JPS633185A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPS633185A
JPS633185A JP14641686A JP14641686A JPS633185A JP S633185 A JPS633185 A JP S633185A JP 14641686 A JP14641686 A JP 14641686A JP 14641686 A JP14641686 A JP 14641686A JP S633185 A JPS633185 A JP S633185A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tubes
heat exchanger
fins
airstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14641686A
Other languages
Japanese (ja)
Other versions
JPH0684876B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Hiroyoshi Tanaka
博由 田中
Yoshiyuki Tsuda
善行 津田
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP61146416A priority Critical patent/JPH0684876B2/en
Publication of JPS633185A publication Critical patent/JPS633185A/en
Publication of JPH0684876B2 publication Critical patent/JPH0684876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat transfer performance of the finned heat exchanger by constituting respective heat transfer tubes so that a plane of projection of any of heat transfer tubes which is located at the upstream side of an airstream onto the downstream side is partially overlapped on the heat transfer tube on the down stream side, and further specifying a pitch between heat transfer tubes in a direction rectangular to the airstream direction. CONSTITUTION:Heat transfer tubes 13a and 13b of an outer diameter D inserted in flat fins 12, aligned in parallel at a predetermined interval S, are constituted so that a plane 14 of profection of the heat transfer tube 13a located on the upstream side is partially overlapped on the heat transfer tube 13b on the downstream side. A pitch B between the heat transfer tubes 13 has relationships B>2D and (7S+D)<=B<=(18S+D). Further, fins 12 slits 16 having openings in an airstream direction 15 are provided at the upper and lower parts with respect to the base plates of flat fins 12. The leg parts of the slits 16 have an angle of inclination with respect to the airstream direction 14. In this case, as a flowpath of the airstream between heat transfer tubes 13 in a direction rectangular to the airstream direction, an aspect ratio beta satisfies the relationship of 7<='<=18, and hence lowering of the fin efficiency and increase in the draft resistance are suppressed and a parallel planar flow can be realized. Therefore, the heat transfer performance is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍・空調機器分野の蒸発器や凝縮器に広く用
いられている気体対気液二相流体(または液体)用のフ
ィン付熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger with fins for gas to gas-liquid two-phase fluid (or liquid), which is widely used in evaporators and condensers in the field of refrigeration and air conditioning equipment. It is related to.

従来の技術 従来のフィン付熱交換器では、第4図に示すように、一
定間隔で平行に並べられた平板フィン1とこのフィン1
に直角に挿通された伝熱管2とからなり、気流3がフィ
ン1間を流れて、伝熱管2内部を流れる流体と熱交換を
行う構成であった。
2. Description of the Related Art In a conventional finned heat exchanger, as shown in FIG.
The heat exchanger tube 2 was inserted through the heat exchanger tube 2 at right angles to the heat exchanger tube 2, and the airflow 3 flowed between the fins 1 and exchanged heat with the fluid flowing inside the heat exchanger tube 2.

この様な熱交換器に対して、近年、小型、高性能化の要
求が強まってきているが、騒音等の観点からフィン1間
を流れる気流3の流速を低く抑える必要があるため、伝
熱管内側の熱抵抗に比して、空気側の熱抵抗が高くなる
という問題があった。
In recent years, there has been an increasing demand for such heat exchangers to be smaller and have higher performance.However, from the viewpoint of noise etc., it is necessary to keep the flow velocity of the airflow 3 flowing between the fins 1 low, so heat exchanger tubes are used. There was a problem in that the thermal resistance on the air side was higher than the thermal resistance on the inside.

そこで空気側の伝熱面積を拡大することで空気側と管内
側との熱抵抗の差を低減するように工夫している。しか
しながら、伝熱面積を拡大することは、経済性、省スペ
ース性等の点から問題があり、従って、空気側の熱伝達
率を向上せしめて空気側の熱抵抗を低下させることが、
この種の熱交換器に於ける重要な課題となっている。
Therefore, efforts were made to reduce the difference in thermal resistance between the air side and the inside of the tube by expanding the heat transfer area on the air side. However, expanding the heat transfer area is problematic in terms of economy, space saving, etc. Therefore, it is difficult to increase the heat transfer coefficient on the air side and reduce the thermal resistance on the air side.
This is an important issue in this type of heat exchanger.

