JP2604722B2 - Flying ube type heat exchanger - Google Patents

Flying ube type heat exchanger

Info

Publication number
JP2604722B2
JP2604722B2 JP61146419A JP14641986A JP2604722B2 JP 2604722 B2 JP2604722 B2 JP 2604722B2 JP 61146419 A JP61146419 A JP 61146419A JP 14641986 A JP14641986 A JP 14641986A JP 2604722 B2 JP2604722 B2 JP 2604722B2
Authority
JP
Japan
Prior art keywords
fin
heat transfer
plate
heat exchanger
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61146419A
Other languages
Japanese (ja)
Other versions
JPS633188A (en
Inventor
薫 加藤
八郎 小間
繁男 青山
博由 田中
眞 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61146419A priority Critical patent/JP2604722B2/en
Publication of JPS633188A publication Critical patent/JPS633188A/en
Application granted granted Critical
Publication of JP2604722B2 publication Critical patent/JP2604722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調,冷凍,冷蔵等に使用され、冷媒と空
気等の流体間で熱の授受を行なうフィンチューブ型熱交
換器に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fin tube type heat exchanger used for air conditioning, freezing, refrigeration, etc., for transferring heat between a refrigerant and a fluid such as air.

従来の技術 従来のこの種のフィンチューブ型熱交換器は、第7図
の斜視図に示すように一定間隔で多数平行に並べられた
板状フィン群1と、この板状フィン群1に直角に挿通さ
れた伝熱管群2とから構成され、気流3は、板状フィン
群1間を流れ、伝熱管群2内を流れる冷媒と熱交換を行
なう。この様なフィンチューブ型熱交換器は、近年、小
型、高性能化が要求されているが、騒音等の観点からフ
ィン間の気流速度は低く抑えられているため、伝熱管内
側の熱抵抗に比して空気側の熱抵抗は高い。そこで、現
在は、空気側の伝熱面積を拡大することで伝熱管内側の
熱抵抗との差を減少させるように工夫している。しか
し、伝熱面を拡大することには、物理的な限界が存在す
るとともに、経済性,省スペース等の点から問題もあ
り、空気側の熱抵抗を低下させることがこの種のフィン
チューブ型熱交換器において重要な課題となっている。
2. Description of the Related Art As shown in a perspective view of FIG. 7, a conventional fin tube type heat exchanger of this type has a plurality of plate-shaped fins 1 arranged in parallel at regular intervals and a right angle to the plate-shaped fin group 1. The airflow 3 flows between the plate-like fin groups 1 and exchanges heat with the refrigerant flowing through the heat transfer tube group 2. In recent years, such fin tube type heat exchangers have been required to be small and high performance, but since the air flow velocity between the fins is suppressed from the viewpoint of noise and the like, the heat resistance inside the heat transfer tubes is reduced. The heat resistance on the air side is high. Therefore, at present, the heat transfer area on the air side is enlarged so as to reduce the difference with the heat resistance inside the heat transfer tube. However, enlarging the heat transfer surface has physical limitations, and also has problems in terms of economy, space saving, and the like. It is an important issue in heat exchangers.

第8図〜第11図は、従来のフィンチューブ型熱交換器
の一例を示したものである。第8図,第10図は、部分側
面図を示す。第9図,第11図はそれぞれC−C′,D−
D′断面図を示す。第8図,第9図に示された従来例
は、千鳥管配列のフラットフィンと呼ばれるものである
が、伝熱管2の気流3方向管列ピッチ▲L ▼を伝熱
管2の外径D0′(D0≒10mm)の2.2倍程度に、また、気
流3と垂直方向の管段ピッチL2′を伝熱管2の外径D0
の2.2〜2.5倍程度に取っている。また、第10図,第11図
に示した従来例はスリットフィンと呼ばれるもので、上
記フラットフィンをベースにし、板状フィン1の伝熱管
2間に多数のスリット形切り起こし5a〜5dを設けたもの
である。このフィン形状では、多数の切り起こし5a〜5d
に各々薄い温度境界層が形成され、いわゆる境界層前縁
効果により、切り起こし部での伝熱性能は良好である。
尚、板状フィン1には一体に設けたフィンカラー4を介
して伝熱管2を貫通させている。
FIG. 8 to FIG. 11 show an example of a conventional fin tube type heat exchanger. 8 and 10 show partial side views. 9 and 11 show CC ′ and D−, respectively.
The D 'sectional drawing is shown. The conventional example shown in FIGS. 8 and 9 is a so-called flat fin having a staggered pipe arrangement, and the air flow three-way tube row pitch {L 1 ▼} of the heat transfer tube 2 is changed to the outer diameter of the heat transfer tube 2. The outer diameter D 0 ′ of the heat transfer tube 2 is set to about 2.2 times D 0 ′ (D 0 ≒ 10 mm) and the pipe step pitch L 2 ′ perpendicular to the air flow 3.
It is about 2.2 to 2.5 times. The conventional example shown in FIGS. 10 and 11 is called a slit fin. Based on the flat fin, a large number of slit-shaped cut-and-raised portions 5a to 5d are provided between the heat transfer tubes 2 of the plate-like fin 1. It is a thing. In this fin shape, many cut-and-raised 5a ~ 5d
In this case, a thin temperature boundary layer is formed, and the heat transfer performance at the cut and raised portion is good due to the so-called boundary layer leading edge effect.
Note that the heat transfer tube 2 is made to penetrate the plate-like fin 1 via a fin collar 4 provided integrally.

