JP2510041Y2 - Evaporator for low temperature fluid - Google Patents

Evaporator for low temperature fluid

Info

Publication number
JP2510041Y2
JP2510041Y2 JP1990108121U JP10812190U JP2510041Y2 JP 2510041 Y2 JP2510041 Y2 JP 2510041Y2 JP 1990108121 U JP1990108121 U JP 1990108121U JP 10812190 U JP10812190 U JP 10812190U JP 2510041 Y2 JP2510041 Y2 JP 2510041Y2
Authority
JP
Japan
Prior art keywords
heat transfer
fluid
heated
tube
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1990108121U
Other languages
Japanese (ja)
Other versions
JPH0473749U (en
Inventor
仁志 宮本
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP1990108121U priority Critical patent/JP2510041Y2/en
Publication of JPH0473749U publication Critical patent/JPH0473749U/ja
Application granted granted Critical
Publication of JP2510041Y2 publication Critical patent/JP2510041Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は、低温流体用蒸発器に係り、特に、LPGのよ
うに極低温状態の液体を高温加熱媒体を使用して気化さ
せるものである。
The present invention relates to an evaporator for low temperature fluid, and particularly to vaporize a liquid in a cryogenic state such as LPG using a high temperature heating medium.

【従来技術】[Prior art]

都市ガス供給設備においては、主ガスとしてメタンガ
スを主成分とするLNG(液化天然ガス)が使用されてい
る。このLNGは、産地による成分のばらつきが多いた
め、その燃焼時の熱量を一定に保持する必要がある。か
かる目的のために、LPG(液化石油ガス)の気化ガスをL
NGの気化ガスに混入して熱量調整をすることが行なわれ
ている。また、LNGの気化ガス量は、都市ガスの需要に
応じて変動するため、LPGの蒸発器に対しても、気化ガ
ス変動量の10分の1程度の負荷変動追従性が要求され
る。 従来、LPGを気化させる目的の熱交換器、つまり、低
温流体用蒸発器としては、三重管式蒸発器、ケトル式蒸
発器、多管式蒸発器等が挙げられる。これらの低温流体
用蒸発器では、加熱水蒸気を加熱源として使用すること
によって、経済性、装置の簡易性等を得ている。 一方、加熱水蒸気を使用して、的確な負荷追従性を得
るためには、蒸発器の出口気化ガス中にミストを混入さ
せないように、気化ガスの温度を沸点よりも10〜20℃過
熱することが必要である。これらの技術的要求を満たす
ために、前述各低温流体用蒸発器にあっては、LPGの気
化ガスを過熱器に送り込んで目的とする高温状態として
から都市ガス生成ラインに合流させるようにしている。
LNG (liquefied natural gas) whose main component is methane gas is used as the main gas in the city gas supply facility. Since the composition of this LNG varies widely depending on the place of origin, it is necessary to maintain a constant amount of heat during combustion. For this purpose, LPG (liquefied petroleum gas) vaporized gas is
The amount of heat is adjusted by mixing it with NG vaporized gas. Further, the amount of vaporized gas of LNG fluctuates according to the demand for city gas. Therefore, the LPG evaporator is also required to have load fluctuation followability that is about one-tenth of the amount of vaporized gas fluctuation. Conventionally, as a heat exchanger for vaporizing LPG, that is, an evaporator for a low temperature fluid, a triple-tube evaporator, a kettle evaporator, a multi-tube evaporator and the like can be mentioned. In these evaporators for low temperature fluids, the heating steam is used as a heating source to obtain economical efficiency and simplicity of the apparatus. On the other hand, in order to obtain accurate load followability using heated steam, the vaporized gas temperature should be superheated by 10 to 20 ° C above the boiling point so as not to mix mist in the vaporized gas at the outlet of the evaporator. is necessary. In order to meet these technical requirements, in each of the above-described low temperature fluid evaporators, the vaporized gas of LPG is sent to the superheater to reach a desired high temperature state and then merged with the city gas production line. .

