JPH01107096A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPH01107096A
JPH01107096A JP26451187A JP26451187A JPH01107096A JP H01107096 A JPH01107096 A JP H01107096A JP 26451187 A JP26451187 A JP 26451187A JP 26451187 A JP26451187 A JP 26451187A JP H01107096 A JPH01107096 A JP H01107096A
Authority
JP
Japan
Prior art keywords
heat transfer
pipes
fin
heat exchanger
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26451187A
Other languages
Japanese (ja)
Inventor
Hisao Kusuhara
尚夫 楠原
Makoto Obata
真 小畑
Masaaki Adachi
安立 正明
Hachiro Koma
小間 八郎
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP26451187A priority Critical patent/JPH01107096A/en
Publication of JPH01107096A publication Critical patent/JPH01107096A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Abstract

PURPOSE:To improve the heat transfer performance by setting the pitch-of-row and pitch-of-level of heat transmission pipes in specific relations relative to the outer diameter of a heat transmission pipe, arranging the pipes in a staggered form, and corrugating the fins spanning between the pipes. CONSTITUTION:The pitch-of-row L1 in the air flow direction of heat transmission pipes having the outer diameter D0 (3mm<=D0<=7.5mm) is set 1.2D0<=L1<=1.8D0, and the pitch-of-level L2 in the air flow direction is set 2.6D0<=L2<=3.7D0. As the incoming air shown by arrow 3 passes through the space between the heat transmission pipes 9a in the inlet side first row, the air is separated from behind the peak 8 of the corrugation, creating turbulences which improves the air side localized heat transfer rate, and, after the air flow again contacts the fin surface, it follows the fin contour. By a staggered arrangement of the pipes, the downstream side heat transmission pipes 9b cancel the dead spaces behind the upstream side heat transmission pipes 9a. By this compound effect, the heat transfer performance of the fins can be improved, and a fin and tube type heat exchanger can be provided which has a high heat transfer rate on the air side, has less draft resistance and is not susceptible to frost growth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空調機、冷凍機等に使用され、冷媒と空気等
の流体間で熱の授受を行う熱交換器に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in air conditioners, refrigerators, etc., for transferring heat between a refrigerant and a fluid such as air.

従来の技術 従来のこの種のフィンチューブ型熱交換器は、第に図の
斜視図に示すように一定間隔で多数平行に並べられた板
状フィン群1と、この板状フィン群1に直角に挿入され
た伝熱管群2とから構成され、気流3は、板状フィン群
1間を流れ、伝熱管群2内を流れる冷媒と熱交換を行な
う。
BACKGROUND OF THE INVENTION A conventional fin-tube heat exchanger of this type consists of a group of plate-like fins 1 arranged in parallel at regular intervals, and a group of plate-like fins arranged perpendicularly to the group of plate-like fins 1, as shown in the perspective view of FIG. The airflow 3 flows between the plate-shaped fin groups 1 and exchanges heat with the refrigerant flowing inside the heat exchanger tube group 2.

この様なフィンチューブ型熱交換器は、近年、小型、高
性能化が要求されているが、騒音等の観点からフィン間
の気流速度は低く抑えられているため、伝熱管内の熱抵
抗に比して空気側の熱抵抗は高い。
In recent years, such fin-tube heat exchangers have been required to be smaller and have higher performance, but the airflow velocity between the fins is kept low from the viewpoint of noise etc., so the thermal resistance inside the heat exchanger tubes is reduced. In comparison, the thermal resistance on the air side is high.

そこで、現在は、空気側の伝熱面積を拡大することで伝
熱管内側の熱抵抗との差を減少させるように工夫してい
る。
Therefore, efforts are currently being made to reduce the difference in thermal resistance from the inside of the heat transfer tube by expanding the heat transfer area on the air side.

しかし、伝熱面を拡大することには、物理的な限界が存
在するとともに、経済性、省スペース等の点から問題も
あシ、空気側の熱抵抗を低下させることがこの種のフィ
ンチューブ型熱交換器において重要な課題となっている
However, there are physical limits to enlarging the heat transfer surface, and there are also problems in terms of economy and space saving. This is an important issue in type heat exchangers.

