffective, and a large dead area also means that ventilation resistance is large, which hinders the miniaturization of heat exchangers and blowers. .

そこで、本発明はフィンの形状を工夫することによシ、
通風抵抗の増大を抑え、かつ、熱伝達率を向上させ、コ
ンパクトで高性能なフィン付熱交換器を得ようとするも
のである。
Therefore, the present invention has been developed by devising the shape of the fins.
The objective is to suppress the increase in ventilation resistance, improve the heat transfer coefficient, and obtain a compact and high-performance finned heat exchanger.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、伝熱管の
気流方向に対する投影面上に一部が重なるよう伝熱管近
傍の、フィン上に伝熱管断面積よシ小さい面積で、かつ
、フィン間隔のに以上、かつZ以下の高さを有する有す
る突起を設けるものである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to install the cross-sectional area of the heat exchanger tubes on the fins near the heat exchanger tubes so as to partially overlap the projection plane of the heat exchanger tubes in the airflow direction. A protrusion having a small area and a height greater than or equal to the fin spacing and less than or equal to Z is provided.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、上記のように、フィンに挿通された伝熱管の
気流方向に対する投影面上に、一部が重なるよう伝熱管
近傍のフィン上に突起を設けているため、伝熱管表面か
らはく離した流れが突起によって伝熱管後流に回り込み
伝熱管後流に生じる死水域の増大が大巾に抑えられ有効
伝熱面積が大巾に増大する。第5図に、突起の高さhと
送風機動力Δp−uF(Δp:通風抵抗、up:熱交換
器前面風速)基準の熱伝達率aの関係を示す。突起の高
さhは低すぎても、高すぎても有効でないことがわかシ
、突起の加工性を考慮してK p f <:h<%pf
が最適であるといえる。(pf:フィン間隔)更に突起
自体の大きさは、伝熱管の断面積より小さいため、通風
抵抗はほとんど増大しない。従って、通風抵抗の増大を
抑えながら、有効伝熱面積の増大が可能となり、熱交換
器の伝熱特性が大巾に向上する。
In other words, as mentioned above, the protrusions are provided on the fins near the heat exchanger tubes so that they partially overlap the projection plane of the heat exchanger tubes inserted through the fins in the airflow direction, so that the flow separated from the surface of the heat exchanger tubes is The protrusions wrap around the downstream side of the heat exchanger tube, greatly suppressing the increase in the dead area generated at the downstream side of the heat exchanger tube, and greatly increasing the effective heat transfer area. FIG. 5 shows the relationship between the height h of the protrusion and the heat transfer coefficient a based on the blower power Δp-uF (Δp: ventilation resistance, up: wind speed at the front surface of the heat exchanger). It is clear that it is not effective if the height h of the protrusion is too low or too high, and considering the processability of the protrusion, K p f <: h < %pf
can be said to be optimal. (pf: fin spacing) Furthermore, since the size of the protrusion itself is smaller than the cross-sectional area of the heat exchanger tube, the ventilation resistance hardly increases. Therefore, it is possible to increase the effective heat transfer area while suppressing an increase in ventilation resistance, and the heat transfer characteristics of the heat exchanger are greatly improved.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例のフィン付熱交換器の平面図
、第2図は第1図の側面図である。1゜は千鳥状配列さ
れた伝熱管であり、内部を冷媒が循環している。その冷
媒の有する熱は、伝熱管1゜からフィンカラー11、フ
ィン12へと順次伝えられ、気流方向13に流動する空
気と熱の授受を行う。そして、伝熱管1oの気流方向1
3に対する投影面14上に、一部が重なるように、伝熱
管1゜の後流域近傍に伝熱管1oの断面積より小さい半
球状突起15をフィン12の表裏面に設けている。
FIG. 1 is a plan view of a finned heat exchanger according to an embodiment of the present invention, and FIG. 2 is a side view of FIG. 1. 1° are heat transfer tubes arranged in a staggered manner, inside of which a refrigerant circulates. The heat possessed by the refrigerant is sequentially transmitted from the heat transfer tube 1° to the fin collar 11 and the fins 12, and exchanges heat with the air flowing in the airflow direction 13. Then, the airflow direction 1 of the heat exchanger tube 1o
Hemispherical protrusions 15 smaller than the cross-sectional area of the heat exchanger tubes 1o are provided on the front and back surfaces of the fins 12 in the vicinity of the trailing region of the heat exchanger tubes 1o so as to partially overlap on the projection plane 14 for the fins 3.