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、いずれの低温流体用蒸発器の場合でも、過熱
器を付属させる必要に基づいて、経済性の点で不十分な
ものとなり、そして、LPGの気化及びスーパーヒートま
でのラインが長くなって、負荷応答性が悪くなる傾向が
避けられないものであった。 本考案は、これらの課題を有効に解決するとともに、
構造の単純化、保全性の向上、圧力変動の抑制、低負荷
時の突沸現象の発生防止等を図ることを目的としてい
る。
However, in the case of any evaporator for low temperature fluid, it becomes insufficient in terms of economical efficiency based on the need to attach a superheater, and the line to vaporization and superheat of LPG becomes long, The tendency that the load responsiveness deteriorates was inevitable. The present invention effectively solves these problems,
The objective is to simplify the structure, improve maintainability, suppress pressure fluctuations, and prevent bumping at low loads.

【課題を解決するための手段】[Means for Solving the Problems]

かかる課題を解決する手段として、容器の内部の熱交
換部に、上下方向に複数の伝熱管が配され、該伝熱管の
下部が管板に対して貫通した状態に取り付けられ、管板
の下方位置に、伝熱管の下部開口と接続状態に被加熱流
体入口及び入口プレナム部が配され、熱交換部の内部と
なりかつ管板の近傍位置となる伝熱管の下部表面に、ス
リーブ状の熱伝達抑制部材が覆った状態に被せられ、伝
熱管の内部に、被加熱流体の暴走を抑制する流体減速部
材が挿入される構成を採用している。
As a means for solving such a problem, a plurality of heat transfer tubes are arranged in a vertical direction in a heat exchange section inside a container, and the lower part of the heat transfer tubes is attached in a state of penetrating the tube plate, At the position, the heated fluid inlet and the inlet plenum are arranged in connection with the lower opening of the heat transfer tube, and inside the heat exchange section, and near the tube plate, the sleeve-like heat transfer to the lower surface of the heat transfer tube. A configuration is adopted in which the suppressing member is covered and a fluid speed reducing member that suppresses runaway of the heated fluid is inserted inside the heat transfer tube.

【作用】[Action]

低温状態の被加熱流体は、下部から伝熱管の内部に送
り込まれ、伝熱管の内部を上昇する過程で、その回りの
加熱流体によって加熱されて気化状態に導かれるが、熱
交換部の入口近傍における被加熱流体は、熱伝達抑制部
材によって加熱が遅延させられることに基づき温度上昇
が緩やかになり、急激な気化現象の発生が妨げられて、
被加熱流体が伝熱管を挿通する間に徐々に気化させられ
る。 そして、被加熱流体が伝熱管の内部を上昇する場合、
流体減速部材によって被加熱流体及び気化ガスの急激な
上方への移動が妨げられることにより、被加熱流体の暴
走が抑制され、負荷に応じた気化ガスの発生量とする調
整を容易にするものである。
The fluid to be heated in the low temperature state is fed from the lower part into the heat transfer tube, and in the process of rising inside the heat transfer tube, it is heated by the heating fluid around it and led to the vaporized state, but near the inlet of the heat exchange part. In the fluid to be heated in, the temperature rise is moderated due to the heating being delayed by the heat transfer suppressing member, and the rapid vaporization phenomenon is prevented from occurring,
The fluid to be heated is gradually vaporized while passing through the heat transfer tube. When the fluid to be heated rises inside the heat transfer tube,
The fluid deceleration member prevents the heated fluid and the vaporized gas from abruptly moving upward, thereby suppressing runaway of the heated fluid and facilitating adjustment of the amount of vaporized gas generated according to the load. is there.

