JPH1144499A - Refrigerating cycle controller - Google Patents

Refrigerating cycle controller

Info

Publication number
JPH1144499A
JPH1144499A JP19965297A JP19965297A JPH1144499A JP H1144499 A JPH1144499 A JP H1144499A JP 19965297 A JP19965297 A JP 19965297A JP 19965297 A JP19965297 A JP 19965297A JP H1144499 A JPH1144499 A JP H1144499A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow rate
passes
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19965297A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
義典 小林
Akira Fujitaka
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19965297A priority Critical patent/JPH1144499A/en
Publication of JPH1144499A publication Critical patent/JPH1144499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat transfer efficiency of a refrigerant and improve the efficiency of a heat exchanger by reducing the number of paths of the refrigerant entering the heat exchanger for transferring heat between fluids such as the refrigerant and air when the flow rate of the refrigerant is low. SOLUTION: A refrigerating cycle controller comprises a heat exchanger 4 having at least two or more paths, a detecting means 31 for substantially detecting the flow rate of a refrigerant flowing in the paths, a path number determining means for determining the number of paths in the heat exchanger 4 so as to be decreased, when the flow rate of the refrigerant detected by the detecting means 31 is low and a switching means for switching the number of paths based on a signal from the path number determining means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルシス
テムにおいて、冷媒と空気の流体間で熱の授受を行う熱
交換器の熱交換器効率の向上を図るため、熱交換器のパ
ス数を切り替える冷凍サイクル制御装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle system in which the number of passes of a heat exchanger is switched in order to improve the heat exchanger efficiency of a heat exchanger for transferring heat between a refrigerant and air fluid. The present invention relates to a refrigeration cycle control device.

【0002】[0002]

【従来の技術】従来は冷媒の流れ方向を逆転させる場合
等のように、複数の管路の連通関係を切り替えるため、
パイロット駆動の四方弁を用いているものがある。
2. Description of the Related Art Conventionally, in order to switch the communication relationship of a plurality of pipelines, for example, when the flow direction of a refrigerant is reversed,
Some use a pilot-driven four-way valve.

【0003】従来例として、特開平8−145490号
公報および実開平7−32460号公報記載のものにつ
いて図17を用いて説明する。
[0003] As a conventional example, those described in Japanese Patent Application Laid-Open Nos. 8-145490 and 7-32460 will be described with reference to FIG.

【0004】複数の冷媒管84が内部を貫通する熱交換
器81と、分岐管82a、82bおよび冷媒切り替え手
段としての四方弁83からなる。
[0004] A heat exchanger 81 having a plurality of refrigerant pipes 84 penetrating therethrough, branch pipes 82a and 82b, and a four-way valve 83 as refrigerant switching means.

【0005】特開平8−145490号公報に記載のも
のは、温度勾配を有する非共沸混合冷媒に対応するよ
う、冷媒と気流との温度差の低下を常に防ぎ、単一冷媒
と同等の熱交換量を得るため、暖房運転あるいは冷房運
転等のように運転モードによって四方弁83を切り替
え、熱交換器81内のパス数を少なく切り替えたもので
ある。
The one disclosed in Japanese Patent Application Laid-Open No. 8-145490 always prevents the temperature difference between the refrigerant and the air flow from decreasing so as to correspond to the non-azeotropic mixed refrigerant having a temperature gradient, and has the same heat as the single refrigerant. In order to obtain an exchange amount, the four-way valve 83 is switched according to an operation mode such as a heating operation or a cooling operation, and the number of paths in the heat exchanger 81 is switched to a small number.

【0006】また、実開平7−32460号公報に記載
のものは、特に暖房運転時、室外熱交換器内パスのパス
バランスが悪いため、暖房能力が低下する事を解決する
よう、2パスから1パスに切り替えたものである。
[0006] Further, in the apparatus disclosed in Japanese Utility Model Laid-Open Publication No. 7-32460, especially in the heating operation, the path balance in the path inside the outdoor heat exchanger is poor, so that the heating performance is reduced from two paths. It has been switched to one pass.

【0007】つまり従来は、同じ熱交換器において、蒸
発過程か、あるいは凝縮過程かでパス数の切り替えを行
っていたが、本発明が意図しているように冷媒流量が少
ないとき、パス数を少なくすることにより、冷媒の熱伝
達率を上げ、熱交換器効率の向上を図るという技術思想
は何等開示されていない。
That is, conventionally, in the same heat exchanger, the number of passes is switched during the evaporation process or the condensation process. However, when the flow rate of the refrigerant is small as intended by the present invention, the number of passes is reduced. There is no disclosure of a technical idea of increasing the heat transfer coefficient of the refrigerant by reducing the heat transfer rate and improving the heat exchanger efficiency.

【0008】また、従来は、オゾン層破壊など環境問題
としての社会的背景により、代替冷媒候補に関して、非
共沸混合冷媒に対応したヒートポンプエアコン用熱交換
器の性能の向上を図る制御装置は記載されているが、単
一冷媒および共沸混合冷媒に関するものはない。
Conventionally, a control apparatus for improving the performance of a heat exchanger for a heat pump air conditioner corresponding to a non-azeotropic refrigerant mixture has been described with respect to alternative refrigerant candidates due to the social background as an environmental problem such as depletion of the ozone layer. However, there is no single refrigerant or azeotropic refrigerant mixture.

【0009】[0009]

【発明が解決しようとする課題】前記従来の構成では、
熱交換において同数の別パスであるパスへの切り替えを
行うことは可能であったが、冷媒流量が少ないときパス
数を減少することは行っていなかった。そのため、冷媒
流量が少ないとき、パス数を減少する事はできなかっ
た。
In the above-mentioned conventional configuration,
In the heat exchange, it was possible to switch to the same number of different paths, but the number of passes was not reduced when the flow rate of the refrigerant was small. Therefore, when the flow rate of the refrigerant is small, the number of passes cannot be reduced.

【0010】また、運転モードに応じて1パスあるいは
2パスに切り替えているため、2パスで冷媒流量の少な
い時に熱伝達率が小さくなり、熱交換器効率が低下し、
また1パスで冷媒流量の多い時に圧力損失が大きくなり
熱交換器効率が低下するという課題を有している。
[0010] Further, since the mode is switched to one pass or two passes according to the operation mode, the heat transfer coefficient decreases when the refrigerant flow rate is low in the two passes, and the heat exchanger efficiency decreases,
Another problem is that when the flow rate of the refrigerant is large in one pass, the pressure loss increases and the heat exchanger efficiency decreases.

