JP2017072343A - Evaporator and turbo refrigerator having evaporator - Google Patents

Evaporator and turbo refrigerator having evaporator Download PDF

Info

Publication number
JP2017072343A
JP2017072343A JP2015201239A JP2015201239A JP2017072343A JP 2017072343 A JP2017072343 A JP 2017072343A JP 2015201239 A JP2015201239 A JP 2015201239A JP 2015201239 A JP2015201239 A JP 2015201239A JP 2017072343 A JP2017072343 A JP 2017072343A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
pressure vessel
pressure
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015201239A
Other languages
Japanese (ja)
Other versions
JP6716227B2 (en
Inventor
直也 三吉
Naoya Miyoshi
直也 三吉
上田 憲治
Kenji Ueda
憲治 上田
白方 芳典
Yoshinori Shirakata
芳典 白方
紀行 松倉
Noriyuki Matsukura
紀行 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015201239A priority Critical patent/JP6716227B2/en
Priority to PCT/JP2016/076068 priority patent/WO2017061211A1/en
Priority to US15/736,130 priority patent/US20180187932A1/en
Priority to CN201680036519.2A priority patent/CN107850359B/en
Publication of JP2017072343A publication Critical patent/JP2017072343A/en
Application granted granted Critical
Publication of JP6716227B2 publication Critical patent/JP6716227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/30Steam-separating arrangements using impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/16Arrangements for preventing condensation, precipitation or mist formation, outside the cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict efficiency deterioration due to the caring-over of liquid phase low pressure refrigerant on the side of a turbo compressor while the heat transfer performance is improved by preventing the dry out of the heat transfer tube group within the evaporator in a turbo refrigerator using the low pressure refrigerant used at a high pressure less than 0.2 MPaG.SOLUTION: An evaporator 7 comprises: a pressure container 21 that is extending in a horizontal direction in that the low pressure refrigerant used at a high pressure less than 0.2 MPaG is condensed and introduced; a refrigerant inlet 22 provided at a lower part of the pressure container 21; a refrigerant outlet 23; a heat transfer tube group 25 that passes through the interior of the pressure container 21 in a longitudinal axial direction for heat exchanging with pressure refrigerant; and a tabular refrigerant distribution plate 26 that is installed between the refrigerant inlet 22 and the heat transfer tube group 25 in that a refrigerant flow hole 26a is bored, in which the area ratio of the refrigerant flow hole 26a per unit area in the refrigerant distribution plate 26 is larger in a range A1 corresponding to the vicinity of the position on the upstream side of the heat transfer tube group 25 than that in the other range A2.SELECTED DRAWING: Figure 2

Description

本発明は、低圧冷媒を気化させる蒸発器、これを備えたターボ冷凍装置に関するものである。   The present invention relates to an evaporator for vaporizing a low-pressure refrigerant and a turbo refrigeration apparatus including the evaporator.

例えば地域冷暖房の熱源用として使用されているターボ冷凍装置は、周知のように、冷媒を圧縮するターボ圧縮機と、圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる制御弁と、膨張した冷媒を気液分離する中間冷却器と、膨張した冷媒を蒸発させる蒸発器とを備えて構成されている。   For example, a turbo refrigeration system used as a heat source for district heating and cooling is, as is well known, a turbo compressor that compresses refrigerant, a condenser that condenses the compressed refrigerant, and a control valve that expands the condensed refrigerant. And an intercooler that gas-liquid separates the expanded refrigerant and an evaporator that evaporates the expanded refrigerant.

特許文献1に開示されているように、蒸発器は円胴シェル形状の圧力容器を備えており、この圧力容器を長手軸方向に貫通するように、水等の被冷却液を通過させる伝熱管群が配設されている。また、圧力容器の内部には、伝熱管群の下方に多数の冷媒流通孔が穿設された分布板(冷媒分配板)が設けられ、伝熱管群の上方にエリミネータ(デミスタ)が設けられている。   As disclosed in Patent Document 1, the evaporator has a cylindrical shell-shaped pressure vessel, and a heat transfer tube that allows a liquid to be cooled such as water to pass through the pressure vessel in the longitudinal axis direction. Groups are arranged. In addition, a distribution plate (refrigerant distribution plate) in which a large number of refrigerant flow holes are formed is provided below the heat transfer tube group, and an eliminator (demister) is provided above the heat transfer tube group. Yes.

ターボ圧縮機により圧縮され、凝縮器にて凝縮された液相状の冷媒は、圧力容器の下部に設けられた冷媒入口から圧力容器内に流入し、分布板の多数の冷媒流通孔を通過することによって圧力容器の内部全域に拡散しながら伝熱管群と熱交換する。これにより伝熱管群の内部を流れる被冷却液が冷却され、この冷却された被冷却液が空調用の冷熱媒や工業用冷却液として利用される。   The liquid-phase refrigerant compressed by the turbo compressor and condensed by the condenser flows into the pressure vessel from the refrigerant inlet provided at the lower portion of the pressure vessel, and passes through a number of refrigerant circulation holes of the distribution plate. Thus, heat is exchanged with the heat transfer tube group while diffusing throughout the interior of the pressure vessel. Thereby, the liquid to be cooled flowing inside the heat transfer tube group is cooled, and the cooled liquid to be cooled is used as a cooling medium for air conditioning or an industrial cooling liquid.

伝熱管群と熱交換した液相状の冷媒は温度差により沸騰して気化する。そして、エリミネータを通過する際に液相分を除去され、気相状の冷媒のみが圧力容器の上部に接続された吸入管からターボ圧縮機に吸入されて再び圧縮される。   The liquid phase refrigerant heat-exchanged with the heat transfer tube group boils and vaporizes due to the temperature difference. Then, when passing through the eliminator, the liquid phase component is removed, and only the gas-phase refrigerant is sucked into the turbo compressor from the suction pipe connected to the upper part of the pressure vessel and compressed again.

従来の蒸発器では、分布板における冷媒流通孔の内径や穿設間隔等が一定となっていた。即ち、分配板の単位面積あたりの冷媒流通孔の面積比率は、分布板の全域において一定となっていた。   In the conventional evaporator, the inner diameter of the refrigerant flow hole in the distribution plate, the drilling interval, and the like are constant. That is, the area ratio of the refrigerant flow holes per unit area of the distribution plate is constant throughout the distribution plate.

また、エリミネータは、圧力容器内における冷媒の液面レベルよりも十分高い位置に配置されていた。その理由は、沸騰した冷媒の液状飛沫がエリミネータを通過して液相状のまま吸入管に入ってしまう、所謂キャリーオーバー(気液同伴)を防止してターボ圧縮機の効率低下を抑制するためである。   Moreover, the eliminator was arrange | positioned in the position sufficiently higher than the liquid level of the refrigerant | coolant in a pressure vessel. The reason for this is to prevent the so-called carryover (gas-liquid entrainment) in which the liquid droplets of the boiled refrigerant pass through the eliminator and enter the suction pipe in a liquid state, thereby suppressing the efficiency reduction of the turbo compressor. It is.

特開昭61−280359号公報Japanese Patent Laid-Open No. 61-280359

最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒は、ターボ冷凍装置を高効率化させることができ、しかも地球温暖化係数が低いことから、次世代冷媒として期待されている。   Low-pressure refrigerants such as R1233zd used at a maximum pressure of less than 0.2 MPaG are expected as next-generation refrigerants because they can increase the efficiency of turbo refrigeration equipment and have a low global warming potential.

このような低圧冷媒は、R134a等の高圧冷媒に比べてガス比体積が大きい特性を持つため、蒸発器の内部で伝熱管群と熱交換して沸騰した際に沸騰泡が大きくなる。したがって、伝熱管群が局所的に沸騰泡に囲まれる、所謂ドライアウトが発生しやすくなり、伝熱管群が冷媒二相液中に浸漬された状態に比べて伝熱性能が低下する傾向がある。   Since such a low-pressure refrigerant has a characteristic that the gas specific volume is larger than that of a high-pressure refrigerant such as R134a, the boiling bubbles increase when the heat exchanger boiles inside the evaporator and boil. Therefore, the heat transfer tube group is locally surrounded by boiling bubbles, so-called dry out is likely to occur, and the heat transfer performance tends to be lower than in a state where the heat transfer tube group is immersed in the refrigerant two-phase liquid. .

また、蒸発器内部における伝熱管群の上流部では伝熱管群の内部を流れる被冷却液と冷媒との温度差が大きいために冷媒が激しく沸騰するが、伝熱管群の下流部では上記温度差が縮まることから冷媒の沸騰が穏やかになる。このため、蒸発器の内部における液相状の冷媒プールの液面高(フロスレベル)の設定や調整が難しくなる。   In addition, in the upstream part of the heat transfer tube group inside the evaporator, the refrigerant boils violently because the temperature difference between the liquid to be cooled and the refrigerant flowing inside the heat transfer tube group is large, but in the downstream part of the heat transfer tube group, the above temperature difference As the temperature shrinks, the boiling of the refrigerant becomes gentle. For this reason, it becomes difficult to set and adjust the liquid level (floss level) of the liquid-phase refrigerant pool inside the evaporator.

さらに、伝熱管群ではギャップ流速が大きくなるため、個々の伝熱管に掛かる抗力による疲労破壊が懸念される。また、低圧冷媒を用いる場合には、蒸発器からターボ圧縮機に吸入される気化冷媒の体積流量が高圧冷媒に比べて格段に大きいため、蒸発器内部における気化冷媒の流速が高くなり、気化冷媒の流れに乗って液相状の冷媒がターボ圧縮機側にキャリーオーバーされやすく、ターボ圧縮機の効率低下が懸念される。   Furthermore, since the gap flow velocity is increased in the heat transfer tube group, there is a concern about fatigue failure due to the drag applied to each heat transfer tube. In addition, when using a low-pressure refrigerant, the volume flow rate of the vaporized refrigerant sucked into the turbo compressor from the evaporator is much larger than that of the high-pressure refrigerant, so that the flow rate of the vaporized refrigerant inside the evaporator becomes high, and the vaporized refrigerant The liquid-phase refrigerant is likely to carry over to the turbo compressor side on the flow, and there is a concern that the efficiency of the turbo compressor may be reduced.

本発明は、このような事情に鑑みてなされたものであり、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる蒸発器、これを備えたターボ冷凍装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and in a turbo refrigeration apparatus using a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG, prevents the heat transfer tube group from being dried out in the evaporator. It is an object of the present invention to provide an evaporator capable of improving the heat transfer performance and suppressing a decrease in efficiency due to the liquid phase low-pressure refrigerant being carried over to the turbo compressor side, and a turbo refrigeration apparatus equipped with the evaporator And

上記課題を解決するために、本発明は、以下の手段を採用する。
本発明の第1態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、前記伝熱管群の上流側の位置付近に対応する範囲において他の範囲よりも大きいことを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The evaporator according to the first aspect of the present invention is provided in a lower part of the pressure vessel, which extends in a horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. A refrigerant inlet, a refrigerant outlet provided at an upper portion of the pressure vessel, and the inside of the pressure vessel in a longitudinal axis direction, a liquid to be cooled is circulated therein, and the liquid to be cooled is heated with the low-pressure refrigerant and heat. A heat transfer tube group to be exchanged, and a plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel and having a refrigerant flow hole formed therein, and the refrigerant The area ratio of the refrigerant circulation holes per unit area in the distribution plate is larger in the range corresponding to the position near the upstream side of the heat transfer tube group than in other ranges.

上記のように、冷媒分配板における単位面積あたりの冷媒流通孔の面積比率が、伝熱管群の上流側の位置付近に対応する範囲において他の範囲よりも大きいため、冷媒入口から圧力容器内に導入された低圧冷媒は、伝熱管群の上流側の位置付近に多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。   As described above, the area ratio of the refrigerant flow holes per unit area in the refrigerant distribution plate is larger than the other ranges in the range corresponding to the vicinity of the upstream position of the heat transfer tube group, so that the refrigerant inlet into the pressure vessel A large amount of the introduced low-pressure refrigerant is distributed near the position on the upstream side of the heat transfer tube group. A relatively small amount of low-pressure refrigerant is distributed to other positions. Thereby, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel is made uniform.