発明が解決しようとする問題点 しかしながら、従来は、同一ファン動力基準の空気側
総括伝達で伝熱性能を評価する考え方がなく、別の実用
的でない評価方法で、列ピッチ、段ピッチを決めていた
ため、フラットフィンについては、空気側の総括熱伝達
率を気流の流動抵抗ΔPを考慮した同一ファン動力基準
で最大にする最適な伝熱管配列が実現されておらず、非
経済的な設計になっている。これには、伝熱管の外径
D0′が10mmと大きいためΔPが大きいことも影響してい
る。さらに、これをベースとしたスリットフィンについ
ては、ベース自体の非経済性の影響はもちろんである
が、それ以外にも問題がある。すなわち、気流3の上流
側の切り起こし5a,5bでは、境界層前縁効果が大きく伝
熱性能が高いが、気流3の下流側の切り起こし5c,5dで
は、前列の切り起こし5a,5bで熱交換された気体が他の
気体と混合することなく、すなわち、5c〜5dが5a,5bで
発生した温度境界層内に入るので伝熱性能が低い。ま
た、伝熱管2の気流3下流側に気体が流動しない死水域
6が大きく発生し、この部分での伝熱性能が低いため
に、フィン伝熱性能の飛躍的な向上がみられないという
問題点を有していた。
Problems to be Solved by the Invention However, conventionally, there is no idea to evaluate the heat transfer performance by the air-side general transmission based on the same fan power, and the row pitch and the step pitch are determined by another impractical evaluation method. Therefore, for the flat fins, an optimal heat transfer tube arrangement that maximizes the overall heat transfer coefficient on the air side with the same fan power reference taking into account the airflow flow resistance ΔP has not been realized, resulting in an uneconomical design. ing. This includes the outer diameter of the heat transfer tube
Since D 0 ′ is as large as 10 mm, a large ΔP also has an effect. Further, regarding the slit fins based on this, not only the uneconomical effect of the base itself but also other problems arise. That is, in the cut-and-raised portions 5a and 5b on the upstream side of the airflow 3, the boundary layer leading edge effect is large and the heat transfer performance is high, but in the cut-and-raised portions 5c and 5d on the downstream side of the airflow 3, the cut-and-raised portions 5a and 5b in the front row are The heat exchange performance is low because the heat exchanged gas does not mix with other gases, that is, 5c to 5d enter the temperature boundary layer generated in 5a and 5b. In addition, a large dead water area 6 where gas does not flow is generated downstream of the heat flow 3 of the heat transfer tube 2, and the heat transfer performance in this portion is low, so that the fin heat transfer performance is not significantly improved. Had a point.

そこで、上記問題点に鑑み、本発明は、伝熱管の管配
列と管径を工夫することで、同一ファン動力基準にて、
フラットフィンの空気側総括熱伝達率を最大に高め、さ
らに、スリットフィンについても切り起こし部での気体
の混合を促進させ、また、伝熱管の気流後流部に発生す
る死水域を減少させることにより、空気側総括熱伝達率
を飛躍的に高めたフィンチューブ型熱交換器を提供する
ものである。
Therefore, in view of the above problems, the present invention is based on the same fan power standard by devising the tube arrangement and the tube diameter of the heat transfer tubes.
Maximize the overall heat transfer coefficient on the air side of the flat fins, further promote the mixing of gas in the cut-and-raised section of the slit fins, and reduce dead water generated in the wake of the heat transfer tubes. Accordingly, the present invention provides a fin tube type heat exchanger in which the overall heat transfer coefficient on the air side is dramatically increased.