第6図及び第6図は、上記の課題の克服を目指したフィ
ン付熱交換器の従来例を示したもので、第5図は平面図
、第6図は第5図中のX−X線の断面図である。平板フ
ィン4には、千鳥配列された伝熱管5間に気流と対向す
る二側辺部を開口した切り起こし6が設けられている。
6 and 6 show a conventional example of a heat exchanger with fins aimed at overcoming the above-mentioned problems. FIG. 5 is a plan view, and FIG. FIG. The flat plate fins 4 are provided with cut-and-raised portions 6 with openings on two sides facing the airflow between the heat transfer tubes 5 arranged in a staggered manner.

このフィン付熱交換器に於いて伝熱管5の内部にはフロ
ン等の冷媒が循環しており、その熱は伝熱管5からフィ
ンカラー7を介して、平板フィン4及び切り起こし6へ
伝わる。−方、ファン等によって送られる気流8は平板
フィン4間を通過するが、その際、温度の異なる平板フ
ィン4や切り起こし6、及び伝熱管5表面と熱の授受を
行う。特に、切り起こし6の各々には薄い温度境界層が
形成され、いわゆる境界層前線効果によって、冷媒と空
気との熱交換の効率向上を図っている。
In this finned heat exchanger, a refrigerant such as fluorocarbon is circulated inside the heat exchanger tubes 5, and the heat is transmitted from the heat exchanger tubes 5 to the flat fins 4 and the raised cutouts 6 via the fin collars 7. On the other hand, the airflow 8 sent by a fan or the like passes between the flat plate fins 4, but at that time, it exchanges heat with the flat plate fins 4, cut and raised parts 6, and the surfaces of the heat exchanger tubes 5, which have different temperatures. In particular, a thin temperature boundary layer is formed in each of the cut and raised portions 6, and the so-called boundary layer front effect improves the efficiency of heat exchange between the refrigerant and the air.

発明が解決しようとする問題点 前述の従来例は、平板フィン4に切り起こし6を有する
スリットフィンと称せられるもので、フィン表面に加工
のないフラットフィンと比較すると、表面の熱抵抗が約
20〜30%低下する。しかしながら、この従来例では
、伝熱管5を千鳥状に配列しているため、■送風時の通
風抵抗が大きくなる。■伝熱管5の後流に生じる死水域
が大きくなると共に上記の切り起こし群の一部を覆い、
有効な伝熱面積が減少する。■気流方向の伝熱管5間に
切り起こし6が存在するため伝熱管5からの熱流の移動
を妨げフィン効率が低下する。
Problems to be Solved by the Invention The above-mentioned conventional example is called a slit fin in which the flat plate fin 4 has cut and raised parts 6, and when compared with a flat fin without processing on the fin surface, the surface thermal resistance is about 20. ~30% decrease. However, in this conventional example, since the heat transfer tubes 5 are arranged in a staggered manner, (2) ventilation resistance during air blowing becomes large. ■The dead area that occurs downstream of the heat exchanger tubes 5 becomes larger and covers part of the above cut-up group,
Effective heat transfer area is reduced. (2) The presence of the cut and raised portions 6 between the heat transfer tubes 5 in the air flow direction obstructs the movement of heat flow from the heat transfer tubes 5 and reduces fin efficiency.

そこで本発明は、気流方向に複数列配置された伝熱管群
の配列を工夫し、かつ、伝熱管の気流方向に直角な方向
の管ピンチ及びフィンピッチを工夫することによって前
記の問題点を解決し、フィン付熱交換器のコンパクト化
、かつ高性能化を図ることを目的とする。
Therefore, the present invention solves the above problems by devising the arrangement of heat transfer tube groups arranged in multiple rows in the airflow direction, and by devising the tube pinch and fin pitch of the heat transfer tubes in the direction perpendicular to the airflow direction. The purpose is to make the finned heat exchanger more compact and improve its performance.