また、半球状突起15の高さhは、フィン12間隔pf
の約%である。
In addition, the height h of the hemispherical protrusion 15 is the interval pf of the fins 12.
It is about % of

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

伝熱管10の気流方向13に対する投影面14上に一部
が重なる様伝熱管10近傍に半球状突起16を設けてい
るため、伝熱管1oの表面からはく離した流れが半球状
突起15によってよに伝熱管1oの後方に回り込むよう
に流れるため、伝熱管10後流域に生じる死水域16の
面積が大巾に減少する。また、半球状突起15はフィン
12の表裏面に、かつ、はぼ隣接するように対を成して
設けられているため、フィン12の表裏面において伝熱
管10の死水域16の大きさが減少する。
Since the hemispherical protrusions 16 are provided near the heat exchanger tubes 10 so as to partially overlap the projection plane 14 of the heat exchanger tubes 10 in the airflow direction 13, the flow separated from the surface of the heat exchanger tubes 1o is further enhanced by the hemispherical protrusions 15. Since the water flows around the back of the heat exchanger tubes 1o, the area of the dead zone 16 that occurs in the downstream area of the heat exchanger tubes 10 is greatly reduced. In addition, since the hemispherical protrusions 15 are provided in pairs on the front and back surfaces of the fins 12 so as to be almost adjacent to each other, the size of the dead area 16 of the heat exchanger tube 10 is reduced on the front and back surfaces of the fins 12. Decrease.

従って、伝熱に寄与する面積が大巾に増加するため、(
特に、気流方向13に対して2列目の伝熱管1oの死水
域16は、1列目の死水域とほとんど同じ大きさになる
)、フィン12の表面熱伝達率が大巾に向上する。そし
て、この半球状突起16は、伝熱管10の断面積よシ小
さく、かつ、高さhはフィン間隔pfの%以下であるの
で、半球状突起16の後流に生じる死水域はごくわずか
であシ、従って、半球状突起16の設置による通風抵抗
の増加はほとんどない。
Therefore, since the area contributing to heat transfer increases significantly, (
In particular, the dead area 16 of the second row of heat exchanger tubes 1o is almost the same size as the dead area of the first row in the airflow direction 13), and the surface heat transfer coefficient of the fins 12 is greatly improved. Since the hemispherical protrusion 16 is smaller than the cross-sectional area of the heat exchanger tube 10 and the height h is less than % of the fin spacing pf, the dead area generated downstream of the hemispherical protrusion 16 is very small. Therefore, there is almost no increase in ventilation resistance due to the installation of the hemispherical projections 16.

これらの作用の結果、本実施例によると、熱伝達率の大
巾な向上が図れ、フィン付熱交換器の小型高性能化が可
能となる。
As a result of these effects, according to this embodiment, the heat transfer coefficient can be greatly improved, and the finned heat exchanger can be made smaller and have higher performance.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第3図及び第4図は、本発明の他の実施例の一つを示し
たものであり、第3図は平面図、第4図は第3図の側面
図である。2oは伝熱管であり、内部を冷媒が循環して
おり、その冷媒の有する熱は、伝熱管20からフィンカ
ラ21、フィン22へと順次伝えられる。一方、気流方
向23に流動する空気流は、フィン22間を通過する際
に、冷媒から伝えられた熱を、空気の接する面を介して
間接的に熱交換する。
3 and 4 show another embodiment of the present invention, in which FIG. 3 is a plan view and FIG. 4 is a side view of FIG. 3. Reference numeral 2o denotes a heat transfer tube, in which a refrigerant circulates, and the heat of the refrigerant is sequentially transmitted from the heat transfer tube 20 to the fin collars 21 and fins 22. On the other hand, when the airflow flowing in the airflow direction 23 passes between the fins 22, heat transferred from the refrigerant is indirectly exchanged via the surface in contact with the air.

伝熱管2ob及び20cは気流側に設置された伝熱管2
0aの投影面に半分だけ重なる様装置されている。そし
て、伝熱管2oの各々の、気流方向23に対する投影面
上に一部が重なるように、伝熱管2oの後方のフィン2
0の表裏面上に、伝熱管20の断面積よシ小さい翼形突
起24をフィン22上に設けている。また、翼形突起2
4の高さhは、フィン間隔pfの約%である。
Heat exchanger tubes 2ob and 20c are heat exchanger tubes 2 installed on the airflow side.
The device is arranged so that it overlaps only half of the projection plane of 0a. Then, the fins 2 at the rear of the heat exchanger tubes 2o are arranged so that the fins 2 at the rear of the heat exchanger tubes 2o partially overlap on the projection plane of each of the heat exchanger tubes 2o with respect to the airflow direction 23.
Airfoil-shaped protrusions 24 smaller than the cross-sectional area of the heat exchanger tubes 20 are provided on the fins 22 on the front and back surfaces of the heat exchanger tube 20. In addition, the wing-shaped process 2
The height h of 4 is about % of the fin spacing pf.