蒸発器内部における伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群の伝熱性能を高めることができる。   In the vicinity of the position upstream of the heat transfer tube group in the evaporator, the low-pressure refrigerant boils violently because the temperature difference with the liquid to be cooled flowing inside the heat transfer tube group is large. However, since a relatively large amount of low-pressure refrigerant is distributed to this position as compared with other positions, the position near the upstream side of the heat transfer tube group is surrounded by the low-pressure refrigerant boiling bubbles and does not dry out. The state where the heat transfer tube group is immersed in the refrigerant two-phase liquid can be maintained. For this reason, the to-be-cooled liquid which flows through the inside of the heat transfer tube group and the low-pressure refrigerant can be favorably exchanged heat, and the heat transfer performance of the heat transfer tube group can be enhanced.

また、圧力容器の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、圧力容器の長手軸方向中間部にターボ圧縮機の吸入管に通じる冷媒出口を設けることにより、液相状の低圧冷媒が気化冷媒の流れに乗ってターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。   In addition, since the floss level of the low-pressure refrigerant pool does not rise at both ends of the pressure vessel in the longitudinal direction intermediate portion of the pressure vessel, the refrigerant communicated with the suction pipe of the turbo compressor at the longitudinal direction intermediate portion of the pressure vessel. By providing the outlet, it is possible to prevent the liquid-phase low-pressure refrigerant from being carried over to the turbo compressor side along the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor.

上記の蒸発器において、前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい構成としてもよい。   In the evaporator, the refrigerant inlet is provided in an intermediate portion in the longitudinal axis direction of the pressure vessel, and the area ratio of the refrigerant circulation holes in the refrigerant distribution plate is a range of an end portion in the longitudinal axis direction of the refrigerant distribution plate. It is good also as a structure larger than the range of a longitudinal-axis direction intermediate part.

上記構成の蒸発器によれば、圧力容器の長手軸方向中間部に設けられた冷媒入口から圧力容器内に導入された低圧冷媒は、圧力容器内部の長手軸方向両端部に多く供給され、冷媒入口の直上部となる圧力容器の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させ、伝熱管群の伝熱性能を高めることができる。   According to the evaporator configured as described above, a large amount of the low-pressure refrigerant introduced into the pressure vessel from the refrigerant inlet provided in the intermediate portion in the longitudinal axis direction of the pressure vessel is supplied to both ends in the longitudinal axis direction inside the pressure vessel. A relatively small amount is supplied to the intermediate portion in the longitudinal axis direction of the pressure vessel, which is directly above the inlet. For this reason, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel is made uniform so that the liquid to be cooled and the low-pressure refrigerant flowing inside the heat transfer pipe group can exchange heat well, and the heat transfer of the heat transfer pipe group Performance can be increased.

本発明の第2態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていることを特徴とする。   The evaporator according to the second aspect of the present invention is provided in a lower part of the pressure vessel, which extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. A refrigerant inlet, a refrigerant outlet provided at an upper portion of the pressure vessel, and the inside of the pressure vessel in a longitudinal axis direction, a liquid to be cooled is circulated therein, and the liquid to be cooled is heated with the low-pressure refrigerant and heat. A heat transfer tube group to be exchanged, and a plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel and having a refrigerant flow hole formed therein, and the refrigerant A plurality of inlets are provided in a distributed manner along the longitudinal direction of the pressure vessel.

低圧冷媒は、高圧冷媒に比べて比体積が大きいため、冷媒入口から蒸発器に流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板の圧損を大きくすると、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度が大きくなり、伝熱管群の振動や破損に繋がる。   Since the specific volume of the low-pressure refrigerant is larger than that of the high-pressure refrigerant, the volume flow rate flowing from the refrigerant inlet to the evaporator is large and the dynamic pressure is high. The speed of ejection from the refrigerant circulation hole of the distribution plate increases, leading to vibration and breakage of the heat transfer tube group.

上記構成の蒸発器によれば、冷媒入口が圧力容器の長手軸方向に沿って複数分散して設けられているため、冷媒入口を単一とした場合に比べて低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板の冷媒流通孔の径を大きくすることができ、これによって低圧冷媒が冷媒流通孔から噴出する速度を低下させ、伝熱管群の振動や破損を防止することができる。   According to the evaporator having the above-described configuration, a plurality of refrigerant inlets are provided along the longitudinal axis direction of the pressure vessel, so that the inflow rate of the low-pressure refrigerant is reduced compared to a case where the refrigerant inlet is single. be able to. For this reason, the diameter of the refrigerant circulation hole of the refrigerant distribution plate can be increased, thereby reducing the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation hole, and the vibration and breakage of the heat transfer tube group can be prevented.

また、低圧冷媒を複数の冷媒入口から圧力容器の長手軸方向全長に亘って均等に流入させて圧力容器内部における低圧冷媒プールのフロスレベルを均一化することができる。これにより、伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制してターボ圧縮機の効率低下を回避することができる。   In addition, the low-pressure refrigerant can be uniformly introduced from the plurality of refrigerant inlets over the entire length in the longitudinal axis of the pressure vessel, so that the floss level of the low-pressure refrigerant pool inside the pressure vessel can be made uniform. As a result, the heat transfer performance is improved by preventing the heat transfer tube group from being dried out, and the liquid phase low-pressure refrigerant is locally blown up and suppressed from being carried over to the turbo compressor side. A reduction in the efficiency of the compressor can be avoided.

本発明の第3態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していることを特徴とする。   The evaporator according to the third aspect of the present invention is provided in a lower part of the pressure vessel, which extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. A refrigerant inlet, a refrigerant outlet provided at an upper portion of the pressure vessel, and the inside of the pressure vessel in a longitudinal axis direction, a liquid to be cooled is circulated therein, and the liquid to be cooled is heated with the low-pressure refrigerant and heat. A heat transfer tube group to be exchanged, and a plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel and having a refrigerant flow hole formed therein, and the refrigerant A flow path cross-sectional area from the outer opening of the inlet to the pressure vessel is enlarged from the outer opening toward the pressure vessel.

上記構成の蒸発器によれば、冷媒入口の外側開口部から圧力容器までの流路断面積が圧力容器に向かって拡大するため、冷媒入口を流れる低圧冷媒の流速が圧力容器に向かって低下する。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
According to the evaporator configured as described above, the flow path cross-sectional area from the outer opening of the refrigerant inlet to the pressure vessel increases toward the pressure vessel, so the flow rate of the low-pressure refrigerant flowing through the refrigerant inlet decreases toward the pressure vessel. .
For this reason, the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation holes of the refrigerant distribution plate is reduced to prevent vibration and breakage of the heat transfer tube group, and the liquid-phase low-pressure refrigerant is locally blown up and turbo compressed. Carrying over to the machine side can be suppressed, and a reduction in efficiency of the turbo compressor can be avoided.

本発明の第4態様に係る蒸発器は、水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、前記圧力容器の下部に設けられる冷媒入口と、前記圧力容器の上部に設けられる冷媒出口と、前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていることを特徴とする。   The evaporator according to the fourth aspect of the present invention is provided in a lower part of the pressure vessel, which extends in the horizontal direction and into which the low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced. A refrigerant inlet, a refrigerant outlet provided at an upper portion of the pressure vessel, and the inside of the pressure vessel in a longitudinal axis direction, a liquid to be cooled is circulated therein, and the liquid to be cooled is heated with the low-pressure refrigerant and heat. A heat transfer tube group to be exchanged, and a plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel and having a refrigerant flow hole formed therein, and the refrigerant The inlet has a tubular shape connected to the pressure vessel, and a flow rate attenuating member for attenuating the flow rate of the low-pressure refrigerant is provided in the tube.

上記構成の蒸発器によれば、流速減衰部材によって冷媒入口から圧力容器に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板の冷媒流通孔から噴出する速度を低下させて伝熱管群の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機側にキャリーオーバーされることを抑制し、ターボ圧縮機の効率低下を回避することができる。
According to the evaporator having the above configuration, the flow rate of the low-pressure refrigerant flowing into the pressure vessel from the refrigerant inlet is reduced by the flow velocity attenuating member.
For this reason, the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation holes of the refrigerant distribution plate is reduced to prevent vibration and breakage of the heat transfer tube group, and the liquid-phase low-pressure refrigerant is locally blown up and turbo compressed. Carrying over to the machine side can be suppressed, and a reduction in efficiency of the turbo compressor can be avoided.

上記のいずれかの蒸発器において、前記伝熱管群は、前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置された構成としてもよい。   In any of the above evaporators, the heat transfer tube group includes an outward tube group extending from one longitudinal end to the other end in the pressure vessel, and an outward tube group at the other longitudinal end in the pressure vessel. A return pipe group that communicates and returns from the other end in the longitudinal axis direction to the one end in the longitudinal direction of the pressure vessel, and the forward tube group is disposed below and the return tube group is disposed above in the pressure vessel. A configuration may be adopted.

上記構成の蒸発器によれば、伝熱管内を流れる被冷却液との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群が圧力容器の下部に配置され、被冷却液との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群が圧力容器の上部に配置される。
このため、低圧冷媒の激しい沸騰が圧力容器内における低圧冷媒プールの液面の下方で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機側にキャリーオーバーされることを防止し、ターボ圧縮機の効率低下を抑制することができる。
According to the evaporator having the above configuration, the outgoing pipe group in which the temperature difference from the liquid to be cooled flowing in the heat transfer pipe is large and the boiling of the low-pressure refrigerant is intense is arranged at the lower part of the pressure vessel, and the temperature difference from the liquid to be cooled is A return pipe group in which the boiling of the small low-pressure refrigerant is gentle is arranged at the top of the pressure vessel.
For this reason, intense boiling of the low-pressure refrigerant is performed below the liquid level of the low-pressure refrigerant pool in the pressure vessel, and the liquid-phase refrigerant is less likely to scatter on the liquid level of the low-pressure refrigerant pool. Accordingly, it is possible to prevent the liquid-phase refrigerant from being carried over to the turbo compressor side accompanying the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor.

上記のいずれかの蒸発器において、前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成された構成としてもよい。   In any of the above evaporators, the heat transfer tube group is configured such that a plurality of heat transfer tube bundles in which a plurality of heat transfer tubes are bundled are arranged in a horizontal direction, and a gap extending in the vertical direction is formed between the heat transfer tube bundles. Also good.

上記構成の蒸発器によれば、複数の伝熱管束の間にある鉛直な空隙が、伝熱管群と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒の液面に容易に浮上できる。したがって、冷媒液面下で伝熱管群が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群の伝熱性能を高めることができる。   According to the evaporator having the above configuration, the vertical gap between the plurality of heat transfer tube bundles becomes a passage for the boiling bubbles of the low-pressure refrigerant boiled by heat exchange with the heat transfer tube group. Thereby, the boiling bubbles can easily float on the liquid level of the low-pressure refrigerant. Therefore, it is possible to prevent the heat transfer tube group from being surrounded by boiling bubbles and drying out under the refrigerant liquid level, and to improve the heat transfer performance of the heat transfer tube group.

上記の蒸発器において、前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置された構成としてもよい。   In the evaporator, the refrigerant circulation hole formed in the refrigerant distribution plate may be arranged vertically below the gap.

上記構成の蒸発器によれば、冷媒分配板に穿設された冷媒流通孔を通過して上方に放流される低圧冷媒の流れが、空隙を通過して伝熱管群の上端まで掛かるため、伝熱管群の伝熱性能を高めることができる。   According to the evaporator having the above-described configuration, the flow of the low-pressure refrigerant that passes through the refrigerant flow hole formed in the refrigerant distribution plate and is discharged upward passes through the gap and reaches the upper end of the heat transfer tube group. The heat transfer performance of the heat tube group can be enhanced.

上記のいずれかの蒸発器において、前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置された構成としてもよい。   In any of the above evaporators, a demister that is positioned between the refrigerant outlet and the heat transfer tube group inside the pressure vessel and performs gas-liquid separation of the refrigerant is disposed immediately above the heat transfer tube group. A configuration may be adopted.