問題点を解決するための手段 上記問題点を解決する本発明の技術的な手段は、一定間
隔Sで平行に並べられ、相互間を気体が流動する平板フ
ィンと、その平板フィンを貫通し内部を流体が流動する
外径りの伝熱管を気流方向に複数列配置して構成し、前
記伝熱管相互が、気流の上流側にあるいずれかの伝熱管
の下流側への投影面と部分的な重なりをもって形成され
ておシ、更に、伝熱管の気流方向に直角な方向の管ピッ
チをBとした場合に、B>2Dかつ、“≦(B−D)/
≦18なる関係を有する構成としたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems consists of flat plate fins arranged in parallel at a constant interval S, through which gas flows, and a flat plate fin that penetrates through the flat plate fins and is configured by arranging multiple rows of heat transfer tubes with an outer diameter through which fluid flows in the airflow direction, and the heat transfer tubes are partially aligned with the downstream projection plane of any of the heat transfer tubes located on the upstream side of the airflow. Furthermore, when the tube pitch in the direction perpendicular to the airflow direction of the heat transfer tubes is B, B>2D and "≦(B-D)/
The configuration has a relationship of ≦18.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、各伝熱管が、気流の上流側にあるいずれかの
伝熱管の下流側への投影面と部分的な重なりを有してい
るために、基盤配列でも千鳥配列でも実現でき得ない気
流の流れが実現できる。つまり、千鳥配列の場合より通
風抵抗が低く、かつ、死水域の大きさについては、基盤
配列の場合より小さいため熱伝達率は向上する。また、
重力方向に平行にフィン間距離Sで並べられた平板フィ
ンに外径りの伝熱管を気流方向に複数列配置したフィン
付熱交換器について、第5図は、B、D、S及び気流速
度UFをパラメータとして実験を行い同一ファン動力Δ
p、UF(ΔP :熱交換器の通風抵抗)基準の熱伝達
率αで伝熱性能を評価した結果である。
In other words, each heat exchanger tube partially overlaps the downstream projection plane of any heat exchanger tube located upstream of the airflow, so that the airflow is Flow can be achieved. In other words, the ventilation resistance is lower than in the case of a staggered arrangement, and the size of the dead area is smaller than in the case of a base arrangement, so that the heat transfer coefficient is improved. Also,
For a finned heat exchanger in which heat transfer tubes with outer diameters are arranged in multiple rows in the airflow direction on flat fins arranged parallel to the direction of gravity with a distance S between the fins, Fig. 5 shows B, D, S and airflow velocity. Experiments were conducted using UF as a parameter, and the same fan power Δ
These are the results of evaluating the heat transfer performance using the heat transfer coefficient α based on p, UF (ΔP: ventilation resistance of the heat exchanger).

伝熱管群を気流方向にほぼ平行に配列した場合、伝熱管
後流に死水域が生じるため気流の流路は、縦:S、横:
(B−D)の矩形流路と考えられる。
When a group of heat transfer tubes is arranged almost parallel to the airflow direction, a dead zone occurs behind the heat transfer tubes, so the airflow path is vertical: S, horizontal:
(B-D) is considered to be a rectangular flow path.

フィン間距離Sニー定の場合、管ピッチBを大きくする
と、即ち、アスペクト比β: (B−D)/Sを大きく
すればする程、平行平板流れに近づき、流路における熱
伝達率は大きくなるが、逆に、フィン効率は低下してい
くため、結果としてアスペクト比βに対して熱伝達率は
極大値をもつ。−方、管ピッチBを小さくすると同一前
面風速UFではフィン間通過風速が大きくなるため通風
抵抗ΔPは増大する。従って、同一ファン動力ΔP”U
F基準の熱伝達率αで評価するとアスペクト比β−10
に於いて伝熱性能が極大になる。更に、極大値の90%
を示すアスペクト比βとしては7≦β≦18であり、こ
の範囲内であれば実用上伝熱性能が優れている。
When the distance between the fins S is knee constant, the larger the tube pitch B, that is, the larger the aspect ratio β: (B-D)/S, the closer it becomes to a parallel plate flow, and the higher the heat transfer coefficient in the flow path. However, on the contrary, the fin efficiency decreases, and as a result, the heat transfer coefficient has a maximum value with respect to the aspect ratio β. On the other hand, if the pipe pitch B is made smaller, the wind speed passing between the fins increases at the same front wind speed UF, so the ventilation resistance ΔP increases. Therefore, the same fan power ΔP”U
Aspect ratio β-10 when evaluated with F standard heat transfer coefficient α
The heat transfer performance is maximized at . Furthermore, 90% of the maximum value
The aspect ratio β is 7≦β≦18, and within this range, the heat transfer performance is excellent in practical use.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図及び第2図は本発明の一実施例の熱交換器であり
、第1図はその平面図、第2図は第3図のY−Y断面図
である。12は一定間隔Sで平行に並べられた平板フィ
ンである。13a及び13bは平板フィンN12に挿通
された外径り伝熱管であり、気流上流側にある伝熱管1
3dの投影面14と下流側の伝熱管13bとが部分的に
重なるように構成されており、その内部を冷媒が循環し
ている。そして、その伝熱管13間のピッチBはB)2
Dかつ、(了S+D)≦B≦(1sS+D)としている
1 and 2 show a heat exchanger according to an embodiment of the present invention, with FIG. 1 being a plan view thereof, and FIG. 2 being a YY sectional view of FIG. 3. Reference numeral 12 denotes flat fins arranged in parallel at constant intervals S. 13a and 13b are outer diameter heat exchanger tubes inserted through the flat plate fins N12, and are the heat exchanger tubes 1 on the upstream side of the airflow.
The projection surface 14 of 3d and the heat exchanger tube 13b on the downstream side are configured to partially overlap, and a refrigerant circulates inside thereof. The pitch B between the heat exchanger tubes 13 is B)2
D, and (S+D)≦B≦(1sS+D).