問題点を解決するための手段 上記問題点を解決するために、本発明のフィンチュー
ブ型熱交換器は、一定間隔で多数平行に並べられ、その
間を気流が流動する板状フィンと、この板状フィンに直
角に挿通された外径D0(3mm≦D0≦7.5mm)の伝熱管とか
ら構成され伝熱管の気流方向管列ピッチL1を1.2D0≦L1
≦1.8D0,気流と垂直方向の管段ピッチL2を2.6D0≦L2
3.5D0とし、さらに、板状フィンの伝熱管相互間に、気
流と対向する2側辺部を切り起こして開口したスリット
形またはルーバー形切り起こし群を、切り起こし群のフ
ィンと接合する脚部列が板状フィンの前縁の法線方向と
角度を成すように設けるという構成を備えている。
Means for Solving the Problems In order to solve the above problems, a fin tube type heat exchanger of the present invention is provided with a plurality of plate-like fins arranged in parallel at regular intervals, between which a gas flow flows, and Jo fin outer diameter D is inserted at right angles to 0 (3mm ≦ D 0 ≦ 7.5mm ) 1.2D 0 ≦ L 1 the airflow direction tube row pitch L 1 of the configured heat exchanger tube and a heat exchanger tube
≦ 1.8D 0 , the pipe stage pitch L 2 perpendicular to the air flow is 2.6D 0 ≦ L 2
3.5D 0, and a leg for joining a slit-shaped or louver-shaped cut-and-raised group opened and cut between two heat transfer tubes of the plate-shaped fins at the two sides facing the air flow with the fins of the cut-and-raised group. A configuration is provided in which the rows are arranged at an angle to the normal direction of the front edge of the plate-like fin.

作用 この技術的手段による作用を第5図〜第6図より説明
する。
Operation The operation of this technical means will be described with reference to FIGS.

第5図,第6図は、一定間隔で多数平行に並べられた
板状フィンに、外径D0の伝熱管を直角に挿通し、この伝
熱管の気流方向の管列ピッチをL1,気流と垂直方向の管
段ピッチをL2とするフィンチューブ型熱交換器におい
て、L1,L2および、気流速度UFをパラメータとして実験
および解析を行ない、同一ファン動力ΔPUF(ΔPは熱
交換器を通過する気流の流動抵抗)基準の空気側総括熱
伝達αで伝熱性能を評価したものである。
FIG. 5 and FIG. 6 show that heat transfer tubes having an outer diameter D 0 are inserted at right angles into a large number of plate-like fins arranged in parallel at regular intervals, and the line pitch of the heat transfer tubes in the airflow direction is L 1 , in the fin tube heat exchanger tube stage pitch airflow direction perpendicular and L 2, L 1, L 2 and performs experiments and analyzes the airflow velocity U F as a parameter, the same fan power? Pu F ([Delta] P is the heat exchanger The heat transfer performance was evaluated by the air-side overall heat transfer α O based on the flow resistance of the air flow passing through the vessel).

第5図は、外径D0が7.3mmの伝熱管を用いたときの管
列ピッチL1の影響をみたものである。なお、図示してい
ないが、従来のD0≒10mmの場合においても、第5図の特
性図と同じ傾向があらわれることが確認されている。
FIG. 5 is intended to outer diameter D 0 is viewed impact tube row pitch L 1 when using the heat transfer tube of 7.3 mm. Although not shown, it has been confirmed that the same tendency as in the characteristic diagram of FIG. 5 appears even in the case where the conventional D 0 ≒ 10 mm.

なお、第5図は、厳密にはL2/D0の値を3.0としたとき
の特性であるが、2.6≦(L2/D0)≦3.5のときは、第5
図とほぼ同じ特性図となり、(L2/D0)が2.6より小さく
なるにつれて、また、(L2/D0)が3.5より大きくなるに
つれて、特性図の山のピークが低くなる。
Strictly speaking, FIG. 5 shows the characteristics when the value of L 2 / D 0 is 3.0, but when 2.6 ≦ (L 2 / D 0 ) ≦ 3.5,
The characteristic diagram is almost the same as the diagram. As (L 2 / D 0 ) becomes smaller than 2.6, and as (L 2 / D 0 ) becomes larger than 3.5, the peak of the peak of the characteristic diagram becomes lower.

