JP2007309604A - Evaporator for refrigeration system, and refrigeration system - Google Patents

Evaporator for refrigeration system, and refrigeration system Download PDF

Info

Publication number
JP2007309604A
JP2007309604A JP2006140325A JP2006140325A JP2007309604A JP 2007309604 A JP2007309604 A JP 2007309604A JP 2006140325 A JP2006140325 A JP 2006140325A JP 2006140325 A JP2006140325 A JP 2006140325A JP 2007309604 A JP2007309604 A JP 2007309604A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
heat transfer
transfer tube
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140325A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006140325A priority Critical patent/JP2007309604A/en
Publication of JP2007309604A publication Critical patent/JP2007309604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator for a refrigeration system, and a refrigeration system effectively carrying out heat transfer to a heat transfer pipe. <P>SOLUTION: In the evaporator 30 for the refrigeration system, a coolant is supplied from a condenser. A gas-liquid separator 60 carrying out gas-liquid separation of the coolant is provided in a coolant piping 11 supplying the coolant to the evaporator 30. The coolant mainly composed of vapor separated by the gas-liquid separator 60 is introduced to a lower part of the heat transfer pipe 31 of the evaporator, and the coolant mainly composed of liquid separated by the gas-liquid separator 60 is introduced to an upper part of the heat transfer pipe 31 of the evaporator 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ターボ冷凍機等の満液式蒸発器に適用して好適な冷凍装置の蒸発器及び冷凍装置に関するものである。   The present invention relates to an evaporator and a refrigeration apparatus of a refrigeration apparatus suitable for application to a full liquid evaporator such as a turbo refrigerator.

図1は冷凍装置(圧縮式冷凍装置)1−1の基本構成図である。同図に示す冷凍装置1−1は、冷媒を封入したクローズドシステムで構成され、具体的に言えば冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器3と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機5と、高圧蒸気を冷却水(冷却流体)で冷却して凝縮させる凝縮器7と、前記凝縮した冷媒を減圧して膨張させる絞り機構(膨張弁)9とを、冷媒配管11によって連結して構成されている。   FIG. 1 is a basic configuration diagram of a refrigeration apparatus (compression refrigeration apparatus) 1-1. The refrigeration apparatus 1-1 shown in the figure is configured by a closed system in which a refrigerant is enclosed. Specifically, an evaporator 3 that takes heat from cold water (cooled fluid) and evaporates the refrigerant to exert a refrigeration effect. A compressor 5 that compresses the refrigerant vapor into high-pressure steam, a condenser 7 that cools and condenses the high-pressure steam with cooling water (cooling fluid), and a throttle mechanism that decompresses and expands the condensed refrigerant. The (expansion valve) 9 is connected by a refrigerant pipe 11.

図2はエコノマイザー付きの冷凍装置(圧縮式冷凍装置)1−2の基本構成図であり、前記冷凍装置1−1と同一部分には同一符号を付す。この冷凍装置1−2において、前記冷凍装置1−1と相違する点は、冷凍装置1−1に比べて高効率化を図るために、凝縮器7から蒸発器3に向かう冷媒配管11中にエコノマイザー(気液分離器)13を設置し、圧縮機5の中間にエコノマイザー13からの冷媒蒸気を吸引させた点である。エコノマイザー13は単数でも良いし、複数でも良い。   FIG. 2 is a basic configuration diagram of a refrigeration apparatus (compression refrigeration apparatus) 1-2 with an economizer, and the same reference numerals are given to the same parts as the refrigeration apparatus 1-1. The refrigeration apparatus 1-2 differs from the refrigeration apparatus 1-1 in that the refrigerant pipe 11 from the condenser 7 toward the evaporator 3 has a higher efficiency than the refrigeration apparatus 1-1. An economizer (gas-liquid separator) 13 is installed, and the refrigerant vapor from the economizer 13 is sucked into the middle of the compressor 5. The economizer 13 may be singular or plural.

ところで上記図1,図2に示す蒸発器3は、蒸発器缶胴15内に水平方向に向かう伝熱管17を設置し、蒸発器缶胴15の底面に凝縮器7(又はエコノマイザー13)からの冷媒配管11を接続し、伝熱管17と蒸発器缶胴15の底面との間に冷媒分配用の多孔板19を取り付け、多孔板19の下部を冷媒通路21として構成されている。   The evaporator 3 shown in FIGS. 1 and 2 is provided with a heat transfer tube 17 extending in the horizontal direction in the evaporator can body 15, and the condenser 7 (or the economizer 13) is placed on the bottom surface of the evaporator can body 15. The refrigerant pipe 11 is connected, a refrigerant distribution porous plate 19 is attached between the heat transfer tube 17 and the bottom surface of the evaporator can body 15, and the lower part of the porous plate 19 is configured as a refrigerant passage 21.

以上のように構成された蒸発器3において、凝縮器7(又はエコノマイザー13)から絞り機構9を経由してきた冷媒は、気液二相状態となって蒸発器3の下部に供給され、冷媒通路21で長手方向(水平方向)に分配される。ところで絞り機構9を経由した冷媒は、前述のように気液二相になっており、二相の冷媒を伝熱管17の各部に均等分配することは重要である。特に体積流量が多くなる冷媒蒸気は、伝熱管17下部から冷媒を攪拌して伝熱管17への伝熱を良くする効果を発揮するので、この冷媒蒸気を伝熱管17の各部に均等配分することは伝熱管17の長手方向全体の伝熱を改良するために重要となる。   In the evaporator 3 configured as described above, the refrigerant that has passed through the throttle mechanism 9 from the condenser 7 (or the economizer 13) becomes a gas-liquid two-phase state and is supplied to the lower part of the evaporator 3, It is distributed in the longitudinal direction (horizontal direction) by the passage 21. By the way, the refrigerant passing through the throttle mechanism 9 is in a gas-liquid two-phase as described above, and it is important to distribute the two-phase refrigerant equally to each part of the heat transfer tube 17. In particular, the refrigerant vapor having a large volume flow rate exerts an effect of improving the heat transfer to the heat transfer tube 17 by stirring the refrigerant from the lower part of the heat transfer tube 17, so that the refrigerant vapor is equally distributed to each part of the heat transfer tube 17. Is important for improving heat transfer in the entire longitudinal direction of the heat transfer tube 17.

しかしながら気液二相の冷媒全部を蒸発器3の多孔板19下部の冷媒通路21に供給してその長手方向に分配しようとすると、多孔板19下部の冷媒通路21として大きな通路を設ける必要がある。このためこの冷媒通路21の周りに、通路として役立たない無効領域ができて、その無効領域に冷媒液が溜まることになり、その分、冷凍装置1−1(1−2)に充填すべき冷媒量が多くなってしまうという問題があった。   However, if all of the gas-liquid two-phase refrigerant is supplied to the refrigerant passage 21 below the porous plate 19 of the evaporator 3 and distributed in the longitudinal direction, it is necessary to provide a large passage as the refrigerant passage 21 below the porous plate 19. . For this reason, an invalid area that does not serve as a passage is formed around the refrigerant passage 21, and refrigerant liquid accumulates in the invalid area, and accordingly, the refrigerant to be charged in the refrigeration apparatus 1-1 (1-2). There was a problem that the amount would increase.

一方図3(a)は前記図1に示す蒸発器3のような、伝熱管17の内部を流れる冷水が蒸発器3の缶胴15内を1往復して流れる、冷水の流路の数が2パス構造の場合の温度分布を示す図、図3(b)は下記する図4(b)に示す蒸発器3´のような、伝熱管17の内部を流れる冷水が蒸発器3´の缶胴15内をその一端から他端に向けて流れる、冷水の流路の数が1パス構造の場合の温度分布を示す図である。一方図4(a)は蒸発器3が図3(a)の2パス構造の場合の蒸発器内冷媒液面を示す図であり、図4(b)は蒸発器3´が図3(b)の1パス構造の場合の蒸発器内冷媒液面を示す図である。さらに図4(c)は多孔板19下部の冷媒通路21が小さい場合の蒸発器3″内の冷媒液面を示す図である。   On the other hand, FIG. 3A shows the number of cold water flow paths in which the cold water flowing inside the heat transfer tube 17 flows once and reciprocally in the can body 15 of the evaporator 3 as in the evaporator 3 shown in FIG. FIG. 3B is a diagram showing a temperature distribution in the case of a two-pass structure, and FIG. 3B shows a can of the evaporator 3 ′, such as an evaporator 3 ′ shown in FIG. It is a figure which shows the temperature distribution in case the number of the flow paths of the cold water which flows in the inside of the trunk | drum 15 toward the other end is a 1 pass structure. On the other hand, FIG. 4 (a) is a diagram showing the refrigerant liquid level in the evaporator when the evaporator 3 has the two-pass structure of FIG. 3 (a), and FIG. 4 (b) shows the evaporator 3 'shown in FIG. It is a figure which shows the refrigerant | coolant liquid level in an evaporator in the case of 1 pass structure of (). Further, FIG. 4C is a diagram showing the refrigerant liquid level in the evaporator 3 ″ when the refrigerant passage 21 below the perforated plate 19 is small.

図3(a)に示すように、2パス構造の伝熱管を有する蒸発器においては、冷水入口側の冷水と冷媒間の温度差が、冷水折り返し側の温度差に比べて大きく、従って冷水入口側の沸騰伝熱が激しく、気泡含有率が多くなり、見かけ比重が小さく、図4(a)に示すように冷媒の液面が上昇する。一方図3(b)に示すように、1パス構造の伝熱管を有する蒸発器においては、冷水入口側と出口側とでの温度差の違いが大きく、両側における沸騰伝熱に差が生じ、図4(b)に示すように冷媒の液面の違いが非常に大きくなる。そしてこれら冷媒液面の違いにより、伝熱管17の一部が冷媒液面から露出し、露出部分が伝熱に殆ど寄与しなくなる。一方前記露出を防止するため、充填する冷媒量を増やすことも考えられるが、必要冷媒量の増加、液高増加による液面部蒸発温度の低下などの悪影響が出てしまう。   As shown in FIG. 3 (a), in an evaporator having a heat transfer tube having a two-pass structure, the temperature difference between the cold water and the refrigerant on the cold water inlet side is larger than the temperature difference on the cold water return side. The boiling heat transfer on the side is intense, the bubble content increases, the apparent specific gravity is small, and the liquid level of the refrigerant rises as shown in FIG. On the other hand, as shown in FIG. 3 (b), in the evaporator having a heat transfer tube having a one-pass structure, the temperature difference between the cold water inlet side and the outlet side is large, resulting in a difference in boiling heat transfer on both sides. As shown in FIG. 4B, the difference in the liquid level of the refrigerant becomes very large. Due to the difference in the refrigerant liquid level, a part of the heat transfer tube 17 is exposed from the refrigerant liquid level, and the exposed part hardly contributes to the heat transfer. On the other hand, in order to prevent the exposure, it is conceivable to increase the amount of refrigerant to be filled. However, adverse effects such as an increase in the required amount of refrigerant and a decrease in the liquid surface portion evaporation temperature due to an increase in liquid height will occur.