また、平板フィン12には気流方向16に開口部を有す
る切り起こし16を平板フィン12の基板に対して上下
に設けており、その切り起こし16の脚部が気流方向1
4に対して傾斜角を有する。
Further, the flat plate fin 12 is provided with cut-and-raised parts 16 having openings in the airflow direction 16 above and below the substrate of the flat-plate fin 12, and the legs of the cut-and-raised parts 16 are arranged in the airflow direction 16.
has an inclination angle relative to 4.

このような構成によυ、伝熱管13内を流動する冷媒と
平板フィン12間を流動する空気とが熱交換を行う。
With this configuration, the refrigerant flowing in the heat transfer tubes 13 and the air flowing between the flat fins 12 exchange heat.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

まず、上記の様に伝熱管13a及び13bを配列するこ
とによυ基盤配列でも千鳥配列でも実現でき得ない気流
の流れが実現できる。
First, by arranging the heat exchanger tubes 13a and 13b as described above, it is possible to realize an air flow that cannot be achieved with either the υ base arrangement or the staggered arrangement.

すなわち、千鳥配列の場合より通風抵抗が低く、かつ、
死水域1了の大きさについては基盤配列の場合よシ小さ
いため熱伝達率は向上する。更に、気流方向に対して斜
めに設けた切り起こし16脚部から生じる渦流による乱
流促進効果、及び伝熱管13まわりの流速と切り起こし
16を通過する流速がほぼ均一になシ、それによって切
り起こし16による境界層前縁効果が十分に発揮できる
ことによって、熱伝達率は大幅に向上する。
In other words, the ventilation resistance is lower than in the case of a staggered arrangement, and
The size of the dead area is smaller than in the case of the base arrangement, so the heat transfer coefficient is improved. Furthermore, the turbulent flow is promoted by the eddy flow generated from the cut and raised legs 16 provided diagonally with respect to the air flow direction, and the flow velocity around the heat transfer tube 13 and the flow velocity passing through the cut and raised 16 are almost uniform, which makes the cut Since the leading edge effect of the boundary layer due to the risers 16 can be sufficiently exerted, the heat transfer coefficient is greatly improved.

本実施例のように伝熱管13の配列を工夫することによ
り、伝熱管13まわシの流速と伝熱管間の主流速がほぼ
均一になると述べたが、そのため、本実施例のような伝
熱管の配列であっても、各伝熱管13間においては、は
ぼ矩形流路内の流れと考えよい。また、平板フィン12
上に切り起こし16を設けても、隣り合う平板フィン1
2にも切り起こし16が存在するから切り起こし16同
志間の間隔も平板フィンの場合と同様にSとなる。
As described above, by arranging the heat exchanger tubes 13 as in this example, the flow velocity around the heat exchanger tubes 13 and the main flow velocity between the heat exchanger tubes become almost uniform. Even in this arrangement, the flow between each heat transfer tube 13 can be considered to be within a substantially rectangular flow path. In addition, the flat plate fin 12
Even if cut and raised 16 are provided on the top, the adjacent flat fins 1
2 also has cut and raised 16, so the distance between the cut and raised 16 is also S as in the case of the flat fin.