3ベーノ 第6図〜第9図は、従来のフィンチューブ型熱交換器の
一例を示したものである。第6図、第8図は部分側面図
を示す。第7図、第9図はそれぞれE −E’断面図、
F −F’断面図を示す。
FIGS. 6 to 9 show an example of a conventional fin-tube heat exchanger. 6 and 8 show partial side views. Figures 7 and 9 are E-E' cross-sectional views, respectively.
An F-F' cross-sectional view is shown.

第6図、第7図に示した従来例は、千鳥管配列のフラッ
トフィンと呼ばれるものであり、伝熱管2の気流3方向
管列ピッチL1’を伝熱管2の外径D’o (Db−=
10trtm )の2.2倍程度に、また、気流3と垂
直方向の管段ピッチL′2を伝熱管2の外径D’oの2
.2〜2.5倍程度に取っている。
The conventional examples shown in FIGS. 6 and 7 are called flat fins with a staggered tube arrangement, and the pitch L1' of the tube rows in the three directions of the airflow of the heat exchanger tubes 2 is set by the outer diameter D'o (Db −=
10trtm), and the tube stage pitch L'2 in the direction perpendicular to the airflow 3 is set to 2.2 times the outer diameter D'o of the heat transfer tubes 2.
.. It is set at about 2 to 2.5 times.

さらに、第8図、第9図に示した従来例はスリットフィ
ンと呼はれるもので、上記フラットフィンをベースにし
、板状フィン1の伝熱管2間に多数のスリット形切シ起
こし5a〜5dを設けたものである。尚、板状フィン1
には、一体に設けたフィンカラー4を介して伝熱管2を
貫通させている。
Furthermore, the conventional examples shown in FIGS. 8 and 9 are called slit fins, and are based on the above-mentioned flat fins, and have a large number of slit-shaped cuts 5a to 5a between the heat transfer tubes 2 of the plate-like fins 1. 5d. In addition, plate-shaped fin 1
The heat exchanger tube 2 is penetrated through the fin collar 4 provided integrally.

発明が解決しようとする問題点 しかしながら、上記の構成のフラットフィンでは、通風
抵抗が低く、蒸発器として使った場合の着霜に関しても
有効であるが、空気側の熱伝達率が低い。これは、伝熱
管2の外径D’oが大きく、その分その後流に生じる死
水域6が大きいのと、フィンの前縁端面から生じた温度
境界層が厚く後縁端面走用を引く為で空気側の熱抵抗は
高くなっている。
Problems to be Solved by the Invention However, although the flat fins having the above configuration have low ventilation resistance and are effective in preventing frost formation when used as an evaporator, the heat transfer coefficient on the air side is low. This is because the outer diameter D'o of the heat exchanger tube 2 is large, and the dead zone 6 that occurs downstream thereof is correspondingly large, and the temperature boundary layer generated from the leading edge end face of the fin is thick and draws the trailing edge end face travel. The thermal resistance on the air side is high.

また、これをベースとしたスリットフィンについては、
多数の切シ起こし5a〜5dによシ、7ラツトフインの
時に生じた厚い温度境界層を破壊し、薄い温度境界層を
作るので、切シ起こし部での伝熱性能は良好である。従
って、空気側の熱伝達率はフラットフィンに比べて著し
く高くなる。
Also, regarding slit fins based on this,
The large number of cuts and raised portions 5a to 5d destroys the thick temperature boundary layer that occurs during the 7-rat fin and creates a thin temperature boundary layer, so that the heat transfer performance at the cut and raised portions is good. Therefore, the heat transfer coefficient on the air side is significantly higher than that of flat fins.

しかし、その反面通風抵抗が高くなり、また、スリット
を設けることによシ、フィン間距離が自ら縮まシ、着霜
現象を早めることになる。
However, on the other hand, the ventilation resistance becomes high, and the distance between the fins decreases due to the provision of the slits, which accelerates frost formation.

