JP3226247U - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3226247U
JP3226247U JP2020000740U JP2020000740U JP3226247U JP 3226247 U JP3226247 U JP 3226247U JP 2020000740 U JP2020000740 U JP 2020000740U JP 2020000740 U JP2020000740 U JP 2020000740U JP 3226247 U JP3226247 U JP 3226247U
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
heat exchanger
primary side
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020000740U
Other languages
Japanese (ja)
Inventor
紘晃 松下
紘晃 松下
Original Assignee
株式会社マック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マック filed Critical 株式会社マック
Priority to JP2020000740U priority Critical patent/JP3226247U/en
Application granted granted Critical
Publication of JP3226247U publication Critical patent/JP3226247U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】二酸化炭素と低GWP値のHFOガスの非共沸混合冷媒を使用する冷凍装置であって、常用圧力を3.0Mpa以下に維持して、従来の汎用機器を使用することができる冷凍装置を提供する。【解決手段】冷凍回路の高圧を冷却によって3.0Mpa以下とするため、冷凍回路の凝縮器21と、蒸発器25の一次側の膨張弁の間に、ケーシングの内部に一枚の伝熱プレートを設け、その伝熱プレートによって、冷媒が流通する、同一の容量を有する一次側と二次側を形成し、伝熱プレートの伝熱面積は一次側と二次側で同一とした熱交換器22、24を直列に複数個連接して設け、各熱交換器の二次側流入口前には減圧弁を配してあることとする。【選択図】図1PROBLEM TO BE SOLVED: To provide a refrigerating apparatus using a non-azeotropic mixed refrigerant of carbon dioxide and HFO gas having a low GWP value, which can maintain conventional working pressure at 3.0 MPa or less and use conventional general-purpose equipment. Provide a device. SOLUTION: In order to reduce the high pressure of the refrigeration circuit to 3.0 MPa or less by cooling, one heat transfer plate is provided inside the casing between the condenser 21 of the refrigeration circuit and the expansion valve on the primary side of the evaporator 25. A heat exchanger in which the heat transfer plate forms a primary side and a secondary side having the same capacity, through which the refrigerant flows, and the heat transfer area of the heat transfer plate is the same on the primary side and the secondary side. It is assumed that a plurality of 22, 24 are connected in series and a pressure reducing valve is arranged in front of the secondary inlet of each heat exchanger. [Selection diagram] Figure 1

Description

本考案は冷凍装置、それも二酸化炭素と低GWP値のHFOガスの非共沸混合冷媒を使用する冷凍装置に関する。   The present invention relates to a refrigerating apparatus, which also uses a non-azeotropic refrigerant mixture of carbon dioxide and HFO gas having a low GWP value.

近年、フロンが地球環境を悪化させ、温暖化の要因とされていることから、GWP値が1となる二酸化炭素を冷媒として使用することが行われており、この二酸化炭素とHFOの混合冷媒を使用することも行われている。   In recent years, CFCs have been deteriorating the global environment and causing global warming. Therefore, carbon dioxide having a GWP value of 1 has been used as a refrigerant, and a mixed refrigerant of this carbon dioxide and HFO is used. It has also been used.

しかしながら、この混合冷媒にあっても、冷媒の凝縮温度が低温となるため、常温での凝縮水温や気温では高圧となってしまい、3.0Mpa以下にはならない。そのため、従来の汎用機器の利用規格内では使用することができないものとなってしまう。   However, even with this mixed refrigerant, the condensed temperature of the refrigerant is low, and therefore the condensed water temperature at normal temperature and the atmospheric temperature are high, and do not fall below 3.0 MPa. Therefore, it cannot be used within the conventional usage standard for general-purpose devices.

本願考案について、出願人は先行する技術文献を調査したが、格別に本願考案と関連し、類似すると思われる文献は発見できなかった。   Regarding the invention of the present application, the applicant searched the prior art documents, but could not find any document which is particularly related to the invention of the present application and which seems to be similar.

本考案が解決しようとする問題点は、二酸化炭素と低GWP値のHFOガスの非共沸混合冷媒を使用した場合、その冷媒の凝縮温度が低温のため、常温では高圧となって、3.0Mpa以下にすることができないという点であり、常用圧力を3.0Mpa以下に維持して、従来の汎用機器を使用することができる装置はなかったという点である。   The problem to be solved by the present invention is that when a non-azeotropic mixed refrigerant of carbon dioxide and HFO gas having a low GWP value is used, the condensation temperature of the refrigerant is low, so that the pressure becomes high at room temperature. The point is that it cannot be set to 0 Mpa or less, and that there is no apparatus that can maintain the normal pressure at 3.0 Mpa or less and use conventional general-purpose equipment.