次に、この一実施例の構成における作用を説明する。こ
の実施例では、伝熱管20を千鳥状に配置されておらず
、かつ、翼形突起24が翼形状で構成されている。
Next, the operation of the configuration of this embodiment will be explained. In this embodiment, the heat exchanger tubes 20 are not arranged in a staggered manner, and the airfoil-shaped protrusions 24 are configured in an airfoil shape.

従って、第一の実施例で述べた作用に加えて、以下のよ
うな作用が生じる。すなわち、翼形突起24が、伝熱管
2oからはく離した流れを、そのまま伝熱管2o後流域
に回り込ませることによって伝熱管2oの死水域25が
大巾に減少する。更に、翼形突起24に沿う流れと乗り
越える流れとによって矢印26に示す様な二次流れ(渦
)が発生し、これによって、主流の一部を攪拌し、気流
とフィン22表面の熱伝達率が向上する。その上、伝熱
管20a 、20b 、20cは徴収−列となっている
ため、伝熱管群間の熱流の移動を阻害することがなく、
フィン効率も高く、気流方向23に直角方向の伝熱管2
0間では、はぼ矩形流路流れになっておシ、高い表面熱
伝達率が得られる。
Therefore, in addition to the effects described in the first embodiment, the following effects occur. That is, the airfoil projections 24 cause the flow separated from the heat exchanger tubes 2o to flow directly into the downstream region of the heat exchanger tubes 2o, thereby greatly reducing the dead area 25 of the heat exchanger tubes 2o. Furthermore, a secondary flow (vortex) as shown by the arrow 26 is generated by the flow along the airfoil protrusion 24 and the flow over the airfoil protrusion 24, which stirs a part of the main flow and reduces the heat transfer coefficient between the airflow and the surface of the fin 22. will improve. Furthermore, since the heat exchanger tubes 20a, 20b, and 20c are arranged in rows, the heat flow between the heat exchanger tube groups is not obstructed.
The fin efficiency is also high, and the heat exchanger tubes 2 are perpendicular to the airflow direction 23.
Between 0 and 0, the flow becomes a rectangular flow path and a high surface heat transfer coefficient is obtained.