低圧冷媒を用いる場合、ガス流速が大きいので、噴き上がる液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタを設置すると、冷媒液面からデミスタまでの距離が長くなり、圧力容器のシェル径が大きくなってしまう。   When the low-pressure refrigerant is used, the gas flow rate is large, and therefore the distance until the droplets of the liquid-phase refrigerant that spouts are separated from the gas-phase refrigerant by its own weight becomes relatively long. For this reason, if the demister is installed at a position higher than the position where the droplets separate by their own weight, the distance from the coolant level to the demister becomes longer, and the shell diameter of the pressure vessel becomes larger.

上記のようにデミスタを伝熱管群の直上部に配置することにより、噴き上がる液滴量をデミスタによって減少させ、キャリーオーバー量を減少させることができる。さらに、デミスタを伝熱管群の直上部に配置することにより、デミスタ上の空間において低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて低圧冷媒のキャリーオーバーを防止することができる。   By disposing the demister directly above the heat transfer tube group as described above, the amount of droplets ejected can be reduced by the demister, and the carry-over amount can be reduced. Furthermore, by placing the demister directly above the heat transfer tube group, the evaporation mist of the low-pressure refrigerant is promoted to become a large diameter droplet in the space above the demister, and the distance at which the droplet separates by its own weight is reduced to reduce the pressure. The carry over of the refrigerant can be prevented.

上記の蒸発器において、前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられた構成としてもよい。   In the evaporator described above, the demister may be provided so that the entire circumference of the demister is in contact with the inner circumference of the pressure vessel.

上記構成の蒸発器によれば、圧力容器の内部における低圧冷媒のガス流の全量がデミスタを通過しなければならず、ガス流の流動抵抗が増大する。このため、圧力容器内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。   According to the evaporator configured as described above, the entire amount of the gas flow of the low-pressure refrigerant inside the pressure vessel must pass through the demister, and the flow resistance of the gas flow increases. For this reason, the flow velocity distribution of the gas flow in the pressure vessel is leveled, the peak value of the local gas flow velocity is lowered, the amount of droplets generated is reduced, and the self-weight separation distance of the droplets is shortened. The carry over of the refrigerant can be prevented.

上記のいずれかの蒸発器において、前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さくされた構成としてもよい。   In any one of the evaporators described above, the individual heat transfer tubes constituting the heat transfer tube group have a surface direction intersecting with the longitudinal axis direction of the pressure vessel and are spaced in the longitudinal axis direction of the pressure vessel. The heat transfer tube support plate is installed penetrating through the plurality of arranged heat transfer tube support plates, and the heat transfer tube support plate installation interval in the vicinity of the upstream position of the heat transfer tube group is greater than the heat transfer tube support plate installation interval at other positions. Alternatively, the configuration may be reduced.

伝熱管群の上流側の位置付近では、伝熱管群の内部を流れる被冷却液と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群が沸騰泡の振動に共振して破損する懸念がある。   In the vicinity of the position upstream of the heat transfer tube group, the temperature difference between the liquid to be cooled and the low pressure refrigerant flowing inside the heat transfer tube group is large, so that the low pressure refrigerant boils violently and the specific volume of the boiling bubbles is higher than that of the high pressure refrigerant. Because of the large size, a larger vibration is generated than when a high-pressure refrigerant is used. For this reason, there is a concern that the heat transfer tube group is damaged due to resonance with the vibration of the boiling bubbles.

上記のように、伝熱管群の上流側の位置付近における伝熱管支持板の設置間隔を、他の位置における伝熱管支持板の設置間隔よりも小さくすることにより、伝熱管群の上流側付近における共振を抑制して破損を防止することができる。   As described above, by setting the installation interval of the heat transfer tube support plate in the vicinity of the upstream position of the heat transfer tube group to be smaller than the installation interval of the heat transfer tube support plate in another position, in the vicinity of the upstream side of the heat transfer tube group Resonance can be suppressed and damage can be prevented.

本発明に係るターボ冷凍装置は、最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、圧縮された前記低圧冷媒を凝縮させる凝縮器と、膨張した前記低圧冷媒を蒸発させる上記のいずれかの蒸発器と、を具備してなることを特徴とする。   The turbo refrigeration apparatus according to the present invention is a turbo compressor that compresses low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG, a condenser that condenses the compressed low-pressure refrigerant, and evaporates the expanded low-pressure refrigerant. Any one of the evaporators described above is provided.

上記構成のターボ冷凍装置によれば、低圧冷媒を用いた場合に、蒸発器内における低圧冷媒の沸騰泡による伝熱管群のドライアウトや、低圧冷媒の液滴がターボ圧縮機にキャリーオーバーされることを防止し、低圧冷媒による効率向上を図ることができる。   According to the turbo refrigeration apparatus having the above-described configuration, when low-pressure refrigerant is used, dry-out of the heat transfer tube group due to boiling bubbles of the low-pressure refrigerant in the evaporator and droplets of the low-pressure refrigerant are carried over to the turbo compressor. This can be prevented and the efficiency can be improved by the low-pressure refrigerant.

以上のように、本発明に係る蒸発器、これを備えたターボ冷凍装置によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置において、蒸発器内における伝熱管群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機側にキャリーオーバーされることによる効率低下を抑制することができる。   As described above, according to the evaporator according to the present invention and the turbo refrigeration apparatus including the evaporator, in the turbo refrigeration apparatus using the low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG, the heat transfer tube group in the evaporator As a result, it is possible to improve the heat transfer performance by preventing the dry-out of the liquid and to suppress a decrease in efficiency due to the liquid-phase low-pressure refrigerant being carried over to the turbo compressor side.

本発明の実施形態に係るターボ冷凍装置の全体図である。1 is an overall view of a turbo refrigeration apparatus according to an embodiment of the present invention. 図1のII矢視により本発明の第1実施形態を示す蒸発器の側面図である。It is a side view of the evaporator which shows 1st Embodiment of this invention by the II arrow view of FIG. 図2のIII−III線に沿う蒸発器の縦断面図である。It is a longitudinal cross-sectional view of the evaporator which follows the III-III line of FIG. 図2のIV−IV線に沿う蒸発器の縦断面図である。It is a longitudinal cross-sectional view of the evaporator which follows the IV-IV line of FIG. 本発明の第2実施形態を示す蒸発器の側面図である。It is a side view of the evaporator which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す蒸発器の縦断面図である。It is a longitudinal cross-sectional view of the evaporator which shows 3rd Embodiment of this invention. 図6のVII矢視図である。It is a VII arrow line view of FIG. (a),(b)は、それぞれ本発明の第4実施形態を示す冷媒入口の縦断面図である。(A), (b) is a longitudinal cross-sectional view of the refrigerant inlet which shows 4th Embodiment of this invention, respectively.

以下に、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るターボ冷凍装置の全体図である。このターボ冷凍装置1は、冷媒を圧縮するターボ圧縮機2と、凝縮器3と、高圧膨張弁4と、中間冷却器5と、低圧膨張弁6と、蒸発器7と、潤滑油タンク8と、回路箱9と、インバータユニット10と、操作盤11等を備えてユニット状に構成されている。潤滑油タンク8は、ターボ圧縮機2の軸受や増速器等に供給する潤滑油を貯留するタンクである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an overall view of a turbo refrigeration apparatus according to an embodiment of the present invention. The turbo refrigeration apparatus 1 includes a turbo compressor 2 that compresses refrigerant, a condenser 3, a high-pressure expansion valve 4, an intermediate cooler 5, a low-pressure expansion valve 6, an evaporator 7, and a lubricating oil tank 8. The circuit box 9, the inverter unit 10, the operation panel 11 and the like are provided in a unit shape. The lubricating oil tank 8 is a tank that stores lubricating oil to be supplied to the bearings, the speed increaser, and the like of the turbo compressor 2.

凝縮器3と蒸発器7は耐圧性の高い円胴シェル形状に形成され、その軸線を略水平方向に延在させた状態で互いに隣り合うように平行に配置されている。凝縮器3は蒸発器7よりも相対的に高い位置に配置され、その下方に回路箱9が設置されている。中間冷却器5と潤滑油タンク8は、凝縮器3と蒸発器7との間に挟まれて設置されている。インバータユニット10は凝縮器3の上部に設置され、操作盤11は蒸発器7の上方に配置されている。潤滑油タンク8と回路箱9とインバータユニット10と操作盤11は、それぞれ平面視でターボ冷凍装置1の全体輪郭から大きくはみ出さないように配置されている。   The condenser 3 and the evaporator 7 are formed in a cylindrical shell shape with high pressure resistance, and are arranged in parallel so as to be adjacent to each other with their axes extending in a substantially horizontal direction. The condenser 3 is disposed at a relatively higher position than the evaporator 7, and a circuit box 9 is installed below the condenser 3. The intercooler 5 and the lubricating oil tank 8 are installed between the condenser 3 and the evaporator 7. The inverter unit 10 is installed on the top of the condenser 3, and the operation panel 11 is arranged above the evaporator 7. The lubricating oil tank 8, the circuit box 9, the inverter unit 10, and the operation panel 11 are arranged so as not to protrude significantly from the entire outline of the turbo refrigeration apparatus 1 in plan view.

ターボ圧縮機2は、電動機13によって回転駆動される公知の遠心タービン型のものであり、その軸線を略水平方向に延在させた姿勢で蒸発器7の上方に配置されている。電動機13はインバータユニット10によって駆動される。ターボ圧縮機2は後述するように蒸発器7の冷媒出口23から吸入管14を経て供給される気相状の冷媒を圧縮する。冷媒としては、最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒が用いられる。   The turbo compressor 2 is of a known centrifugal turbine type that is rotationally driven by an electric motor 13, and is disposed above the evaporator 7 in a posture in which the axis thereof extends in a substantially horizontal direction. The electric motor 13 is driven by the inverter unit 10. As will be described later, the turbo compressor 2 compresses the gas-phase refrigerant supplied from the refrigerant outlet 23 of the evaporator 7 through the suction pipe 14. As the refrigerant, a low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used.

ターボ圧縮機2の吐出口と凝縮器3の上部との間が吐出管15により接続され、凝縮器3の底部と中間冷却器5の底部との間が冷媒管16により接続されている。また、中間冷却器5の底部と蒸発器7との間が冷媒管17により接続され、中間冷却器5の上部とターボ圧縮機2の中段との間が冷媒管18により接続されている。冷媒管16には高圧膨張弁4が設けられ、冷媒管17には低圧膨張弁6が設けられている。   The discharge port of the turbo compressor 2 and the top of the condenser 3 are connected by a discharge pipe 15, and the bottom of the condenser 3 and the bottom of the intermediate cooler 5 are connected by a refrigerant pipe 16. Further, the bottom of the intermediate cooler 5 and the evaporator 7 are connected by a refrigerant pipe 17, and the upper part of the intermediate cooler 5 and the middle stage of the turbo compressor 2 are connected by a refrigerant pipe 18. The refrigerant pipe 16 is provided with the high-pressure expansion valve 4, and the refrigerant pipe 17 is provided with the low-pressure expansion valve 6.

[第1実施形態]
図2〜図4は蒸発器7の第1実施形態を示している。
図2に示すように、蒸発器7は、水平方向に延在する円胴シェル形状の圧力容器21と、この圧力容器21の下部に設けられる冷媒入口22と、圧力容器21の上部に設けられる冷媒出口23と、圧力容器21の内部を長手軸方向に通過する伝熱管群25と、冷媒分配板26と、デミスタ27とを具備して構成されている。
[First Embodiment]
2 to 4 show a first embodiment of the evaporator 7.
As shown in FIG. 2, the evaporator 7 is provided in a cylindrical shell-shaped pressure vessel 21 extending in the horizontal direction, a refrigerant inlet 22 provided in a lower portion of the pressure vessel 21, and an upper portion of the pressure vessel 21. A refrigerant outlet 23, a heat transfer tube group 25 that passes through the inside of the pressure vessel 21 in the longitudinal axis direction, a refrigerant distribution plate 26, and a demister 27 are provided.