そこで、上記問題点に鑑み、本発明は、フィン形状およ
び管配列、管径に工夫を加えることで、乱流効果による
フィン部の伝熱性能の向上、さらには死水域の著しい減
少によシ、空気側の熱伝達率の高い、しかも通風抵抗の
低い、さらには着霜5ベーノ が生じにくいフィンチューブ型熱交換器を提供するもの
である。
Therefore, in view of the above problems, the present invention improves the heat transfer performance of the fin part due to the turbulent flow effect and significantly reduces the dead area by adding innovations to the fin shape, tube arrangement, and tube diameter. The present invention provides a fin-tube heat exchanger that has a high heat transfer coefficient on the air side, low ventilation resistance, and is less likely to cause frosting.

問題点を解決するだめの手段 上記問題点を解決するために、本発明のフィンチューブ
型熱交換器は、一定間隔で平行に並べられ、相互間を気
体が流動する複数の平板フィンと、この平板フィンを貫
通し内部を流体が流動する外径Do (3關<Do <
75mm )の複数の伝熱管群とから構成され、この伝
熱管群の気流方向管列ピッチL1を1−2 Do (L
 1(1,8Doとし、気流と垂直方向管段ピッチL2
を・2.6 Do < 12 (3,7D。
Means for Solving the Problems In order to solve the above problems, the fin-tube heat exchanger of the present invention includes a plurality of flat fins arranged in parallel at regular intervals and through which gas flows; Outer diameter Do (3 degrees < Do <
75 mm), and the tube array pitch L1 in the airflow direction of this heat exchanger tube group is set to 1-2 Do (L
1 (1,8Do, airflow and vertical pipe pitch L2
・2.6 Do < 12 (3,7D.

とすると共に、さらに、この平板フィンにおける伝熱管
群の相互間のフィンを波形状に形成し、さらにこの各伝
熱管群を、伝熱管相互が千鳥状と々るような構成を備え
ている。
In addition, the fins between the heat exchanger tube groups in this flat plate fin are formed in a wave shape, and each heat exchanger tube group is configured such that the heat exchanger tubes are staggered from each other.

作   用 この技術的手段による作用は、以下のように々る。For production The effects of this technical means are as follows.

波形状のフィン部を気流が通過する際、その山頂部の後
流部で乱流が発生し、空気側の局所熱伝達率を高める。
When airflow passes through the wave-shaped fins, turbulence is generated in the wake of the fins, increasing the local heat transfer coefficient on the air side.

また、伝熱管後部の死水域に乱流がオわ如込むことによ
シ、死水域自体を減少させる。この死水域については、
従来のD’o * 10mmの場合と比べて絶対量が小
さくなるので、前記の乱流効果と合わせて、著しく伝熱
性能を高めることになる。
In addition, the dead area itself is reduced by the turbulence flowing into the dead area at the rear of the heat transfer tube. Regarding this dead area,
Since the absolute amount is smaller than in the conventional case of D'o*10 mm, in combination with the above-mentioned turbulent flow effect, the heat transfer performance is significantly improved.

実施例 以下、本発明の実施例を添付図面に基ついて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

なお、従来例と同じものについては同じ符号を付して説
明を省略する。
Components that are the same as those in the conventional example are designated by the same reference numerals, and description thereof will be omitted.

第1図ないし第3図は、本発明の一実施例を示すフィン
付熱交換器の要部平面図、A−N断面図、B−び断面図
である。
1 to 3 are a plan view of a main part, a sectional view taken along the line AN, and a sectional view taken along the line B, showing an embodiment of the present invention.