【実施例】【Example】

以下、本考案に係る低温流体用蒸発器の一実施例を第
1図ないし第3図に基づいて説明する。 各図において、符号1は低温流体用蒸発器、2は竪型
とされる容器(シェル)、3は熱交換部、4は伝熱管、
5は管板、6は加熱流体入口、7は加熱流体出口、8は
被加熱流体入口、9は被加熱流体出口、10は入口プレナ
ム部、11は出口プレナム部、12はバッフル板、13は支持
構造物、14は熱伝達抑制部材、15は流体減速部材、16は
溶接部、17は露出部である。 これらの詳細について説明すると、低温流体用蒸発器
1は、竪型のシェルアンドチューブ式熱交換器と類似す
る構造であり、容器2はその長手方向を垂直方向に合わ
せて設置される。 前記熱交換部3は、容器2の中に設置される複数本の
伝熱管4と、該伝熱管4の両端を貫通させるとともに溶
接部16によって伝熱管4を支持している管板5と、伝熱
管4の途中に配されて加熱流体入口6から加熱流体出口
7までの流路を第1図の破線で示すように形成するバッ
フル板12とを有するものであり、伝熱管4の下部表面に
は熱伝達抑制部材14が、また、伝熱管4の内部には流体
減速部材15が後述するように配設される。 前記熱伝達抑制部材14は、第2図及び第3図に示すよ
うに、伝熱管4の下部表面に被せられるスリーブ状等で
あり、伝熱管4の回りに存在する加熱流体が伝熱管4の
下部表面に直接接触しないようにするものである。そし
て、その設置範囲は、第1図に示すように、下方の管板
5の近接位置から、少なくともその上方のバッフル板12
までの間以上の距離とされ、かつ、下方の管板5の上面
との間に、伝熱管4及び熱伝達抑制部材14の熱伸縮を許
容する程度の間隙を空けるように伝熱管4あるいは近傍
のバッフル板12に取り付けられ、この間隙によって形成
される露出部17が小さくなるように設定される。 前記流体減速部材15は、第2図に示すように、例えば
ひねり板状であり、伝熱管4の内部に挿入されて、その
形状に基づいて螺旋流を生じさせること等によって抵抗
を付与し、伝熱管4の内部を上昇する被加熱流体が急速
に移動できないように減速させるものであり、伝熱管4
の内壁の要所等に取り付けられる。 しかして、低温流体用蒸発器1の運転時には、第1図
に破線の各矢印で示すように、高温水蒸気等の加熱流体
が加熱流体入口6から熱交換部3に送り込まれて、バッ
フル板12によって区画された流路を流れながら伝熱管4
を加熱した後、加熱流体出口7から排出される。そし
て、第1図に実線の各矢印で示すように、LPG等の低温
流体、つまり、被加熱流体が被加熱流体入口8から各伝
熱管4に送り込まれることによって、熱交換部3におい
て加熱流体と被加熱流体との熱交換が行なわれて、被加
熱流体が、サブクール域、沸騰域、スーパーヒート域を
経て順次加熱されることにより、目的とする温度の気化
ガスとなる。 この場合において、被加熱流体が、入口プレナム部10
から伝熱管4の内部に送り込まれると、伝熱管4の下部
管壁との接触によって加熱されて、液体状態のまま温度
上昇(サブクール域の温度上昇)するが、伝熱管4の下
部においては、その表面が熱伝達抑制部材14で覆われ
て、この部分の温度勾配が緩やかになって熱伝達が少な
くなることに基づいて、温度上昇が遅延させられること
になる。したがって、熱交換部3の入口近傍における被
加熱流体の急激な気化によって、膜沸騰状態となること
を防止し、かつ、流体減速部材15がひねり板状であるこ
とにより、螺旋流が生じて被加熱流体が撹拌されること
により加熱むらが減少する。 次いで、被加熱流体が伝熱管4の中央部近傍等に達す
ると、伝熱管4を介しての熱供給総量が大きくなること
に基づいて、被加熱流体が沸点(LPGの沸点は12〜13kg/
cm2程度の圧力で約90℃)に達して、核沸騰状態(沸騰
域)となって気化の促進が行なわれるが、温度の上昇が
抑制された状態となる。 さらに、被加熱流体が伝熱管4の上部近傍等に達する
と、熱供給総量がさらに大きくなることに基づいて、過
飽和蒸気状態(スーパーヒート域)での加熱がなされ
て、目的とする温度の気化ガスとなり、出口プレナム部
11及び被加熱流体出口9を経由して、前記都市ガス生成
ラインに送り込まれる。 そして、これらのサブクール域、沸騰域、スーパーヒ
ート域での加熱及び熱供給時においては、被加熱流体の
気化による膨張にともなって、伝熱管4の内部で被加熱
流体の一部が高速移動しようとする現象を生じた場合に
あっても、流体減速部材15の存在によって高速移動しよ
うとする被加熱流体が大きな抵抗を受け、また、流体減
速部材15がひねり板状である場合には、螺旋流に基づく
撹拌作用によって、被加熱流体の均一化が図られて、被
加熱流体が突沸する現象等の暴走が防止されるものであ
る。 特に、サブクール域で液体と気体とが混合することに
よる突沸現象の発生は、伝熱管4の下部においてその表
面が熱伝達抑制部材14で覆われ、熱伝達が少なく温度上
昇が遅延させられることと、流体減速部材15が介在して
移動時の抵抗を生じることとによって、被加熱流体の暴
走が抑制されるものとなる。
An embodiment of a cryogenic fluid evaporator according to the present invention will be described below with reference to FIGS. In each drawing, reference numeral 1 is an evaporator for low temperature fluid, 2 is a vertical container (shell), 3 is a heat exchange section, 4 is a heat transfer tube,