冷媒入口22と冷媒出口23は、それぞれ圧力容器21の長手軸方向中間部に配置されており、冷媒入口22は圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成され、冷媒出口23は圧力容器21の上部から鉛直上方に延出する短いパイプ状に形成されている。図1に示すように、冷媒入口22には中間冷却器5の底部から延出する冷媒管17が接続され、冷媒出口23にはターボ圧縮機2の吸入管14が接続されている。   The refrigerant inlet 22 and the refrigerant outlet 23 are respectively disposed in the middle portion in the longitudinal axis direction of the pressure vessel 21, and the refrigerant inlet 22 is formed in a short pipe shape extending horizontally and tangentially from the bottom of the pressure vessel 21, The refrigerant outlet 23 is formed in a short pipe shape extending vertically upward from the upper part of the pressure vessel 21. As shown in FIG. 1, the refrigerant inlet 17 is connected to the refrigerant pipe 17 extending from the bottom of the intermediate cooler 5, and the refrigerant outlet 23 is connected to the suction pipe 14 of the turbo compressor 2.

圧力容器21の内部には、その一端(例えば図2に向かって左端)の下側に入口チャンバ31、その上に出口チャンバ32が、それぞれ独立した部屋として設けられている。また、圧力容器21の内部他端(例えば図2に向かって右端)にはUターンチャンバ33が独立した部屋として設けられている。これらのチャンバ31,32,33はいずれもデミスタ27よりも下に配置されている。入口チャンバ31には入口ノズル34が設けられ、出口チャンバ32には出口ノズル35が設けられている。   Inside the pressure vessel 21, an inlet chamber 31 is provided below one end (for example, the left end in FIG. 2), and an outlet chamber 32 is provided thereon as independent rooms. In addition, a U-turn chamber 33 is provided as an independent room at the other inner end of the pressure vessel 21 (for example, the right end in FIG. 2). These chambers 31, 32, and 33 are all disposed below the demister 27. The inlet chamber 31 is provided with an inlet nozzle 34, and the outlet chamber 32 is provided with an outlet nozzle 35.

図2および図3、図4に示すように、伝熱管群25は、圧力容器21内部の長手軸方向一端(図2中の左端)から他端(図2中の右端)まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを備えている。具体的には、往路管群25Aは入口チャンバ31とUターンチャンバ33の下部との間を繋ぐように配設され、復路管群25Bは出口チャンバ32とUターンチャンバ33の上部との間を繋ぐように配設されている。即ち、往路管群25Aは圧力容器21の内部下方に配置され、復路管群25Bは圧力容器21の内部上方に配置されている。   As shown in FIGS. 2, 3, and 4, the heat transfer tube group 25 is a forward tube group extending from one end (left end in FIG. 2) in the longitudinal axis direction to the other end (right end in FIG. 2) inside the pressure vessel 21. 25A and a return pipe group 25B that communicates with the forward pipe group 25A at the other end in the longitudinal axis inside the pressure vessel 21 and returns from the other end in the longitudinal axis inside the pressure vessel 21 to one end. Specifically, the outgoing pipe group 25A is disposed so as to connect the inlet chamber 31 and the lower part of the U-turn chamber 33, and the return pipe group 25B is provided between the outlet chamber 32 and the upper part of the U-turn chamber 33. It arrange | positions so that it may connect. In other words, the outward pipe group 25 </ b> A is arranged below the inside of the pressure vessel 21, and the return pipe group 25 </ b> B is arranged inside the pressure vessel 21.

入口ノズル34からは、冷媒に冷却される被冷却液として、例えば水(水道水、精製水、蒸留水等)が流入するようになっている。この水は、入口チャンバ31から流入して往路管群25Aを流れ、Uターンチャンバ33にてUターンした後、復路管群25Bを流れ、出口チャンバ21を経て出口ノズル35から冷水として流出する。   From the inlet nozzle 34, for example, water (tap water, purified water, distilled water, etc.) flows as a liquid to be cooled that is cooled by the refrigerant. This water flows from the inlet chamber 31 and flows through the forward pipe group 25A, and after making a U-turn in the U-turn chamber 33, flows through the backward pipe group 25B, and flows out from the outlet nozzle 35 through the outlet chamber 21 as cold water.

図3、図4に示すように、伝熱管群25を構成する往路管群25Aと復路管群25Bは、それぞれ多数の伝熱管が束ねられた伝熱管束25aが水平方向に複数(例えば4つずつ)平行に配列された構成である。各伝熱管束25aの間には鉛直方向に延びる空隙S1が形成されている。また、往路管群25Aと復路管群25Bとの間には水平方向に延びる空隙S2が形成されている。   As shown in FIGS. 3 and 4, the forward tube group 25A and the return tube group 25B constituting the heat transfer tube group 25 each include a plurality of heat transfer tube bundles 25a in which a large number of heat transfer tubes are bundled in the horizontal direction (for example, four Each) arranged in parallel. A gap S1 extending in the vertical direction is formed between the heat transfer tube bundles 25a. Further, a gap S2 extending in the horizontal direction is formed between the forward tube group 25A and the backward tube group 25B.

図2に示すように、伝熱管群25(25A,25B)を構成する個々の伝熱管は、圧力容器21の内部において複数の伝熱管支持板37に支持されながら圧力容器21の内部に固定されている。これらの伝熱管支持板37は、圧力容器21の長手軸方向に交差する面方向を有する平板状であり、圧力容器21の長手軸方向に間隔を空けて複数配置され、圧力容器21の内面に固定されている。伝熱管支持板37には多数の貫通穴が穿設されており、これらの貫通穴に伝熱管が密に挿通されている。   As shown in FIG. 2, individual heat transfer tubes constituting the heat transfer tube group 25 (25A, 25B) are fixed inside the pressure vessel 21 while being supported by a plurality of heat transfer tube support plates 37 inside the pressure vessel 21. ing. These heat transfer tube support plates 37 have a flat plate shape having a surface direction intersecting with the longitudinal axis direction of the pressure vessel 21. A plurality of these heat transfer tube support plates 37 are arranged at intervals in the longitudinal axis direction of the pressure vessel 21. It is fixed. A large number of through holes are formed in the heat transfer tube support plate 37, and the heat transfer tubes are densely inserted into the through holes.

圧力容器21の長手軸方向に沿う伝熱管支持板37の設置間隔は、伝熱管群25の上流側の位置付近、つまり往路管群25Aの上流側の位置(図2中の左方)付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。例えば、L1はL2の半分程度となっている。   The installation interval of the heat transfer tube support plate 37 along the longitudinal axis direction of the pressure vessel 21 is in the vicinity of the upstream position of the heat transfer tube group 25, that is, in the vicinity of the upstream position of the forward tube group 25A (left side in FIG. 2). The installation interval L1 is smaller than the installation interval L2 at other positions. For example, L1 is about half of L2.

一方、図2〜図4に示すように、冷媒分配板26は、圧力容器21の内部において冷媒入口22と伝熱管群25(往路管群25A)との間に設置されている。この冷媒分配板26は、多数の冷媒流通孔26aが穿設された板状の部材である。   On the other hand, as shown in FIGS. 2 to 4, the refrigerant distribution plate 26 is installed between the refrigerant inlet 22 and the heat transfer pipe group 25 (outward pipe group 25 </ b> A) inside the pressure vessel 21. The refrigerant distribution plate 26 is a plate-like member having a large number of refrigerant flow holes 26a.

この冷媒分配板26における単位面積あたりの冷媒流通孔26aの面積比率は、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において、他の範囲、例えば伝熱管群25の中間区間の位置に対応する範囲A2よりも大きくされている。また、この冷媒流通孔26aの面積比率は、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。例えば、範囲A1,A3における冷媒流通孔26aの面積比率は33〜38%、範囲A2における冷媒流通孔26aの面積比率は24〜33%を例示することができるが、この範囲のみには限定されない。   The area ratio of the refrigerant flow holes 26a per unit area in the refrigerant distribution plate 26 is in the range A1 corresponding to the vicinity of the upstream position of the heat transfer tube group 25 (25A), for example, in the middle of the heat transfer tube group 25. It is larger than the range A2 corresponding to the position of the section. In addition, the area ratio of the refrigerant circulation hole 26a is larger in the ranges A1 and A3 at both ends in the longitudinal axis direction of the refrigerant distribution plate 26 than in the range A2 in the middle portion in the longitudinal axis direction. For example, the area ratio of the refrigerant flow holes 26a in the ranges A1 and A3 can be 33 to 38%, and the area ratio of the refrigerant flow holes 26a in the range A2 can be 24 to 33%, but is not limited to this range. .

図3、図4に示すように、伝熱管群25(25A,25B)を構成する複数の伝熱管束25aの間に形成された鉛直方向に延びる空隙S1の鉛直下に、冷媒分配板26の冷媒流通孔26aが配置されている。つまり、平面視で、空隙S1の長手方向に沿って冷媒流通孔26aが配列されている。   As shown in FIGS. 3 and 4, the refrigerant distribution plate 26 is vertically below a gap S <b> 1 that extends between the plurality of heat transfer tube bundles 25 a constituting the heat transfer tube group 25 (25 </ b> A, 25 </ b> B). A refrigerant circulation hole 26a is arranged. That is, the refrigerant circulation holes 26a are arranged along the longitudinal direction of the gap S1 in plan view.

図2〜図4に示すように、デミスタ27は、圧力容器21の内部において冷媒出口23と伝熱管群25(復路管群25B)との間に配置されている。デミスタ27は、例えばワイヤーをメッシュ状に絡め合わせた通気性に富む部材であり、低圧冷媒の気液分離を行うものである。ワイヤーメッシュに限らず、通気性が良ければ他の多孔状の物質であってもよい。   As shown in FIGS. 2 to 4, the demister 27 is disposed inside the pressure vessel 21 between the refrigerant outlet 23 and the heat transfer tube group 25 (return tube group 25 </ b> B). The demister 27 is a member having high air permeability, for example, in which wires are entangled in a mesh shape, and performs gas-liquid separation of a low-pressure refrigerant. Not only a wire mesh but other porous substances may be used as long as air permeability is good.

デミスタ27は、その周囲全周が圧力容器21の内周に接するように取り付けられており、このデミスタ27を境に圧力容器21の内部空間が上下に二分されている。また、デミスタ27の設置高さは、伝熱管群25の直上部とされている。具体的には、伝熱管群25とデミスタ27との間隔はチューブ配置ピッチの2倍程度とされている。一方、デミスタ27と冷媒出口23との間には比較的大きな高低差(例えば圧力容器21の直径の50%程度以上)が設けられている。   The demister 27 is attached so that the entire circumference of the demister 27 is in contact with the inner circumference of the pressure vessel 21, and the internal space of the pressure vessel 21 is divided into two vertically with the demister 27 as a boundary. Further, the installation height of the demister 27 is set directly above the heat transfer tube group 25. Specifically, the interval between the heat transfer tube group 25 and the demister 27 is about twice the tube arrangement pitch. On the other hand, a relatively large height difference (for example, about 50% or more of the diameter of the pressure vessel 21) is provided between the demister 27 and the refrigerant outlet 23.

以上のように構成された蒸発器7を備えたターボ冷凍装置1において、ターボ圧縮機2は電動機13に回転駆動され、蒸発器7から吸入管14を経て供給される気相状の低圧冷媒を圧縮し、この圧縮された低圧冷媒を吐出管15から凝縮器3に送給する。   In the turbo refrigeration apparatus 1 including the evaporator 7 configured as described above, the turbo compressor 2 is driven to rotate by the electric motor 13, and the gas-phase low-pressure refrigerant supplied from the evaporator 7 through the suction pipe 14 is supplied. The compressed low-pressure refrigerant is supplied from the discharge pipe 15 to the condenser 3.

凝縮器3の内部では、ターボ圧縮機2で圧縮された高温の低圧冷媒が冷却水と熱交換されることにより凝縮熱を冷却されて凝縮液化される。凝縮器3で液相状になった低圧冷媒は、凝縮器3から延出する冷媒管16に設けられた高圧膨張弁4を通過することにより膨張し、気液混合状態となって中間冷却器5に給送され、ここに一旦貯留される。   Inside the condenser 3, the high-temperature low-pressure refrigerant compressed by the turbo compressor 2 is heat-exchanged with cooling water, whereby the heat of condensation is cooled and condensed. The low-pressure refrigerant that has become a liquid phase in the condenser 3 expands by passing through the high-pressure expansion valve 4 provided in the refrigerant pipe 16 that extends from the condenser 3, and becomes a gas-liquid mixed state. 5 and is temporarily stored here.