第6図は、外径D0が7.3mmの伝熱管を用いたときの管
段ピッチL2の影響をみたものである。なお、図示してい
ないが、従来のD0≒10mmの場合においても、第6図の特
性図と同じ傾向があらわれることが確認されている。
Figure 6 is obtained by viewing the effect of Kandan pitch L 2 when the outer diameter D 0 is used heat transfer tube of 7.3 mm. Although not shown, it has been confirmed that the same tendency as in the characteristic diagram of FIG. 6 appears even in the case where the conventional D 0 ≒ 10 mm.

なお、第6図は、厳密にはL1/D0の値を1.5としたとき
の特性であるが、1.2≦(L1/D0)≦1.8のときは、第6
図とほぼ同じ特性図となり、(L1/D0)が1.2より小さく
なるにつれて、また、(L1/D0)が1.8より大きくなるに
つれて、特性図の山のピークが低くなる。
Note that FIG. 6 shows the characteristics strictly when the value of L 1 / D 0 is 1.5, but when 1.2 ≦ (L 1 / D 0 ) ≦ 1.8
The characteristic diagram is almost the same as the diagram. As (L 1 / D 0 ) becomes smaller than 1.2 and (L 1 / D 0 ) becomes larger than 1.8, the peak of the peak of the characteristic diagram becomes lower.

管列ピッチL1,管段ピッチL2が大きくなると、フィン
表面での熱伝達率は向上するがフィン効率は低下する。
また気流の流動抵抗ΔPは、管列ピッチL1,管段ピッチL
2が小さい方が増大する。従って空気側総括熱伝達α
にピークが存在する。L1≒1.3D0,L2≒2.9D0で伝熱性能
が最大になるが、1.2D0≦L1≦1.8D0,2.6D0≦L2≦3.5D0
であれば実用上十分伝熱性能が優れていることがわか
る。
When the pipe row pitch L 1 and the pipe step pitch L 2 increase, the heat transfer coefficient on the fin surface improves, but the fin efficiency decreases.
Further, the flow resistance ΔP of the air flow is represented by a pipe row pitch L 1 , a pipe step pitch L
The smaller 2 is, the larger the value. Therefore, the air side overall heat transfer α O
There is a peak at L 1 ≒ 1.3D 0, L 2 ≒ 2.9D 0 but the heat transfer performance is maximized by, 1.2D 0 ≦ L 1 ≦ 1.8D 0, 2.6D 0 ≦ L 2 ≦ 3.5D 0
Then, it can be seen that the heat transfer performance is sufficiently practical.

従来のものは、(L1/D0)=2.2,(L2/D0)=2.2〜2.5
であったので、第5図,第6図より、特性の悪い列ピッ
チ、段ピッチを採用していたことがわかる。
The conventional ones, (L 1 / D 0) = 2.2, (L 2 / D 0) = 2.2~2.5
5 and 6, it can be seen that the column pitch and the step pitch having poor characteristics were employed.

また、伝熱管の外径D0を、従来のD0≒10mmから、3mm
≦D07.5mmにすることにより、伝熱管後流にできる死水
域が小さくなるとともに、気流の流動抵抗ΔPも小さく
なる。
In addition, the outer diameter D 0 of the heat transfer tube is increased by 3 mm from the conventional D 0 ≒ 10 mm.
By setting ≦ D 0 7.5 mm, the dead water area formed downstream of the heat transfer tube is reduced, and the flow resistance ΔP of the air flow is also reduced.

以上のことから、本発明によるフィンチューブ型熱交
換器は、同一ファン動力ΔPUF基準の空気側総括熱伝達
αが、従来のものに較べて40〜50%向上することとな
る。
From the above, the fin tube type heat exchanger according to the present invention improves the air side overall heat transfer α O based on the same fan power ΔPU F by 40 to 50% as compared with the conventional one.

さらに上記構成のスリットフィンによれば、気流下流
側に設けた切り起こしが上流側切り起こしで生じた温度
境界層内に入る部分が減少し、切り起こし部での境界層
前縁効果が十分に生かされ、フィンの伝熱性能が向上す
る。また、気流と角度をもたせて切り起こしの脚部を設
置してあるので切り起こし内部を流動する気流と外部を
流動する気流の混合が行なわれ、この混合効果による伝
熱促進が可能である。さらに、脚部で誘起される旋回成
分をもつ気流は、上記の混合効果を高めると共に、伝熱
管後流部の死水域減少に効果があり、フィンの有効伝熱
面積を増大させることによる伝熱性能向上も大きい。
Further, according to the slit fin having the above-described configuration, a portion of the cut-and-raised portion provided on the downstream side of the airflow to enter the temperature boundary layer generated by the upstream-raised portion is reduced, and the boundary layer leading edge effect at the cut-and-raised portion is sufficiently increased. The heat transfer performance of the fins is improved. Further, since the cut-and-raised legs are provided at an angle to the airflow, the cut-and-raised airflow flowing inside and outside are mixed, and the heat transfer can be promoted by this mixing effect. Furthermore, the airflow having a swirl component induced by the legs enhances the mixing effect described above, and is effective in reducing dead water in the downstream part of the heat transfer tube, thereby increasing the effective heat transfer area of the fins. The performance improvement is also large.