5 is a tube plate, 6 is a heated fluid inlet, 7 is a heated fluid outlet, 8 is a heated fluid inlet, 9 is a heated fluid outlet, 10 is an inlet plenum portion, 11 is an outlet plenum portion, 12 is a baffle plate, 13 is A support structure, 14 is a heat transfer suppressing member, 15 is a fluid deceleration member, 16 is a welded portion, and 17 is an exposed portion. Explaining these details, the evaporator for low temperature fluid 1 has a structure similar to a vertical shell-and-tube heat exchanger, and the container 2 is installed with its longitudinal direction aligned with the vertical direction. The heat exchange section 3 includes a plurality of heat transfer tubes 4 installed in the container 2, a tube plate 5 that penetrates both ends of the heat transfer tubes 4 and supports the heat transfer tubes 4 by welding portions 16. A baffle plate 12 which is arranged in the middle of the heat transfer tube 4 and forms a flow path from the heating fluid inlet 6 to the heating fluid outlet 7 as shown by the broken line in FIG. A heat transfer suppressing member 14 is arranged inside the heat transfer tube 4, and a fluid speed reducing member 15 is arranged inside the heat transfer tube 4 as described later. As shown in FIGS. 2 and 3, the heat transfer suppressing member 14 has a sleeve shape or the like that covers the lower surface of the heat transfer tube 4, and the heating fluid existing around the heat transfer tube 4 is It is intended to avoid direct contact with the lower surface. As shown in FIG. 1, the range of installation is from the position near the lower tube sheet 5 to at least the baffle plate 12 above it.
And a distance close to the upper surface of the lower tube sheet 5, and a space close to the upper surface of the lower tube sheet 5 to allow heat expansion and contraction of the heat transfer tube 4 and the heat transfer suppressing member 14 or the vicinity thereof. It is attached to the baffle plate 12 and is set so that the exposed portion 17 formed by this gap becomes small. As shown in FIG. 2, the fluid deceleration member 15 has, for example, a twisted plate shape, is inserted into the inside of the heat transfer tube 4, and imparts resistance by generating a spiral flow based on the shape, The fluid to be heated rising inside the heat transfer tube 4 is decelerated so that it cannot move rapidly.
It can be attached to important points on the inner wall of the. Then, when the evaporator 1 for low temperature fluid is in operation, as shown by each broken line arrow in FIG. 1, a heating fluid such as high temperature steam is sent from the heating fluid inlet 6 to the heat exchange section 3 and the baffle plate 12 Heat transfer tube 4 while flowing through the flow path divided by
Is heated and then discharged from the heating fluid outlet 7. Then, as shown by the solid arrows in FIG. 1, the low-temperature fluid such as LPG, that is, the heated fluid is sent from the heated fluid inlet 8 to the heat transfer tubes 4, whereby the heating fluid is heated in the heat exchange section 3. And the fluid to be heated are exchanged with each other, and the fluid to be heated is heated sequentially through the subcool zone, the boiling zone, and the superheat zone, so that the vaporized gas at the target temperature is obtained. In this case, the heated fluid is the inlet plenum 10