同図において、矢印3方向より流入した気流は、気流側
第1列において伝熱管9aの間隙を通過する際、波形状
の山頂部後方で乱流が発生し、空気側局所熱伝達率を向
上させ、さらに、気流側第2列において伝熱管9bによ
り、伝熱管9aの後方の死水域を減少させる。そしてこ
のような過程を順次繰]返し、矢印3′方向に流出する
。この際の7ベーニI 系 流れおよび伝熱の状態は、第磨図に示したように、波形
状の山頂部8後方で、剥離を生じ、流れが乱され、気流
がフィン表面に再付着した後フィンに沿って流れ始める
。尚、7は流れがよどんでおり、死水域になっている。
In the figure, when the airflow flowing in from the direction of the arrow 3 passes through the gap between the heat transfer tubes 9a in the first row on the airflow side, turbulence occurs behind the wave-shaped peaks, improving the local heat transfer coefficient on the air side. Furthermore, the dead area behind the heat exchanger tubes 9a is reduced by the heat exchanger tubes 9b in the second row on the airflow side. This process is repeated one after another, and the liquid flows out in the direction of arrow 3'. At this time, the state of the flow and heat transfer in the 7 beni I system was such that, as shown in the diagram, separation occurred behind the wave-shaped peak 8, the flow was disturbed, and the airflow reattached to the fin surface. It begins to flow along the rear fin. In addition, the flow at No. 7 is stagnant and has become a dead area.

第4図に示すように、山頂部8後方で急激に空気の局所
熱伝達率が向上していることが分かるOまた、千鳥配列
を用いることにより、下流側の伝熱管がその上流側の伝
熱管の死水域を減少させる効果を持っておシ、これらの
複合効果として、空気側の伝熱状態が飛躍的に向上する
ものである。
As shown in Figure 4, it can be seen that the local heat transfer coefficient of air increases rapidly behind the mountaintop 8.In addition, by using a staggered arrangement, the heat transfer tubes on the downstream side are connected to the heat transfer tubes on the upstream side. It has the effect of reducing the dead area of the heat tube, and as a combined effect of these, the heat transfer state on the air side is dramatically improved.

発明の効果 以上のように、本発明のフィン形状と管配列を用いれば
、乱流効果によるフィン部の伝熱性能の向上、さらには
死水域の著しい減少によシ、空気側の熱伝達率の高い、
しかも通風抵抗の低い、さらには着霜に対しても強いフ
ィンチューブ型熱交換器を得ることが可能である。
Effects of the Invention As described above, if the fin shape and tube arrangement of the present invention are used, the heat transfer performance of the fin section will be improved due to the turbulent flow effect, and the dead area will be significantly reduced, and the heat transfer coefficient on the air side will be improved. high,
Moreover, it is possible to obtain a fin-tube heat exchanger that has low ventilation resistance and is also resistant to frost formation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフィン付熱交換器の要
部平面図、第2図は第1図のA−A’線による要部断面
図、第3図は第1図のB −B’線による要部断面図、
第4図は、局所熱伝達率を説明する説明図、第5図はフ
ィン付熱交換器の全体斜視図、第6図は第1の従来例を
示すフィン付熱交換器の要部平面図、第7図は第6図の
E −E’線による要部断面図、第8図は第2の従来例
を示すフィン付熱交換器の要部平面図、第9図は第8図
のF −F’線による要部断面図である。 1・・・・・・板状フィン、2・・・・・・伝熱管、3
.3′・・・・・・’に流、4.10−・−フィンカラ
ー、5a〜5d・・・・・・スリット切シ起こし、6・
・・・・・死水域、7・・・・・・死水域、8・・・・
・・山頂部、9a〜9d・・・・・・伝熱管。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−板沃フイン 3.3’−m−気流 8−J、、 7i部 り’a−9d  −m−伝 M  管 IO−フィンカラー 第1図 チー フィンカラー 第3図 第4図 第5図 第6図 tr’ 第8図
FIG. 1 is a plan view of the main parts of a finned heat exchanger showing an embodiment of the present invention, FIG. 2 is a sectional view of the main parts taken along line AA' in FIG. 1, and FIG. Main part sectional view taken along B-B' line,
Fig. 4 is an explanatory diagram for explaining the local heat transfer coefficient, Fig. 5 is an overall perspective view of a finned heat exchanger, and Fig. 6 is a plan view of essential parts of a finned heat exchanger showing the first conventional example. , FIG. 7 is a sectional view of the main part taken along the line E-E' in FIG. 6, FIG. 8 is a plan view of the main part of the finned heat exchanger showing the second conventional example, and FIG. It is a sectional view of the main part taken along the line F-F'. 1... Plate fin, 2... Heat exchanger tube, 3
.. 3'......' flow, 4.10--Fin collar, 5a to 5d......Slit cutting and raising, 6.
...Dead area, 7...Dead area, 8...
...Mountain top, 9a to 9d...Heat transfer tubes. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Plate fin 3.3'-m-airflow 8-J,, 7i section ri'a-9d -m-transfer M pipe IO-fin collar Fig. 1 Chief fin collar Fig. 3 Fig. 4 Fig. 5 Figure 6 tr' Figure 8