実 施 例 以下、本発明の一実施例を添付図面にもとづいて説明
する。第1図,第3図は本発明の一実施例のフィンチュ
ーブ型熱交換器の部分側面図であり、第2図第4図はそ
れぞれ第1図,第3図のA−A′,B−B′断面図を示
す。11は、所定間隔で平行に並べられた板状フィンであ
る。12は、外径D0が7.3mmの伝熱管であり、気流13方向
の管列ピッチL1を、(L1/D0)=1.78となる13.0mm,気流
13方向に垂直な管段ピッチL2を、(L2/D0)=2.88とな
る21.0mmとしている。そして伝熱管12は板状フィン11に
バーリング加工等で設けたフィンカラー14に直角に挿通
され、拡管加工もしくは、ロウ付加工により固定されて
いる。また、板状フィン11には、伝熱管12相互間に気流
13方向と対向する2側辺部15a,15bを開口した切り起こ
し群16の板状フィン11と接合する脚部17a,17bが板状フ
ィン11の前縁の法線方向と角度をなすように設けてあ
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings. 1 and 3 are partial side views of a fin tube type heat exchanger according to an embodiment of the present invention. FIGS. 2 and 4 are AA 'and B of FIGS. 1 and 3, respectively. FIG. Reference numeral 11 denotes plate-like fins arranged in parallel at predetermined intervals. Reference numeral 12 denotes a heat transfer tube having an outer diameter D 0 of 7.3 mm. The tube row pitch L 1 in the direction of air flow 13 is set to 13.0 mm where (L 1 / D 0 ) = 1.78.
Vertical Kandan pitch L 2 in 13 direction, and a 21.0mm as the (L 2 / D 0) = 2.88. The heat transfer tube 12 is inserted at right angles into a fin collar 14 provided in the plate-like fin 11 by burring or the like, and is fixed by pipe expansion or brazing. In addition, the plate-shaped fin 11 has an airflow between the heat transfer tubes 12.
The legs 17a, 17b, which join the plate-shaped fins 11 of the cut-and-raised group 16 with two side portions 15a, 15b opposed to the 13 direction, make an angle with the normal direction of the front edge of the plate-shaped fins 11. It is provided.

本実施例のフィンチューブ型熱交換器の寸法、性能を
従来のものと対比した表を以下に示す。
A table comparing the dimensions and performance of the fin tube type heat exchanger of the present embodiment with those of the conventional one is shown below.

この表によると、本実施例のフィンチューブ型熱交換
器は、従来のものと比較して、同一ファン動力ΔPUF
準の空気側総括熱伝達αが、60/120から90/120へと1.
5倍となり、熱交換器の重量が、33%軽くなっており、
軽くなった分、従来に対し約30%のコストダウンが図れ
る。
According to this table, finned tube heat exchanger of this embodiment, as compared with the conventional, the same fan power? Pu F reference air side overall heat transfer alpha O of, from 60/120 to 90/120 1.
5 times, the weight of the heat exchanger is 33% lighter,
The weight is reduced, and the cost can be reduced by about 30%.

本実施例による作用は以下のようになる。まず、気流
13方向の管列ピッチL1が1.2D0≦L1≦1.8D0,気流13方向
と垂直な管段ピッチL2が2.6D0≦L2≦3.5D0であるため、
前述のようにベースのフラットフィンは、同一フィン動
力基準で最も空気側伝熱性能を高めることができる。こ
の時伝熱管外径D0が3mm≦D0≦7.5mmである為従来品D0
10mmのものに対しては、気流の流動抵抗と死水域18が小
さいため約40〜50%空気側伝熱性能が向上している。
The operation according to the present embodiment is as follows. First, the airflow
For 13 direction of the pipe string pitch L 1 is 1.2D 0 ≦ L 1 ≦ 1.8D 0 , the airflow 13 perpendicular to the direction Kandan pitch L 2 is 2.6D 0 ≦ L 2 ≦ 3.5D 0 ,
As described above, the base flat fin can enhance the air-side heat transfer performance most on the basis of the same fin power. At this time, since the outer diameter D 0 of the heat transfer tube is 3 mm ≦ D 0 ≦ 7.5 mm, the conventional product D 0 =
The air-side heat transfer performance is improved by about 40 to 50% for the 10 mm one because the flow resistance of the airflow and the dead water area 18 are small.