中間冷却器5の内部では、高圧膨張弁4にて膨張した気液混合状態の低圧冷媒が気相分と液相分とに気液分離される。ここで分離された低圧冷媒の液相分は、中間冷却器5の底部から延出する冷媒管17に設けられた低圧膨張弁6によりさらに膨張して気液二相流となって蒸発器7に給送される。また、中間冷却器5で分離された低圧冷媒の気相分は、中間冷却器5の上部から延出する冷媒管18を経てターボ圧縮機2の中段部に給送され、再び圧縮される。   Inside the intercooler 5, the gas-liquid mixed low-pressure refrigerant expanded by the high-pressure expansion valve 4 is separated into a gas phase and a liquid phase. The liquid phase component of the low-pressure refrigerant separated here is further expanded by a low-pressure expansion valve 6 provided in the refrigerant pipe 17 extending from the bottom of the intermediate cooler 5 to become a gas-liquid two-phase flow, and the evaporator 7. To be sent to. Further, the gas phase component of the low-pressure refrigerant separated by the intermediate cooler 5 is fed to the middle stage of the turbo compressor 2 via the refrigerant pipe 18 extending from the upper part of the intermediate cooler 5 and is compressed again.

図2〜図4に示すように、蒸発器7では、低圧膨張弁6において断熱膨張した後の低温な気液二相流状の低圧冷媒が冷媒入口22から圧力容器21の内部に流入し、冷媒分配板26の下方で圧力容器21の長手軸方向に分散した後、冷媒分配板26の冷媒流通孔26aを通過して上方に流れる。そして、圧力容器21の内部で低圧冷媒のプールが形成される。この低圧冷媒プールの液面レベルは、伝熱管群25とデミスタ27との間となるように自動調整される。   As shown in FIGS. 2 to 4, in the evaporator 7, low-temperature gas-liquid two-phase low-pressure refrigerant after adiabatic expansion in the low-pressure expansion valve 6 flows into the pressure vessel 21 from the refrigerant inlet 22, After being dispersed in the longitudinal axis direction of the pressure vessel 21 below the refrigerant distribution plate 26, the refrigerant passes through the refrigerant flow holes 26 a of the refrigerant distribution plate 26 and flows upward. A pool of low-pressure refrigerant is formed inside the pressure vessel 21. The liquid level of the low-pressure refrigerant pool is automatically adjusted to be between the heat transfer tube group 25 and the demister 27.

伝熱管群25(25A,25B)は、圧力容器21の内部で低圧冷媒プール中に浸漬された状態となり、低圧冷媒と熱交換する。これにより、伝熱管群25の内部を通過する水が冷却されて冷水になる。この冷水は空調用の冷熱媒や工業用冷却水等として利用される。   The heat transfer tube group 25 (25A, 25B) is immersed in the low-pressure refrigerant pool inside the pressure vessel 21, and exchanges heat with the low-pressure refrigerant. Thereby, the water which passes the inside of the heat exchanger tube group 25 is cooled, and becomes cold water. This cold water is used as a cooling / heating medium for air conditioning, industrial cooling water, or the like.

伝熱管群25との熱交換により蒸発(気化)した低圧冷媒は、デミスタ27によって気液分離される。即ち、気化した低圧冷媒(気化冷媒)が圧力容器21の内部を冷媒出口23に向かう時には、高圧冷媒に比べて比体積が大きい低圧冷媒の特性によって速い流れが形成される。そして、低圧冷媒プールから噴き上げられた未気化の液相冷媒の液滴が、気化冷媒の速い流れに同伴して冷媒出口23から出ようとし、キャリーオーバーが発生する虞がある。   The low-pressure refrigerant evaporated (vaporized) by heat exchange with the heat transfer tube group 25 is gas-liquid separated by the demister 27. That is, when the vaporized low-pressure refrigerant (vaporized refrigerant) travels through the pressure vessel 21 toward the refrigerant outlet 23, a fast flow is formed due to the characteristics of the low-pressure refrigerant having a larger specific volume than the high-pressure refrigerant. Then, the droplets of the unvaporized liquid-phase refrigerant ejected from the low-pressure refrigerant pool tend to come out from the refrigerant outlet 23 along with the fast flow of the vaporized refrigerant, and there is a possibility that carry-over occurs.

しかし、この液滴は多孔状のデミスタ27に捕捉されて分離され、重力により低圧冷媒プールに落下するため、キャリーオーバーが防止される。このように気液分離された気化冷媒は、冷媒出口23から出て吸入管14を経て再びターボ圧縮機2に吸入・圧縮され、以下、この冷凍サイクルが繰り返される。   However, since these droplets are captured and separated by the porous demister 27 and fall into the low-pressure refrigerant pool due to gravity, carry-over is prevented. The vaporized refrigerant thus separated from the gas and liquid exits from the refrigerant outlet 23 and is again sucked and compressed into the turbo compressor 2 through the suction pipe 14, and this refrigeration cycle is repeated thereafter.

この蒸発器7は、圧力容器21の内部において冷媒入口22と伝熱管群25(25A,25B)との間に設置されている冷媒分配板26における冷媒流通孔26aの面積比率が、伝熱管群25(25A)の上流側の位置付近に対応する範囲A1において他の範囲A2よりも大きくされている。   In the evaporator 7, the area ratio of the refrigerant circulation holes 26a in the refrigerant distribution plate 26 installed between the refrigerant inlet 22 and the heat transfer tube group 25 (25A, 25B) inside the pressure vessel 21 is such that the heat transfer tube group. The range A1 corresponding to the vicinity of the position on the upstream side of 25 (25A) is made larger than the other range A2.

このため、冷媒入口22から圧力容器21内に導入された低圧冷媒は、伝熱管群25(25A)の上流側の位置付近に比較的多く分配される。また、他の位置には相対的に少ない量の低圧冷媒が分配される。これにより、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)が揃えられる。   For this reason, the low-pressure refrigerant introduced into the pressure vessel 21 from the refrigerant inlet 22 is distributed in a relatively large amount near the upstream position of the heat transfer tube group 25 (25A). A relatively small amount of low-pressure refrigerant is distributed to other positions. Thereby, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel 21 is made uniform.

蒸発器21の内部における伝熱管群25(25A)の上流側の位置付近では、伝熱管群25(25A)の内部を流れる水との温度差が大きいために低圧冷媒が激しく沸騰する。しかし、この位置には上記のように他の位置よりも相対的に多くの低圧冷媒が分配されるため、伝熱管群25(25A)の上流側の位置付近が低圧冷媒の沸騰泡に囲まれてドライアウトする状況にならず、伝熱管群25(25A,25B)が冷媒二相液中に浸漬された状態を維持することができる。このため、伝熱管群25(25A,25B)の内部を流れる被冷却液と低圧冷媒とを良好に熱交換させることができ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。   In the vicinity of the position upstream of the heat transfer tube group 25 (25A) in the evaporator 21, the low-pressure refrigerant boils violently due to a large temperature difference from the water flowing in the heat transfer tube group 25 (25A). However, since a relatively large amount of low-pressure refrigerant is distributed to this position as described above, the vicinity of the upstream position of the heat transfer tube group 25 (25A) is surrounded by boiling bubbles of low-pressure refrigerant. Thus, the heat transfer tube group 25 (25A, 25B) can be maintained immersed in the refrigerant two-phase liquid. For this reason, the to-be-cooled liquid and the low-pressure refrigerant flowing inside the heat transfer tube group 25 (25A, 25B) can be favorably exchanged, and the heat transfer performance of the heat transfer tube group 25 (25A, 25B) can be improved. it can.

上記のように圧力容器21の長手軸方向中間部において低圧冷媒プールのフロスレベルが長手軸方向両端部よりも上昇することがないため、本実施形態のように圧力容器21の長手軸方向中間部にターボ圧縮機2の吸入管14に通じる冷媒出口23を設けることにより、液相状の冷媒が気化冷媒の流れに乗ってターボ圧縮機2側にキャリーオーバーされることを効果的に防止し、ターボ圧縮機2の効率低下を抑制することができる。   As described above, since the floss level of the low-pressure refrigerant pool does not rise at both ends in the longitudinal axis direction of the pressure vessel 21 in the longitudinal axis direction intermediate portion, the longitudinal axis direction intermediate portion of the pressure vessel 21 as in the present embodiment. By providing the refrigerant outlet 23 leading to the suction pipe 14 of the turbo compressor 2, it is possible to effectively prevent the liquid-phase refrigerant from being carried over to the turbo compressor 2 side along the flow of the vaporized refrigerant, A reduction in efficiency of the turbo compressor 2 can be suppressed.

また、この蒸発器7は、冷媒入口22が圧力容器21の長手軸方向中間部に設けられるとともに、冷媒分配板26における冷媒流通孔26aの面積比率が、冷媒分配板26の長手軸方向両端部の範囲A1,A3において、長手軸方向中間部の範囲A2よりも大きくされている。   Further, the evaporator 7 is provided with the refrigerant inlet 22 in the intermediate portion in the longitudinal axis direction of the pressure vessel 21, and the area ratio of the refrigerant flow holes 26 a in the refrigerant distribution plate 26 is equal to both longitudinal end portions of the refrigerant distribution plate 26. In the ranges A1 and A3, the range A2 of the intermediate portion in the longitudinal axis direction is made larger.

このため、圧力容器21の長手軸方向中間部に設けられた冷媒入口22から圧力容器21内に導入された低圧冷媒は、圧力容器21内部の長手軸方向両端部に多く供給され、冷媒入口22の直上部となる圧力容器21の長手軸方向中間部には相対的に少なく供給される。このため、圧力容器21の内部における低圧冷媒プールの液面高(フロスレベル)を揃えて、伝熱管群25(25A,25B)の内部を流れる水と低圧冷媒とを良好に熱交換させ、伝熱管群25(25A,25B)の伝熱性能を高めることができる。   For this reason, a large amount of low-pressure refrigerant introduced into the pressure vessel 21 from the refrigerant inlet 22 provided in the intermediate portion in the longitudinal axis of the pressure vessel 21 is supplied to both ends in the longitudinal axis inside the pressure vessel 21, and the refrigerant inlet 22. A relatively small amount is supplied to an intermediate portion in the longitudinal axis direction of the pressure vessel 21 which is directly above the upper portion. For this reason, the liquid level height (floss level) of the low-pressure refrigerant pool inside the pressure vessel 21 is made uniform so that the heat flowing between the water flowing in the heat transfer tube group 25 (25A, 25B) and the low-pressure refrigerant is excellent. The heat transfer performance of the heat tube group 25 (25A, 25B) can be enhanced.

さらに、この蒸発器7の伝熱管群25は、圧力容器21内部の長手軸方向一端から他端まで延びる往路管群25Aと、圧力容器21内部の長手軸方向他端において往路管群25Aに連通し、圧力容器21内部の長手軸方向他端から一端まで戻る復路管群25Bとを具備している。そして、圧力容器21の内部において往路管群25Aが下方に配置され、復路管群25Bが上方に配置されている。   Further, the heat transfer tube group 25 of the evaporator 7 communicates with the forward tube group 25A extending from one end in the longitudinal axis inside the pressure vessel 21 to the other end, and the forward tube group 25A at the other longitudinal end inside the pressure vessel 21. And a return pipe group 25B that returns from the other end in the longitudinal axis direction inside the pressure vessel 21 to one end. In the pressure vessel 21, the forward tube group 25A is disposed below, and the return tube group 25B is disposed above.

このように伝熱管群25を構成すれば、伝熱管内を流れる水との温度差が大きく低圧冷媒の沸騰が激しくなる往路管群25Aが圧力容器21の下部に配置され、伝熱管内を流れる水との温度差が小さく低圧冷媒の沸騰が穏やかになる復路管群25Bが圧力容器21の上部に配置される。   If the heat transfer tube group 25 is configured in this manner, the forward tube group 25A in which the temperature difference with the water flowing in the heat transfer tube is large and the boiling of the low-pressure refrigerant is intense is arranged at the lower part of the pressure vessel 21, and flows in the heat transfer tube. A return pipe group 25 </ b> B in which the temperature difference with water is small and the boiling of the low-pressure refrigerant is gentle is arranged in the upper part of the pressure vessel 21.