【0011】そこで、本発明は、低冷媒流量時にパス数
を少なくすることにより、冷媒の熱伝達率を上げ、熱交
換器効率の向上を図ることを目的とする。
Accordingly, an object of the present invention is to improve the heat exchanger efficiency by reducing the number of passes when the flow rate of the refrigerant is low, thereby increasing the heat transfer coefficient of the refrigerant.

【0012】また、特に、単一冷媒および共沸または共
弗様混合冷媒を用いた時に、熱交換器効率の向上を図る
ことを目的とする。
It is another object of the present invention to improve the efficiency of the heat exchanger particularly when a single refrigerant and an azeotropic or azeotropic-like mixed refrigerant are used.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に本発明は、冷媒流量を実質的に検知する検知手段から
の出力値に基づいてパス数を決定するパス数決定手段
と、決定したパス数に切り替えるパス切替手段とを備え
るものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a pass number determining means for determining a pass number based on an output value from a detecting means for substantially detecting a refrigerant flow rate. Path switching means for switching to the number of paths.

【0014】これにより、冷媒流量が少ない時、パス数
を少なくすることにより、各パスの管内での流速増大に
より、熱伝達率向上を図り、これをもって熱交換器効率
の向上が図れる。
Thus, when the flow rate of the refrigerant is small, the number of passes is reduced, thereby increasing the flow rate in the pipe of each pass, thereby improving the heat transfer coefficient, thereby improving the efficiency of the heat exchanger.

【0015】また、オゾン層破壊などの環境問題の社会
的背景により、従来単一冷媒(R22)を用いていた
が、代替冷媒候補として、例えば、ハイドロフルオロカ
ーボン(HFC)の中のR32/R125(50/50
wt%)(以下、R410Aと言う)や、ハイドロカー
ボン(HC)の中のプロパン(R290)を用いること
により、これらサイクルでは従来のR22に比べて同一
サイクルポイントでの冷媒密度が大きく、従って、流速
が小さくなるという特長を有している。よって、パス数
を少なくすることにより、熱伝達率が向上し、熱交換器
効率の向上が図れ、特にR410Aやプロパン(R29
0)等に有効である。
Further, a single refrigerant (R22) has conventionally been used due to the social background of environmental problems such as depletion of the ozone layer. However, as an alternative refrigerant candidate, for example, R32 / R125 (H32) in hydrofluorocarbon (HFC) has been used. 50/50
wt%) (hereinafter referred to as R410A) or propane (R290) in hydrocarbon (HC), the refrigerant density at the same cycle point is higher in these cycles than in the conventional R22, and therefore, It has the feature that the flow velocity is reduced. Therefore, by reducing the number of passes, the heat transfer coefficient is improved, and the efficiency of the heat exchanger is improved. In particular, R410A and propane (R29
0) is effective.

【0016】[0016]

【発明の実施の形態】請求項1に記載の発明は、図1に
示すように容量可変な圧縮機2と、熱交換器4、6と、
前記熱交換器4、6の内少なくとも1つに2以上のパス
(図2参照)を有し、かつ減圧部5とを順次配管接続し
た冷凍サイクルシステムと、図3に示すように前記パス
を流れる冷媒流量を実質的に検知する検知手段31と、
前記検知手段31で検知された冷媒流量が一定値より少
ないとき、前記熱交換器4でのパス数を少なく決定する
パス数決定手段32と、前記パス数決定手段32からの
信号に基づいてパス数を切り替えるパス切替手段33と
を有することにより熱交換器4内の熱伝達率が上がり、
熱交換器効率が向上する。
DETAILED DESCRIPTION OF THE INVENTION As shown in FIG. 1, the invention according to claim 1 comprises a compressor 2 having a variable capacity, heat exchangers 4 and 6, and
A refrigeration cycle system having two or more paths (see FIG. 2) in at least one of the heat exchangers 4 and 6 and sequentially connecting the pressure reducing section 5 with a pipe, as shown in FIG. Detecting means 31 for substantially detecting a flowing refrigerant flow rate;
When the refrigerant flow rate detected by the detection means 31 is smaller than a predetermined value, the number of paths in the heat exchanger 4 is determined to be small, and the number of paths is determined based on a signal from the number of paths. By having the path switching means 33 for switching the number, the heat transfer coefficient in the heat exchanger 4 increases,
Heat exchanger efficiency is improved.

【0017】請求項2に記載の発明は、前記請求項1に
記載の検知手段31を、図4に示すようにパスを流れる
冷媒流量を検知する冷媒流量検知手段41とすることに
より熱交換器4内の熱伝達率が上がり、熱交換器効率が
向上する。
According to a second aspect of the present invention, a heat exchanger is provided in which the detecting means 31 of the first aspect is replaced with a refrigerant flow rate detecting means 41 for detecting a flow rate of a refrigerant flowing through a path as shown in FIG. The heat transfer coefficient in 4 increases, and the heat exchanger efficiency improves.

【0018】請求項3に記載の発明は、前記請求項1に
記載の検知手段31を、図5に示すように圧縮機の運転
周波数を検知する運転周波数検知手段51とすることに
より熱交換器4内の熱伝達率が上がり、熱交換器効率が
向上する。
According to a third aspect of the present invention, there is provided a heat exchanger wherein the detecting means 31 according to the first aspect is an operating frequency detecting means 51 for detecting an operating frequency of a compressor as shown in FIG. The heat transfer coefficient in 4 increases, and the heat exchanger efficiency improves.

【0019】請求項4に記載の発明は、前記請求項1に
記載の検知手段31を、図6に示すように熱交換器4に
おける負荷を検知する負荷検知手段61とすることによ
り熱交換器4内の熱伝達率が上がり、熱交換器効率が向
上する。
According to a fourth aspect of the present invention, the detecting means 31 according to the first aspect is replaced with a load detecting means 61 for detecting a load in the heat exchanger 4 as shown in FIG. The heat transfer coefficient in 4 increases, and the heat exchanger efficiency improves.

【0020】請求項5記載の発明は、前記請求項1〜4
に記載の実施形態において、図7に示すように熱交換器
4の運転モードを検知する運転モード判定手段71を具
備し、前記運転モード判定手段71により検知された運
転モードにより前記パス数を適正な値に修正するパス数
修正手段72とを有することにより熱交換器4内の熱伝
達率が上がり、熱交換器効率が向上する。
The invention according to claim 5 is the invention according to claims 1-4.
7, an operation mode determining unit 71 for detecting an operation mode of the heat exchanger 4 is provided as shown in FIG. 7, and the number of passes is appropriately determined based on the operation mode detected by the operation mode determining unit 71. By having the pass number correcting means 72 for correcting the value to a suitable value, the heat transfer coefficient in the heat exchanger 4 is increased, and the heat exchanger efficiency is improved.