When it is fed into the heat transfer tube 4 from the inside, it is heated by contact with the lower tube wall of the heat transfer tube 4, and the temperature rises in the liquid state (temperature rise in the subcool region). The surface is covered with the heat transfer suppressing member 14, and the temperature rise is delayed due to the gradual temperature gradient in this portion and the decrease in heat transfer. Therefore, the film boiling state is prevented from being caused by the rapid vaporization of the fluid to be heated in the vicinity of the inlet of the heat exchange section 3, and the fluid deceleration member 15 has a twisted plate shape, so that the spiral flow is generated and the fluid to be heated is generated. Stirring of the heating fluid reduces uneven heating. Next, when the heated fluid reaches the vicinity of the central portion of the heat transfer tube 4 or the like, the total amount of heat supplied through the heat transfer tube 4 becomes large, so that the heated fluid has a boiling point (the boiling point of LPG is 12 to 13 kg /
It reaches a temperature of about 90 ° C at a pressure of about cm 2 ) and becomes a nucleate boiling state (boiling region) to promote vaporization, but the temperature rise is suppressed. Further, when the fluid to be heated reaches the vicinity of the upper portion of the heat transfer tube 4 or the like, the total amount of heat supply is further increased, so that heating is performed in the supersaturated vapor state (superheat region), and vaporization of the target temperature is performed. Become gas and exit plenum
It is sent to the city gas production line via 11 and the heated fluid outlet 9. During heating and heat supply in these subcool area, boiling area, and superheat area, part of the heated fluid will move at high speed inside the heat transfer tube 4 due to expansion due to vaporization of the heated fluid. Even if such a phenomenon occurs, the presence of the fluid speed reduction member 15 causes a large resistance to the fluid to be heated, and when the fluid speed reduction member 15 has a twisted plate shape, the spiral By the stirring action based on the flow, the fluid to be heated is made uniform and runaway such as the phenomenon that the fluid to be heated is bumped is prevented. In particular, the occurrence of the bumping phenomenon due to the mixture of liquid and gas in the subcool region is caused by the fact that the surface of the heat transfer tube 4 is covered with the heat transfer suppressing member 14 and the heat transfer is small and the temperature rise is delayed. Since the fluid deceleration member 15 intervenes to generate resistance during movement, runaway of the heated fluid is suppressed.