このため、低圧冷媒の激しい沸騰が圧力容器21内における低圧冷媒プールの液面の下方(深部)で行われ、低圧冷媒プールの液面上に液相冷媒が飛散しにくくなる。したがって、液相状の冷媒が気化冷媒の流れに同伴してターボ圧縮機2側にキャリーオーバーされることを防止し、ターボ圧縮機2の効率低下を抑制することができる。   For this reason, intense boiling of the low-pressure refrigerant is performed below (in the deep part) the liquid level of the low-pressure refrigerant pool in the pressure vessel 21, and the liquid-phase refrigerant is less likely to scatter on the liquid level of the low-pressure refrigerant pool. Therefore, it is possible to prevent the liquid-phase refrigerant from being carried over to the turbo compressor 2 side along with the flow of the vaporized refrigerant, and to suppress the efficiency reduction of the turbo compressor 2.

伝熱管群25(25A,25B)は、複数の伝熱管が束ねられた伝熱管束25aが水平方向に複数配列され、これらの伝熱管束25aの間に鉛直方向に延びる空隙S1が形成されている。   In the heat transfer tube group 25 (25A, 25B), a plurality of heat transfer tube bundles 25a in which a plurality of heat transfer tubes are bundled are arranged in the horizontal direction, and a gap S1 extending in the vertical direction is formed between these heat transfer tube bundles 25a. Yes.

この複数の伝熱管束25aの間にある鉛直な空隙S1が、伝熱管群25(25A,25B)と熱交換して沸騰した低圧冷媒の沸騰泡の通り道となる。これにより、沸騰泡は低圧冷媒プールの液面に容易に浮上することができる。したがって、冷媒液面下で伝熱管群25(25A,25B)が沸騰泡に囲まれてドライアウトすることを防止し、伝熱管群25(25A,25B)の伝熱性能を高めることができる。   The vertical gap S1 between the plurality of heat transfer tube bundles 25a becomes a passage for boiling bubbles of the low-pressure refrigerant boiled by heat exchange with the heat transfer tube group 25 (25A, 25B). Thereby, the boiling bubbles can easily float on the liquid level of the low-pressure refrigerant pool. Therefore, it is possible to prevent the heat transfer tube group 25 (25A, 25B) from being surrounded by boiling bubbles and dry out under the refrigerant liquid level, and to improve the heat transfer performance of the heat transfer tube group 25 (25A, 25B).

これに加えて、空隙S1の鉛直下に、冷媒分配板26に穿設された冷媒流通孔26aが配置されているため、冷媒分配板26の冷媒流通孔26aを通過して上方に放流される低圧冷媒の流れが、空隙S1を通過して伝熱管群25(25A,25B)の上端まで掛かる。したがって、伝熱管群25(25A,25B)の伝熱性能を高めることができる。   In addition, since the refrigerant flow hole 26a drilled in the refrigerant distribution plate 26 is disposed vertically below the gap S1, it passes through the refrigerant flow hole 26a of the refrigerant distribution plate 26 and is discharged upward. The flow of the low-pressure refrigerant passes through the gap S1 and reaches the upper end of the heat transfer tube group 25 (25A, 25B). Therefore, the heat transfer performance of the heat transfer tube group 25 (25A, 25B) can be enhanced.

このターボ冷凍装置1のように低圧冷媒を用いる場合、高圧冷媒に比べて比堆積が大きい低圧冷媒の特性により、蒸発器7の圧力容器21内部におけるガス流速が速くなる。このため、圧力容器21内部の低圧冷媒プールから噴き上がった液相冷媒の液滴が自重により気相冷媒から分離されるまでの距離が比較的長くなる。このため、液滴が自重分離する位置よりも高位置にデミスタ27を設置すると、冷媒液面からデミスタ27までの距離が長くなり、圧力容器21のシェル径が大きくなってしまう。   When a low-pressure refrigerant is used as in the turbo refrigeration apparatus 1, the gas flow rate inside the pressure vessel 21 of the evaporator 7 is increased due to the characteristics of the low-pressure refrigerant that has a larger specific deposition than the high-pressure refrigerant. For this reason, the distance until the droplets of the liquid-phase refrigerant ejected from the low-pressure refrigerant pool inside the pressure vessel 21 are separated from the gas-phase refrigerant by its own weight becomes relatively long. For this reason, if the demister 27 is installed at a position higher than the position where the droplets separate by their own weight, the distance from the refrigerant liquid surface to the demister 27 becomes longer, and the shell diameter of the pressure vessel 21 becomes larger.

この蒸発器7では、デミスタ27を伝熱管群25の直上部に配置することにより、低圧冷媒プールから噴き上がる液滴量をデミスタ27によって減少させ、低圧冷媒の液滴が冷媒出口23から出てしまうこと(キャリーオーバー)を抑制している。
さらに、デミスタ27を伝熱管群25の直上部に配置することにより、相対的にデミスタ27上の空間高さを大きくし、低圧冷媒の蒸発ミストが大きな径の液滴になることを促進させ、液滴が自重分離する距離を縮めて、この点でも低圧冷媒のキャリーオーバーを抑制することができる。
In this evaporator 7, the demister 27 is disposed immediately above the heat transfer tube group 25, whereby the amount of liquid droplets ejected from the low-pressure refrigerant pool is reduced by the demister 27, and the low-pressure refrigerant liquid droplets exit from the refrigerant outlet 23. (Carry over) is suppressed.
Furthermore, by disposing the demister 27 directly above the heat transfer tube group 25, the space height on the demister 27 is relatively increased, and the evaporation mist of the low-pressure refrigerant is promoted to be a droplet having a large diameter, By reducing the distance at which the droplets separate by their own weight, the carry-over of the low-pressure refrigerant can also be suppressed in this respect.

さらに、この蒸発器7では、デミスタ27が、その周囲全周が圧力容器21の内周全周に接するように設けられている。これにより、圧力容器21の内部における低圧冷媒のガス流の全量がデミスタ27を通過することになり、ガス流の流動抵抗が増大する。このため、圧力容器21内におけるガス流の流速分布が平準化され、局所的なガス流速のピーク値が低下し、液滴の発生量を低減させるとともに、液滴の自重分離距離を短くし、低圧冷媒のキャリーオーバーを防止することができる。   Further, in the evaporator 7, the demister 27 is provided so that the entire circumference thereof is in contact with the entire inner circumference of the pressure vessel 21. As a result, the entire amount of the low-pressure refrigerant gas flow inside the pressure vessel 21 passes through the demister 27, and the flow resistance of the gas flow increases. For this reason, the flow velocity distribution of the gas flow in the pressure vessel 21 is leveled, the peak value of the local gas flow velocity is reduced, the amount of droplets generated is reduced, and the self-weight separation distance of the droplets is shortened, Carryover of the low-pressure refrigerant can be prevented.

また、この蒸発器7では、伝熱管群25の個々の伝熱管を支持している複数の伝熱管支持板37の、伝熱管群25の上流側の位置付近における設置間隔L1が、他の位置における設置間隔L2よりも小さくされている。   Moreover, in this evaporator 7, the installation space | interval L1 in the position vicinity of the upstream of the heat exchanger tube group 25 of the some heat exchanger tube support plate 37 which supports each heat exchanger tube of the heat exchanger tube group 25 is other position. Is smaller than the installation interval L2.

伝熱管群25の上流側の位置付近では、前述のように伝熱管群25の内部を流れる水と低圧冷媒との温度差が大きいために低圧冷媒が激しく沸騰し、その沸騰泡の比体積が高圧冷媒よりも大きいことから、高圧冷媒を使用した場合よりも大きな振動が発生する。このため、伝熱管群25が沸騰泡の振動に共振して破損する懸念がある。   In the vicinity of the upstream side position of the heat transfer tube group 25, as described above, the temperature difference between the water flowing in the heat transfer tube group 25 and the low pressure refrigerant is large, so the low pressure refrigerant boils violently, and the specific volume of the boiling bubbles is Since it is larger than the high-pressure refrigerant, a larger vibration is generated than when the high-pressure refrigerant is used. For this reason, there is a concern that the heat transfer tube group 25 may be damaged due to resonance with the vibration of the boiling bubbles.

上記のように、伝熱管群25の上流側の位置付近における伝熱管支持板37の設置間隔L1を、他の位置における設置間隔L2よりも小さくすることにより、伝熱管群25の上流側付近における設置剛性を高め、共振を抑制して破損を防止することができる。   As described above, by setting the installation interval L1 of the heat transfer tube support plate 37 in the vicinity of the upstream position of the heat transfer tube group 25 to be smaller than the installation interval L2 in other positions, in the vicinity of the upstream side of the heat transfer tube group 25. Installation rigidity can be increased, and resonance can be suppressed to prevent breakage.

[第2実施形態]
図5は本発明の第2実施形態を示す蒸発器の側面図である。
この蒸発器7Aは、圧力容器21の冷媒入口22Aが、圧力容器21の長手軸方向に沿って複数分散して設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。このため、同一構成の各部分には同一符号を付与して説明を省略する。
[Second Embodiment]
FIG. 5 is a side view of an evaporator showing a second embodiment of the present invention.
This evaporator 7A is different from the evaporator 7 (refrigerant inlet 22) of the first embodiment in that a plurality of refrigerant inlets 22A of the pressure vessel 21 are provided in a dispersed manner along the longitudinal axis direction of the pressure vessel 21. However, other configurations are the same. For this reason, the same code | symbol is provided to each part of the same structure, and description is abbreviate | omitted.

本実施形態では、例えば2つの冷媒入口22Aが、圧力容器21の長手軸方向に沿って分散し、各々の間が離間するように設けられている。冷媒入口22Aを3箇所以上に設けてもよい。これらの冷媒入口22Aは、第1実施形態の冷媒入口22と同じく、圧力容器21の底部から水平且つ接線状に延出する短いパイプ状に形成されている。各冷媒入口22Aの口径は、第1実施形態の冷媒入口22の口径よりも小さくされている。   In the present embodiment, for example, the two refrigerant inlets 22 </ b> A are provided so as to be distributed along the longitudinal axis direction of the pressure vessel 21 and to be separated from each other. The refrigerant inlet 22A may be provided at three or more locations. These refrigerant inlets 22 </ b> A are formed in a short pipe shape that extends horizontally and tangentially from the bottom of the pressure vessel 21, similar to the refrigerant inlet 22 of the first embodiment. The diameter of each refrigerant inlet 22A is made smaller than the diameter of the refrigerant inlet 22 of the first embodiment.

前述の通り、低圧冷媒は、高圧冷媒に比べて比体積が大きいため、蒸発器7Aに流入する体積流量が大きく動圧が高いが、これに合わせて冷媒分配板26の冷媒流通孔26aを小さくする等して圧損を大きくすると、低圧冷媒が冷媒流通孔26aから噴出する速度が大きくなり、伝熱管群25の振動や破損に繋がる。   As described above, since the specific volume of the low-pressure refrigerant is larger than that of the high-pressure refrigerant, the volumetric flow rate flowing into the evaporator 7A is large and the dynamic pressure is high, but the refrigerant distribution holes 26a of the refrigerant distribution plate 26 are made smaller accordingly. When the pressure loss is increased by, for example, increasing the speed at which the low-pressure refrigerant is ejected from the refrigerant circulation hole 26a, the heat transfer tube group 25 is vibrated or damaged.

この蒸発器7Aのように2つ、あるいは3つ以上の冷媒入口22Aを圧力容器21の長手軸方向に沿って離間させて設けることにより、第1実施形態のように単一の冷媒入口22を設けた場合に比べて圧力容器21内部への低圧冷媒の流入速度を低下させることができる。このため、冷媒分配板26の冷媒流通孔26aの径を大きくすることができ、これによって低圧冷媒が冷媒流通孔26aから噴出する速度を低下させることができる。   Like this evaporator 7A, two or three or more refrigerant inlets 22A are provided separated along the longitudinal axis direction of the pressure vessel 21, thereby providing a single refrigerant inlet 22 as in the first embodiment. Compared with the case where it provides, the inflow speed of the low-pressure refrigerant into the pressure vessel 21 can be reduced. For this reason, the diameter of the refrigerant | coolant circulation hole 26a of the refrigerant | coolant distribution board 26 can be enlarged, and the speed at which a low-pressure refrigerant | coolant ejects from the refrigerant | coolant circulation hole 26a can be reduced by this.