発明の効果 以上のように本発明は、一定間隔で平行に並べられ、そ
の間を気流が流動するフィンと、このフィンに直角に挿
入され、内部を流体が流動する伝熱管とから構成し、伝
熱管の気流方向に対する投、 彩画上に、一部が重なる
よう伝熱管近傍フィン上に伝熱管断面積よシ小さい面積
でかつ、フィン間隔のに以上かつ%以下の高さを有する
突起を設けるフィン付熱交換器であるため、通風抵抗を
増やさずに、伝熱管後流の死水域面積の大巾な縮小が図
れ、有効伝熱面積が増大する。従って、フィンの有する
熱伝達率が大巾に向上し、小型で、高性能なフィン付熱
交換器が実現できる。
Effects of the Invention As described above, the present invention comprises fins that are arranged in parallel at regular intervals and through which air flows, and heat transfer tubes that are inserted at right angles to the fins and through which fluid flows. Projection of heat tubes in the airflow direction: Protrusions with an area smaller than the cross-sectional area of the heat exchanger tubes and a height not less than % of the fin spacing are provided on the fins near the heat exchanger tubes so that they partially overlap on the color painting. Since it is a heat exchanger with fins, the dead area area downstream of the heat transfer tubes can be significantly reduced without increasing ventilation resistance, increasing the effective heat transfer area. Therefore, the heat transfer coefficient of the fins is greatly improved, and a compact and high-performance finned heat exchanger can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるフィン付熱交換器の平
面図、第2図は同側面図、第3図は本発明の他の実施例
によるフィン付熱交換器の平面図、第4図は同側面図、
第5図は本発明の特性図、第6図は従来例を示すフィン
付熱交換器の平面図、第7図は同側面図、第8図は同斜
視図である。 10.20.20a 、20b 、20cm−−−−−
伝熱管、12,22・・・・・・フィン、13 、23
・・・・・・気流方向、14・・・・・・投影面、15
・・・・・・半球状突起、24・・・・・・翼形突起。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名lθ
−−−イ云Rへ引【 12−  フィン ノ3−−−気う芹ξ方【弓 14− 設彩画 第2図 20a、、20b、ZOc−!云M’tzz −フォア 23・−気流方間 Z4−翼形突起 第3図 第5図 ”A   宏 突J唖の高さ 呪 第6図 第7図 第8図
FIG. 1 is a plan view of a finned heat exchanger according to an embodiment of the present invention, FIG. 2 is a side view of the same, and FIG. 3 is a plan view of a finned heat exchanger according to another embodiment of the present invention. Figure 4 is the same side view;
FIG. 5 is a characteristic diagram of the present invention, FIG. 6 is a plan view of a conventional finned heat exchanger, FIG. 7 is a side view thereof, and FIG. 8 is a perspective view thereof. 10.20.20a, 20b, 20cm------
Heat exchanger tube, 12, 22...Fin, 13, 23
...Airflow direction, 14...Projection plane, 15
... Hemispherical process, 24... Pterygoid process. Name of agent: Patent attorney Toshio Nakao and one other person lθ
---Pull to IyunR [12- Finno 3 ---Kiu Seri ξ direction [Bow 14- Setsai Painting Figure 2 20a, 20b, ZOc-!云M'tzz - Fore 23 - Air flow direction Z4 - Airfoil projection Figure 3 Figure 5 "A" Height of the protrusion Curse Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)一定間隔で平行に並べられ、その間を気流が流動
するフィンと、このフィンに直角に挿通され、内部を流
体が流動する伝熱管とから構成され、前記伝熱管の気流
方向に対する投影面上に、一部が重なるよう伝熱管近傍
のフィン上に伝熱管の断面積より小さい面積で、かつフ
ィン間隔の1/4以上かつ1/2以下の高さを有する突
起を設けたフィン付熱交換器。
(1) Consisting of fins arranged in parallel at regular intervals, through which air flows, and heat transfer tubes inserted at right angles to the fins, through which fluid flows, the projection surface of the heat transfer tubes with respect to the air flow direction. A fin heating system in which a protrusion is provided on the fin near the heat exchanger tube so that it partially overlaps the fin, the area is smaller than the cross-sectional area of the heat exchanger tube, and the height is 1/4 or more and 1/2 or less of the fin spacing. exchanger.
(2)突起をフィンの表裏面に設けた特許請求の範囲第
1項記載のフィン付熱交換器。
(2) The heat exchanger with fins according to claim 1, wherein projections are provided on the front and back surfaces of the fins.
JP3037187A 1987-02-12 1987-02-12 Finned heat exchanger Pending JPS63197884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037187A JPS63197884A (en) 1987-02-12 1987-02-12 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037187A JPS63197884A (en) 1987-02-12 1987-02-12 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPS63197884A true JPS63197884A (en) 1988-08-16

Family

ID=12302013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037187A Pending JPS63197884A (en) 1987-02-12 1987-02-12 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPS63197884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949641A (en) * 1995-07-13 1997-02-18 Samsung Electronics Co Ltd Heat exchanger for air conditioner
US20110132020A1 (en) * 2008-08-07 2011-06-09 Sanden Corporation Heat exchanger and heat pump device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949641A (en) * 1995-07-13 1997-02-18 Samsung Electronics Co Ltd Heat exchanger for air conditioner
US20110132020A1 (en) * 2008-08-07 2011-06-09 Sanden Corporation Heat exchanger and heat pump device using the same
US9593886B2 (en) * 2008-08-07 2017-03-14 Sanden Holdings Corporation Heat exchanger and heat pump device using the same

Similar Documents

Publication Publication Date Title
JP2553647B2 (en) Fin tube heat exchanger
JPS63197884A (en) Finned heat exchanger
JPS633185A (en) Finned heat exchanger
JPS58158496A (en) Finned-tube type heat exchanger
JPS58158497A (en) Finned-tube type heat exchanger
JP2003083690A (en) Corrugated fin heat-exchanger
CN220601623U (en) Fan coil and air conditioning unit
JPS616591A (en) Finned heat exchanger
JPS633180A (en) Fin tube type heat exchanger
JPH0227597B2 (en) FUINTSUKINETSUKOKANKI
KR100357131B1 (en) heat-exechanger is made up of pipe is formed of small diameter
JPS6247029Y2 (en)
JPH10220979A (en) Fin type heat exchanger
JPS6152589A (en) Air-to-air heat exchanger
JP2730649B2 (en) Heat exchanger
JPH024139A (en) Air conditioner
KR100318229B1 (en) A heat exchanger of air conditioner
JPH0749191A (en) Finned tube type heat exchanger
JPS633189A (en) Finned heat exchanger
JPH073234Y2 (en) Ceiling-mounted air conditioner
JPH01155197A (en) Fin tube type heat exchanger
JPS5899691A (en) Finned heat exchanger
KR19990047285A (en) Fin-Tube Heat Exchanger
JPS63101698A (en) Heat exchanger with fin
JPH0686997B2 (en) Heat exchanger with fins