上記した問題点を解決するために、本考案に係る冷凍装置は、冷媒として二酸化炭素と低GWP値のHFOガスを混合した非共沸混合冷媒を用いた冷凍装置であって、冷凍回路の高圧を冷却によって3.0Mpa以下とするため、冷凍回路の凝縮器と、蒸発器の一次側の膨張弁の間に、ケーシングの内部に一枚の伝熱プレートを設け、その伝熱プレートによって、冷媒が流通する、同一の容量を有する一次側と二次側を形成し、前記した伝熱プレートの伝熱面積は一次側と二次側で同一とした熱交換器を直列に複数個連接して設け、各熱交換器の二次側流入口前には減圧弁を配してあることを特徴としている。   In order to solve the above-mentioned problems, a refrigerating apparatus according to the present invention is a refrigerating apparatus using a non-azeotropic mixed refrigerant in which carbon dioxide and HFO gas having a low GWP value are mixed as a refrigerant. In order to reduce the temperature to 3.0 MPa or less by cooling, one heat transfer plate is provided inside the casing between the condenser of the refrigeration circuit and the expansion valve on the primary side of the evaporator. Circulates, forms a primary side and a secondary side having the same capacity, and the heat transfer area of the heat transfer plate is the same as that of the primary side and the secondary side, and a plurality of heat exchangers are connected in series. It is characterized in that a pressure reducing valve is provided in front of the secondary inlet of each heat exchanger.

また、本考案に係る冷凍装置は、前記した熱交換器は二つを連接して二段の蒸発減圧機構としてあることを特徴としている。   Further, the refrigerating apparatus according to the present invention is characterized in that the heat exchangers described above are connected to each other to form a two-stage evaporation pressure reducing mechanism.

さらに、本考案に係る冷凍装置は、前記した冷媒はGWP値が1の二酸化炭素とGWP値が0.8より大きいR1224yd(HFO−1224yd)の混合ガスであることを特徴としている。   Further, the refrigerating apparatus according to the present invention is characterized in that the refrigerant is a mixed gas of carbon dioxide having a GWP value of 1 and R1224yd (HFO-1224yd) having a GWP value larger than 0.8.

そして、本考案に係る冷凍装置は、前記した減圧弁は減圧度の調整用キャピラリチューブとしたことを特徴としている。   Further, the refrigerating apparatus according to the present invention is characterized in that the pressure reducing valve is a capillary tube for adjusting the degree of pressure reduction.

また、本考案に係る冷凍装置は、前記した熱交換器は自己蒸発凝縮する構成であることを特徴としている。   Further, the refrigerating apparatus according to the present invention is characterized in that the heat exchanger described above is configured to self-evaporate and condense.

本願考案は上記のように構成されている。そのため、本考案では複数、それも二段構成とした自己蒸発凝縮する熱交換器によって凝縮熱源の温度が完全低温でなくとも凝縮圧力の高圧化を抑制することができる。ここで、完全低温とはPH線図上の湿り蒸気を一定圧力内で冷却凝縮可能温度をいう。   The present invention is constructed as described above. Therefore, in the present invention, a plurality of heat exchangers, each of which has a two-stage configuration, for self-evaporative condensation can suppress the increase in the condensation pressure even if the temperature of the condensation heat source is not completely low. Here, the completely low temperature means a temperature at which the wet steam on the PH diagram can be cooled and condensed within a constant pressure.

本考案を実施した冷凍回路図である。It is a refrigeration circuit diagram which implemented this invention. 熱交換器を一台使用した場合の冷凍回路図である。It is a refrigeration circuit diagram at the time of using one heat exchanger. 図2のPH線図の概略図である。FIG. 3 is a schematic diagram of the PH diagram of FIG. 2.

図面として示し、実施例で説明したように構成したことで実現した。   This is realized by the configuration shown in the drawings and configured as described in the embodiments.