一方図4(c)に示すように冷媒通路21の断面積が小さい場合、気液二相の冷媒の長手方向への流れ抵抗が大きく、その分配が長手方向で均等にならず、冷媒配管11を接続した冷媒導入部の上部の液面が異常に上昇する。これによって伝熱管17の一部が冷媒液面から露出する恐れが生じるばかりか、この上昇部分から多量の液滴が発生し、圧縮機5に液滴が吸い込まれる恐れがあった。
特開2002−340444号公報
On the other hand, when the cross-sectional area of the refrigerant passage 21 is small as shown in FIG. 4C, the flow resistance in the longitudinal direction of the gas-liquid two-phase refrigerant is large, and the distribution is not uniform in the longitudinal direction. The liquid level at the upper part of the refrigerant introduction part connected to the liquid rises abnormally. As a result, a part of the heat transfer tube 17 may be exposed from the liquid surface of the refrigerant, and a large amount of liquid droplets may be generated from the rising portion, and the liquid droplets may be sucked into the compressor 5.
JP 2002-340444 A

本発明は上述の点に鑑みてなされたものでありその目的は、伝熱管への伝熱が効果的に行える冷凍装置の蒸発器及び冷凍装置を提供することにある。   This invention is made | formed in view of the above-mentioned point, The objective is to provide the evaporator and freezing apparatus of a freezing apparatus which can transfer the heat to a heat exchanger tube effectively.

本願請求項1に記載の発明は、凝縮器からの冷媒が供給される冷凍装置の蒸発器において、前記蒸発器に冷媒を供給する系統に冷媒を気液分離する気液分離手段を設置し、前記気液分離手段で分離された蒸気を主とする冷媒を蒸発器の伝熱管の下部に導入するとともに、前記分離された液体を主とする冷媒を蒸発器の伝熱管の上部に導入することを特徴とする冷凍装置の蒸発器にある。   The invention according to claim 1 of the present application is the evaporator of the refrigeration apparatus to which the refrigerant from the condenser is supplied, and the gas-liquid separation means for separating the refrigerant into a system supplying the refrigerant to the evaporator is installed. Introducing the refrigerant mainly composed of vapor separated by the gas-liquid separation means into the lower part of the heat transfer tube of the evaporator, and introducing the refrigerant mainly composed of the separated liquid into the upper part of the heat transfer tube of the evaporator. It is in the evaporator of the freezing apparatus characterized by this.

本願請求項2に記載の発明は、前記気液分離手段で分離された蒸気を主とする冷媒を、蒸発器の伝熱管の長手方向に分配する分配管を設け、この分配管で分配した後の蒸気を主とする冷媒をそれぞれ前記伝熱管下部に導入することを特徴とする請求項1に記載の冷凍装置の蒸発器にある。   The invention according to claim 2 of the present application is provided with a distribution pipe for distributing the refrigerant mainly composed of the vapor separated by the gas-liquid separation means in the longitudinal direction of the heat transfer pipe of the evaporator, The refrigerant of the refrigeration apparatus according to claim 1, wherein a refrigerant mainly composed of steam is introduced into the lower part of the heat transfer tube.

本願請求項3に記載の発明は、前記気液分離手段で分離された液体を主とする冷媒を、前記蒸発器内の冷媒液の液面が低下する部分に他の部分よりも多く供給することを特徴とする請求項1又は2に記載の冷凍装置の蒸発器にある。   In the invention according to claim 3 of the present application, the refrigerant mainly composed of the liquid separated by the gas-liquid separation means is supplied to the portion where the liquid level of the refrigerant liquid in the evaporator is lower than the other portions. It exists in the evaporator of the freezing apparatus of Claim 1 or 2 characterized by the above-mentioned.

本願請求項4に記載の発明は、前記蒸発器は、前記冷凍装置が有する二系統の冷凍サイクルにそれぞれ用いる二系統の蒸発器で構成され、これら二系統の蒸発器は、1つの缶胴内に二重隔壁で分離して設置されるとともに、それぞれの冷凍サイクルの気液分離手段で分離された蒸気を主とする冷媒をそれぞれ蒸発器の伝熱管の下部に導く蒸気通路を、前記二重隔壁内に設けたことを特徴とする請求項1又は2又は3に記載の冷凍装置の蒸発器にある。   In the invention according to claim 4 of the present application, the evaporator is composed of two systems of evaporators respectively used in two systems of refrigeration cycles of the refrigeration apparatus, and these two systems of evaporators are in one can body. And a vapor passage for guiding the refrigerant mainly composed of the vapor separated by the gas-liquid separation means of each refrigeration cycle to the lower part of the heat transfer tube of the evaporator. It is provided in the partition, It exists in the evaporator of the freezing apparatus of Claim 1 or 2 or 3 characterized by the above-mentioned.

本願請求項5に記載の発明は、前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記伝熱管の下部に導入される蒸気を主とする冷媒の導入量を、前記伝熱管の被冷却流体出口側で多くするか、或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記伝熱管の下部に導入される蒸気を主とする冷媒の導入量を、前記伝熱管の被冷却流体折り返し側で多くすることを特徴とする請求項1又は2又は3又は4に記載の冷凍装置の蒸発器にある。   In the invention according to claim 5 of the present invention, the fluid to be cooled that flows inside the heat transfer tube of the evaporator has a one-pass structure, and the amount of refrigerant mainly composed of steam introduced into the lower portion of the heat transfer tube is reduced. The cooling fluid outlet side of the heat transfer tube is increased, or the fluid to be cooled flowing inside the heat transfer tube of the evaporator has a two-pass structure, and steam introduced into the lower portion of the heat transfer tube is mainly used. 5. The evaporator of the refrigeration apparatus according to claim 1, 2, 3, or 4, wherein the amount of refrigerant introduced is increased on a cooled fluid return side of the heat transfer tube.

本願請求項6に記載の発明は、凝縮器からの冷媒が供給される冷凍装置の蒸発器において、前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記冷媒の蒸発器への導入位置を、前記伝熱管の下部の被冷却流体出口側とするか、或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記冷媒の蒸発器への導入位置を、前記伝熱管の下部の被冷却流体折り返し側とすることを特徴とする冷凍装置の蒸発器にある。   According to the sixth aspect of the present invention, in the evaporator of the refrigeration system to which the refrigerant from the condenser is supplied, the fluid to be cooled that flows inside the heat transfer tube of the evaporator has a one-pass structure, and the refrigerant The introduction position to the evaporator is the outlet side of the fluid to be cooled at the lower part of the heat transfer tube, or the fluid to be cooled flowing inside the heat transfer tube of the evaporator has a two-pass structure, and the evaporator of the refrigerant In the evaporator of the refrigeration apparatus, the introduction position is set to the cooling fluid return side of the lower part of the heat transfer tube.

本願請求項7に記載の発明は、凝縮器からの冷媒が供給される冷凍装置の蒸発器において、前記蒸発器の缶胴内の伝熱管と前記冷媒の前記伝熱管下部への導入位置との間を多孔板で仕切り、前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記伝熱管の被冷却流体出口側に対向する部分の多孔板の単位面積当たりの開口面積を多孔板の他の部分の開口面積に比べて大きくするか、或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記伝熱管の被冷却流体折り返し側に対向する部分の多孔板の単位面積当たりの開口面積を多孔板の他の部分の開口面積に比べて大きくすることを特徴とする冷凍装置の蒸発器にある。   The invention according to claim 7 of the present application is the evaporator of the refrigeration apparatus to which the refrigerant from the condenser is supplied, and includes the heat transfer tube in the can body of the evaporator and the introduction position of the refrigerant to the lower portion of the heat transfer tube. The space to be cooled is partitioned by a perforated plate so that the fluid to be cooled flowing inside the heat transfer tube of the evaporator has a one-pass structure, and the opening per unit area of the perforated plate in the portion facing the cooled fluid outlet side of the heat transfer tube Make the area larger than the opening area of the other part of the perforated plate, or make the fluid to be cooled flowing inside the heat transfer tube of the evaporator a two-pass structure, The evaporator of the refrigeration apparatus is characterized in that the opening area per unit area of the perforated plate of the facing portion is larger than the opening area of the other portion of the perforated plate.

本願請求項8に記載の発明は、少なくとも、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機と、高圧蒸気を冷却流体で冷却して凝縮させる凝縮器とを有する冷凍装置において、前記蒸発器として、請求項1乃至7の内の何れかに記載の蒸発器を用いたことを特徴とする冷凍装置にある。   The invention described in claim 8 includes at least an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a compressor that compresses the refrigerant vapor into high-pressure vapor, and high-pressure vapor A refrigerating apparatus having a condenser that cools and condenses with a cooling fluid, wherein the evaporator according to any one of claims 1 to 7 is used as the evaporator. .