これにより、伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。   Thus, vibration and breakage of the heat transfer tube group 25 are prevented, and the liquid-phase low-pressure refrigerant is suppressed from being carried over to the turbo compressor 2 side due to local jetting or the like. The reduction in efficiency can be avoided.

[第3実施形態]
図6は本発明の第3実施形態を示す蒸発器の縦断面図であり、図7は図6のVII矢視図である。
この蒸発器7Bは、圧力容器21の底部に設けられている冷媒入口22の外側開口部22aから圧力容器21までの流路断面積が、外側開口部22aから圧力容器21に向かって拡大している。具体的には、外側開口部22aと圧力容器21との間に拡張流路22bが設けられている。それ以外の構成は図3に示す第1実施形態の蒸発器7と同様であるため、同一構成の各部分には同一符号を付与して説明を省略する。
[Third Embodiment]
6 is a longitudinal sectional view of an evaporator showing a third embodiment of the present invention, and FIG. 7 is a view taken along arrow VII in FIG.
In the evaporator 7B, the flow path cross-sectional area from the outer opening 22a of the refrigerant inlet 22 provided at the bottom of the pressure vessel 21 to the pressure vessel 21 increases from the outer opening 22a toward the pressure vessel 21. Yes. Specifically, an expansion channel 22 b is provided between the outer opening 22 a and the pressure vessel 21. Since the other configuration is the same as that of the evaporator 7 of the first embodiment shown in FIG. 3, the same reference numerals are given to the parts having the same configuration and the description thereof is omitted.

拡張流路22bは、例えば箱状に形成されており、その流路断面積が冷媒入口22の流路断面積よりも大きくされている。例えば拡張流路22bの流路断面積は冷媒入口22の流路断面積の2〜5倍程度に設定される。なお、拡張流路22bの形状は箱状のみに限定されず、その流路断面積が冷媒入口22の外側開口部22aよりも大きければ他の形状であってもよい。例えば、拡張流路22bをバルジ形状等にしてもよい。また、拡張流路22bを設けずに、冷媒入口22を、その外側開口部22aから圧力容器21側に向かって径が大きくなるテーパー管状とすること等が考えられる。   The extended flow path 22b is formed in, for example, a box shape, and the flow path cross-sectional area thereof is larger than the flow path cross-sectional area of the refrigerant inlet 22. For example, the channel cross-sectional area of the expansion channel 22 b is set to about 2 to 5 times the channel cross-sectional area of the refrigerant inlet 22. The shape of the extended flow path 22b is not limited to a box shape, and may be other shapes as long as the flow path cross-sectional area is larger than the outer opening 22a of the refrigerant inlet 22. For example, the expansion channel 22b may be formed in a bulge shape or the like. Further, it is conceivable that the refrigerant inlet 22 is formed in a tapered tubular shape whose diameter increases from the outer opening 22a toward the pressure vessel 21 without providing the expansion channel 22b.

このように、冷媒入口22の外側開口部22aから圧力容器21までの流路断面積を圧力容器21に向かって拡大させることにより、冷媒入口22を流れる低圧冷媒の流速が圧力容器21に向かって低下する。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
In this way, by increasing the cross-sectional area of the flow path from the outer opening 22 a of the refrigerant inlet 22 to the pressure vessel 21 toward the pressure vessel 21, the flow rate of the low-pressure refrigerant flowing through the refrigerant inlet 22 increases toward the pressure vessel 21. descend.
Therefore, the speed at which the low-pressure refrigerant is ejected from the refrigerant flow hole 26a of the refrigerant distribution plate 26 is reduced to prevent the heat transfer tube group 25 from being vibrated or damaged, and the liquid-phase low-pressure refrigerant is locally ejected. Thus, carry over to the turbo compressor 2 side can be suppressed, and a decrease in efficiency of the turbo compressor 2 can be avoided.

[第4実施形態]
図8(a),(b)は本発明の第4実施形態を示す蒸発器の縦断面図である。
この蒸発器7Cは、冷媒入口22の管内に、低圧冷媒の流速を減衰させる流速減衰部材が設けられている点で第1実施形態の蒸発器7(冷媒入口22)と相違し、その他の構成は同一である。
[Fourth Embodiment]
8 (a) and 8 (b) are longitudinal sectional views of an evaporator showing a fourth embodiment of the present invention.
This evaporator 7C is different from the evaporator 7 (refrigerant inlet 22) of the first embodiment in that a flow velocity attenuating member for attenuating the flow velocity of the low-pressure refrigerant is provided in the pipe of the refrigerant inlet 22, and other configurations. Are the same.

流速減衰部材としては、図8(a)に示すように、冷媒入口22の管内に多孔板(パンチングプレート等)22cを設置したり、図8(b)に示すように、冷媒入口22の管内に複数の邪魔板22dを迷路状に設置したりすることが考えられる。冷媒入口22の管内における低圧冷媒の流速を減衰させることができれば、これら以外のものを流速減衰部材として設置してもよい。   As the flow velocity attenuating member, as shown in FIG. 8 (a), a porous plate (punching plate or the like) 22c is installed in the pipe of the refrigerant inlet 22, or as shown in FIG. It may be possible to install a plurality of baffle plates 22d in a maze shape. As long as the flow rate of the low-pressure refrigerant in the pipe of the refrigerant inlet 22 can be attenuated, other than these may be installed as the flow velocity attenuating member.

このように、冷媒入口22の管内に流速減衰部材22c,22dを設けることにより、冷媒入口22から圧力容器21に流入する低圧冷媒の流速が低減される。
このため、低圧冷媒が冷媒分配板26の冷媒流通孔26aから噴出する速度を低下させて伝熱管群25の振動や破損を防止するとともに、液相状の低圧冷媒が局所的に噴き上がる等してターボ圧縮機2側にキャリーオーバーされることを抑制し、ターボ圧縮機2の効率低下を回避することができる。
Thus, by providing the flow velocity attenuating members 22c and 22d in the pipe of the refrigerant inlet 22, the flow velocity of the low-pressure refrigerant flowing into the pressure vessel 21 from the refrigerant inlet 22 is reduced.
Therefore, the speed at which the low-pressure refrigerant is ejected from the refrigerant flow hole 26a of the refrigerant distribution plate 26 is reduced to prevent the heat transfer tube group 25 from being vibrated or damaged, and the liquid-phase low-pressure refrigerant is locally ejected. Thus, carry over to the turbo compressor 2 side can be suppressed, and a decrease in efficiency of the turbo compressor 2 can be avoided.

以上に説明したように、本実施形態に係る蒸発器7,7A,7B,7C、およびこれらの蒸発器を備えたターボ冷凍装置1によれば、最高圧力0.2MPaG未満で使用される低圧冷媒を用いたターボ冷凍装置1において、蒸発器内における伝熱管25群のドライアウトを防止して伝熱性能を高めるとともに、液相状の低圧冷媒がターボ圧縮機2側にキャリーオーバーされることによる効率低下を抑制することができる。   As described above, according to the evaporators 7, 7A, 7B, and 7C according to the present embodiment and the turbo refrigeration apparatus 1 including these evaporators, the low-pressure refrigerant that is used at a maximum pressure of less than 0.2 MPaG. In the turbo refrigeration apparatus 1 using the above, the heat transfer performance is improved by preventing the heat transfer tube 25 group in the evaporator from being dried out, and the liquid-phase low-pressure refrigerant is carried over to the turbo compressor 2 side. A decrease in efficiency can be suppressed.

なお、本発明は上記実施形態の構成のみに限定されるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、上記の第1〜第4実施形態を組み合わせる等してもよい。   It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and can be appropriately changed or improved. Embodiments with such changes and improvements are also included in the scope of the right of the present invention. And For example, the above first to fourth embodiments may be combined.

1 ターボ冷凍装置
2 ターボ圧縮機
3 凝縮器
7 蒸発器
21 圧力容器
22 冷媒入口
22a 冷媒入口の外側開口部
22b 拡張流路
22c 多孔板(流速減衰部材)
22d 邪魔板(流速減衰部材)
23 冷媒出口
25 伝熱管群
25A 往路管群
25B 復路管群
25a 伝熱管束
26 冷媒分配板
26a 冷媒流通孔
27 デミスタ
37 伝熱管支持板
A1 伝熱管群の上流側の位置付近に対応する範囲(冷媒分配板の長手軸方向端部の範囲)
A2 伝熱管群の他の位置に対応する範囲(冷媒分配板の長手軸方向中間部の範囲)
A3 冷媒分配板の長手軸方向端部の範囲
L1,L2 伝熱管支持板の設置間隔
S1 空隙
DESCRIPTION OF SYMBOLS 1 Turbo refrigeration apparatus 2 Turbo compressor 3 Condenser 7 Evaporator 21 Pressure vessel 22 Refrigerant inlet 22a Outer opening 22b of refrigerant inlet Expansion flow path 22c Perforated plate (flow velocity attenuation member)
22d baffle plate (flow velocity damping member)
23 Refrigerant outlet 25 Heat transfer tube group 25A Outbound tube group 25B Return tube group 25a Heat transfer tube bundle 26 Refrigerant distribution plate 26a Refrigerant flow hole 27 Demister 37 Heat transfer tube support plate A1 Range corresponding to the upstream position of the heat transfer tube group (refrigerant The range of the end of the distribution plate in the longitudinal direction)
A2 Range corresponding to the other position of the heat transfer tube group (range in the longitudinal direction intermediate portion of the refrigerant distribution plate)
A3 Range L1, L2 of the end portion in the longitudinal direction of the refrigerant distribution plate Installation interval S1 of the heat transfer tube support plate

Claims (12)