Claims (1)

【特許請求の範囲】[Claims]  一定間隔で平行に並べられ、相互間を気体が流動する
複数の平板フィンと前記平板フィンを貫通し内部を流体
が流動する外径Do(3mm≦Do≦7.5mm)の複
数の伝熱管群とから構成され、前記伝熱管の気流方向管
列ピッチL_1を、1.2Do≦L_1≦1.8Doと
し、気流と垂直方向管段ピッチL_2を、2.6Do≦
L_2≦3.7Doとすると共に、さらに、前記平板フ
ィンにおける前記伝熱管群の相互間のフィンを波形状に
形成し、さらに前記各伝熱管群を、伝熱管群相互が千鳥
状となるように配列したフィン付熱交換器。
A plurality of flat plate fins arranged in parallel at regular intervals, through which gas flows, and a plurality of heat transfer tube groups having an outer diameter Do (3 mm≦Do≦7.5 mm) through which fluid flows through the flat plate fins. The tube row pitch L_1 in the airflow direction of the heat transfer tubes is 1.2Do≦L_1≦1.8Do, and the tube row pitch L_2 in the airflow and vertical direction is 2.6Do≦
L_2≦3.7Do, and further, the fins between the heat exchanger tube groups in the flat plate fins are formed in a wave shape, and each of the heat exchanger tube groups is arranged in a staggered manner. Heat exchanger with arrayed fins.
JP26451187A 1987-10-20 1987-10-20 Finned heat exchanger Pending JPH01107096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26451187A JPH01107096A (en) 1987-10-20 1987-10-20 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26451187A JPH01107096A (en) 1987-10-20 1987-10-20 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPH01107096A true JPH01107096A (en) 1989-04-24

Family

ID=17404260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26451187A Pending JPH01107096A (en) 1987-10-20 1987-10-20 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPH01107096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021485A (en) * 2001-07-11 2003-01-24 Toshiba Kyaria Kk Fin tube heat exchanger
JP2011237047A (en) * 2010-04-30 2011-11-24 Daikin Industries Ltd Heat exchanger of air conditioner
JP2014224659A (en) * 2013-05-17 2014-12-04 パナソニック株式会社 Fin-added heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021485A (en) * 2001-07-11 2003-01-24 Toshiba Kyaria Kk Fin tube heat exchanger
JP2011237047A (en) * 2010-04-30 2011-11-24 Daikin Industries Ltd Heat exchanger of air conditioner
JP2014224659A (en) * 2013-05-17 2014-12-04 パナソニック株式会社 Fin-added heat exchanger

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
JPH10206085A (en) Heat-exchanger for air-conditioner
JP2553647B2 (en) Fin tube heat exchanger
JPS60194293A (en) Heat exchanger equipped with fin
JP3048541B2 (en) Air conditioner heat exchanger
JP2604722B2 (en) Flying ube type heat exchanger
JPH0271096A (en) Heat exchanger with fin
JPH01107096A (en) Finned heat exchanger
JPS6162794A (en) Heat exchanger with fins
JPS62112997A (en) Heat exchanger
JPS616590A (en) Finned heat exchanger
JPH0684876B2 (en) Heat exchanger with fins
JPS6346357B2 (en)
JPS616592A (en) Finned heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPS6142198B2 (en)
JPS58158497A (en) Finned-tube type heat exchanger
JPS616591A (en) Finned heat exchanger
JPS60194292A (en) Heat exchanger equipped with fin
JPS6315096A (en) Heat exchanger of fin tube type
JPS5923982Y2 (en) heat exchanger with fins
JPS6338892A (en) Fin tube type heat exchanger
JPS6191495A (en) Finned heat exchanger
JPH0251120B2 (en)
JP2730649B2 (en) Heat exchanger