さらにスリット形または、ルーバー形切り起こしの開
口した2側辺部15a,15bが各々オフセットして設けられ
ているので気流13の下流側の切り起こしには、気流13の
上流側切り起こしで生じた温度境界層外に位置する部分
が常に存在し、その部分での伝熱性能はよい。また、切
り起こし群16は、伝熱管12間において板状フィン11前縁
と角度を成して設けられているため、切り起こし内部を
流動する気流と、外部を流動する気流は、各々の流動方
向が異なり、気流間にスリップが生じ、乱流が発生し、
伝熱性能を高める。さらに切り起こし脚部17a,17bは、
気流13方向と角度を成して設けられているので、2次流
れによる旋回成分をもった気流が脚部17a,17bから誘起
される。この気流は、切り起こし部で熱交換された気体
と新鮮気体を混合させる作用を持つとともに伝熱管12の
気流13後流部への旋回成分を持つので、死水域18はフラ
ットフィンの場合よりさらに減少し、板状フィン11の有
効伝熱面積が拡大され、伝熱性能は飛躍的に向上する。
また、本実施例のフィンチューブ型熱交換器は、伝熱管
外径が従来に対して小さい為、伝熱管の肉厚も薄くする
ことが可能で従来に対し約30%のコストダウンが図れ
る。
Furthermore, since the two side portions 15a and 15b of the slit-shaped or louver-shaped cut-and-raised opening are provided offset from each other, the cut-and-raise on the downstream side of the airflow 13 is caused by the cut-and-raise on the upstream side of the airflow 13. There is always a portion located outside the temperature boundary layer, and the heat transfer performance in that portion is good. Further, since the cut-and-raised group 16 is provided at an angle to the front edge of the plate-like fin 11 between the heat transfer tubes 12, the airflow flowing inside the cut-and-raised and the airflow flowing outside are different from each other. The direction is different, slip occurs between the air flows, turbulence occurs,
Improve heat transfer performance. Furthermore, the cut and raised legs 17a, 17b
Since the airflow is provided at an angle to the direction of the airflow 13, an airflow having a swirl component due to the secondary flow is induced from the legs 17a and 17b. This air flow has a function of mixing the gas exchanged with the heat exchanged in the cut-and-raised portion and the fresh gas, and has a swirl component to the air flow 13 downstream of the heat transfer tube 12, so that the dead water area 18 is further more than a flat fin. As a result, the effective heat transfer area of the plate-like fin 11 is increased, and the heat transfer performance is dramatically improved.
Further, in the fin tube type heat exchanger of this embodiment, since the outer diameter of the heat transfer tube is smaller than that of the conventional heat exchanger, the thickness of the heat transfer tube can be reduced, and the cost can be reduced by about 30% compared to the conventional case.