【0021】請求項6記載の発明は、前記請求項1〜5
に記載の実施形態において、冷媒としてハイドロフルオ
ロカーボン(HFC)あるいはハイドロカーバン(H
C)を主成分として用いることにより従来エアコンに代
表される冷凍サイクル装置に用いられてきたR22のシ
ステムに比べて、熱交換器4内の熱伝達率が上がり、よ
り熱交換器効率が向上する。
The invention according to claim 6 is the invention according to claims 1 to 5.
In the embodiment described in the above, the refrigerant is hydrofluorocarbon (HFC) or hydrocarbane (HFC).
By using C) as a main component, the heat transfer coefficient in the heat exchanger 4 is increased and the heat exchanger efficiency is further improved as compared with the R22 system conventionally used in a refrigeration cycle device represented by an air conditioner. .

【0022】請求項7記載の発明は、前記請求項1〜6
に記載の実施の形態において、パス切替手段33,4
3,53,63として可動式弁を用いることにより、パ
ス数を少なくすることを可能とする。
The invention according to claim 7 is the invention according to claims 1 to 6.
In the embodiment described in the above, the path switching means 33, 4
By using a movable valve as 3, 53, 63, the number of passes can be reduced.

【0023】[0023]

【実施例】以下、実施例について、図を用いて説明す
る。
An embodiment will be described below with reference to the drawings.

【0024】図1において、1は冷凍サイクルシステ
ム、2は圧縮機、3は四方弁、4は室外熱交換器、5は
減圧部、6は室内熱交換器、7はアキュムレータを示
す。
In FIG. 1, 1 is a refrigeration cycle system, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a decompression unit, 6 is an indoor heat exchanger, and 7 is an accumulator.

【0025】冷凍サイクルシステム1の冷房運転時に
は、実線矢印で示すように、圧縮機2から吐出する高温
・高圧の冷媒ガスが四方弁3を経て凝縮器(放熱器)を
なす室外熱交換器4に流入し、凝縮(放熱)により液相
となる。この液相となった冷媒は、減圧部5を通って蒸
発器(吸熱器)をなす室内熱交換器6に流入し、蒸発
(吸熱)により気相となる。この気相となった冷媒ガス
は、四方弁3およびアキュムレータ7を経て再び圧縮機
2へ流入する。室外熱交換器4内のパス数は、パスを流
れる冷媒流量を実質的に検知する検知手段31からの出
力値である冷媒流量に基づいて制御する。また、暖房運
転時は、点線矢印で示すように、四方弁3が切り換わ
り、室内熱交換器6が凝縮器(放熱器)となり、室外熱
交換器4が蒸発器(吸熱器)となる。
During the cooling operation of the refrigeration cycle system 1, as shown by the solid arrows, the high-temperature and high-pressure refrigerant gas discharged from the compressor 2 passes through the four-way valve 3 and forms an outdoor heat exchanger 4 forming a condenser (radiator). Into a liquid phase due to condensation (radiation). The refrigerant in the liquid phase flows into the indoor heat exchanger 6 forming an evaporator (heat absorber) through the decompression unit 5, and becomes a gas phase by evaporation (heat absorption). The gaseous refrigerant gas flows into the compressor 2 again through the four-way valve 3 and the accumulator 7. The number of passes in the outdoor heat exchanger 4 is controlled based on the refrigerant flow rate, which is an output value from the detection unit 31 that substantially detects the flow rate of the refrigerant flowing through the paths. During the heating operation, the four-way valve 3 is switched as shown by the dotted arrow, the indoor heat exchanger 6 becomes a condenser (radiator), and the outdoor heat exchanger 4 becomes an evaporator (heat absorber).

【0026】また、室内熱交換器6においても、検知手
段31に基づいて熱交換器内のパス数を制御する事が可
能である。
In the indoor heat exchanger 6 as well, the number of passes in the heat exchanger can be controlled based on the detection means 31.

【0027】次に、図1における室外熱交換器4入口X
から室外熱交換器4内部、室外熱交換器4出口Yまでに
ついて図2を用いて説明する。ここでは、一例として2
パスを用いた。
Next, the outdoor heat exchanger 4 inlet X shown in FIG.
2 to the inside of the outdoor heat exchanger 4 and the outlet Y of the outdoor heat exchanger 4 will be described with reference to FIG. Here, as an example, 2
A path was used.

【0028】冷房通常運転時には、実線で示すように、
熱交換器の入口分岐点21において2パスに分岐する。
一方は熱交換器内を通った後、弁接続部aから弁22を
通過しbへ、もう一方は直接に弁接続部dから弁を通過
しcへ、そして熱交換器内を通った後、出口合流点23
で合流する。
During normal cooling operation, as shown by the solid line,
It branches into two paths at the inlet branch point 21 of the heat exchanger.
After passing through the heat exchanger, one passes from the valve connection a through the valve 22 to b, and the other directly passes from the valve connection d through the valve to c, and after passing through the heat exchanger. , Exit junction 23
To join.

【0029】熱交換器内のパス数を少なくする運転時に
は、弁22の点線で示すように、弁接続部dには流入せ
ず、弁接続部aからcに通る。
In the operation for reducing the number of passes in the heat exchanger, as shown by the dotted line of the valve 22, the gas does not flow into the valve connection d but passes through the valve connections a to c.

【0030】次に、図3を用いて弁の一実施例を説明す
る。31は検知手段、32はパス数決定手段、33はパ
ス切替手段を示す。
Next, an embodiment of the valve will be described with reference to FIG. Reference numeral 31 denotes a detecting unit, 32 denotes a path number determining unit, and 33 denotes a path switching unit.

【0031】検知手段31において、パスを流れる冷媒
流量を実質的に検知する。なお、この検知手段31に関
して、冷媒流量が実質的に検知できれば、その手段は問
わない。
The detection means 31 substantially detects the flow rate of the refrigerant flowing through the path. Regarding the detection means 31, any means can be used as long as the flow rate of the refrigerant can be substantially detected.

【0032】ここでパス数の決定について説明する。冷
媒流量が少ないとき、熱交換器内の冷媒流速が小さく、
熱伝達率が低くなる。そこで、この時パス数を少なくす
ると、管内の流速が上がり熱伝達率が上がる。このこと
により熱交換量が上がり、能力の向上が望める。
Here, the determination of the number of paths will be described. When the refrigerant flow rate is small, the refrigerant flow rate in the heat exchanger is small,
The heat transfer coefficient decreases. Therefore, if the number of passes is reduced at this time, the flow velocity in the pipe increases, and the heat transfer coefficient increases. As a result, the amount of heat exchange increases, and an improvement in capacity can be expected.

【0033】以上の理由から、パス数決定手段32にお
いては、検知手段31からの出力値である冷媒流量が一
定値α以上のときは、パス数を通常通りに、例えば2パ
スに決定する。冷媒流量検知手段31からの出力値であ
る冷媒流量が一定値αよりも小さいときは、パス数を少
なく、例えば1パスに決定する。
For the above reason, the pass number determining means 32 determines the number of passes as usual, for example, two passes, when the refrigerant flow rate, which is the output value from the detecting means 31, is equal to or more than a certain value α. When the refrigerant flow rate, which is the output value from the refrigerant flow rate detecting means 31, is smaller than the fixed value α, the number of passes is reduced, for example, one pass is determined.

【0034】パス切替手段33においては、パス数決定
手段32からの出力値を基に、パスの切り替えを行う。
The path switching means 33 performs path switching based on the output value from the path number determining means 32.

【0035】なお、パス切替手段33に関しては、手動
のボールバルブ、電磁弁などその手段は問わない。
The path switching means 33 may be any means such as a manual ball valve and a solenoid valve.

【0036】次に、図4を用いて弁の他の実施例を説明
する。41は冷媒流量検知手段、42はパス数決定手
段、43はパス切替手段を示す。
Next, another embodiment of the valve will be described with reference to FIG. 41 is a refrigerant flow rate detecting means, 42 is a pass number determining means, and 43 is a path switching means.

【0037】冷媒流量検知手段41において、パスを流
れる冷媒流量を検知する。パス数決定手段42において
は、冷媒流量検知手段41からの出力値である冷媒流量
が一定値β以上のときは、パス数を通常通りに、例えば
2パスに決定する。冷媒流量検知手段41からの出力値
である冷媒流量が一定値βよりも小さいときは、パス数
を少なく、例えば1パスに決定する。
The refrigerant flow rate detecting means 41 detects the flow rate of the refrigerant flowing through the path. When the refrigerant flow rate, which is the output value from the refrigerant flow rate detecting means 41, is equal to or larger than the fixed value β, the number of passes determining means 42 determines the number of passes as usual, for example, to two passes. When the refrigerant flow rate, which is the output value from the refrigerant flow rate detecting means 41, is smaller than the fixed value β, the number of passes is reduced, for example, one pass is determined.

【0038】パス切替手段43においては、パス数決定
手段42からの出力値を基に、パスの切り替えを行う。
The path switching means 43 performs path switching based on the output value from the path number determining means 42.

【0039】なお、パス切替手段43に関しては、手動
のボールバルブ、電磁弁などその手段は問わない。
The path switching means 43 may be any means such as a manual ball valve and a solenoid valve.

【0040】この実施例は、直接的に冷媒流量を検知す
るため、極めて精度高く制御できる。
In this embodiment, since the flow rate of the refrigerant is directly detected, the control can be performed with extremely high precision.

【0041】次に、図5を用いてさらに弁の他の実施例
を説明する。51は運転周波数検知手段、52はパス数
決定手段、53はパス切替手段を示す。
Next, another embodiment of the valve will be described with reference to FIG. 51 is an operating frequency detecting means, 52 is a path number determining means, and 53 is a path switching means.

【0042】運転周波数検知手段51においては、圧縮
機2の運転周波数を検知する。パス数決定手段52にお
いては、運転周波数検知手段51からの出力値である運
転周波数に基づいて、パス数を決定する。
The operating frequency detecting means 51 detects the operating frequency of the compressor 2. The number-of-passes determining means 52 determines the number of paths based on the operating frequency which is an output value from the operating frequency detecting means 51.

【0043】運転周波数が低いときは、冷媒流量が少な
いことが予想される。そこで、運転周波数が一定値γ以
上のときは、パス数を通常通りに、例えば2パスに決定
する。運転周波数が一定値γよりも小さいときは、パス
数を少なく、例えば1パスに決定する。なお、一定値γ
は予め実験等により最適となるように求めておく。
When the operating frequency is low, the flow rate of the refrigerant is expected to be small. Therefore, when the operating frequency is equal to or higher than the fixed value γ, the number of passes is determined as usual, for example, to two passes. When the operating frequency is smaller than the fixed value γ, the number of passes is reduced, for example, one pass is determined. Note that the constant value γ
Is determined in advance by experiments or the like so as to be optimal.

【0044】パス切替手段53においては、パス数決定
手段52からの出力値を基に、パスの切り替えを行う。
The path switching means 53 switches paths based on the output value from the path number determining means 52.

【0045】なお、パス切替手段53に関しては、手動
のボールバルブ、電磁弁などその手段は問わない。
The path switching means 53 may be any means such as a manual ball valve and a solenoid valve.

【0046】この実施例は、周波数を検知することによ
り冷媒流量を予測するため、制御の精度は一対一には対
応しないが、コストの削減が期待できる。
In this embodiment, since the refrigerant flow rate is predicted by detecting the frequency, the control accuracy does not correspond one-to-one, but cost reduction can be expected.

【0047】次に、図6を用いてさらに弁の他の実施例
を説明する。61は負荷検知手段、62はパス数決定手
段、63はパス切替手段を示す。
Next, another embodiment of the valve will be described with reference to FIG. 61 is a load detecting means, 62 is a path number determining means, and 63 is a path switching means.

【0048】負荷検知手段61においては、負荷を検知
する。この負荷検知の手段は問わないが、ここに2例示
す。
The load detecting means 61 detects a load. The means for detecting the load is not limited, but two examples are shown here.

【0049】第1例として、空気調和機において、使用
者がリモコン等を用いて設定する温度を検知する、ある
いは、自動運転時は空気調和機が制御する温度を検知す
る等により空気調和機が制御の目標としている温度を検
知する。
As a first example, in an air conditioner, the air conditioner detects the temperature set by a user using a remote controller or the like, or detects the temperature controlled by the air conditioner during automatic operation. Detects the target temperature for control.

【0050】室内に設置されたサーミスタ、あるいは吸
い込み温度等により室内温度を検知する。
The room temperature is detected based on the thermistor installed in the room or the suction temperature.

【0051】そして、室内目標温度と室内温度の温度差
を算出し、この温度差が大きいときは負荷が大きいもの
とし、温度差が小さいときは負荷が小さいものと予測す
る。
Then, the temperature difference between the indoor target temperature and the indoor temperature is calculated, and when the temperature difference is large, the load is predicted to be large, and when the temperature difference is small, the load is predicted to be small.

【0052】第2例として、空気調和機において、外気
温を検知し、暖房時外気温が高い時、あるいは冷房時外
気温が低い時は負荷が小さいものとし、暖房時外気温が
低い時、あるいは冷房時外気温が高い時は負荷が大きい
ものと予測する。
As a second example, in an air conditioner, when the outside air temperature is detected, the load is small when the outside air temperature during heating is high or when the outside air temperature during cooling is low, and when the outside air temperature during heating is low, Alternatively, when the outside air temperature during cooling is high, it is predicted that the load is large.

【0053】第3例として、第1例と第2例の組み合わ
せを組み合わせたものがある。すなわち、暖房時外気温
が低く、室内目標温度と室内温度の差が大きい時は、負
荷が大きいものとし、暖房時外気温が高く、室内目標温
度と室内温度の差が小さい時は、負荷が小さいものとす
る。
As a third example, there is a combination of the first example and the second example. That is, when the outside temperature during heating is low and the difference between the indoor target temperature and the room temperature is large, the load is large. When the outside temperature during heating is high and the difference between the room target temperature and the room temperature is small, the load is large. Shall be small.

【0054】パス数決定手段62においては、負荷検知
手段61からの出力値である負荷に基づいて、パス数を
決定する。
The number of paths determining means 62 determines the number of paths based on the load which is the output value from the load detecting means 61.

【0055】負荷が小さいときは、冷媒流量が少ないこ
とが予想できる。そこで、負荷が大きいときは、パス数
を通常通りに、例えば2パスに決定する。負荷が小さい
ときは、パス数を少なく、例えば1パスに決定する。
When the load is small, it can be expected that the flow rate of the refrigerant is small. Therefore, when the load is large, the number of paths is determined as usual, for example, two paths. When the load is small, the number of paths is reduced, for example, one path is determined.

【0056】パス切替手段63においては、パス数決定
手段62からの出力値を基に、パスの切り替えを行う。
The path switching means 63 performs path switching based on the output value from the path number determining means 62.

【0057】なお、パス切替手段63に関しては、手動
のボールバルブ、電磁弁などその手段は問わない。
The path switching means 63 may be any means such as a manual ball valve and a solenoid valve.

【0058】次に、図7を用いてさらに弁の他の実施例
を説明する。71は運転モード判定手段、72はパス数
修正手段を示す。
Next, another embodiment of the valve will be described with reference to FIG. Reference numeral 71 denotes an operation mode determining unit, and reference numeral 72 denotes a pass number correcting unit.

【0059】熱交換器において、蒸発過程と凝縮過程で
は同冷媒流量に対して圧力損失が異なるため、空調機の
効率も異なる。そのため、蒸発過程か凝縮過程かの、熱
交換器の運転モードに応じて、パス数を切り替える冷媒
流量のしきい値を変えた方が良い。
In the heat exchanger, the efficiency of the air conditioner is also different in the evaporation process and the condensation process because the pressure loss differs for the same refrigerant flow rate. Therefore, it is better to change the threshold value of the refrigerant flow rate for switching the number of passes according to the operation mode of the heat exchanger in the evaporation process or the condensation process.

【0060】そこで、運転モード判定手段71において
は、熱交換器の運転モードを凝縮過程あるいは蒸発過程
かを判定する。
Therefore, the operation mode determination means 71 determines whether the operation mode of the heat exchanger is a condensation process or an evaporation process.

【0061】パス数修正手段72においては、パス数決
定手段32からの出力値であるパス数、および運転モー
ド判定手段71からの出力値である運転モードからパス
数を修正する。
The number-of-paths correcting means 72 corrects the number of paths based on the number of paths, which is the output value from the number-of-paths determining means 32, and the operation mode, which is the output value from the operation-mode determining means 71.

【0062】ここで、パス数修正手段72について詳し
く説明する。図8に熱交換器管内の冷媒流量と熱伝達率
の関係を示す。
Here, the pass number correcting means 72 will be described in detail. FIG. 8 shows the relationship between the refrigerant flow rate in the heat exchanger tube and the heat transfer coefficient.

【0063】パス数を小さくすると、管内の冷媒流量が
増加するため、単位面積当たりの流速が大きくなり熱伝
達率は上がる。
When the number of passes is reduced, the flow rate of refrigerant in the pipe increases, so that the flow velocity per unit area increases and the heat transfer coefficient increases.

【0064】図9に熱交換器管内の冷媒流量と圧力損失
の関係を蒸発過程におけるものを実線で、凝縮過程にお
けるものを点線で示す。
FIG. 9 shows the relationship between the refrigerant flow rate and the pressure loss in the heat exchanger tube in the evaporation process by a solid line, and in the condensation process by a dotted line.

【0065】凝縮過程においては、冷媒流量の増大によ
る、圧力損失の増加量は小さい。これに対し、蒸発過程
においては、冷媒流量が増加すると、特に熱交換器出口
側パスでの冷媒の膨張のために圧力損失が顕著に増加す
る。
In the condensation process, the increase in the pressure loss due to the increase in the flow rate of the refrigerant is small. On the other hand, in the evaporation process, when the flow rate of the refrigerant increases, the pressure loss increases significantly due to the expansion of the refrigerant particularly in the heat exchanger outlet path.

【0066】図10に熱交換器管内の冷媒流量と冷凍サ
イクルの成績係数(以下COPと言う)の関係を蒸発過
程におけるものを実線で、凝縮過程におけるものを点線
で示す。
FIG. 10 shows the relationship between the refrigerant flow rate in the heat exchanger tube and the coefficient of performance (hereinafter referred to as COP) of the refrigeration cycle in the evaporation process by a solid line and in the condensation process by the dotted line.

【0067】図8および図9からCOPは図10に示す
ように、凝縮過程では冷媒流量が増加するとCOPも上
がる。蒸発過程においては、一定値を境にCOPは圧力
損失の増加に伴い下がる。
As shown in FIG. 10 from FIGS. 8 and 9, the COP increases as the refrigerant flow rate increases in the condensation process as shown in FIG. In the evaporation process, the COP decreases as the pressure loss increases at a certain value.

【0068】この事から、蒸発過程において、冷媒流量
が一定値以上になった場合は、パス数を増やし、冷媒流
量を減少させた方がCOPが良くなる。
From the above, when the refrigerant flow rate becomes equal to or more than a certain value in the evaporation process, the COP is improved by increasing the number of passes and decreasing the refrigerant flow rate.

【0069】そこで、本実施例においては、運転モード
判定手段71からの出力値が蒸発過程の時は、パスを切
り替えるしきい値を下げる方がよい。
Therefore, in this embodiment, when the output value from the operation mode determining means 71 is in the process of evaporating, it is better to lower the threshold value for switching the path.

【0070】次に、さらに他の実施例を説明する。従来
単一冷媒(R22)を用いていたが、代替冷媒候補とし
て、冷凍サイクル内における空気温度の温度勾配が小さ
い単一冷媒、または共沸冷媒など、例えば、ハイドロフ
ルオロカーボン(HFC)の中のR32/R125(5
0/50wt%)(以下、R410Aと言う)、あるい
はハイドロカーボン(HC)の中のプロパン(R29
0)を用いる。これらサイクルでは従来のR22に比べ
て同一サイクルポイントでの冷媒密度が大きく、従っ
て、流速が小さくなるという特徴を有している。
Next, still another embodiment will be described. Conventionally, a single refrigerant (R22) has been used. However, as alternative refrigerant candidates, a single refrigerant having a small temperature gradient of the air temperature in a refrigeration cycle, or an azeotropic refrigerant such as R32 in hydrofluorocarbon (HFC) / R125 (5
0/50 wt%) (hereinafter referred to as R410A) or propane (R29A) in hydrocarbon (HC).
0) is used. In these cycles, the refrigerant density at the same cycle point is higher than that of the conventional R22, and thus the flow velocity is lower.

【0071】すなわち、同一能力を要求するときに、R
410AはR22に比べて熱交換器や配管での圧力損失
がR22の約70%と小さくなる。
That is, when requesting the same ability, R
In 410A, the pressure loss in the heat exchanger and the pipe is reduced to about 70% of R22 as compared with R22.

【0072】この事から、特にR410A、プロパン
(R290)等を冷媒として用いることにより、熱伝達
率が向上し、熱交換器効率の向上が図れる。
From this fact, by using R410A, propane (R290) or the like as the refrigerant, the heat transfer coefficient is improved and the heat exchanger efficiency is improved.

【0073】次に、図11から16を用いてパス切替手
段の実施例を説明する。パス切替手段として可動式の弁
を3例あげる。
Next, an embodiment of the path switching means will be described with reference to FIGS. Three examples of movable valves are given as path switching means.

【0074】第1の例としてロータリ式のものを挙げ
る。図11に示すように、パスa、b、c、dは弁の周
囲90度おきに設け、弁の内部パスは、中心を通るパス
と、それを中心に対称な2パスはaとb、cとdを連結
するようにする。1パスにする時は、図12のように切
り替え、弁接続部aとcを連結する。弁接続部bとdは
閉状態となる。
A first example is a rotary type. As shown in FIG. 11, the paths a, b, c, and d are provided every 90 degrees around the valve, and the internal path of the valve includes a path passing through the center and two paths symmetrical about the center, a and b; Connect c and d. To make one pass, switching is performed as shown in FIG. 12, and the valve connection portions a and c are connected. Valve connections b and d are closed.

【0075】第2の例として示すものもロータリ式のも
のである。図13のように弁接続部b、cは弁接続部a
および弁の中心とを結んだ線を対称に設ける。弁接続部
dは弁接続部aとcの間の任意の位置に設ける。通常運
転時は、弁接続部aとbを、cとdを連結する。1パス
にする時は、図14に示すように弁接続部aとcを連結
し、弁接続部bとdは閉状態とする。これは第1の例に
比較し、弁内のパス数を減らす事が可能となり、加工が
容易になるという利点がある。
The second example is also of the rotary type. As shown in FIG. 13, the valve connection portions b and c are connected to the valve connection portion a.
And a line connecting to the center of the valve is provided symmetrically. The valve connection d is provided at an arbitrary position between the valve connections a and c. During normal operation, valve connections a and b are connected, and c and d are connected. To make one pass, the valve connections a and c are connected as shown in FIG. 14, and the valve connections b and d are closed. This has the advantage that the number of passes in the valve can be reduced and processing is easier than in the first example.

【0076】第3の例として直動式のものを挙げる。図
15に示すように弁接続部aとb、cとdが連結してい
る。1パスにする時は、図16に示すように弁体を横に
ずらし、弁接続部aとcを連結し、弁接続部bとdを閉
状態とする。
A third example is a direct-acting type. As shown in FIG. 15, the valve connection portions a and b, and c and d are connected. To make one pass, the valve body is shifted sideways as shown in FIG. 16, the valve connections a and c are connected, and the valve connections b and d are closed.

【0077】以上より、例えば、空気調和機の暖房運転
下、立ち上げから室内の温度が安定する時、暖房負荷が
小さくなり圧縮機の運転周波数が小さくなる。年間総運
転時間に占めるこの環境になる比率がとても大きい。そ
のため、年間電気代を考えた場合に、低周波数運転時の
占める割合も大きい。そこで、この制御を用いることに
より、年間電気代約5%省くことができる。
As described above, for example, when the temperature of the room becomes stable from the start-up under the heating operation of the air conditioner, the heating load is reduced and the operating frequency of the compressor is reduced. The ratio of this environment to the total operating hours per year is very large. Therefore, when considering the annual electricity bill, the ratio occupied by low-frequency operation is large. Thus, by using this control, it is possible to save about 5% of the annual electricity bill.

【0078】また、ハイドロフルオロカーボン(HF
C)およびハイドロカーボン(HC)の冷媒を用いるこ
とにより、オゾン破壊係数(ODP)の値が0で、また
地球温暖化係数(GWP)の値は、ハイドロフルオロカ
ーボン(HFC)は大きいが、ハイドロカーボン(H
C)は極めて0に近い。そのため、環境問題は克服する
事ができる。
Further, hydrofluorocarbon (HF)
By using refrigerants of C) and hydrocarbons (HC), the value of ozone depletion potential (ODP) is 0 and the value of global warming potential (GWP) is large for hydrofluorocarbon (HFC) (H
C) is very close to zero. Therefore, environmental problems can be overcome.

【0079】また、上記制御装置において冷媒をハイド
ロフルオロカーボン(HFC)およびハイドロカーボン
(HC)の中でも特に、単一あるいは共沸もしくは共弗
様混合冷媒を用いることにより、熱交換器効率がより向
上するため、冷凍サイクル効率も向上させることが可能
となり、結果として消費電力量を省くことができる。
Further, in the above-mentioned control device, by using a single or azeotropic or azeotrope-like mixed refrigerant among the hydrofluorocarbon (HFC) and the hydrocarbon (HC) as the refrigerant, the heat exchanger efficiency is further improved. Therefore, the refrigeration cycle efficiency can be improved, and as a result, the power consumption can be reduced.

【0080】[0080]

【発明の効果】以上のように本発明によれば、熱交換器
のパス数を切り替えることにより、冷媒流量の少ないと
き、熱交換器効率の向上を図ることができる。これによ
り、暖房低負荷時の消費電力を低減することによって、
空気調和機の年間電気代を低減する事が可能となる。
As described above, according to the present invention, the efficiency of the heat exchanger can be improved when the flow rate of the refrigerant is small by switching the number of passes of the heat exchanger. Thereby, by reducing the power consumption at the time of heating low load,
It is possible to reduce the annual electricity bill for air conditioners.

【0081】また、R22の代替冷媒候補である、ハイ
ドロフルオロカーボン(HFC)あるいはハイドロカー
ボン(HC)を主成分とした冷媒においても、熱伝達率
が向上し、熱交換器効率の向上が可能となる。
Further, also in the refrigerant mainly containing hydrofluorocarbon (HFC) or hydrocarbon (HC) which is a candidate for R22 as a substitute refrigerant, the heat transfer coefficient is improved and the heat exchanger efficiency can be improved. .

【0082】また、可動式弁を用いることにより、容易
に弁のパス数を切り換えることが可能となり、部品点数
および工数の削減などが行える。
Further, by using the movable valve, the number of passes of the valve can be easily switched, and the number of parts and man-hours can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における冷凍サイクル制御
装置を示す図
FIG. 1 is a diagram showing a refrigeration cycle control device according to an embodiment of the present invention.

【図2】同実施の形態における熱交換器のパス図FIG. 2 is a path diagram of the heat exchanger in the embodiment.

【図3】本発明の同実施の形態における熱交換器の弁の
実施形態1の制御ブロック図
FIG. 3 is a control block diagram of Embodiment 1 of the valve of the heat exchanger in the embodiment of the present invention.

【図4】本発明の同実施の形態における熱交換器の弁の
実施形態2の制御ブロック図
FIG. 4 is a control block diagram of Embodiment 2 of the valve of the heat exchanger according to the embodiment of the present invention.

【図5】本発明の同実施の形態における熱交換器の弁の
実施形態3の制御ブロック図
FIG. 5 is a control block diagram of Embodiment 3 of the valve of the heat exchanger in the embodiment of the present invention.

【図6】本発明の同実施の形態における熱交換器の弁の
実施形態4の制御ブロック図
FIG. 6 is a control block diagram of Embodiment 4 of the valve of the heat exchanger in the embodiment of the present invention.

【図7】本発明の同実施の形態における熱交換器の弁の
実施形態5の制御ブロック図
FIG. 7 is a control block diagram of Embodiment 5 of the valve of the heat exchanger in the embodiment of the present invention.

【図8】熱交換器管内の冷媒流量と熱伝達率の関係を示
す図
FIG. 8 is a diagram showing a relationship between a refrigerant flow rate and a heat transfer coefficient in a heat exchanger tube.

【図9】熱交換器管内の冷媒流量と圧力損失の関係を示
す図
FIG. 9 is a diagram showing a relationship between a refrigerant flow rate and a pressure loss in a heat exchanger tube.

【図10】熱交換器管内の冷媒流量と冷凍サイクルの成
績係数COPの関係を示す図
FIG. 10 is a diagram showing a relationship between a refrigerant flow rate in a heat exchanger tube and a coefficient of performance COP of a refrigeration cycle.

【図11】同実施の形態において熱交換器のパスを制御
する第1例の弁の2パスを示す図
FIG. 11 is a diagram showing two paths of a valve of the first example for controlling the path of the heat exchanger in the embodiment.

【図12】同実施の形態において熱交換器のパスを制御
する第1例の弁の1パスを示す図
FIG. 12 is a view showing one path of a valve of the first example for controlling the path of the heat exchanger in the embodiment.

【図13】同実施の形態において熱交換器のパスを制御
する第2例の弁の2パスを示す図
FIG. 13 is a view showing two paths of a valve of a second example for controlling the path of the heat exchanger in the embodiment.

【図14】同実施の形態において熱交換器のパスを制御
する第2例の弁の1パスを示す図
FIG. 14 is a diagram showing one path of a second example valve for controlling the path of the heat exchanger in the embodiment.

【図15】同実施の形態において熱交換器のパスを制御
する第3例の弁の2パスを示す図
FIG. 15 is a diagram showing two paths of a valve of a third example for controlling the path of the heat exchanger in the embodiment.

【図16】同実施の形態において熱交換器のパスを制御
する第3例の弁の1パスを示す図
FIG. 16 is a diagram showing one path of a valve of a third example for controlling the path of the heat exchanger in the embodiment.

【図17】従来の熱交換器のパス図FIG. 17 is a path diagram of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 冷凍サイクルシステム 2 圧縮機 3,83 四方弁 4 室外熱交換器 5 減圧部 6 室内熱交換器 7 アキュムレータ 21 熱交換器入口分岐点 22 弁 23 熱交換器出口合流点 31 検知手段 32,42,52,62 パス数決定手段 33,43,53,63,73 パス切替手段 41 冷媒流量検知手段 51 運転周波数検知手段 61 負荷検知手段 71 運転モード判定手段 72 パス数修正手段 81 熱交換器 82 分岐管 84 冷媒管 DESCRIPTION OF SYMBOLS 1 Refrigeration cycle system 2 Compressor 3,83 Four-way valve 4 Outdoor heat exchanger 5 Decompression part 6 Indoor heat exchanger 7 Accumulator 21 Heat exchanger entrance junction 22 Valve 23 Heat exchanger exit junction 31 Detecting means 32,42, 52, 62 pass number determining means 33, 43, 53, 63, 73 path switching means 41 refrigerant flow detecting means 51 operating frequency detecting means 61 load detecting means 71 operating mode determining means 72 pass number correcting means 81 heat exchanger 82 branch pipe 84 refrigerant pipe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 容量が可変である圧縮機と、2つ以上の
熱交換器と、これら熱交換器で熱交換する冷媒と減圧部
と、前記熱交換器の内少なくとも1つには少なくとも2
以上の前記冷媒を流すためのパスとを有し、これらを順
次配管接続した冷凍サイクルシステムと、前記パスを流
れる冷媒流量を実質的に検知する検知手段と、前記検知
手段で検知された冷媒流量が一定値より少ないとき、前
記熱交換器でのパス数を少なくするように決定するパス
数決定手段と、前記パス数決定手段からの信号に基づい
てパス数を切り替えるパス切替手段とを有することを特
徴とする冷凍サイクル制御装置。
1. A compressor having a variable capacity, two or more heat exchangers, a refrigerant exchanging heat with these heat exchangers and a decompression unit, and at least one of the heat exchangers has at least one heat exchanger.
A refrigeration cycle system having a path for flowing the above-described refrigerant, and connecting these in sequence with pipes, a detecting means for substantially detecting a flow rate of the refrigerant flowing through the path, and a refrigerant flow rate detected by the detecting means When the number of passes is smaller than a predetermined value, the number of passes in the heat exchanger is determined to be reduced, and the path switching means that switches the number of passes based on a signal from the number of passes determining means. A refrigeration cycle control device characterized by the above-mentioned.
【請求項2】 請求項1記載の検知手段を、パスを流れ
る冷媒流量を検知する冷媒流量検知手段とする請求項1
記載の冷凍サイクル制御装置。
2. The method according to claim 1, wherein the detecting means is a refrigerant flow rate detecting means for detecting a flow rate of the refrigerant flowing through the path.
A refrigeration cycle control device according to the above.
【請求項3】 請求項1記載の検知手段を、圧縮機の運
転周波数を検知する運転周波数検知手段とする請求項1
記載の冷凍サイクル制御装置。
3. The operating frequency detecting means according to claim 1, wherein said operating means detects an operating frequency of said compressor.
A refrigeration cycle control device according to the above.
【請求項4】 請求項1記載の検知手段を、熱交換器に
おける負荷を検知する負荷検知手段とする請求項1記載
の冷凍サイクル制御装置。
4. The refrigeration cycle control device according to claim 1, wherein the detection means according to claim 1 is load detection means for detecting a load in the heat exchanger.
【請求項5】 冷凍サイクル制御装置には、熱交換器の
運転モードを検知する運転モード判定手段を具備し、前
記運転モード判定手段により検知された運転モードによ
り熱交換器でのパス数を適正な値に修正するパス数修正
手段とを有する、請求項1〜4いずれか記載の冷凍サイ
クル制御装置。
5. The refrigeration cycle control device includes an operation mode determination unit that detects an operation mode of the heat exchanger, and the number of passes in the heat exchanger is adjusted according to the operation mode detected by the operation mode determination unit. The refrigeration cycle control device according to any one of claims 1 to 4, further comprising pass number correction means for correcting the number of passes.
【請求項6】 冷媒としてハイドロフルオロカーボン
(HFC)あるいはハイドロカーボン(HC)を主成分
として用いた請求項1〜5いずれか記載の冷凍サイクル
制御装置。
6. The refrigeration cycle control device according to claim 1, wherein a hydrofluorocarbon (HFC) or a hydrocarbon (HC) is used as a main component of the refrigerant.
【請求項7】 パス切替手段として可動式弁を用いた請
求項1〜6いずれか記載の冷凍サイクル制御装置。
7. The refrigeration cycle control device according to claim 1, wherein a movable valve is used as the path switching means.
JP19965297A 1997-07-25 1997-07-25 Refrigerating cycle controller Pending JPH1144499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19965297A JPH1144499A (en) 1997-07-25 1997-07-25 Refrigerating cycle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19965297A JPH1144499A (en) 1997-07-25 1997-07-25 Refrigerating cycle controller

Publications (1)

Publication Number Publication Date
JPH1144499A true JPH1144499A (en) 1999-02-16

Family

ID=16411405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19965297A Pending JPH1144499A (en) 1997-07-25 1997-07-25 Refrigerating cycle controller

Country Status (1)

Country Link
JP (1) JPH1144499A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517764B2 (en) 2000-02-10 2003-02-11 Sanwa Kako Co., Ltd. Method of making polyethylene resinous open cell cellular bodies
JP2008111661A (en) * 2007-12-11 2008-05-15 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2010261683A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider and refrigerating device
JP2010261684A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider
CN114674096A (en) * 2022-05-20 2022-06-28 海尔(深圳)研发有限责任公司 Refrigerant distribution device, heat exchanger and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517764B2 (en) 2000-02-10 2003-02-11 Sanwa Kako Co., Ltd. Method of making polyethylene resinous open cell cellular bodies
JP2008111661A (en) * 2007-12-11 2008-05-15 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2010261683A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider and refrigerating device
JP2010261684A (en) * 2009-05-11 2010-11-18 Daikin Ind Ltd Flow divider
CN114674096A (en) * 2022-05-20 2022-06-28 海尔(深圳)研发有限责任公司 Refrigerant distribution device, heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US9903601B2 (en) Air-conditioning apparatus
WO2009098751A1 (en) Air-conditioning and water-heating complex system
EP2653805B1 (en) Combined air-conditioning and hot water supply system
EP2527756B1 (en) Air-conditioning hot-water supply combined system
WO1998006983A1 (en) Air conditioner
US20190277549A1 (en) Refrigeration cycle apparatus
JPWO2019073621A1 (en) Air conditioner
JP2006283989A (en) Cooling/heating system
JP5893151B2 (en) Air conditioning and hot water supply complex system
KR101901540B1 (en) Air conditioning device
US20010037649A1 (en) Air conditioner using flammable refrigerant
JP6594599B1 (en) Air conditioner
JP6289734B2 (en) Air conditioning and hot water supply complex system
US9587861B2 (en) Air-conditioning apparatus
JPH1144499A (en) Refrigerating cycle controller
JPH0886527A (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
WO2017109905A1 (en) Air-conditioning/hot-water supplying combined system
JPH0763430A (en) Saturated vapor temperature detection circuit of refrigeration cycle
JPH07190526A (en) Refrigerating cycle equipment using nonazeotropic mixture refrigerant
JPH0571833A (en) Multiroom cooling heating device
JPH07269972A (en) Air conditioner and controlling method therefor
JP2004232905A (en) Refrigerator
JP3463537B2 (en) Air conditioner
JPH07190527A (en) Control device of heat pump equipment using nonazeotropic mixture refrigerant

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919