水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒分配板における単位面積あたりの前記冷媒流通孔の面積比率は、
前記伝熱管群の上流側の位置付近に対応する範囲において他の範囲よりも大きいことを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced;
A refrigerant inlet provided at a lower portion of the pressure vessel;
A refrigerant outlet provided at an upper portion of the pressure vessel;
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and exchanges heat between the liquid to be cooled and the low-pressure refrigerant;
A plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant circulation hole;
The area ratio of the refrigerant flow holes per unit area in the refrigerant distribution plate is:
The evaporator characterized by being larger in the range corresponding to the vicinity of the upstream position of the heat transfer tube group than the other ranges.
前記冷媒入口は前記圧力容器の長手軸方向中間部に設けられ、
前記冷媒分配板における前記冷媒流通孔の前記面積比率は、前記冷媒分配板の長手軸方向端部の範囲において長手軸方向中間部の範囲よりも大きい請求項1に記載の蒸発器。
The refrigerant inlet is provided at a middle portion in the longitudinal axis direction of the pressure vessel,
The evaporator according to claim 1, wherein the area ratio of the refrigerant circulation holes in the refrigerant distribution plate is larger in the range of the longitudinal direction end portion of the refrigerant distribution plate than in the range of the intermediate portion in the longitudinal axis direction.
水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口は、前記圧力容器の長手軸方向に沿って複数分散して設けられていることを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced;
A refrigerant inlet provided at a lower portion of the pressure vessel;
A refrigerant outlet provided at an upper portion of the pressure vessel;
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and exchanges heat between the liquid to be cooled and the low-pressure refrigerant;
A plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant circulation hole;
The evaporator characterized in that a plurality of the refrigerant inlets are distributed along the longitudinal axis direction of the pressure vessel.
水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口の外側開口部から前記圧力容器までの流路断面積が、前記外側開口部から前記圧力容器に向かって拡大していることを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced;
A refrigerant inlet provided at a lower portion of the pressure vessel;
A refrigerant outlet provided at an upper portion of the pressure vessel;
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and exchanges heat between the liquid to be cooled and the low-pressure refrigerant;
A plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant circulation hole;
An evaporator, wherein a cross-sectional area of a flow path from an outer opening of the refrigerant inlet to the pressure vessel increases from the outer opening toward the pressure vessel.
水平方向に延在するとともに、最高圧力0.2MPaG未満で使用される低圧冷媒が凝縮されて導入される圧力容器と、
前記圧力容器の下部に設けられる冷媒入口と、
前記圧力容器の上部に設けられる冷媒出口と、
前記圧力容器の内部を長手軸方向に通過し、その内部に被冷却液を流通させ、該被冷却液を前記低圧冷媒と熱交換させる伝熱管群と、
前記圧力容器の内部において前記冷媒入口と前記伝熱管群との間に設置され、冷媒流通孔が穿設された板状の冷媒分配板と、を具備し、
前記冷媒入口は前記圧力容器に接続される管状であり、その管内に前記低圧冷媒の流速を減衰させる流速減衰部材が設けられていることを特徴とする蒸発器。
A pressure vessel that extends in the horizontal direction and into which a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG is condensed and introduced;
A refrigerant inlet provided at a lower portion of the pressure vessel;
A refrigerant outlet provided at an upper portion of the pressure vessel;
A heat transfer tube group that passes through the inside of the pressure vessel in the longitudinal axis direction, circulates the liquid to be cooled therein, and exchanges heat between the liquid to be cooled and the low-pressure refrigerant;
A plate-like refrigerant distribution plate installed between the refrigerant inlet and the heat transfer tube group inside the pressure vessel, and having a refrigerant circulation hole;
The evaporator is characterized in that the refrigerant inlet has a tubular shape connected to the pressure vessel, and a flow rate attenuating member for attenuating the flow rate of the low-pressure refrigerant is provided in the tube.
前記伝熱管群は、
前記圧力容器内部の長手軸方向一端から他端まで延びる往路管群と、
前記圧力容器内部の長手軸方向他端において前記往路管群に連通し、前記圧力容器内部の長手軸方向他端から一端まで戻る復路管群と、を具備し、
前記圧力容器の内部において前記往路管群が下方に配置され、前記復路管群が上方に配置されている請求項1から5のいずれかに記載の蒸発器。
The heat transfer tube group is:
A forward tube group extending from one end to the other end in the longitudinal direction inside the pressure vessel;
A return pipe group communicating with the forward pipe group at the other longitudinal axis inside the pressure vessel and returning from the other longitudinal axis inside the pressure vessel to the one end; and
The evaporator according to any one of claims 1 to 5, wherein the forward tube group is disposed below and the return tube group is disposed above in the pressure vessel.
前記伝熱管群は、複数の伝熱管が束ねられた伝熱管束が水平方向に複数配列され、前記伝熱管束の間に鉛直方向に延びる空隙が形成されている請求項1から6のいずれかに記載の蒸発器。   7. The heat transfer tube group according to claim 1, wherein a plurality of heat transfer tube bundles in which a plurality of heat transfer tubes are bundled are arranged in a horizontal direction, and a gap extending in the vertical direction is formed between the heat transfer tube bundles. Evaporator. 前記空隙の鉛直下に、前記冷媒分配板に穿設された前記冷媒流通孔が配置されている請求項7に記載の蒸発器。   The evaporator according to claim 7, wherein the refrigerant circulation hole drilled in the refrigerant distribution plate is arranged vertically below the gap. 前記圧力容器の内部において前記冷媒出口と前記伝熱管群との間に位置し、前記低圧冷媒の気液分離を行うデミスタが、前記伝熱管群の直上部に配置されている請求項1から8のいずれかに記載の蒸発器。   The demister which is located between the refrigerant outlet and the heat transfer tube group inside the pressure vessel and performs gas-liquid separation of the low-pressure refrigerant is disposed immediately above the heat transfer tube group. The evaporator in any one of. 前記デミスタは、その周囲全周が前記圧力容器の内周に接するように設けられている請求項9に記載の蒸発器。   The evaporator according to claim 9, wherein the demister is provided so that an entire circumference thereof is in contact with an inner circumference of the pressure vessel. 前記伝熱管群を構成する個々の伝熱管は、前記圧力容器の長手軸方向に交差する面方向を有して前記圧力容器の長手軸方向に間隔を空けて配置された複数の伝熱管支持板に貫通されて設置され、前記伝熱管群の上流側の位置付近における前記伝熱管支持板の設置間隔が、他の位置における前記伝熱管支持板の設置間隔よりも小さい請求項1から10のいずれかに記載の蒸発器。   Each of the heat transfer tubes constituting the heat transfer tube group has a plurality of heat transfer tube support plates that have a surface direction intersecting with the longitudinal axis direction of the pressure vessel and are spaced from each other in the longitudinal axis direction of the pressure vessel. The installation interval of the heat transfer tube support plate in the vicinity of the upstream position of the heat transfer tube group is smaller than the installation interval of the heat transfer tube support plate at another position. The evaporator according to crab. 最高圧力0.2MPaG未満で使用される低圧冷媒を圧縮するターボ圧縮機と、
圧縮された前記低圧冷媒を凝縮させる凝縮器と、
膨張した前記低圧冷媒を蒸発させる請求項1から11のいずれかに記載の蒸発器と、
を具備してなることを特徴とするターボ冷凍装置。
A turbo compressor that compresses a low-pressure refrigerant used at a maximum pressure of less than 0.2 MPaG;
A condenser for condensing the compressed low-pressure refrigerant;
The evaporator according to any one of claims 1 to 11, which evaporates the expanded low-pressure refrigerant;
A turbo refrigeration apparatus comprising:
JP2015201239A 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same Active JP6716227B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same
PCT/JP2016/076068 WO2017061211A1 (en) 2015-10-09 2016-09-06 Evaporator and turbo-freezer provided with same
US15/736,130 US20180187932A1 (en) 2015-10-09 2016-09-06 Evaporator and centrifugal chiller provided with the same
CN201680036519.2A CN107850359B (en) 2015-10-09 2016-09-06 Evaporator and turbo refrigeration device provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201239A JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same

Publications (2)

Publication Number Publication Date
JP2017072343A true JP2017072343A (en) 2017-04-13
JP6716227B2 JP6716227B2 (en) 2020-07-01

Family

ID=58487574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201239A Active JP6716227B2 (en) 2015-10-09 2015-10-09 Evaporator, turbo refrigerator equipped with the same

Country Status (4)

Country Link
US (1) US20180187932A1 (en)
JP (1) JP6716227B2 (en)
CN (1) CN107850359B (en)
WO (1) WO2017061211A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179630A1 (en) * 2016-04-15 2017-10-19 三菱重工サーマルシステムズ株式会社 Evaporator, and turbo-refrigerating apparatus equipped with same
JP2021038898A (en) * 2019-09-05 2021-03-11 荏原冷熱システム株式会社 Evaporator used in turbo refrigerator, and turbo refrigerator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524990B2 (en) * 2016-12-09 2019-06-05 ダイキン工業株式会社 Heat transfer device and heat transfer method using the same
EP3627073A1 (en) 2018-09-18 2020-03-25 Daikin applied Europe S.p.A. Flooded evaporator
ES2884624T3 (en) * 2019-02-04 2021-12-10 Carrier Corp Heat exchanger
CN110947192A (en) * 2019-12-02 2020-04-03 大连海事大学 Vertical energy-saving evaporator
US11747060B2 (en) 2020-06-17 2023-09-05 Carrier Corporation Vapor compression system and method for operating heat exchanger
CN114264188A (en) * 2020-09-16 2022-04-01 浙江盾安人工环境股份有限公司 Fluid distribution device and heat exchanger with same
CN115076589A (en) * 2021-06-29 2022-09-20 中国石油天然气集团有限公司 Integrated device of lean glycol buffer tank and lean glycol-rich glycol heat exchanger and use method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454959U (en) * 1977-09-26 1979-04-16
JPS58183471U (en) * 1982-05-27 1983-12-07 ダイキン工業株式会社 flooded evaporator
JPS60251302A (en) * 1984-05-28 1985-12-12 株式会社日立製作所 Moisture separating heater
JPS61175492A (en) * 1985-01-31 1986-08-07 Toshiba Corp Evaporator for non-azeotropic mixture medium
JPH04155190A (en) * 1990-10-19 1992-05-28 Hitachi Ltd Water cooler
JPH0473749U (en) * 1990-10-16 1992-06-29
JPH11201686A (en) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp Heat-exchanger
JPH11294706A (en) * 1998-04-08 1999-10-29 Mitsubishi Heavy Ind Ltd Shell-tube heat exchanger type horizontal steam generator
JP2002081699A (en) * 2000-09-06 2002-03-22 Ishikawajima Harima Heavy Ind Co Ltd Supercooler of ice storage apparatus
JP2010531970A (en) * 2008-03-07 2010-09-30 アーケマ・インコーポレイテッド Use of R-1233 in liquid cooling devices
JP2012512317A (en) * 2008-12-17 2012-05-31 ハネウェル・インターナショナル・インコーポレーテッド Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
JP2014507622A (en) * 2011-02-04 2014-03-27 ロッキード マーティン コーポレイション Heat exchanger with foam fins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167713B1 (en) * 1999-03-12 2001-01-02 American Standard Inc. Falling film evaporator having two-phase distribution system
US6293112B1 (en) * 1999-12-17 2001-09-25 American Standard International Inc. Falling film evaporator for a vapor compression refrigeration chiller
JP3572250B2 (en) * 2000-10-24 2004-09-29 三菱重工業株式会社 Condenser for refrigerator
JP4451998B2 (en) * 2001-05-22 2010-04-14 三菱重工業株式会社 Evaporator and refrigerator having the same
US10579947B2 (en) * 2011-07-08 2020-03-03 Avaya Inc. System and method for scheduling based on service completion objectives
JP5916360B2 (en) * 2011-11-30 2016-05-11 三菱重工業株式会社 Turbo refrigerator
JP6423221B2 (en) * 2014-09-25 2018-11-14 三菱重工サーマルシステムズ株式会社 Evaporator and refrigerator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454959U (en) * 1977-09-26 1979-04-16
JPS58183471U (en) * 1982-05-27 1983-12-07 ダイキン工業株式会社 flooded evaporator
JPS60251302A (en) * 1984-05-28 1985-12-12 株式会社日立製作所 Moisture separating heater
JPS61175492A (en) * 1985-01-31 1986-08-07 Toshiba Corp Evaporator for non-azeotropic mixture medium
JPH0473749U (en) * 1990-10-16 1992-06-29
JPH04155190A (en) * 1990-10-19 1992-05-28 Hitachi Ltd Water cooler
JPH11201686A (en) * 1998-01-12 1999-07-30 Mitsubishi Electric Corp Heat-exchanger
JPH11294706A (en) * 1998-04-08 1999-10-29 Mitsubishi Heavy Ind Ltd Shell-tube heat exchanger type horizontal steam generator
JP2002081699A (en) * 2000-09-06 2002-03-22 Ishikawajima Harima Heavy Ind Co Ltd Supercooler of ice storage apparatus
JP2010531970A (en) * 2008-03-07 2010-09-30 アーケマ・インコーポレイテッド Use of R-1233 in liquid cooling devices
JP2012512317A (en) * 2008-12-17 2012-05-31 ハネウェル・インターナショナル・インコーポレーテッド Trans-chloro-3,3,3-trifluoropropene for use in cooler applications
JP2014507622A (en) * 2011-02-04 2014-03-27 ロッキード マーティン コーポレイション Heat exchanger with foam fins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179630A1 (en) * 2016-04-15 2017-10-19 三菱重工サーマルシステムズ株式会社 Evaporator, and turbo-refrigerating apparatus equipped with same
JP2021038898A (en) * 2019-09-05 2021-03-11 荏原冷熱システム株式会社 Evaporator used in turbo refrigerator, and turbo refrigerator
JP7261131B2 (en) 2019-09-05 2023-04-19 荏原冷熱システム株式会社 Evaporators used in centrifugal chillers, and centrifugal chillers

Also Published As

Publication number Publication date
CN107850359A (en) 2018-03-27
CN107850359B (en) 2021-03-26
WO2017061211A1 (en) 2017-04-13
US20180187932A1 (en) 2018-07-05
JP6716227B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2017061211A1 (en) Evaporator and turbo-freezer provided with same
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
JP6002316B2 (en) Heat exchanger
JP7137555B2 (en) Active/passive cooling system
JP7364930B2 (en) Heat exchanger
JP6378670B2 (en) Heat exchanger
JP2019507862A (en) Heat exchanger
US11029094B2 (en) Heat exchanger
WO2014144105A1 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
CN112840174B (en) Vertical heat exchanger
US10845125B2 (en) Heat exchanger
JP2015148395A (en) Cooling device
KR200323236Y1 (en) Cooling Pipe Block for Condenser

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150