請求項1に記載の発明によれば、気液分離手段で分離された蒸気を主とする冷媒が蒸発器の伝熱管の下部に導入されるので、気泡の攪拌効果によって伝熱管下部から冷媒を攪拌でき伝熱管への伝熱を良好にする効果が発揮される。一方気液分離手段で分離された液体を主とする冷媒は蒸発器の伝熱管の上部から導入されるので、例え伝熱管に冷媒液の液面から露出している部分があってもこれに散布することでこの露出部においても伝熱効果を発揮させることができる。さらに伝熱管の下部から導入されるのは蒸気を主とする冷媒のみなので、蒸発器下部に導入される冷媒の冷媒通路として大きな通路を設ける必要がなく、このため冷媒通路の周りにできる、通路として役立たない無効領域が小さくなり、その分、冷凍装置に充填すべき冷媒量を少なくすることができる。   According to the first aspect of the present invention, the refrigerant mainly composed of the vapor separated by the gas-liquid separation means is introduced into the lower part of the heat transfer tube of the evaporator. Stirring is effective in improving heat transfer to the heat transfer tube. On the other hand, since the refrigerant mainly composed of the liquid separated by the gas-liquid separation means is introduced from the upper part of the heat transfer tube of the evaporator, even if the heat transfer tube has a portion exposed from the liquid surface of the refrigerant liquid. By spraying, the heat transfer effect can be exhibited even in the exposed portion. Furthermore, since only the refrigerant mainly composed of steam is introduced from the lower part of the heat transfer tube, it is not necessary to provide a large passage as a refrigerant passage for the refrigerant introduced into the lower part of the evaporator, and thus a passage that can be formed around the refrigerant passage. As a result, the ineffective area that is not useful is reduced, and the amount of refrigerant to be charged in the refrigeration apparatus can be reduced accordingly.

請求項2に記載の発明によれば、分配管によって伝熱管下部に導入される前に予め冷媒を分配したので、蒸発器の伝熱管下部の冷媒通路の断面積を小さくすることができる。   According to the second aspect of the present invention, since the refrigerant is distributed in advance before being introduced into the lower portion of the heat transfer tube by the distribution pipe, the sectional area of the refrigerant passage at the lower portion of the heat transfer tube of the evaporator can be reduced.

請求項3に記載の発明によれば、伝熱管の冷媒液面から露出しやすい部分に優先的に液体を主とする冷媒を散布できるので、より効果的な伝熱効果が得られる。   According to the third aspect of the present invention, since the refrigerant mainly composed of liquid can be preferentially sprayed on the portion of the heat transfer tube that is easily exposed from the refrigerant liquid surface, a more effective heat transfer effect can be obtained.

請求項4に記載の発明によれば、蒸発器のコンパクト化と、缶胴の補強とが図れる。   According to the invention described in claim 4, the evaporator can be made compact and the can body can be reinforced.

請求項5に記載の発明によれば、蒸発器内の冷媒液面が低下すると予想される部分への冷媒蒸気の供給量割合を多くでき、伝熱の改良を図ることができ、また液面の平均化を図ることができる。   According to the fifth aspect of the present invention, it is possible to increase the ratio of the supply amount of the refrigerant vapor to the portion where the refrigerant liquid level in the evaporator is expected to decrease, improve the heat transfer, and improve the liquid level. Can be averaged.

請求項6に記載の発明によれば、蒸発器内の冷媒液面が低下して伝熱が悪くなると予想される部分における冷媒蒸気量が増え、液面の平均化と伝熱の改良が図れる。   According to the sixth aspect of the present invention, the amount of refrigerant vapor in the portion where the refrigerant liquid level in the evaporator is expected to decrease and heat transfer is expected to increase, and the liquid level can be averaged and heat transfer improved. .

請求項7に記載の発明によれば、蒸発器内の冷媒液面が低下して伝熱が悪くなると予想される部分における冷媒蒸気の多孔板からの噴出し量が増え、液面の平均化と伝熱の改良が図れる。   According to the seventh aspect of the present invention, the amount of refrigerant vapor ejected from the perforated plate at the portion where the liquid level in the evaporator is expected to decrease and heat transfer is expected to deteriorate, and the liquid level is averaged. And improve heat transfer.

請求項8に記載の発明によれば、伝熱効果の高い蒸発器を用いたので、冷凍機の冷凍性能を向上させることができる。   According to the invention described in claim 8, since the evaporator having a high heat transfer effect is used, the refrigeration performance of the refrigerator can be improved.

以下、本発明の実施形態を図面を参照して詳細に説明する。
〔第1実施形態〕
図5は本発明の第1実施形態にかかる蒸発器30の構成図である。この蒸発器30は、前記図1に示す基本構成の冷凍装置1−1の蒸発器や図2に示すエコノマイザー付きの冷凍装置1−2の蒸発器等として利用される。即ち蒸発器30は、図1,図2に示す蒸発器3に代えて設置されるものであり、図1,図2に示す凝縮器7からの冷媒を直接或いはエコノマイザー13経由で供給される蒸発器である。従ってこの蒸発器30を適用する冷凍装置の他の各部の基本構成は、前記図1,図2に示す冷凍装置1−1,1−2の基本構成と同一である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 5 is a configuration diagram of the evaporator 30 according to the first embodiment of the present invention. The evaporator 30 is used as the evaporator of the refrigeration apparatus 1-1 having the basic configuration shown in FIG. 1, the evaporator of the refrigeration apparatus 1-2 with an economizer shown in FIG. That is, the evaporator 30 is installed in place of the evaporator 3 shown in FIGS. 1 and 2, and the refrigerant from the condenser 7 shown in FIGS. 1 and 2 is supplied directly or via the economizer 13. It is an evaporator. Therefore, the basic configuration of other parts of the refrigeration apparatus to which the evaporator 30 is applied is the same as the basic configuration of the refrigeration apparatuses 1-1 and 1-2 shown in FIGS.

蒸発器30は図5に示すように、この蒸発器30に冷媒を供給する系統、即ち凝縮器7(又はエコノマイザー13)から蒸発器30への冷媒配管11中に、この冷媒を気液分離する気液分離器(気液分離手段)60を設置し、この気液分離器60で分離された蒸気を主とする冷媒を蒸発器30の伝熱管31の下部に導入するとともに、気液分離器60で分離された液体を主とする冷媒を蒸発器30の伝熱管31の上部に導入するように構成されている。   As shown in FIG. 5, the evaporator 30 gas-liquid separates this refrigerant into a system for supplying the refrigerant to the evaporator 30, that is, in the refrigerant pipe 11 from the condenser 7 (or economizer 13) to the evaporator 30. A gas-liquid separator (gas-liquid separation means) 60 is installed, and a refrigerant mainly composed of vapor separated by the gas-liquid separator 60 is introduced into the lower part of the heat transfer tube 31 of the evaporator 30 and gas-liquid separation is performed. The refrigerant mainly composed of the liquid separated in the evaporator 60 is introduced into the upper part of the heat transfer tube 31 of the evaporator 30.

気液分離器60には、凝縮器7(又はエコノマイザー13)から導入される冷媒配管11と、分離された蒸気を主とする冷媒を取り出す冷媒配管61と、分離された液体を主とする冷媒を取り出す冷媒配管63とが取り付けられている。なおこの気液分離器60による気液分離は、完全な気液分離でなくても良い。   The gas-liquid separator 60 mainly includes the refrigerant pipe 11 introduced from the condenser 7 (or the economizer 13), the refrigerant pipe 61 for taking out the refrigerant mainly composed of the separated vapor, and the separated liquid. A refrigerant pipe 63 for taking out the refrigerant is attached. Note that the gas-liquid separation by the gas-liquid separator 60 may not be complete gas-liquid separation.

蒸発器30は、蒸発器缶胴33内に水平方向(図5では紙面手前・奥方向)に向かう複数本の伝熱管31を並列に設置し、伝熱管31と蒸発器缶胴33の底面33aとの間に冷媒分配用の多孔板(冷媒蒸気分配板)35を取り付け、多孔板35の下部を冷媒通路37とし、前記冷媒配管61を蒸発器缶胴33の底面33aに接続し、前記冷媒配管63を前記蒸発器缶胴33の側壁33bから伝熱管31の上部に導入して構成されている。さらに蒸発器缶胴33内の上部の蒸気空間には、冷媒液滴が圧縮機5側の冷媒配管11に吸い込まれるのを防止するバッフル板37,37が設置されている。多孔板35は蒸発器缶胴33の伝熱管31と底面33aとの間をほぼ水平に仕切るように設置され、その全面に渡って孔35aが設けられている。   In the evaporator 30, a plurality of heat transfer tubes 31 directed in the horizontal direction (front and back in the drawing in FIG. 5) are installed in parallel in the evaporator can body 33, and the heat transfer tube 31 and the bottom surface 33 a of the evaporator can body 33 are arranged. A perforated plate (refrigerant vapor distribution plate) 35 for refrigerant distribution is attached between the bottom of the perforated plate 35, a lower portion of the perforated plate 35 serves as a refrigerant passage 37, the refrigerant pipe 61 is connected to the bottom surface 33 a of the evaporator can body 33, and the refrigerant A pipe 63 is introduced from the side wall 33 b of the evaporator can body 33 into the upper part of the heat transfer tube 31. Further, baffle plates 37 and 37 for preventing refrigerant droplets from being sucked into the refrigerant pipe 11 on the compressor 5 side are installed in the upper vapor space in the evaporator can body 33. The perforated plate 35 is installed so as to partition the heat transfer tube 31 and the bottom surface 33a of the evaporator can body 33 almost horizontally, and a hole 35a is provided over the entire surface.