従って、この場合、気流方向に直角な方向の伝熱管13
間に於ける気流の流路としてはアスペクト比βが7≦β
≦18を満たすため、フィン効率の低下及び通風抵抗の
増大を抑えて平行平板流れが実現できるために伝熱性能
が向上する。
Therefore, in this case, the heat exchanger tube 13 in the direction perpendicular to the airflow direction
The airflow path in between has an aspect ratio β of 7≦β.
Since ≦18 is satisfied, a parallel plate flow can be realized while suppressing a decrease in fin efficiency and an increase in ventilation resistance, thereby improving heat transfer performance.

発明の効果 以上のように本発明は、複数枚のフィンをフィン間距離
Sで並べ、それらに外径りの伝熱管を貫通接合し、気流
方向に複数列配置して、かつ、伝熱管相互が気流の上流
側にあるいずれかの伝熱管の下流側への投影面と部分的
な重なりをもつ様構成し、更に、気流方向に直角な方向
の伝熱管間のピッチをBとする時にB>2Dかつ“≦(
B−D)/≦18なる関係を満たすフィン付熱交換器で
あるため、フィン効率の低下及び通普抵抗の増大を抑え
て、かつ、平行平板流れを実現できるために伝熱性能が
著しく向上し、高性能でコンパクトなフィン付熱交換器
が実現できる。
Effects of the Invention As described above, the present invention arranges a plurality of fins with a distance S between the fins, connects heat exchanger tubes with an outer diameter through the fins, arranges them in multiple rows in the air flow direction, and connects the heat exchanger tubes with each other. is configured so that it partially overlaps the downstream projection plane of any of the heat exchanger tubes on the upstream side of the airflow, and furthermore, when B is the pitch between the heat exchanger tubes in the direction perpendicular to the airflow direction, B >2D and “≦(
Since it is a heat exchanger with fins that satisfies the relationship: B-D)/≦18, it suppresses a decrease in fin efficiency and an increase in normal resistance, and can realize parallel plate flow, which significantly improves heat transfer performance. This makes it possible to create a high-performance, compact heat exchanger with fins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例のフィン付熱交換
器の要部平面図及び要部断面図、第3図は本発明の性能
評価図、第4図は従来例のフィン付熱交換器の斜視図、
第5図及び第6図は従来例のフィン付熱交換器の要部平
面図及び要部断面図である。 12・・・・・・平板フィン、13・・・・・・伝熱管
、14・・・・・・投影面、15・・・・・・気流方向
、16・・・・・・切り起こし。 代理人の氏名 弁理士 中 尾 敏 男 はが1名/2
−−−+2叉フィン 第2図 第3図 アヌノマクト比p=L二Jλ−
Figures 1 and 2 are a plan view and a sectional view of a main part of a heat exchanger with fins according to an embodiment of the present invention, Figure 3 is a performance evaluation diagram of the present invention, and Figure 4 is a fin of a conventional example. A perspective view of a heat exchanger,
5 and 6 are a plan view and a sectional view of a main part of a conventional finned heat exchanger. 12... Flat plate fin, 13... Heat exchanger tube, 14... Projection plane, 15... Air flow direction, 16... Cut and raise. Name of agent: Patent attorney Toshio Nakao Haga 1/2
−−−+2 pronged fins Figure 2 Figure 3 Anunomakt ratio p=L2Jλ−

Claims (3)

【特許請求の範囲】[Claims] (1) 一定間隔Sで平行に並べられ、相互間を気体が
流動する平板フィンと、前記平板フィンを貫通し内部を
流体が流動する、気流方向に複数列配置された外径Dの
伝熱管とから構成され、前記各伝熱管が、気流の上流側
にあるいずれかの伝熱管の下流側への投影面と部分的な
重なりをもっており、更に、伝熱管の気流方向に直角な
方向の管ピッチをBとした場合にB>2Dかつ、7≦(
B−D)/S≦18なる関係を有するフィン付熱交換器
(1) Flat plate fins arranged in parallel at a constant interval S, through which gas flows, and heat transfer tubes with an outer diameter D arranged in multiple rows in the airflow direction, through which the fluid flows through the flat plate fins. , each of the heat transfer tubes partially overlaps the downstream projection plane of any of the heat transfer tubes on the upstream side of the air flow, and further includes a tube in a direction perpendicular to the air flow direction of the heat transfer tubes. When the pitch is B, B>2D and 7≦(
A finned heat exchanger having a relationship of B-D)/S≦18.
(2) 平板フィンの伝熱管間部分に気流方向に開口し
た複数の切り起こしを設けた特許請求の範囲第1項記載
のフィン付熱交換器。
(2) The heat exchanger with fins according to claim 1, wherein a plurality of cut and raised portions opening in the airflow direction are provided in the portion of the flat fin between the heat transfer tubes.
(3) 気流方向に開口した切り起こしの脚部が気流方
向に対して傾斜角を有する特許請求の範囲第2項記載の
フィン付熱交換器。
(3) The finned heat exchanger according to claim 2, wherein the cut-and-raised legs opening in the airflow direction have an inclination angle with respect to the airflow direction.
JP61146416A 1986-06-23 1986-06-23 Heat exchanger with fins Expired - Lifetime JPH0684876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146416A JPH0684876B2 (en) 1986-06-23 1986-06-23 Heat exchanger with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146416A JPH0684876B2 (en) 1986-06-23 1986-06-23 Heat exchanger with fins

Publications (2)

Publication Number Publication Date
JPS633185A true JPS633185A (en) 1988-01-08
JPH0684876B2 JPH0684876B2 (en) 1994-10-26

Family

ID=15407194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146416A Expired - Lifetime JPH0684876B2 (en) 1986-06-23 1986-06-23 Heat exchanger with fins

Country Status (1)

Country Link
JP (1) JPH0684876B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690569A (en) * 1996-03-13 1997-11-25 Borg-Warner Automotive, Inc. Single piece reinforced chain guide
US5738168A (en) * 1995-12-08 1998-04-14 Ford Motor Company Fin tube heat exchanger
US5813935A (en) * 1996-07-23 1998-09-29 Borg-Warner Automotive, Inc. Chain guide with extruded wear face
US5846150A (en) * 1997-03-21 1998-12-08 Borg-Warner Automotive, Inc. Guide posts for guiding and damping chain movement
US5975198A (en) * 1997-05-31 1999-11-02 Samsung Electronics Co., Ltd. Air conditioner heat-exchanger
JP2014081101A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Cooler, and cooling box
WO2018185840A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103071U (en) * 1982-12-24 1984-07-11 三菱重工業株式会社 Heat exchanger
JPS6162794A (en) * 1984-09-04 1986-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103071U (en) * 1982-12-24 1984-07-11 三菱重工業株式会社 Heat exchanger
JPS6162794A (en) * 1984-09-04 1986-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fins

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738168A (en) * 1995-12-08 1998-04-14 Ford Motor Company Fin tube heat exchanger
US5690569A (en) * 1996-03-13 1997-11-25 Borg-Warner Automotive, Inc. Single piece reinforced chain guide
US5813935A (en) * 1996-07-23 1998-09-29 Borg-Warner Automotive, Inc. Chain guide with extruded wear face
US5846150A (en) * 1997-03-21 1998-12-08 Borg-Warner Automotive, Inc. Guide posts for guiding and damping chain movement
US5975198A (en) * 1997-05-31 1999-11-02 Samsung Electronics Co., Ltd. Air conditioner heat-exchanger
JP2014081101A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Cooler, and cooling box
WO2018185840A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2018185840A1 (en) * 2017-04-04 2019-11-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH0684876B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
JPS63183391A (en) Heat exchanger of fin tube type
JP2966825B2 (en) Air conditioner heat exchanger
JPH0278896A (en) Heat exchanger
JP2604722B2 (en) Flying ube type heat exchanger
JPS633185A (en) Finned heat exchanger
JPS633183A (en) Finned heat exchanger
JPS62112997A (en) Heat exchanger
JPS616590A (en) Finned heat exchanger
JPS61243292A (en) Finned heat exchanger
KR19980031147A (en) Heat exchanger of air conditioner
JPS616592A (en) Finned heat exchanger
JPS58158497A (en) Finned-tube type heat exchanger
JPS616591A (en) Finned heat exchanger
JPS6338892A (en) Fin tube type heat exchanger
JPS6315096A (en) Heat exchanger of fin tube type
JPH0749191A (en) Finned tube type heat exchanger
JPS60194292A (en) Heat exchanger equipped with fin
JPH01155197A (en) Fin tube type heat exchanger
JPS61202092A (en) Finned heat exchanger
JPS61240099A (en) Heat exchanger
JPS63197884A (en) Finned heat exchanger
JPS6155595A (en) Heat exchanger with fin
JPS62175591A (en) Fin tube type heat exchanger
JPS63101698A (en) Heat exchanger with fin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term