次に、本考案の好ましい実施の一例を図面を参照して説明する。まず、図2によって熱交換器を一つ使用した場合について説明する。図中20は圧縮機を示し、この圧縮機20から高圧高温の冷媒ガスが吐出される。ここで、冷媒としては二酸化炭素(GWP値が1)とR1224yd(GWP値が0.8より小さい、HFO−1224yd)の非共沸混合冷媒が使用される。この混合比は1:1が理想であるが、設定温度によってこの比率は決定される。   Next, a preferred embodiment of the present invention will be described with reference to the drawings. First, a case where one heat exchanger is used will be described with reference to FIG. Reference numeral 20 in the drawing denotes a compressor from which high-pressure and high-temperature refrigerant gas is discharged. Here, as the refrigerant, a non-azeotropic mixed refrigerant of carbon dioxide (GWP value is 1) and R1224yd (HFO-1224yd having a GWP value smaller than 0.8) is used. This mixing ratio is ideally 1: 1 but this ratio is determined by the set temperature.

冷媒は圧縮機20から吐出され(図中2の状態)、凝縮器21を通過して、一段熱交換器22の一次側Aに流入する(図中3の状態)、この2〜3の過程で、凝縮器21による比エンタルピー放熱がある(h1)。   The refrigerant is discharged from the compressor 20 (state 2 in the figure), passes through the condenser 21, and flows into the primary side A of the one-stage heat exchanger 22 (state 3 in the figure). Then, there is specific enthalpy heat dissipation by the condenser 21 (h1).

ここで、一段熱交換器22はケーシング内を一枚の伝熱プレートで仕切られて、冷媒が流通する同一容量の一次側Aと二次側Bが形成されているもので、伝熱プレートの伝熱面積は一次側Aと二次側Bで同一とされている。図中3の状態では、凝縮器21を通過後、一段熱交換器22の一次側Aへの流入前温度となっている(図3のPH図参照)。   Here, the first-stage heat exchanger 22 is one in which the inside of the casing is partitioned by one heat transfer plate to form a primary side A and a secondary side B having the same capacity in which the refrigerant flows. The heat transfer area is the same on the primary side A and the secondary side B. In the state of 3 in the figure, after passing through the condenser 21, the temperature is the temperature before flowing into the primary side A of the one-stage heat exchanger 22 (see the PH diagram of FIG. 3).

一段熱交換器22の一次側Aに流入し、流出した冷媒は(図中3〜4の状態)で凝縮比エンタルピー放熱がある(h2)。一段熱交換器22の一次側Aを通過した冷媒は減圧弁、具体的にはキャピラリチューブ26を通過して二次側Bに流入される。   The refrigerant flowing into the primary side A of the one-stage heat exchanger 22 and flowing out (concentration enthalpy heat dissipation in the state of 3 to 4 in the figure) (h2). The refrigerant that has passed through the primary side A of the one-stage heat exchanger 22 passes through the pressure reducing valve, specifically, the capillary tube 26, and flows into the secondary side B.

一次側Aを通過し、キャピラリチューブ26を通過し、二次側Bへ流入される前(図中4〜5の状態)で、減圧、蒸発する。   Before passing through the primary side A, passing through the capillary tube 26, and flowing into the secondary side B (states 4 to 5 in the figure), the pressure is reduced and evaporated.

一段熱交換器22の二次側Bを通過した冷媒(図中5〜5´の状態)は蒸発比エンタルピーの吸熱がなされる(h3)。二次側Bを通過した際の冷媒の吸熱量は一次側Aの放熱量と略同等の近似値となる。   The refrigerant that has passed through the secondary side B of the one-stage heat exchanger 22 (states 5 to 5'in the figure) absorbs heat of the evaporation ratio enthalpy (h3). The amount of heat absorbed by the refrigerant when passing through the secondary side B is approximately the same as the amount of heat released from the primary side A.

この二次側Bを通過し、膨張弁23を通過し、蒸発器25に流入する冷媒(図中5´〜10の状態)は減圧、蒸発する。蒸発器25を通過した冷媒は圧縮機20へ戻ることで回路が形成される。   The refrigerant (states 5 ′ to 10 in the figure) that passes through the secondary side B, passes through the expansion valve 23, and flows into the evaporator 25 is depressurized and evaporated. The refrigerant that has passed through the evaporator 25 returns to the compressor 20 to form a circuit.

ここで、一段熱交換器22の一次側Aの凝縮比エンタルピー放熱(h2)と二次側Bの蒸発比エンタルピー吸熱(h3)はバーター熱交換して、膨張弁23を通過して蒸発器25へ流入する一次側(図中10の状態)では蒸発比エンタルピーは0となってしまう。つまり、冷媒の高圧は抑制するも、最終冷却能力は減衰してしまう。   Here, the condensation-side enthalpy heat dissipation (h2) on the primary side A of the first-stage heat exchanger 22 and the evaporation-specific enthalpy endotherm (h3) on the secondary side B exchange heat with the barter and pass through the expansion valve 23 to pass through the evaporator 25. The evaporation ratio enthalpy becomes 0 on the primary side (state 10 in the figure) flowing into the. That is, although the high pressure of the refrigerant is suppressed, the final cooling capacity is attenuated.

そこで、本考案では、凝縮器21と膨張弁23との間に、一段熱交換器22に、さらに、直列に二段熱交換器24を連接してある。この二段熱交換器24は一段熱交換器22と同じ構成の自己蒸発凝縮の熱交換器であって一段熱交換器22の二次側Bを通過した冷媒は二段熱交換器24の一次側Cに流入され、この一次側Cを通過した冷媒は減圧弁(キャピラリチューブ)26を通って二次側Dに流入する。この二次側Dにあって図中7〜7´を通った冷媒は膨張弁23を通過して蒸発器25を通り、圧縮機20へ戻る。(図中1の状態)   Therefore, in the present invention, the one-stage heat exchanger 22 and the two-stage heat exchanger 24 are connected in series between the condenser 21 and the expansion valve 23. The two-stage heat exchanger 24 is a self-evaporative condensation heat exchanger having the same configuration as the one-stage heat exchanger 22, and the refrigerant passing through the secondary side B of the one-stage heat exchanger 22 is the primary heat of the two-stage heat exchanger 24. The refrigerant flowing into the side C and passing through the primary side C flows into the secondary side D through the pressure reducing valve (capillary tube) 26. The refrigerant on the secondary side D that has passed through 7 to 7'in the figure passes through the expansion valve 23, passes through the evaporator 25, and returns to the compressor 20. (State 1 in the figure)

この二段熱交換器24にあって、前述した一段熱交換器22におけると同様の放熱、吸熱が行われる。一段熱交換器22のみでは膨張弁10を通過した時点で蒸発比エンタルピーが0となってしまうが、その前に二段熱交換器24を介在させることで、最終的な冷却能力を維持して常用圧力を3.0Mpa以下に維持することができる。そのため、本考案を実施することで、従来の汎用機器も規格内で利用使用することを可能とし、冷凍能力も従来のフロンを使用した場合に近い性能を得ることができる。即ち、一段熱交換器22は高圧を抑制し、二段熱交換器24は最終冷却能力の減衰を防止する。これらの機能を組み合わせたことで全体として本考案の目的を達成することができる。   In this two-stage heat exchanger 24, the same heat dissipation and heat absorption as in the above-described one-stage heat exchanger 22 are performed. With only the first-stage heat exchanger 22, the evaporation ratio enthalpy becomes 0 when passing through the expansion valve 10, but by interposing the second-stage heat exchanger 24 before that, the final cooling capacity is maintained. The working pressure can be maintained at 3.0 MPa or less. Therefore, by implementing the present invention, it is possible to use the conventional general-purpose equipment within the standard, and obtain the refrigerating capacity close to that when using the conventional CFC. That is, the first stage heat exchanger 22 suppresses the high pressure, and the second stage heat exchanger 24 prevents the final cooling capacity from being attenuated. By combining these functions, the object of the present invention can be achieved as a whole.

本実施例では熱交換器を二段構成(二つ直列)としたが、これにこだわらず、必要に応じ、三つ以上の多数の熱交換器を直列に連接した構成とすることは勿論可能である。   In the present embodiment, the heat exchanger has a two-stage configuration (two series), but of course, if necessary, it is possible to configure a configuration in which a large number of three or more heat exchangers are connected in series. Is.

20 圧縮機
21 凝縮器
22 一段熱交換器
23 膨張弁
24 二段熱交換器
25 蒸発器
26 減圧弁(キャピラリチューブ)
A,C 一次側
B,D 二次側
20 compressor 21 condenser 22 first stage heat exchanger 23 expansion valve 24 second stage heat exchanger 25 evaporator 26 pressure reducing valve (capillary tube)
A, C Primary side B, D Secondary side

Claims (5)

冷媒として二酸化炭素と低GWP値のHFOガスを混合した非共沸混合冷媒を用いた冷凍装置であって、冷凍回路の高圧を冷却によって3.0Mpa以下とするため、冷凍回路の凝縮器と、蒸発器の一次側の膨張弁の間に、ケーシングの内部に一枚の伝熱プレートを設け、その伝熱プレートによって、冷媒が流通する、同一の容量を有する一次側と二次側を形成し、前記した伝熱プレートの伝熱面積は一次側と二次側で同一とした熱交換器を直列に複数個連接して設け、各熱交換器の二次側流入口前には減圧弁を配してあることを特徴とする冷凍装置。   A refrigeration apparatus using a non-azeotropic mixed refrigerant in which carbon dioxide and HFO gas having a low GWP value are mixed as a refrigerant, and in order to reduce the high pressure of the refrigeration circuit to 3.0 MPa or less by cooling, a condenser of the refrigeration circuit, Between the expansion valve on the primary side of the evaporator, one heat transfer plate is provided inside the casing, and the heat transfer plate forms a primary side and a secondary side through which the refrigerant flows and having the same capacity. The heat transfer area of the heat transfer plate is the same on the primary side and the secondary side, and a plurality of heat exchangers are connected in series, and a pressure reducing valve is provided in front of the secondary inlet of each heat exchanger. A refrigeration system characterized by being arranged. 前記した熱交換器は二つを連接して二段の蒸発減圧機構としてあることを特徴とする請求項1に記載の冷凍装置。   The refrigerating apparatus according to claim 1, wherein two heat exchangers are connected to each other to form a two-stage evaporation pressure reducing mechanism. 前記した冷媒はGWP値が1の二酸化炭素とGWP値が0.8より大きいR1224yd(HFO−1224yd)の混合ガスであることを特徴とする請求項1または2に記載の冷凍装置。   The refrigerating apparatus according to claim 1 or 2, wherein the refrigerant is a mixed gas of carbon dioxide having a GWP value of 1 and R1224yd (HFO-1224yd) having a GWP value of more than 0.8. 前記した減圧弁は減圧度の調整用キャピラリチューブとしたことを特徴とする請求項1に記載の冷凍装置。   The refrigerating apparatus according to claim 1, wherein the pressure reducing valve is a capillary tube for adjusting the degree of pressure reduction. 前記した熱交換器は自己蒸発凝縮する構成であることを特徴とする請求項1に記載の冷凍装置。   The refrigerating apparatus according to claim 1, wherein the heat exchanger is configured to self-evaporate and condense.
JP2020000740U 2020-03-03 2020-03-03 Refrigeration equipment Active JP3226247U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000740U JP3226247U (en) 2020-03-03 2020-03-03 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000740U JP3226247U (en) 2020-03-03 2020-03-03 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JP3226247U true JP3226247U (en) 2020-05-14

Family

ID=70483242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000740U Active JP3226247U (en) 2020-03-03 2020-03-03 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3226247U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022084488A3 (en) * 2020-10-22 2022-07-07 Rpl Holdings Limited Thermal pump refrigerants
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends
WO2022084488A3 (en) * 2020-10-22 2022-07-07 Rpl Holdings Limited Thermal pump refrigerants
US11827834B2 (en) 2020-10-22 2023-11-28 Rpl Holdings Limited Thermal pump refrigerants

Similar Documents

Publication Publication Date Title
Kim et al. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant
EP3070417A1 (en) Refrigeration system
JP2000161805A (en) Refrigerating apparatus
JP3226247U (en) Refrigeration equipment
JP2007240025A (en) Refrigerating device
JP6554156B2 (en) Multistage heat pump having a two-stage expansion structure using CO2 refrigerant and its circulation method
KR102153016B1 (en) Cryogenic chiller
US20220221202A1 (en) Heat treatment system
JPH10332212A (en) Refrigeration cycle of air conditioner
WO2019128519A1 (en) Air conditioner system
JP2018021730A (en) Refrigeration cycle device
JP2006017350A (en) Refrigeration device
JP2000304380A (en) Heat exchanger
JP2010127504A (en) Air conditioning device
JP2008267731A (en) Air-conditioning device
JP2015215160A (en) Refrigerator and refrigeration device
JP6682081B1 (en) Freezing method
JP2020201011A (en) air conditioner
JP6804076B1 (en) Multi-stage heat exchanger and its usage and refrigeration system incorporating the multi-stage heat exchanger
JP2002364936A (en) Refrigeration unit
KR20150133966A (en) Cooling system
US20190024948A1 (en) Deep freezer
JPH08178445A (en) Heat pump type air conditioner
JPH07208822A (en) Heat pump type refrigerating cycle
KR100570300B1 (en) A movable multi-type air-conditioner having a cooling system using a secondary fluid

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3226247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250