【他の実施態様】[Other Embodiments]

前述した実施例に代えて以下の構成を採用することが
できる。 (A)熱伝達抑制部材14を、伝熱管4の外の伝熱係数を
小さくするために適した材質、例えばステンレス鋼やコ
ーティング層等で構成すること。 (B)熱伝達抑制部材14の形状を直円筒以外の形状、例
えばコルゲートパイプ状等とすること。 (C)流体減速部材15をひねり板以外の形状、例えば金
属メッシュ状やコイルスプリングとすること。
The following configuration can be adopted instead of the above-described embodiment. (A) The heat transfer suppressing member 14 is made of a material suitable for reducing the heat transfer coefficient outside the heat transfer tube 4, such as stainless steel or a coating layer. (B) The heat transfer suppressing member 14 has a shape other than a right cylinder, for example, a corrugated pipe shape. (C) The fluid deceleration member 15 has a shape other than the twist plate, for example, a metal mesh shape or a coil spring.

【考案の効果】[Effect of device]

以上説明したように、本考案に係る低温流体用蒸発器
によれば、以下の優れた効果が得られる。 (1)竪型のシェルアンドチューブ式であるために、構
造が単純化されて経済性の向上と保全性の向上とを達成
できるとともに、全体のラインが短くかつ被加熱流体の
滞留時間が短縮されるために、負荷応答性に優れるもの
となる。 (2)伝熱管の下部表面に熱伝達抑制部材が設けられ、
かつ、伝熱管の内部に流体減速部材が挿入されるので、
被加熱流体入口近傍での熱交換量を少なくして液体域で
の気化を抑制することにより、低負荷から100%負荷ま
での変動を許容し、負荷に応じた気化ガスの発生量とす
る調整を容易に行なうことができる。 (3)上記により、伝熱管内部全域での異常な流体移動
及び圧力変動の発生を抑制し、かつ、流体減速部材の撹
拌作用の付加と相まって、熱交換部の伝熱係数を大きく
して、極低温状態の液体を円滑に気化させて必要な温度
まで加熱することにより、従来例のようなスーパーヒー
ターを付属させる必要がなく、小型化を図ることができ
る。 加えて、管板の上下位置の大きな温度差により、伝熱
管の内部の被加熱流体が急速に加熱される場合にあって
も、上記による管板の近傍での熱交換量の抑制と伝熱管
の支持とにより、管板の近傍でにおける伝熱管の熱的影
響を低減することができる。
As described above, the evaporator for low temperature fluid according to the present invention has the following excellent effects. (1) Since it is a vertical shell-and-tube type, the structure is simplified and the improvement of economy and maintenance can be achieved, and the whole line is short and the residence time of the fluid to be heated is shortened. Therefore, the load responsiveness is excellent. (2) A heat transfer suppressing member is provided on the lower surface of the heat transfer tube,
And since the fluid speed reduction member is inserted inside the heat transfer tube,
Adjusting the amount of vaporized gas generated according to the load by allowing fluctuations from low load to 100% load by reducing the heat exchange amount near the heated fluid inlet and suppressing vaporization in the liquid region Can be done easily. (3) Due to the above, the occurrence of abnormal fluid movement and pressure fluctuation in the entire area of the heat transfer tube is suppressed, and the heat transfer coefficient of the heat exchange section is increased in combination with the addition of the stirring action of the fluid deceleration member, By smoothly vaporizing the cryogenic liquid and heating it to the required temperature, it is not necessary to attach a super heater as in the conventional example, and the size can be reduced. In addition, even if the fluid to be heated inside the heat transfer tube is rapidly heated due to a large temperature difference between the upper and lower positions of the tube sheet, the heat exchange amount and the heat transfer tube near the tube sheet are suppressed due to the above. With the support of, the thermal influence of the heat transfer tube near the tube sheet can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る低温流体用蒸発器の一実施例を示
す正断面図である。 第2図は第1図の鎖線II部分の拡大図である。 第3図は第2図のIII-III線矢視図である。
FIG. 1 is a front sectional view showing an embodiment of an evaporator for cryogenic fluid according to the present invention. FIG. 2 is an enlarged view of a chain line II portion in FIG. FIG. 3 is a view taken along the line III-III in FIG.

【符号の説明】[Explanation of symbols]