発明の効果 以上のように本発明は、外径D0(3mm≦D0≦7.5mm)の
伝熱管の気流方向列ピッチL1を1.2D0≦L1≦1.8D0,気流
と垂直方向管段ピッチL2を2.6D0≦L2≦3.5D0とし、さら
に、板状フィンの伝熱管相互間に気流方向に開口したス
リット形または、ルーバー形切り起こしを、この切り起
こし脚部が、板状フィンの前縁と角度を成すように設け
られているため、フラットフィンとしては、同一ファン
動力基準で40%〜50%空気側伝熱性能を高めることがで
き、またスリトフィンとしても、フィン間を流れる気流
中に旋回成分を持つ流れと乱れを誘起させ、気流の混合
効果、乱流促進効果、死水域減少効果、および境界層前
縁効果が十分に発揮され、空気側伝熱性能を大巾に向上
させることができる。さらに伝熱管外径D0も小さいた
め、肉厚を薄くすることができ、従来品に対し約30%の
コストダウンが図れる。
The present invention as described above the effect of the invention, the outer diameter D 0 (3mm ≦ D 0 ≦ 7.5mm) 1.2D 0 ≦ L 1 ≦ 1.8D 0 airflow direction row pitch L 1 of the heat transfer tube, air flow and vertical the Kandan pitch L 2 and 2.6D 0 ≦ L 2 ≦ 3.5D 0 , further, a slit-shaped and open to the airflow direction between heat transfer tubes mutual plate fin or the raised louvers shape cutting, the legs raised this cut is, The flat fins are provided so as to form an angle with the leading edge, so that the flat fins can improve the air-side heat transfer performance by 40% to 50% based on the same fan power standard. Induced flow and turbulence with a swirl component in the airflow flowing between them, the airflow mixing effect, turbulence promotion effect, dead water area reduction effect, and boundary layer leading edge effect are fully exhibited, and the air-side heat transfer performance is improved. Can be greatly improved. Further, since the heat transfer tube outside diameter D 0 is small, it is possible to reduce the thickness, conventional respect attained about 30% of the cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例におけるフィンチューブ型熱
交換器を示す部分側面図、第2図は第1図のA−A′断
面図、第3図は本発明の他の実施例におけるフィンチュ
ーブ型熱交換器を示す部分側面図、第4図は第3図のB
−B′断面図、第5図,第6図は本発明の作用を示す特
性図、第7図は従来のフィンチューブ型熱交換器を示す
斜視図、第8図は従来のフィンチューブ型熱交換器を示
す部分側面図、第9図は第8図のC−C′断面図、第10
図は別の従来によるフィンチューブ型熱交換器を示す部
分側面図、第11図は第10図のD−D′断面図である。 11……板状フィン、12……伝熱管、D0……伝熱管の外
径、L1……管列ピッチ、L2……管段ピッチ、13……気
流、15a,15b……側辺部、16……切り起こし群、17a,17b
……脚部。
FIG. 1 is a partial side view showing a fin tube type heat exchanger according to one embodiment of the present invention, FIG. 2 is a sectional view taken along line AA 'of FIG. 1, and FIG. FIG. 4 is a partial side view showing the fin tube type heat exchanger, and FIG.
-B 'is a sectional view, FIGS. 5 and 6 are characteristic diagrams showing the operation of the present invention, FIG. 7 is a perspective view showing a conventional fin tube type heat exchanger, and FIG. 8 is a conventional fin tube type heat exchanger. 9 is a partial side view showing the exchanger, FIG. 9 is a sectional view taken along the line CC 'of FIG. 8, and FIG.
The figure is a partial side view showing another conventional fin tube type heat exchanger, and FIG. 11 is a sectional view taken along the line DD 'of FIG. 11 ...... plate fin, 12 ...... heat transfer tube, D 0 ...... outer diameter of the heat transfer tube, L 1 ...... tube row pitch, L 2 ...... Kandan pitch, 13 ...... airflow, 15a, 15b ...... sides Division, 16 ... Cut-and-raised group, 17a, 17b
……leg.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小間 八郎 東大阪市高井田本通3丁目22番地 松下 冷機株式会社内 (72)発明者 青山 繁男 東大阪市高井田本通3丁目22番地 松下 冷機株式会社内 (72)発明者 田中 博由 門真市大字門真1006番地 松下電器産業 株式会社内 (72)発明者 小畑 眞 門真市大字門真1006番地 松下電器産業 株式会社内 (56)参考文献 特開 昭61−62794(JP,A) 特開 昭60−202296(JP,A) 実開 昭57−100079(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Hachiro Koma, Inventor 3-22, Takaidahondori, Higashiosaka-shi Matsushita Refrigerator Co., Ltd. (72) Inventor Shigeo Aoyama 3-22, Takaidahondori, Higashiosaka-shi Matsushita Refrigeration Co., Ltd (72) Inventor Hiroyoshi Tanaka 1006 Kadoma Kadoma, Matsushita Electric Industrial Co., Ltd. (72) Inventor Makoto Obata 1006 Odaka Kadoma, Kadoma City Matsushita Electric Industrial Co., Ltd. (56) References JP-A 61-61 62794 (JP, A) JP-A-60-202296 (JP, A) Japanese Utility Model Laid-Open No. 57-100079 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定間隔で多数平行に並べられ、その間を
気流が流動する板状フィンと、前記板状フィンに直角に
挿通される内部を流体が流動する外径D0(3mm≦D0≦7.5
mm)の伝熱管とから構成され、前記伝熱管の気流方向管
列ピッチL1を1.2D0≦L1≦1.8D0とし、気流と垂直方向管
段ピッチL2を2.6D0≦L2≦3.5D0としたフィンチューブ型
熱交換器。
1. A plate-like fin which is arranged in parallel at regular intervals and through which air flows, and an outer diameter D 0 (3 mm ≦ D 0) through which a fluid flows through an inside of the plate-like fin inserted at right angles to the plate-like fin. ≤7.5
mm), and the air flow direction tube row pitch L 1 of the heat transfer tubes is set to 1.2D 0 ≦ L 1 ≦ 1.8D 0 , and the air flow and the vertical tube step pitch L 2 are set to 2.6D 0 ≦ L 2 ≦ 3.5D 0 fin tube type heat exchanger.
【請求項2】板状フィンの前記伝熱管相互間に気流と対
向する2側辺部を切り起こして開口したスリット形また
はルーバー形切り起こし群を前記各切り起こし群のフィ
ンと接合する脚部列が前記板状フィンの前縁の法線方向
と角度をなすように設けた特許請求の範囲第1項記載の
フィンチューブ型熱交換器。
2. A leg for joining a slit-shaped or louver-shaped cut-and-raised group, which is opened by cutting and raising two sides of the plate-shaped fin facing the air flow between the heat transfer tubes, with the fins of the respective cut-and-raised groups. The fin tube type heat exchanger according to claim 1, wherein the rows are provided so as to form an angle with the normal direction of the leading edge of the plate-like fin.
JP61146419A 1986-06-23 1986-06-23 Flying ube type heat exchanger Expired - Lifetime JP2604722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146419A JP2604722B2 (en) 1986-06-23 1986-06-23 Flying ube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146419A JP2604722B2 (en) 1986-06-23 1986-06-23 Flying ube type heat exchanger

Publications (2)

Publication Number Publication Date
JPS633188A JPS633188A (en) 1988-01-08
JP2604722B2 true JP2604722B2 (en) 1997-04-30

Family

ID=15407262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146419A Expired - Lifetime JP2604722B2 (en) 1986-06-23 1986-06-23 Flying ube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2604722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874402B2 (en) 2013-03-21 2018-01-23 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130485U (en) * 1988-02-23 1989-09-05
KR19980086240A (en) * 1997-05-31 1998-12-05 윤종용 Heat exchanger for air conditioner
JP2001194084A (en) * 1999-12-15 2001-07-17 Lg Electronics Inc Fin tube type heat exchanger
JP2008249168A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Heat exchanger
JP4610626B2 (en) * 2008-02-20 2011-01-12 三菱電機株式会社 Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
JP2009222360A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Heat exchanger
JP5519205B2 (en) * 2008-08-07 2014-06-11 サンデン株式会社 Heat exchanger and heat pump device using the same
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
JP5995490B2 (en) * 2012-04-05 2016-09-21 三菱重工業株式会社 Cooling system
JP6302264B2 (en) 2013-08-28 2018-03-28 三菱重工業株式会社 Cooling equipment and nuclear equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162794A (en) * 1984-09-04 1986-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874402B2 (en) 2013-03-21 2018-01-23 Mitsubishi Electric Corporation Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger

Also Published As

Publication number Publication date
JPS633188A (en) 1988-01-08

Similar Documents

Publication Publication Date Title
JPH0670555B2 (en) Fin tube heat exchanger
KR890002903B1 (en) Heat exchanger
JP2604722B2 (en) Flying ube type heat exchanger
JP2960883B2 (en) Fin tube type heat exchanger
JP2553647B2 (en) Fin tube heat exchanger
JPH10206085A (en) Heat-exchanger for air-conditioner
JP3048541B2 (en) Air conditioner heat exchanger
JPH0684876B2 (en) Heat exchanger with fins
JP2003161588A (en) Heat exchanger and air conditioner having the same
JPS62112997A (en) Heat exchanger
JPS6346357B2 (en)
JPS6315096A (en) Heat exchanger of fin tube type
JP2001133178A (en) Heat exchanger
JPS58158497A (en) Finned-tube type heat exchanger
JPH0684877B2 (en) Finch tube type heat exchanger
JPH01107096A (en) Finned heat exchanger
JPS6247029Y2 (en)
JPH0749191A (en) Finned tube type heat exchanger
JPH0684878B2 (en) Finch tube type heat exchanger
JPS62245092A (en) Fin tube type heat exchanger
JP2730649B2 (en) Heat exchanger
JPS616591A (en) Finned heat exchanger
JPS61243293A (en) Fin tube type heat exchanger
JPH071156B2 (en) Heat transfer fins and heat exchangers
JPS5932792A (en) Heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term