以上のように構成された気液分離器60付きの蒸発器30において、凝縮器7(又はエコノマイザー13)側から気液分離器60に導入された冷媒は、蒸気を主とする冷媒と、液体を主とする冷媒とに分離され、蒸気を主とする冷媒は冷媒配管61によって蒸発器30の下部の冷媒通路37に導入され、多孔板35に設けた多数の孔35aによってほぼ均一に分配された状態で伝熱管31に供給される。供給される冷媒の多くは蒸気なので、気泡による攪拌作用、即ち気泡によって伝熱管31の下部から冷媒が攪拌されて、冷媒から伝熱管31内の冷水(被冷却流体)への伝熱効率が向上する。一方液体を主とする冷媒は冷媒配管63によって伝熱管31の上部の蒸気空間内に導入され、スプレーノズル63aによって伝熱管31の冷媒液面から露出している部分に散布される。つまり伝熱管31の冷媒液面からの露出部も伝熱に寄与できる。なお蒸気空間内の冷媒液滴(ミスト状の冷媒)はバッフル板37,37に衝突し捕集されることで圧縮機5への吸い込みが防止される。   In the evaporator 30 with the gas-liquid separator 60 configured as described above, the refrigerant introduced into the gas-liquid separator 60 from the condenser 7 (or economizer 13) side is a refrigerant mainly composed of steam, The refrigerant mainly composed of liquid is separated into the refrigerant mainly composed of vapor, and the refrigerant mainly composed of vapor is introduced into the refrigerant passage 37 below the evaporator 30 through the refrigerant pipe 61, and is almost uniformly distributed by the numerous holes 35 a provided in the perforated plate 35. In this state, the heat transfer tube 31 is supplied. Since most of the supplied refrigerant is steam, the agitation action by bubbles, that is, the refrigerant is agitated from the lower part of the heat transfer tube 31 by the bubbles, and the heat transfer efficiency from the refrigerant to the cold water (cooled fluid) in the heat transfer tube 31 is improved. . On the other hand, the refrigerant mainly composed of liquid is introduced into the vapor space above the heat transfer tube 31 by the refrigerant pipe 63 and is sprayed on the portion exposed from the refrigerant liquid surface of the heat transfer tube 31 by the spray nozzle 63a. That is, the exposed portion of the heat transfer tube 31 from the refrigerant liquid level can also contribute to heat transfer. The refrigerant droplets (mist refrigerant) in the vapor space collide with the baffle plates 37 and 37 and are collected, so that the suction to the compressor 5 is prevented.

またこの気液分離器60付きの蒸発器30においては、伝熱管31の下部から導入されるのは蒸気を主とする冷媒のみなので、蒸発器30下部の冷媒通路37として大きな通路を設ける必要がなく、このため冷媒通路37の周りにできる、通路として役立たない無効領域を小さくすることができ、その分、冷凍装置1−1又は1−2に充填すべき冷媒量を少なくすることができる。   In addition, in the evaporator 30 with the gas-liquid separator 60, only the refrigerant mainly composed of steam is introduced from the lower part of the heat transfer tube 31, so that it is necessary to provide a large passage as the refrigerant passage 37 below the evaporator 30. For this reason, the ineffective area that does not serve as a passage around the refrigerant passage 37 can be reduced, and accordingly, the amount of refrigerant to be charged in the refrigeration apparatus 1-1 or 1-2 can be reduced.

〔第2実施形態〕
図6は本発明の第2実施形態にかかる蒸発器30−2の構成図であり、図6(a)は側面側から見た図、図6(b)は正面側から見た図である。この蒸発器30−2においても第1実施形態と同様に、図1に示す基本構成の冷凍装置1−1の蒸発器や図2に示すエコノマイザー付きの冷凍装置1−2の蒸発器等として利用される。即ち蒸発器30−2は、図1,図2に示す蒸発器3に代えて設置するものであり、図1,図2に示す凝縮器7からの冷媒を直接或いはエコノマイザー13経由で供給される蒸発器である。従ってこの蒸発器30−2を適用する冷凍装置の他の各部の基本構成は、前記図1,図2に示す冷凍装置1−1,1−2の基本構成と同一である。またこの実施形態において、前記第1実施形態と同一部分には同一符号を付し、その詳細な説明は省略する。
[Second Embodiment]
6A and 6B are configuration diagrams of an evaporator 30-2 according to the second embodiment of the present invention. FIG. 6A is a diagram viewed from the side surface, and FIG. 6B is a diagram viewed from the front side. . In the evaporator 30-2, as in the first embodiment, the evaporator of the refrigeration apparatus 1-1 having the basic configuration shown in FIG. 1, the evaporator of the refrigeration apparatus 1-2 with an economizer shown in FIG. Used. That is, the evaporator 30-2 is installed in place of the evaporator 3 shown in FIGS. 1 and 2, and the refrigerant from the condenser 7 shown in FIGS. 1 and 2 is supplied directly or via the economizer 13. It is an evaporator. Therefore, the basic configuration of other parts of the refrigeration apparatus to which the evaporator 30-2 is applied is the same as the basic configuration of the refrigeration apparatuses 1-1 and 1-2 shown in FIGS. In this embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

即ちこの蒸発器30−2においても図6に示すように、この蒸発器30−2に冷媒を供給する系統、即ち凝縮器7(又はエコノマイザー13)から蒸発器30−2への冷媒配管11中に、この冷媒を気液分離する気液分離器(気液分離手段)60を設置し、この気液分離器60で分離された蒸気を主とする冷媒を蒸発器30−2の伝熱管31の下部に導入するとともに、分離された液体を主とする冷媒を蒸発器30−2の伝熱管31の上部に導入するように構成している。   That is, also in the evaporator 30-2, as shown in FIG. 6, a system for supplying a refrigerant to the evaporator 30-2, that is, a refrigerant pipe 11 from the condenser 7 (or the economizer 13) to the evaporator 30-2. A gas-liquid separator (gas-liquid separation means) 60 for gas-liquid separation of the refrigerant is installed therein, and the refrigerant mainly composed of the vapor separated by the gas-liquid separator 60 is used as a heat transfer tube of the evaporator 30-2. In addition to being introduced into the lower portion of the refrigerant 31, the refrigerant mainly composed of the separated liquid is introduced into the upper portion of the heat transfer tube 31 of the evaporator 30-2.

またこの気液分離器60においても、分離された蒸気を主とする冷媒を取り出す冷媒配管61と、分離された液体を主とする冷媒を取り出す冷媒配管63とが取り付けられているが、この実施形態において第1実施形態と相違する点はさらに、気液分離器60で分離された直後の冷媒配管61の根元部分に、蒸発器缶胴33の上部(即ち冷媒液面よりも上部)で伝熱管31の長手方向に沿って蒸発器缶胴33内を伝熱管31の長さとほぼ同一の長さ延びる管状の分配器(蒸気分配器)65を設置している点である。前記気液分離器60は図6(b)に示すように分配器65の中央に設置される。分配器65には所定間隔毎に開口67が設けられ、これら開口67からそれぞれ水平に冷媒配管61が延び、さらに冷媒配管61の先端をそれぞれ下方向に向かう管状の蒸気通路69に接続し、これら蒸気通路69の下端を多孔板35の下部の冷媒通路37に接続している。   The gas-liquid separator 60 is also provided with a refrigerant pipe 61 for taking out the refrigerant mainly composed of the separated vapor and a refrigerant pipe 63 for taking out the refrigerant mainly made of the separated liquid. The difference from the first embodiment in the form is further transmitted to the root portion of the refrigerant pipe 61 immediately after being separated by the gas-liquid separator 60 at the upper part of the evaporator can body 33 (that is, above the refrigerant liquid level). A tubular distributor (steam distributor) 65 extending in the evaporator can body 33 along the longitudinal direction of the heat pipe 31 and extending substantially the same length as the heat transfer pipe 31 is provided. The gas-liquid separator 60 is installed at the center of the distributor 65 as shown in FIG. The distributor 65 is provided with openings 67 at predetermined intervals. The refrigerant pipes 61 extend horizontally from the openings 67, and the tips of the refrigerant pipes 61 are respectively connected to tubular steam passages 69 directed downward. The lower end of the vapor passage 69 is connected to the refrigerant passage 37 below the perforated plate 35.

以上のように構成された気液分離器60付きの蒸発器30−2において、気液分離器60に導入された冷媒は、蒸気を主とする冷媒と、液体を主とする冷媒とに分離され、蒸気を主とする冷媒は分配器65によって予め蒸発器缶胴33内の冷媒液面よりも上部において伝熱管31の長手方向に分配された後に各蒸気通路69から蒸発器30の下部の冷媒通路37に導入され、多孔板35に設けた多数の孔35aからほぼ均一に伝熱管31に供給される。この実施形態では気液分離後の冷媒蒸気の分配を冷媒液面よりも上部で行なっているので、前記分配を冷媒液面の下部で行う場合のように、冷媒液溜まりが分配器65の周囲に生じることはない。また多孔板35下部の冷媒通路37の断面積は、伝熱管31の長手方向の冷媒蒸気の分配が分配器65によって既に終了しているので、さらに小さくすることができる。   In the evaporator 30-2 with the gas-liquid separator 60 configured as described above, the refrigerant introduced into the gas-liquid separator 60 is separated into a refrigerant mainly composed of steam and a refrigerant mainly composed of liquid. Then, the refrigerant mainly composed of steam is distributed in the longitudinal direction of the heat transfer pipe 31 above the refrigerant liquid level in the evaporator can body 33 by the distributor 65 in advance, and then from each steam passage 69 to the lower part of the evaporator 30. The refrigerant is introduced into the refrigerant passage 37 and supplied to the heat transfer tube 31 almost uniformly from a large number of holes 35 a provided in the perforated plate 35. In this embodiment, since the distribution of the refrigerant vapor after the gas-liquid separation is performed above the refrigerant liquid level, the refrigerant liquid pool is located around the distributor 65 as in the case where the distribution is performed below the refrigerant liquid level. Will not occur. The cross-sectional area of the refrigerant passage 37 below the perforated plate 35 can be further reduced because the distribution of the refrigerant vapor in the longitudinal direction of the heat transfer tube 31 has already been completed by the distributor 65.

なお図6に示す蒸発器30−2において、気液分離器60で分離された液体を主とする冷媒のスプレーノズル63aからの散布量を伝熱管31の長手方向で変えて、蒸発器30−2(蒸発器缶胴33)内の冷媒液面の低下する部分に、他の部分よりも冷媒液の散布量を多くすると好適である。例えば冷媒液の散布量を増加したい部分のスプレーノズル63aの数を他の部分よりも多くしたり、他の部分よりもノズル径の大きいスプレーノズル63aを用いたりすれば良い。具体的にこの蒸発器30−2の場合、図6(b)に示すように、1パス構造なので、前記図4(b)に示すように、冷媒液面は伝熱管31の冷水出口側で低下するので、この伝熱管31の冷水出口側の部分に他の部分よりも多くの冷媒液を散布すれば良い。また蒸発器30−2の構造が2パス構造の場合は、伝熱管31の冷水の折り返し側に他の部分よりも多く冷媒液を散布すれば良い。   In addition, in the evaporator 30-2 shown in FIG. 6, the amount of spraying of the liquid mainly separated from the gas-liquid separator 60 from the spray nozzle 63a is changed in the longitudinal direction of the heat transfer tube 31, so that the evaporator 30- It is preferable to increase the spray amount of the refrigerant liquid in the part where the refrigerant liquid level in 2 (evaporator can body 33) is lower than the other parts. For example, the number of spray nozzles 63a at a portion where the amount of sprayed refrigerant liquid is desired to be increased may be larger than that at other portions, or a spray nozzle 63a having a larger nozzle diameter than other portions may be used. Specifically, in the case of this evaporator 30-2, as shown in FIG. 6B, since it has a one-pass structure, as shown in FIG. 4B, the refrigerant liquid level is on the cold water outlet side of the heat transfer tube 31. Therefore, more refrigerant liquid may be sprayed to the portion of the heat transfer tube 31 on the cold water outlet side than the other portions. Further, when the structure of the evaporator 30-2 is a two-pass structure, more refrigerant liquid may be sprayed on the cold water return side of the heat transfer tube 31 than in other portions.

〔第3実施形態〕
図7は本発明の第3実施形態にかかる蒸発器30−3の構成図であり、図7(a)は側面側から見た図、図7(b)は上面側から見た図である。図8はこの蒸発器30−3を用いて構成される二重冷凍サイクルの冷凍装置(圧縮式冷凍装置)1−3の一例を示す構成図である。まず冷凍装置1−3の構成から説明する。図8に示す冷凍装置1−3は、前記図1に示す冷凍装置1−1と同じ構成の冷凍装置1a,1bを2台具備しており、上述のように各冷凍装置1a,1bは何れも冷媒を封入したクローズドシステムから構成され、蒸発器30−3a,30−3bと、圧縮機5a,5bと、凝縮器7a,7bと、絞り機構9a,9bとを、冷媒配管11a,11bによって連結して構成されている。この冷凍装置1−3の場合、2台の圧縮機5a,5bを駆動する電動機Mを共用している。蒸発器30−3は、2台の冷凍装置1a,1bのそれぞれの蒸発器30−3a,30−3bを、1つの蒸発器缶胴33を複数(2つ)に区画し、区画された部分にそれぞれの伝熱管17を設置して構成されている。またそれぞれの凝縮器7a,7bも、1つの凝縮器缶胴41を複数(2つ)に区画し、区画された部分にそれぞれ伝熱管を設置して構成されている。
[Third Embodiment]
7A and 7B are configuration diagrams of an evaporator 30-3 according to the third embodiment of the present invention. FIG. 7A is a diagram viewed from the side surface, and FIG. 7B is a diagram viewed from the top surface side. . FIG. 8 is a configuration diagram showing an example of a refrigeration apparatus (compression refrigeration apparatus) 1-3 of a double refrigeration cycle configured using the evaporator 30-3. First, the configuration of the refrigeration apparatus 1-3 will be described. The refrigeration apparatus 1-3 shown in FIG. 8 includes two refrigeration apparatuses 1a and 1b having the same configuration as the refrigeration apparatus 1-1 shown in FIG. 1, and each of the refrigeration apparatuses 1a and 1b is Is also composed of a closed system filled with refrigerant, and evaporators 30-3a and 30-3b, compressors 5a and 5b, condensers 7a and 7b, and throttle mechanisms 9a and 9b are connected by refrigerant pipes 11a and 11b. Concatenated. In the case of this refrigeration apparatus 1-3, the electric motor M which drives the two compressors 5a and 5b is shared. The evaporator 30-3 partitions each of the evaporators 30-3a and 30-3b of the two refrigeration apparatuses 1a and 1b into a plurality of (two) one evaporator can body 33, and is a partitioned part Each of the heat transfer tubes 17 is installed. Each of the condensers 7a and 7b is also configured by dividing one condenser can body 41 into a plurality (two) and installing heat transfer tubes in the divided parts.

図7に示す蒸発器30−3は、左右に互いに独立した蒸発器30−3a,30−3bを設け、両蒸発器30−3a,30−3bを二重隔壁45で区画(分離)している。そしてこの蒸発器30−3a,30−3bにそれぞれ冷媒を供給する系統、即ち凝縮器7a,7bから蒸発器30−3a,30−3bへの冷媒配管11a,11b中に、この冷媒を気液分離する気液分離器(気液分離手段)60,60を設置し、この気液分離器60,60で分離された蒸気を主とする冷媒を蒸発器30−3a,30−3bの伝熱管31,31の下部に導入するとともに、分離された液体を主とする冷媒を蒸発器30−3a,30−3bの伝熱管31,31の上部に導入するように構成している。これらの気液分離器60,60においても、分離された蒸気を主とする冷媒を取り出す冷媒配管61,61と、分離された液体を主とする冷媒を取り出す冷媒配管63,63とが取り付けられているが、第2実施形態と同様に、気液分離器60,60で分離された直後の冷媒配管61,61の根元部分に、蒸発器缶胴33の上部(即ち冷媒液面よりも上部)で伝熱管31,31の長手方向に沿って蒸発器缶胴33内を伝熱管31,31の長さとほぼ同一の長さ寸法延びる管状の分配器65,65を設置している。そして気液分離器60,60は図7(b)に示すように分配器65,65の中央に設置され、分配器65,65には所定間隔毎に開口67,67が設けられ、これら開口67,67にそれぞれ水平に二重隔壁45に向かう冷媒配管61が接続され、冷媒配管61の先端には二重隔壁45内で下方向に向かう管状の蒸気通路69,69が接続され、これら蒸気通路69,69の下端には多孔板35,35の下部の冷媒通路37,37が接続されている。つまり二重隔壁45内に、冷媒蒸気の下降通路である管状の蒸気通路69,69を設け、これらによって冷媒蒸気を多孔板35,35の下部に導入している。二重隔壁45内の蒸気通路69,69はこの実施形態では交互に設けられている。この実施形態のように気液分離後の冷媒蒸気の分配を冷媒液面よりも上部で行なえば、前記第2実施形態と同様に、冷媒液溜まりが分配器65,65の周囲に生じることはなく、また多孔板35,35下部の冷媒通路37,37の断面積は、伝熱管31,31の長手方向の冷媒蒸気の分配が既に終了しているので、さらに小さくすることができる。   The evaporator 30-3 shown in FIG. 7 is provided with evaporators 30-3a and 30-3b that are independent from each other on the left and right sides, and the evaporators 30-3a and 30-3b are partitioned (separated) by a double partition wall 45. Yes. The refrigerant is supplied to the evaporators 30-3a and 30-3b, that is, in the refrigerant pipes 11a and 11b from the condensers 7a and 7b to the evaporators 30-3a and 30-3b. Gas-liquid separators (gas-liquid separation means) 60, 60 to be separated are installed, and a refrigerant mainly composed of vapor separated by the gas-liquid separators 60, 60 is used as heat transfer tubes of the evaporators 30-3a, 30-3b. The refrigerant is mainly introduced into the lower part of the heat exchanger tubes 31 and 31 of the evaporators 30-3a and 30-3b. Also in these gas-liquid separators 60, 60, refrigerant pipes 61, 61 for taking out refrigerant mainly composed of separated vapor and refrigerant pipes 63, 63 for taking out refrigerant mainly composed of separated liquid are attached. However, as in the second embodiment, the root portion of the refrigerant pipes 61 and 61 immediately after being separated by the gas-liquid separators 60 and 60 is disposed above the evaporator can body 33 (that is, above the refrigerant liquid level). ), Tubular distributors 65 and 65 are installed in the evaporator can body 33 along the longitudinal direction of the heat transfer tubes 31 and 31 so as to extend approximately the same length as the length of the heat transfer tubes 31 and 31. The gas-liquid separators 60, 60 are installed at the center of the distributors 65, 65 as shown in FIG. 7B, and the distributors 65, 65 are provided with openings 67, 67 at predetermined intervals. Refrigerant piping 61 directed horizontally to the double partition wall 45 is connected to the 67 and 67, respectively, and tubular steam passages 69 and 69 directed downward in the double partition wall 45 are connected to the tip of the refrigerant piping 61. Refrigerant passages 37, 37 below the perforated plates 35, 35 are connected to the lower ends of the passages 69, 69. That is, tubular vapor passages 69, 69 that are refrigerant vapor descending passages are provided in the double partition wall 45, and the refrigerant vapor is introduced below the perforated plates 35, 35 by these. In this embodiment, the steam passages 69 and 69 in the double partition 45 are alternately provided. If the distribution of the refrigerant vapor after gas-liquid separation is performed above the refrigerant liquid surface as in this embodiment, a refrigerant liquid pool is generated around the distributors 65 and 65 as in the second embodiment. Further, the cross-sectional area of the refrigerant passages 37, 37 below the perforated plates 35, 35 can be further reduced because the distribution of the refrigerant vapor in the longitudinal direction of the heat transfer tubes 31, 31 has already been completed.

またこの実施形態に用いる伝熱管31,31は、両蒸発器30−3a,30−3bの全体に対しては2パス構造となっているが、各蒸発器30−3a,30−3bに対しては1パス構造となっている。従ってこれら両蒸発器30−3a,30−3bにおいて、気液分離器60,60で分離された液体を主とする冷媒のスプレーノズル63a,63からの散布量を伝熱管31,31の長手方向で変える場合は、1個の蒸発器30−3a又は30−3bに対する冷水出入口及びパス数で考え、この実施形態の場合はそれぞれ1パス構造なので、各蒸発器30−3a,30−3b内の伝熱管31,31の冷水出口側の部分に他の部分よりも多くの冷媒液を散布すれば良い。具体的に図7(b)で言えば、図の上側の蒸発器30−3aでは右側、下側の蒸発器30−3bでは左側の部分の冷媒液を多くする。   In addition, the heat transfer tubes 31 and 31 used in this embodiment have a two-pass structure with respect to the entire evaporators 30-3a and 30-3b, but with respect to the evaporators 30-3a and 30-3b. Has a one-pass structure. Accordingly, in these evaporators 30-3a and 30-3b, the amount of spray from the spray nozzles 63a and 63 of the refrigerant mainly composed of the liquid separated by the gas-liquid separators 60 and 60 is determined in the longitudinal direction of the heat transfer tubes 31 and 31. Is changed by the cold water inlet / outlet and the number of passes for one evaporator 30-3a or 30-3b. In this embodiment, each of the evaporators 30-3a and 30-3b has a one-pass structure. What is necessary is just to spray more refrigerant | coolants liquid to the part by the side of the cold water outlet of the heat exchanger tubes 31 and 31 than another part. Specifically, in FIG. 7B, the upper side of the evaporator 30-3a in the figure increases the amount of refrigerant liquid on the right side, and the lower side of the evaporator 30-3b increases the amount of refrigerant liquid on the left side.

この蒸発器30−3a,30−3bは、蒸発器全体のコンパクト化とともに、蒸発器缶胴33の補強に有効である。即ちこの実施形態においては、分配器65,65を蒸発器缶胴33を利用してその上部内面側に設置したので蒸発器缶胴33の補強に役立つ。また二重隔壁45に設ける蒸気通路69,69は、二重隔壁45の補強に供することができるとともに、蒸発器30−3a,30−3b全体のコンパクト化が図れる。   The evaporators 30-3a and 30-3b are effective for reinforcing the evaporator can body 33 as well as making the entire evaporator compact. That is, in this embodiment, the distributors 65, 65 are installed on the upper inner surface side of the evaporator can body 33, so that the evaporator can body 33 is reinforced. Further, the steam passages 69 and 69 provided in the double partition 45 can be used to reinforce the double partition 45, and the evaporators 30-3a and 30-3b can be made compact as a whole.

なお上記各実施形態において、蒸発器30,30−2,30−3内での冷媒液面が低下すると予想される部分の伝熱改良を図るため、伝熱管31が1パス構造の場合は、伝熱管31の下部に導入された蒸気を主とする冷媒を、伝熱管31の冷媒出口側に他の部分よりも多く導入するか、或いは伝熱管31が2パス構造の場合は、伝熱管31の下部に導入された蒸気を主とする冷媒を、伝熱管31の冷水折り返し側に他の部分よりも多く導入するように構成することが好ましい。このように構成すれば、蒸発器30,30−2,30−3内の冷媒液面が低下すると予想される部分の前記冷媒液面を多量の冷媒蒸気によって上昇でき、冷媒液面の平均化を図ることができ、伝熱管31の一部が冷媒液面から露出することがなくなって伝熱の改良を図ることができる。   In each of the above embodiments, in order to improve the heat transfer of the portion where the refrigerant liquid level in the evaporators 30, 30-2 and 30-3 is expected to be lowered, when the heat transfer tube 31 has a one-pass structure, The refrigerant mainly composed of steam introduced into the lower part of the heat transfer tube 31 is introduced into the refrigerant outlet side of the heat transfer tube 31 more than the other part, or when the heat transfer tube 31 has a two-pass structure, the heat transfer tube 31 It is preferable that the refrigerant mainly composed of steam introduced into the lower part of the heat transfer pipe 31 is introduced to the cold water return side of the heat transfer tube 31 more than the other parts. If comprised in this way, the refrigerant | coolant liquid level of the part in which the refrigerant | coolant liquid level in evaporator 30,30-2,30-3 is anticipated to fall can be raised with a lot of refrigerant | coolants vapor | steam, and an average of a refrigerant | coolant liquid level As a result, part of the heat transfer tube 31 is not exposed from the coolant level, and heat transfer can be improved.

〔第4実施形態〕
図9,図10は本発明の第4実施形態にかかる蒸発器30−4,30−5を用いて構成された冷凍装置1−4,1−5の構成図である。これらの図において蒸発器30−4,30−5以外の各部の基本構成は、前記図1,図2に示す冷凍装置1−1,1−2の基本構成と同一なので、同一符号を付し、その詳細な説明は省略する。即ち蒸発器30−4,30−5は、図1,図2に示す蒸発器3に代えて設置するものであり、図1,図2に示す凝縮器7からの冷媒を直接或いはエコノマイザー13経由で供給される蒸発器である。
[Fourth Embodiment]
9 and 10 are configuration diagrams of the refrigeration apparatuses 1-4 and 1-5 configured using the evaporators 30-4 and 30-5 according to the fourth embodiment of the present invention. In these drawings, the basic configuration of each part other than the evaporators 30-4 and 30-5 is the same as the basic configuration of the refrigeration apparatuses 1-1 and 1-2 shown in FIGS. Detailed description thereof will be omitted. That is, the evaporators 30-4 and 30-5 are installed in place of the evaporator 3 shown in FIGS. 1 and 2, and the refrigerant from the condenser 7 shown in FIGS. It is an evaporator supplied via.

図9,図10に示す蒸発器30−4,30−5は、何れも気液分離手段を有さない蒸発器であり、何れも蒸発器缶胴33内に水平方向に向かう伝熱管31を設置し、蒸発器缶胴33の底面に凝縮器7(又はエコノマイザー13)からの冷媒配管11を接続し、伝熱管31と蒸発器缶胴33の底面との間に冷媒分配用の多孔板35を取り付け、多孔板35の下部を冷媒通路37として構成されており、何れの蒸発器30−4,30−5も伝熱管31が2パス構造のものである。   Each of the evaporators 30-4 and 30-5 shown in FIGS. 9 and 10 is an evaporator having no gas-liquid separating means, and both have the heat transfer tubes 31 directed in the horizontal direction in the evaporator can body 33. The refrigerant pipe 11 from the condenser 7 (or the economizer 13) is connected to the bottom surface of the evaporator can body 33, and a perforated plate for refrigerant distribution is provided between the heat transfer tube 31 and the bottom surface of the evaporator can body 33. 35, and the lower part of the perforated plate 35 is configured as a refrigerant passage 37, and each of the evaporators 30-4 and 30-5 has a heat transfer tube 31 of a two-pass structure.

そして蒸発器30−4,30−5への冷媒の導入位置は、伝熱管31の下部の中央よりも冷水折り返し側としている。   And the introduction position of the refrigerant | coolant to evaporator 30-4, 30-5 is made into the cold water return side rather than the center of the lower part of the heat exchanger tube 31. FIG.

以上のように構成された蒸発器30−4,30−5において、凝縮器7側からの冷媒は、気液二相状態となって蒸発器30−4,30−5の下部に供給され、冷媒通路37で長手方向(水平方向)に分配されるが、前記気液二相状態の冷媒は伝熱管31の下部の中央よりも冷水折り返し側に導入されるので、冷水折り返し側の冷媒液面が他の部分に比べて押し上げられる。これによって前記図4(a),(b)で述べた、冷媒液面が低下すると予想される部分が押し上げられ、蒸発器30−4,30−5内の冷媒液面が低下して伝熱が悪くなると予想される部分における冷媒蒸気量が増え、液面の平均化と伝熱の改良が図れる。   In the evaporators 30-4 and 30-5 configured as described above, the refrigerant from the condenser 7 side becomes a gas-liquid two-phase state and is supplied to the lower parts of the evaporators 30-4 and 30-5. Although the refrigerant is distributed in the longitudinal direction (horizontal direction) in the refrigerant passage 37, the refrigerant in the gas-liquid two-phase state is introduced to the cold water return side from the lower center of the heat transfer tube 31. Is pushed up compared to other parts. This pushes up the portion where the coolant level is expected to decrease as described in FIGS. 4 (a) and 4 (b), and the coolant level in the evaporators 30-4 and 30-5 is lowered to transfer heat. As a result, the amount of refrigerant vapor increases in the portion where it is expected to become worse, and the liquid level can be averaged and heat transfer can be improved.

特に多孔板35下部の冷媒通路37の断面積が小さいと、この実施形態では気液二相状態の冷媒が冷媒通路37に供給されているので、前記図4(c)でも説明したが、気液二相状態の冷媒の分配が長手方向で均等にならず、冷媒配管11を接続した冷媒導入部付近で冷媒蒸気の多孔板35からの噴き出し量が多くなってその上部の液面が大きく上昇する。本実施形態ではこの現象を逆に積極的に利用することで、冷媒液面が低下して伝熱が悪くなると予想される部分への冷媒導入量を積極的に多くしてその冷媒液面を上昇させることで冷媒液面の均一化を図り、伝熱の改良を図っている。なおこの実施形態では伝熱管31が2パス構造なので、冷媒の導入位置を冷水折り返し側としたが、1パス構造の場合は、冷媒の蒸発器への導入位置を、伝熱管の下部の冷水出口側とする。   In particular, when the cross-sectional area of the refrigerant passage 37 below the perforated plate 35 is small, the gas-liquid two-phase refrigerant is supplied to the refrigerant passage 37 in this embodiment. The distribution of the refrigerant in the liquid two-phase state is not uniform in the longitudinal direction, and the amount of refrigerant vapor ejected from the perforated plate 35 increases in the vicinity of the refrigerant introduction part connected to the refrigerant pipe 11, and the liquid level at the upper part thereof greatly increases. To do. In the present embodiment, by actively utilizing this phenomenon on the contrary, the refrigerant liquid level is lowered and the amount of refrigerant introduced into the part where heat transfer is expected to be worsened is actively increased to reduce the refrigerant liquid level. By increasing the temperature, the liquid level of the refrigerant is made uniform to improve heat transfer. In this embodiment, since the heat transfer tube 31 has a two-pass structure, the refrigerant introduction position is the cold water return side. However, in the case of the one-pass structure, the refrigerant introduction position to the evaporator is the cold water outlet at the bottom of the heat transfer pipe. Let it be the side.

〔第5実施形態〕
図11,図12は本発明の第5実施形態にかかる蒸発器30−6,30−7を用いて構成された冷凍装置1−5,1−7の構成図である。これらの図において蒸発器30−6,30−7以外の各部の基本構成は前記図1,図2に示す冷凍装置1−1,1−2の基本構成と同一なので、同一符号を付し、その詳細な説明は省略する。
[Fifth Embodiment]
11 and 12 are configuration diagrams of refrigeration apparatuses 1-5 and 1-7 configured using evaporators 30-6 and 30-7 according to the fifth embodiment of the present invention. In these drawings, the basic configuration of each part other than the evaporators 30-6 and 30-7 is the same as the basic configuration of the refrigeration apparatuses 1-1 and 1-2 shown in FIGS. Detailed description thereof is omitted.

図11,図12に示す蒸発器30−6,30−7も、前記第4実施形態に示す蒸発器30−4,30−5と同様に、気液分離手段を有さない蒸発器であり、何れも蒸発器缶胴33内に水平方向に向かう伝熱管31を設置し、蒸発器缶胴33の底面に凝縮器7(又はエコノマイザー13)からの冷媒配管11を接続し、伝熱管31と蒸発器缶胴33の底面との間に冷媒分配用の多孔板35を取り付け、多孔板35の下部を冷媒通路37として構成されている。また蒸発器30−6,30−7の伝熱管31は何れも2パス構造である。   Similarly to the evaporators 30-4 and 30-5 shown in the fourth embodiment, the evaporators 30-6 and 30-7 shown in FIGS. 11 and 12 are evaporators that do not have gas-liquid separation means. In each case, a heat transfer tube 31 extending in the horizontal direction is installed in the evaporator can body 33, the refrigerant pipe 11 from the condenser 7 (or economizer 13) is connected to the bottom surface of the evaporator can body 33, and the heat transfer tube 31. A perforated plate 35 for distributing refrigerant is attached between the bottom of the evaporator can body 33 and a lower portion of the perforated plate 35 is configured as a refrigerant passage 37. The heat transfer tubes 31 of the evaporators 30-6 and 30-7 all have a two-pass structure.

そしてこれら蒸発器30−6,30−7においては、伝熱管31の冷媒折り返し側に対向する部分の多孔板35の単位面積当たりの開口面積を多孔板35の他の部分の開口面積に比べて大きくしている。ここで単位面積当たりの開口面積が大きいとは、孔の径は同一であるが単位面積当たりの孔の数が多い場合、又は単位面積当たりの孔の数は同一であるが孔の径自体が大きい場合等を言う。   In these evaporators 30-6 and 30-7, the opening area per unit area of the porous plate 35 in the portion facing the refrigerant return side of the heat transfer tube 31 is compared with the opening area of other portions of the porous plate 35. It is getting bigger. Here, the large opening area per unit area means that the hole diameter is the same but the number of holes per unit area is large, or the number of holes per unit area is the same, but the hole diameter itself is the same. Say the big case.

以上のように構成された蒸発器30−6,30−7においても、これら蒸発器30−6,30−7の下部に供給された凝縮器7側からの冷媒は気液二相状態であり、冷媒通路37で長手方向(水平方向)に分配されるが、前記気液二相状態の冷媒は多孔板35の単位面積当たりの開口面積が大きい部分からの噴き出し量が多くなり、冷水折り返し側の冷媒液面が押し上げられる。これによって前記図4(a)で述べた、冷媒液面が低下すると予想される部分が押し上げられ、蒸発器30−6,30−7内の冷媒液面が低下して伝熱が悪くなると予想される部分における冷媒蒸気量が増え、冷媒液面の平均化と伝熱の改良が図れる。なおこの実施形態においても、第4実施形態と同様に、伝熱管31が1パス構造の場合は、伝熱管の冷水出口側に対向する部分の多孔板の単位面積当たりの開口面積を多孔板の他の部分の開口面積に比べて大きくすれば良く、これによって同様の効果が生じる。   In the evaporators 30-6 and 30-7 configured as described above, the refrigerant from the condenser 7 side supplied to the lower portions of the evaporators 30-6 and 30-7 is in a gas-liquid two-phase state. The refrigerant passage 37 is distributed in the longitudinal direction (horizontal direction), but the refrigerant in the gas-liquid two-phase state has a large amount of ejection from a portion having a large opening area per unit area of the perforated plate 35, and the cold water return side. The refrigerant liquid level is pushed up. As a result, the portion of the refrigerant liquid level that is expected to be lowered as described in FIG. 4A is pushed up, and the liquid level in the evaporators 30-6 and 30-7 is lowered and heat transfer is expected to deteriorate. The amount of refrigerant vapor in the portion to be increased increases, and the liquid level of the refrigerant can be averaged and the heat transfer can be improved. In this embodiment, similarly to the fourth embodiment, when the heat transfer tube 31 has a one-pass structure, the opening area per unit area of the porous plate in the portion facing the cold water outlet side of the heat transfer tube is set to be equal to that of the porous plate. It is only necessary to make it larger than the opening area of other portions, and the same effect is produced.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、本発明を適用できる冷凍装置の構成は、前記図1,図2に示す構造の冷凍装置に限定されず、例えば凝縮器から蒸発器に向かう冷媒配管中に、膨張弁の代わりに動力回収膨張機(凝縮液を膨張させて蒸発器に送ると共に動力回収機(発電機)によって動力を回収するもの)が設けられている構成の冷凍装置など、他の各種構造の冷凍装置でもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape or structure not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are achieved. For example, the configuration of the refrigeration apparatus to which the present invention can be applied is not limited to the refrigeration apparatus having the structure shown in FIGS. 1 and 2. For example, in the refrigerant piping from the condenser to the evaporator, power recovery is performed instead of the expansion valve. Other various structures such as a refrigeration apparatus provided with an expander (which expands the condensate and sends it to the evaporator and collects power by a power recovery machine (generator)) may be used.

冷凍装置1−1の基本構成図である。It is a basic lineblock diagram of freezing equipment 1-1. エコノマイザー付きの冷凍装置1−2の基本構成図である。It is a basic lineblock diagram of refrigeration equipment 1-2 with an economizer. 図3(a)は伝熱管17が2パス構造の場合の温度分布を示す図、図3(b)は伝熱管17が1パス構造の場合の温度分布を示す図である。FIG. 3A is a diagram showing a temperature distribution when the heat transfer tube 17 has a two-pass structure, and FIG. 3B is a diagram showing a temperature distribution when the heat transfer tube 17 has a one-pass structure. 図4(a)は蒸発器3が2パス構造の場合の冷媒液面を示す図、図4(b)は蒸発器3が1パス構造の場合の冷媒液面を示す図、図4(c)は多孔板19下部の冷媒通路21が小さい場合の冷媒液面を示す図である。4A shows a refrigerant liquid level when the evaporator 3 has a two-pass structure, FIG. 4B shows a refrigerant liquid level when the evaporator 3 has a one-pass structure, and FIG. ) Is a diagram showing the refrigerant liquid level when the refrigerant passage 21 below the perforated plate 19 is small. 蒸発器30の構成図である。2 is a configuration diagram of an evaporator 30. FIG. 蒸発器30−2の構成図であり、図6(a)は側面側から見た図、図6(b)は正面側から見た図である。It is a block diagram of the evaporator 30-2, Fig.6 (a) is the figure seen from the side surface side, FIG.6 (b) is the figure seen from the front side. 蒸発器30−3の構成図であり、図7(a)は側面側から見た図、図7(b)は上面側から見た図である。It is a block diagram of the evaporator 30-3, Fig.7 (a) is the figure seen from the side surface side, FIG.7 (b) is the figure seen from the upper surface side. 蒸発器30−3を用いて構成される二重冷凍サイクルの冷凍装置1−3の一例を示す構成図である。It is a block diagram which shows an example of the freezing apparatus 1-3 of the double refrigerating cycle comprised using the evaporator 30-3. 蒸発器30−4の構成図である。It is a block diagram of the evaporator 30-4. 蒸発器30−5の構成図である。It is a block diagram of the evaporator 30-5. 蒸発器30−6の構成図である。It is a block diagram of the evaporator 30-6. 蒸発器30−7の構成図である。It is a block diagram of the evaporator 30-7.

符号の説明Explanation of symbols

1−1,1−2,1−3,1−4,1−5,1−6,1−7 冷凍装置
5 圧縮機
7 凝縮器
9 絞り機構(膨張弁)
11 冷媒配管
13 エコノマイザー(気液分離器)
30 蒸発器
31 伝熱管
33 蒸発器缶胴
35 多孔板
35a 孔
37 冷媒通路
60 気液分離器(気液分離手段)
30−2 蒸発器
65 分配器(蒸気分配器)
69 蒸気通路
30−3(30−3a,30−3b) 蒸発器
45 二重隔壁
30−4,30−5,30−6,30−7 蒸発器
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7 Refrigeration apparatus 5 Compressor 7 Condenser 9 Throttle mechanism (expansion valve)
11 Refrigerant piping 13 Economizer (gas-liquid separator)
30 Evaporator 31 Heat Transfer Tube 33 Evaporator Can Body 35 Perforated Plate 35a Hole 37 Refrigerant Passage 60 Gas-Liquid Separator (Gas-Liquid Separation Means)
30-2 Evaporator 65 Distributor (Vapor Distributor)
69 Steam passage 30-3 (30-3a, 30-3b) Evaporator 45 Double partition 30-4, 30-5, 30-6, 30-7 Evaporator

Claims (8)

凝縮器からの冷媒が供給される冷凍装置の蒸発器において、
前記蒸発器に冷媒を供給する系統に冷媒を気液分離する気液分離手段を設置し、
前記気液分離手段で分離された蒸気を主とする冷媒を蒸発器の伝熱管の下部に導入するとともに、前記分離された液体を主とする冷媒を蒸発器の伝熱管の上部に導入することを特徴とする冷凍装置の蒸発器。
In the evaporator of the refrigeration system to which the refrigerant from the condenser is supplied,
A gas-liquid separation means for separating the refrigerant into a gas and liquid is installed in a system for supplying the refrigerant to the evaporator,
Introducing the refrigerant mainly composed of vapor separated by the gas-liquid separation means into the lower part of the heat transfer tube of the evaporator, and introducing the refrigerant mainly composed of the separated liquid into the upper part of the heat transfer tube of the evaporator. An evaporator for a refrigeration apparatus.
前記気液分離手段で分離された蒸気を主とする冷媒を、蒸発器の伝熱管の長手方向に分配する分配管を設け、この分配管で分配した後の蒸気を主とする冷媒をそれぞれ前記伝熱管下部に導入することを特徴とする請求項1に記載の冷凍装置の蒸発器。   A distribution pipe that distributes the refrigerant mainly composed of the vapor separated by the gas-liquid separation means in the longitudinal direction of the heat transfer pipe of the evaporator is provided, and the refrigerant mainly composed of the vapor after distribution by the distribution pipe is It introduce | transduces into a heat exchanger tube lower part, The evaporator of the freezing apparatus of Claim 1 characterized by the above-mentioned. 前記気液分離手段で分離された液体を主とする冷媒を、前記蒸発器内の冷媒液の液面が低下する部分に他の部分よりも多く供給することを特徴とする請求項1又は2に記載の冷凍装置の蒸発器。   The refrigerant mainly composed of the liquid separated by the gas-liquid separation means is supplied to a portion where the liquid level of the refrigerant liquid in the evaporator is lower than the other portions. The evaporator of the refrigeration apparatus described in 1. 前記蒸発器は、前記冷凍装置が有する二系統の冷凍サイクルにそれぞれ用いる二系統の蒸発器で構成され、
これら二系統の蒸発器は、1つの缶胴内に二重隔壁で分離して設置されるとともに、それぞれの冷凍サイクルの気液分離手段で分離された蒸気を主とする冷媒をそれぞれ蒸発器の伝熱管の下部に導く蒸気通路を、前記二重隔壁内に設けたことを特徴とする請求項1又は2又は3に記載の冷凍装置の蒸発器。
The evaporator is composed of two systems of evaporators respectively used in two systems of refrigeration cycle of the refrigeration apparatus,
These two systems of evaporators are installed separately in a can body by a double partition wall, and the refrigerant mainly composed of vapor separated by the gas-liquid separation means of each refrigeration cycle is supplied to each evaporator. The evaporator of the refrigerating apparatus according to claim 1, wherein a vapor passage leading to a lower portion of the heat transfer tube is provided in the double partition wall.
前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記伝熱管の下部に導入される蒸気を主とする冷媒の導入量を、前記伝熱管の被冷却流体出口側で多くするか、
或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記伝熱管の下部に導入される蒸気を主とする冷媒の導入量を、前記伝熱管の被冷却流体折り返し側で多くすることを特徴とする請求項1又は2又は3又は4に記載の冷凍装置の蒸発器。
The cooled fluid flowing inside the heat transfer tube of the evaporator has a one-pass structure, and the amount of refrigerant mainly composed of steam introduced into the lower portion of the heat transfer tube is set to the cooled fluid outlet side of the heat transfer tube. Or more
Alternatively, the fluid to be cooled flowing inside the heat transfer tube of the evaporator has a two-pass structure, and the introduction amount of the refrigerant mainly composed of steam introduced into the lower portion of the heat transfer tube is set back to the fluid to be cooled of the heat transfer tube. The evaporator of the refrigeration apparatus according to claim 1, 2, 3, or 4, wherein the evaporator is increased on the side.
凝縮器からの冷媒が供給される冷凍装置の蒸発器において、
前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記冷媒の蒸発器への導入位置を、前記伝熱管の下部の被冷却流体出口側とするか、
或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記冷媒の蒸発器への導入位置を、前記伝熱管の下部の被冷却流体折り返し側とすることを特徴とする冷凍装置の蒸発器。
In the evaporator of the refrigeration system to which the refrigerant from the condenser is supplied,
The fluid to be cooled that flows inside the heat transfer tube of the evaporator has a one-pass structure, and the introduction position of the refrigerant to the evaporator is the cooling fluid outlet side below the heat transfer tube,
Alternatively, the fluid to be cooled that flows inside the heat transfer tube of the evaporator has a two-pass structure, and the introduction position of the refrigerant to the evaporator is the folded back side of the fluid to be cooled at the bottom of the heat transfer tube. Refrigeration equipment evaporator.
凝縮器からの冷媒が供給される冷凍装置の蒸発器において、
前記蒸発器の缶胴内の伝熱管と前記冷媒の前記伝熱管下部への導入位置との間を多孔板で仕切り、
前記蒸発器の伝熱管の内部を流れる被冷却流体を1パス構造にすると共に、前記伝熱管の被冷却流体出口側に対向する部分の多孔板の単位面積当たりの開口面積を多孔板の他の部分の開口面積に比べて大きくするか、
或いは前記蒸発器の伝熱管の内部を流れる被冷却流体を2パス構造にすると共に、前記伝熱管の被冷却流体折り返し側に対向する部分の多孔板の単位面積当たりの開口面積を多孔板の他の部分の開口面積に比べて大きくすることを特徴とする冷凍装置の蒸発器。
In the evaporator of the refrigeration system to which the refrigerant from the condenser is supplied,
Partitioning between a heat transfer tube in the can body of the evaporator and a position where the refrigerant is introduced to the lower portion of the heat transfer tube with a perforated plate;
The fluid to be cooled flowing inside the heat transfer tube of the evaporator has a one-pass structure, and the opening area per unit area of the perforated plate in the portion of the heat transfer tube facing the fluid outlet side of the heat transfer tube Or larger than the opening area of the part,
Alternatively, the fluid to be cooled flowing inside the heat transfer tube of the evaporator has a two-pass structure, and the opening area per unit area of the perforated plate at the portion facing the cooled fluid return side of the heat transfer tube is different from that of the porous plate. An evaporator of a refrigeration apparatus, wherein the evaporator is larger than the opening area of the portion.
少なくとも、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、前記冷媒蒸気を圧縮して高圧蒸気にする圧縮機と、高圧蒸気を冷却流体で冷却して凝縮させる凝縮器とを有する冷凍装置において、
前記蒸発器として、請求項1乃至7の内の何れかに記載の蒸発器を用いたことを特徴とする冷凍装置。
At least an evaporator that takes heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a compressor that compresses the refrigerant vapor into high-pressure vapor, and a condensation that cools and condenses the high-pressure vapor with the cooling fluid In a refrigeration apparatus having a container,
A refrigerating apparatus using the evaporator according to any one of claims 1 to 7 as the evaporator.
JP2006140325A 2006-05-19 2006-05-19 Evaporator for refrigeration system, and refrigeration system Pending JP2007309604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140325A JP2007309604A (en) 2006-05-19 2006-05-19 Evaporator for refrigeration system, and refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140325A JP2007309604A (en) 2006-05-19 2006-05-19 Evaporator for refrigeration system, and refrigeration system

Publications (1)

Publication Number Publication Date
JP2007309604A true JP2007309604A (en) 2007-11-29

Family

ID=38842624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140325A Pending JP2007309604A (en) 2006-05-19 2006-05-19 Evaporator for refrigeration system, and refrigeration system

Country Status (1)

Country Link
JP (1) JP2007309604A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057900A (en) * 2010-09-10 2012-03-22 Mayekawa Mfg Co Ltd Shell-and-plate type heat exchanger
WO2013074749A1 (en) * 2011-11-18 2013-05-23 Carrier Corporation Shell and tube heat exchanger
ITRM20120578A1 (en) * 2012-11-21 2014-05-22 Provides Metalmeccanica S R L FLOOD HEAT EXCHANGER.
KR20140069976A (en) * 2012-11-30 2014-06-10 엘지전자 주식회사 Evaporator and Turbo chiller comprising the same
CN104949370A (en) * 2014-03-31 2015-09-30 荏原冷热系统株式会社 Turbine refrigerator
JP2016090126A (en) * 2014-11-04 2016-05-23 株式会社デンソー refrigerator
CN110215790A (en) * 2019-07-02 2019-09-10 江苏康泰环保股份有限公司 A kind of low-heat steam total heat recovery dedusting dehumidifying seperator
JP2020176796A (en) * 2019-04-22 2020-10-29 荏原冷熱システム株式会社 Turbo refrigerator
CN113251707A (en) * 2020-02-13 2021-08-13 Lg电子株式会社 Evaporator with a heat exchanger
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator
CN115962587A (en) * 2023-03-16 2023-04-14 安徽普泛能源技术有限公司 Evaporator assembly for increasing circulation volume of secondary refrigerant and refrigeration cycle system thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057900A (en) * 2010-09-10 2012-03-22 Mayekawa Mfg Co Ltd Shell-and-plate type heat exchanger
CN103946658B (en) * 2011-11-18 2017-02-22 开利公司 Shell and tube heat exchanger
US9746256B2 (en) 2011-11-18 2017-08-29 Carrier Corporation Shell and tube heat exchanger with a vapor port
CN103946658A (en) * 2011-11-18 2014-07-23 开利公司 Shell and tube heat exchanger
WO2013074749A1 (en) * 2011-11-18 2013-05-23 Carrier Corporation Shell and tube heat exchanger
ITRM20120578A1 (en) * 2012-11-21 2014-05-22 Provides Metalmeccanica S R L FLOOD HEAT EXCHANGER.
KR102047688B1 (en) * 2012-11-30 2019-11-22 엘지전자 주식회사 Evaporator and Turbo chiller comprising the same
KR20140069976A (en) * 2012-11-30 2014-06-10 엘지전자 주식회사 Evaporator and Turbo chiller comprising the same
CN104949370A (en) * 2014-03-31 2015-09-30 荏原冷热系统株式会社 Turbine refrigerator
JP2015194302A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
JP2016090126A (en) * 2014-11-04 2016-05-23 株式会社デンソー refrigerator
JP2020176796A (en) * 2019-04-22 2020-10-29 荏原冷熱システム株式会社 Turbo refrigerator
CN110215790A (en) * 2019-07-02 2019-09-10 江苏康泰环保股份有限公司 A kind of low-heat steam total heat recovery dedusting dehumidifying seperator
CN113251707A (en) * 2020-02-13 2021-08-13 Lg电子株式会社 Evaporator with a heat exchanger
KR102292396B1 (en) * 2020-02-13 2021-08-20 엘지전자 주식회사 Evaporator
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator
US11898780B2 (en) 2020-02-13 2024-02-13 Lg Electronics Inc. Evaporator
CN115962587A (en) * 2023-03-16 2023-04-14 安徽普泛能源技术有限公司 Evaporator assembly for increasing circulation volume of secondary refrigerant and refrigeration cycle system thereof

Similar Documents

Publication Publication Date Title
JP6701372B2 (en) Heat exchanger
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
US9541314B2 (en) Heat exchanger
CN110662936B (en) Heat exchanger
JP7364930B2 (en) Heat exchanger
JP6716227B2 (en) Evaporator, turbo refrigerator equipped with the same
US11029094B2 (en) Heat exchanger
US20220178595A1 (en) Liquid refrigerant sprayer and falling liquid film type evaporator
JP3957558B2 (en) Full liquid double tube evaporator and ammonia absorption refrigerator
CN113195997B (en) Heat exchanger