1……低温流体用蒸発器 2……容器(シェル) 3……熱交換部 4……伝熱管 5……管板 6……加熱流体入口 7……加熱流体出口 8……被加熱流体入口 9……被加熱流体出口 10……入口プレナム部 11……出口プレナム部 12……バッフル板 13……支持構造物 14……熱伝達抑制部材 15……流体減速部材 16……溶接部 17……露出部。 1 ... Evaporator for low temperature fluid 2 ... Vessel (shell) 3 ... Heat exchange section 4 ... Heat transfer tube 5 ... Tube plate 6 ... Heating fluid inlet 7 ... Heating fluid outlet 8 ... Heated fluid inlet 9 ... Heated fluid outlet 10 ... Inlet plenum 11 ... Outlet plenum 12 ... Baffle plate 13 ... Support structure 14 ... Heat transfer suppressing member 15 ... Fluid moderator 16 ... Welding portion 17 ... … Exposed part.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】容器(2)の内部の熱交換部(3)に、上
下方向に複数の伝熱管(4)が配され、該伝熱管の下部
が管板(5)に対して貫通した状態に取り付けられ、管
板の下方位置に、伝熱管の下部開口と接続状態に被加熱
流体入口(8)及び入口プレナム部(10)が配され、熱
交換部の内部となりかつ管板の近傍位置となる伝熱管の
下部表面に、スリーブ状の熱伝達抑制部材(14)が覆っ
た状態に被せられ、伝熱管の内部に、被加熱流体の暴走
を抑制する流体減速部材(15)が挿入されることを特徴
とする低温流体用蒸発器。
1. A plurality of heat transfer tubes (4) are arranged in a vertical direction in a heat exchange section (3) inside a container (2), and a lower part of the heat transfer tubes penetrates a tube plate (5). Mounted in a state, the heated fluid inlet (8) and the inlet plenum (10) are arranged below the tube sheet in a connected state with the lower opening of the heat transfer tube, inside the heat exchange section and near the tube sheet. The lower surface of the heat transfer tube at the position is covered with a sleeve-shaped heat transfer suppressing member (14), and a fluid deceleration member (15) for suppressing runaway of the fluid to be heated is inserted inside the heat transfer tube. An evaporator for a low temperature fluid, which is characterized in that:
JP1990108121U 1990-10-16 1990-10-16 Evaporator for low temperature fluid Expired - Fee Related JP2510041Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990108121U JP2510041Y2 (en) 1990-10-16 1990-10-16 Evaporator for low temperature fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990108121U JP2510041Y2 (en) 1990-10-16 1990-10-16 Evaporator for low temperature fluid

Publications (2)

Publication Number Publication Date
JPH0473749U JPH0473749U (en) 1992-06-29
JP2510041Y2 true JP2510041Y2 (en) 1996-09-11

Family

ID=31854937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990108121U Expired - Fee Related JP2510041Y2 (en) 1990-10-16 1990-10-16 Evaporator for low temperature fluid

Country Status (1)

Country Link
JP (1) JP2510041Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855298B1 (en) * 2015-02-25 2016-02-09 東京ガスケミカル株式会社 LNG evaporator and LNG evaporation method using LNG evaporator
JP6716227B2 (en) * 2015-10-09 2020-07-01 三菱重工サーマルシステムズ株式会社 Evaporator, turbo refrigerator equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510097U (en) * 1978-07-07 1980-01-22
JPS55180179U (en) * 1980-06-10 1980-12-24

Also Published As

Publication number Publication date
JPH0473749U (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP2510041Y2 (en) Evaporator for low temperature fluid
WO2007001475A1 (en) Boiler system and method of controlling a boiler system
US3999600A (en) Heat transfer shields
US3171389A (en) Furnace construction for low temperature operation
US20160010800A1 (en) Liquid Natural Gas Vaporization
US7503289B2 (en) Enhanced radiant heat exchanger apparatus
JP3037073B2 (en) Cryogenic liquid vaporizer
US2561506A (en) Liquefied gas evaporator
NO177105B (en) Heating pipe device for heating system or furnace
US4529381A (en) Radiation shield and method for shielding a furnace convection section
JP4684497B2 (en) Air fin type vaporizer for liquefied natural gas
JPH06137501A (en) Supercritical variable pressure operating steam generator
US2660996A (en) Fluid heater
JP4181250B2 (en) Natural gas heating method
JPH05332499A (en) Liquid natural gas vaporizer
JP2689071B2 (en) Liquefied natural gas vaporizer
JP6126569B2 (en) Vaporizer for liquefied gas
CN216480242U (en) Intermediate medium vaporizer
CN104040254B (en) Steam boiler including radiating element
CN102829326A (en) Steam-heated water-bath type vaporizer
EP3710743B1 (en) Cryogenic fluid vaporizer
JP2684309B2 (en) Liquefied natural gas vaporizer
US2032390A (en) Superheater with adjustable counter radiation
JPH0648145B2 (en) Double pipe type open rack type vaporizer
JPH0627918Y2 (en) Liquefied natural gas vaporizer heat transfer tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees